WO2016188482A1 - 一种检测方法及装置 - Google Patents

一种检测方法及装置 Download PDF

Info

Publication number
WO2016188482A1
WO2016188482A1 PCT/CN2016/083674 CN2016083674W WO2016188482A1 WO 2016188482 A1 WO2016188482 A1 WO 2016188482A1 CN 2016083674 W CN2016083674 W CN 2016083674W WO 2016188482 A1 WO2016188482 A1 WO 2016188482A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency signal
frequency
signal
module
processing module
Prior art date
Application number
PCT/CN2016/083674
Other languages
English (en)
French (fr)
Inventor
徐银浩
于文峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016188482A1 publication Critical patent/WO2016188482A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing

Definitions

  • the present application relates to, but is not limited to, the field of communications, and in particular, to a detection method and apparatus.
  • the current split microwave system basically consists of two parts: IDU (indoor unit) and ODU (outdoor unit).
  • the IDU and the ODU realize interconnection and communication through the intermediate frequency feeder.
  • the transmission direction of the intermediate frequency signal on one cable is: the intermediate frequency signal 1 from IDU1 to ODU1, then from ODU1 to ODU2, and finally from ODU2 to IDU2, IDU-ODU-
  • a complete signal transmission path such as ODU-IDU is commonly referred to as "one hop"; at the same time, another intermediate frequency signal 2 can be from IDU2 to ODU2, then from ODU2 to ODU1, and finally from ODU1 to IDU1.
  • Multiple sets of analog signals of different frequency bands are multiplexed on the intermediate frequency feeder.
  • the signals multiplexed on the intermediate frequency cable include: a 350 MHz carrier signal transmitted by the IDU, a 140 MHz carrier signal received by the IDU, a -48 V DC signal supplied by the IDU to the ODU, and the like.
  • the one-hop environment joint verification such as IDU-ODU-ODU-IDU is currently used.
  • This method has many inconveniences, such as high cost of the ODU, complex environment construction, and ODU.
  • the high-frequency radiation has an adverse effect on the tester.
  • the detection of group signals often requires extensive comparison verification on site, requiring maintenance personnel to have considerable technical expertise, and it is likely that the support of the rear R&D personnel will be required.
  • the embodiment of the invention provides a detection method and device, which solves the problem that the performance or fault detection of the IDU in the related microwave system is complicated and difficult.
  • a detecting method includes: receiving a first frequency signal, wherein the first frequency signal is an output signal generated and transmitted by a first device; converting the first frequency signal into a second frequency signal, The first frequency signal is different from the frequency of the second frequency signal; the second frequency signal is sent to the first device or the second device as a feedback signal of the output signal, and the second frequency signal is used for The first device or the second device is detected.
  • converting the first frequency signal into the second frequency signal comprises: converting the first frequency signal to N frequency conversion, and converting into a second frequency signal, where N is a positive integer greater than or equal to 1.
  • converting the first frequency signal into the second frequency signal further comprises: filtering the signal of the corresponding position before one or more frequency conversions, and/or after one or more frequency conversions.
  • converting the first frequency signal into the second frequency signal further includes:
  • the signal of the corresponding position is subjected to one or more of the following channel simulation processes before one or more frequency conversions, and/or after one or more frequency conversions: frequency shift, multipath, selective fading.
  • N is equal to 2
  • converting the first frequency signal into the second frequency signal comprises: converting the first frequency signal into a third frequency signal; performing the channel analog processing on the third frequency signal Converting the third frequency signal subjected to the channel analog processing into the second frequency signal; the frequency of the third frequency signal is lower than the frequency of the first frequency signal and the frequency of the second frequency signal.
  • the detecting method further includes: receiving a power supply output signal of the first device or the second device; and detecting an external power supply function of the corresponding device according to the received power supply output signal.
  • the method further includes: when the second frequency signal is sent to the first device, sending the first frequency signal by using the same cable, and receiving the second frequency signal.
  • the first frequency signal and the second frequency signal are intermediate frequency signals; the first device and the second device are indoor modules IDU in the microwave system.
  • a detecting device includes: a first interface module, a processing module, and a second interface module;
  • a first interface module configured to receive a first frequency signal, the first frequency signal being an output signal generated and transmitted by the first device; and a processing module configured to convert the first frequency signal into the second frequency a signal, the first frequency signal is different from a frequency of the second frequency signal; the first interface module is further configured to send the second frequency signal as a feedback signal of the output signal to a first device, configured to send a second frequency signal as a feedback signal of the output signal to a second device, where the second frequency signal is used for the first device or the second device Test.
  • the processing module includes one or more frequency conversion modules configured to perform the N frequency conversion on the first frequency signal to convert into a second frequency signal, where N is a positive integer greater than or equal to 1.
  • the processing module further comprises one or more filtering modules configured to filter the signals of the respective locations before one or more frequency conversions and/or after one or more frequency conversions.
  • the processing module further includes a channel simulation module configured to perform one or more of the following channel analog processing on the signal of the corresponding position before one or more frequency conversions, and/or after one or more frequency conversions. : frequency shift, multipath, selective fading.
  • the first interface module is further configured to receive a power supply output signal of the first device or the second device;
  • the detecting device further includes a power detection module configured to be configured according to the power output signal received by the first interface module The external power supply function is detected.
  • a detecting device includes a first interface module, a first processing module, a second interface module, and a second processing module; the first processing module and the second processing module are partially or wholly shared.
  • the first interface module is configured to receive a first frequency signal in a first test mode, where the first frequency signal is an output signal generated and transmitted by the first device, and is further configured to use the second frequency signal as the The feedback signal of the output signal is sent to the first device; the first processing module is configured to convert the first frequency signal into the second frequency signal, the frequency of the first frequency signal and the second frequency signal Differently, the second frequency signal is used to detect the first device.
  • the first interface module is further configured to receive a first frequency signal in a second test mode, the first frequency signal being an output signal generated and transmitted by the first device; the second processing module being configured to Converting the first frequency signal into a second frequency signal, the first frequency signal being different from the frequency of the second frequency signal; the second interface module is further configured to use the second frequency signal as the output signal
  • the feedback signal is sent to the second device, and the second frequency signal is used to detect the first device or the second device.
  • the detecting device further includes: a first switching module configured to switch between the first test mode and the second test mode.
  • the first processing module and the second processing module respectively comprise one or more frequency conversion modules, configured to perform the N frequency conversion on the first frequency signal, and convert the signal into a second frequency signal, where N is greater than or equal to A positive integer of 1.
  • the first processing module and the second processing module further comprise one or more filtering modules, configured to signal the corresponding position before one or more frequency conversions, and/or after one or more frequency conversions Perform filtering processing.
  • the first processing module and the second processing module further comprise a channel simulation module, configured to perform the following signal on the corresponding position before one or more frequency conversions, and/or after one or more frequency conversions.
  • a channel simulation module configured to perform the following signal on the corresponding position before one or more frequency conversions, and/or after one or more frequency conversions.
  • One or more types of channel analog processing frequency shift, multipath, selective fading.
  • the first interface module is further configured to receive a power supply output signal of the first device, and/or the second interface module is further configured to receive a power supply output signal of the second device;
  • the detecting device further includes a power detection module, and the setting The external power supply function of the corresponding device is detected according to the received power output signal.
  • the detecting device further includes a third processing module and/or a fourth processing module; the third processing module and the second processing module are shared; the first processing module and the fourth processing module are shared; and the third processing is included
  • the module and the fourth processing module share part or all of the third processing module and the fourth processing module:
  • the second interface module is configured to receive, in a third test mode, a first frequency signal, the first frequency signal being an output signal generated and transmitted by the second device, and further configured to use the second frequency signal as the a feedback signal of the output signal is sent to the second device;
  • the third processing module is configured to convert the first frequency signal into the second frequency signal, the frequency of the first frequency signal and the second frequency signal Differently, the second frequency signal is used to detect the second device.
  • the second interface module is configured to receive, when in the fourth test mode, a first frequency signal, where the first frequency signal is an output signal generated and transmitted by the second device; the fourth processing module is configured to be Converting the first frequency signal into a second frequency signal, the first frequency signal being different from the frequency of the second frequency signal; the first interface module is configured to use the second frequency signal as The feedback signal of the output signal is sent to the first device, and the second frequency signal is used to detect the first device or the second device.
  • the detecting device further includes: a second switching module configured to switch between the third test mode and the fourth test mode.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the detection method.
  • the embodiment of the present invention is applicable to detecting an IDU in a microwave system, including: performing loopback self-detection on the IDU and performing a one-hop transmission process of the intermediate frequency signal in the microwave system from IDU1 to IDU2, and detecting another through a normal IDU.
  • An IDU's performance and faults provide a low-cost, more efficient solution for IDU's IF performance detection and fault detection.
  • the detection scheme provided by the embodiment of the present invention can accurately determine whether the signal link multiplexed by the IDU on a cable works normally, thereby narrowing the search range of the fault and providing a basis for rapid repair.
  • FIG. 1 is a flowchart of a detection method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a detection method according to another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a detecting apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a detecting apparatus according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a detecting apparatus according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a detecting apparatus according to another embodiment of the present invention.
  • a detection method provided by an embodiment of the present invention includes: receiving an output signal generated and transmitted by a first device, that is, a first frequency signal, converting the first frequency signal into a second frequency signal, and using the second frequency signal as the output signal
  • the feedback signal is sent to the first device, and the performance or fault of the first device is detected by the second frequency signal.
  • One of the first frequency signal and the second frequency signal is an output signal, and the other is feedback of the output signal.
  • the signal is a group of signals.
  • the signals multiplexed on the IF cable include: a 350 MHz carrier signal sent by the IDU, a 140 MHz carrier signal received by the IDU, and a -48 V DC signal supplied by the IDU to the ODU.
  • the first frequency signal and the second frequency signal may be respectively a 350 MHz carrier signal transmitted by the IDU and a 140 MHz carrier signal received by the IDU.
  • the performance of the first device may be determined by detecting a bit error rate of the second frequency signal, and determining whether the first device is faulty by detecting whether the first device successfully receives the second frequency signal, if the first device fails to receive the first
  • the second frequency signal indicates that the first device is faulty.
  • the input and the output are docked to the same device, and the self-detection of the device is realized by loopback of the first frequency signal and the second frequency signal.
  • FIG. 1 is a flowchart of a detection method according to an embodiment of the present invention. As shown in FIG. 1 , the detection method includes the following processes S101-S103:
  • the step includes: converting the first frequency signal to N frequency conversion, and converting into a second frequency signal, where N is a positive integer greater than or equal to 1.
  • the method further comprises: filtering the signal of the corresponding position before one or more frequency conversions, and/or after one or more frequency conversions. Its role is to filter out interference and clutter signals.
  • the method further comprises: performing one or more of the following channel analog processing on the signal of the corresponding position before one or more frequency conversions, and/or after one or more frequency conversions: frequency shifting, multiple Diameter and selective fading.
  • the role is to simulate the real environment of IF signal transmission in microwave systems. Since the higher the frequency band, the more difficult it is to scramble the signal, and the high-frequency channel simulator is expensive, therefore, it is preferable to perform the above scrambling in the low frequency band to complete the channel simulation.
  • the step is: first converting the first frequency signal into a third frequency signal; and performing at least one channel simulation processing on the third frequency signal by frequency shifting, multipath, and selective fading; And converting the third frequency signal subjected to the channel analog processing into the second frequency signal; the frequency of the third frequency signal is lower than the frequency of the first frequency signal and the frequency of the second frequency signal. That is, two conversions are performed, N is equal to 2, and channel analog processing is performed on the low frequency third frequency signal.
  • filtering can be performed before and/or after each frequency conversion. Processing to filter out interference and clutter signals.
  • the first frequency signal is from the first device, and the feedback signal, that is, the second frequency signal is sent to the first device, that is, the input and the output are all connected to the same device, and the loopback of the signal can realize the self-operation of the first device.
  • Detection The performance of the first device can be determined by detecting the error rate of the second frequency signal, and the bit error rate is low, the performance is good, and the bit error rate is high, the performance is poor; and the second device can be successfully detected by detecting whether the first device successfully receives the second device.
  • the frequency signal is used to determine whether the first device is faulty. If the first device fails to receive the second frequency signal, the first device is faulty.
  • the external power supply function of the first device is further detected, including: receiving a power output signal sent by the first device; and detecting an external power supply function of the first device according to the received power output signal.
  • the first frequency signal sent by the first device is received by the same cable and the second frequency signal is sent to the first device. Simulate the actual transmission environment in a real-world microwave system.
  • the first frequency signal and the second frequency signal are intermediate frequency signals; the first device and the second device are IDUs in the microwave system.
  • the IDU is received on one cable to generate and transmit an output signal, and the second frequency signal is sent as a feedback signal of the output signal to the IDU, and a ring of signals is completed on one cable. Back, you can achieve the performance and fault detection of the IDU.
  • Another detection method provided by the embodiment of the present invention includes: receiving an output signal generated and transmitted by the first device, that is, a first frequency signal, converting the first frequency signal into a second frequency signal, and using the second frequency signal as the output
  • the feedback signal of the signal is sent to the second device, and the first device or the second device is detected by the second frequency signal. If the first device is normal, the method can detect the second device, and can detect The bit error rate of the second frequency signal to detect the polarity of the second device
  • the second device may be faulty by detecting whether the second device successfully receives the second frequency signal. If the second device does not successfully receive the second frequency signal, the second device is faulty.
  • the method can detect the first device, and can detect the performance of the first device by detecting the error rate of the second frequency signal, and can detect whether the second device successfully receives the second device.
  • the second frequency signal is used to determine whether the first device is faulty. If the second device does not successfully receive the second frequency signal, the first device is faulty.
  • the input and output are connected to different devices, and when one of the devices is normal, the detection of the other device can be implemented.
  • FIG. 2 is a flowchart of a detection method according to another embodiment of the present invention. As shown in FIG. 2, the detection method includes the following processes S201-S203:
  • the embodiment is different from the embodiment shown in FIG. 1 in that the second frequency signal is sent to the second device, and the second frequency signal is used to detect the first device or the second device. If the first device is normal, the embodiment may be used to detect the second device, and the performance of the second device may be detected by detecting a bit error rate of the second frequency signal, which may be detected by detecting whether the second device is successfully received. The second frequency signal determines whether the second device is faulty. If the second device does not successfully receive the second frequency signal, the second device is faulty. On the contrary, if the second device is normal, the embodiment can be used to detect the first device, and the performance of the first device can be detected by detecting the error rate of the second frequency signal, and the second device can be detected successfully.
  • the second frequency signal is received to determine whether the first device is faulty. If the second device does not successfully receive the second frequency signal, the first device is faulty.
  • the input and output are connected to different devices, and when one of the devices is normal, the detection of the other device can be implemented.
  • This embodiment easily simulates a complete signal transmission path such as IDU-ODU-ODU-IDU in the microwave system, that is, a one-hop environment, the cost is greatly reduced, and the harm of the high-frequency radiation to the tester is avoided.
  • An embodiment of the present invention further provides a detecting device, which is configured to perform the foregoing a detecting method, the detecting device includes a first interface module and a processing module, wherein the first interface module is connected to the first device, configured to receive the first frequency signal generated and sent by the first device, and is further configured to send the first device to the first device.
  • the detecting device connects the input and the output to the same device through the first interface module, and realizes the self-detection of the first device by loopback of a set of signals.
  • the detecting device may be configured to perform the detecting method shown in FIG. 1 above, the detecting device comprising a first interface module configured to receive a first frequency signal, the first frequency signal being an output signal generated and transmitted by the first device And further configured to send the second frequency signal as a feedback signal of the output signal to the first device; the second frequency signal is used to detect the first device; and a processing module configured to A frequency signal is converted to the second frequency signal, the first frequency signal being different from the frequency of the second frequency signal.
  • the processing module may include one or more frequency conversion modules configured to perform the N frequency conversion on the first frequency signal to convert into a second frequency signal, where N is a positive integer greater than or equal to 1.
  • the processing module may further comprise one or more filtering modules configured to filter the signals of the respective locations before one or more frequency conversions and/or after one or more frequency conversions.
  • the processing module may further comprise one or more channel simulation modules, configured to perform one or the following signals on the corresponding position before one or more frequency conversions, and/or after one or more frequency conversions; Multiple channel analog processing: frequency shift, multipath, selective fading.
  • the first interface module is further configured to receive a power supply output signal of the first device; the detecting device may further include a power detection module, configured to perform external power supply function on the first device according to the power output signal received by the first interface module Test.
  • the detecting device can supply power to itself according to the power output signal received by the first interface module.
  • the first interface module of the detecting device is connected to the first device, and is configured not only to receive the first frequency signal generated and sent by the first device, but also to send the second frequency signal to the first device, that is, to receive and send the shared first
  • An interface module connects the input and the output to the same device through the first interface module, and implements self-detection of the first device by loopback of the first frequency signal and the second frequency signal.
  • the detecting device 3 is a detailed embodiment of the detecting device.
  • the detecting device 3 includes: a first interface module 31, a first band pass filtering module 32, a down conversion module 33, a low pass filtering module 34, an upconversion module 35, and a second a band pass filter module 36, and a power source detecting module 37, wherein
  • the first interface module 31 is connected to the IDU1 through a cable, and receives an output signal generated and transmitted by the IDU1, that is, a first frequency signal of 350 MHz; and transmits the first frequency signal to the first band pass filtering module 32, the first band pass After the filter module 32 completes the filtering, it is transmitted to the down-conversion module 33. After the frequency conversion module 33 performs frequency conversion, a third frequency signal of 70 MHz is output, the third frequency signal is transmitted to the low-pass filter module 34, and the low-pass filter module 34 filters out harmonics.
  • the up-conversion module 35 After the interference is output to the up-conversion module 35, the up-conversion module 35 performs frequency conversion and outputs a second frequency signal of 140 MHz, and the second frequency signal is filtered by the second band-pass filter module 36 to output the noise to the multiplexing port of the device. That is, the first interface module 31 is transmitted to the IDU 1 through the same cable.
  • one or more channel analog modules may be connected between the low pass filtering module 34 and the upconversion module 35, and configured to perform one or more channel analog processing on the low frequency third frequency signal of the corresponding position: frequency Shift, multipath and selective fading.
  • the first interface module 31 can also receive the power output signal of the IDU1 through the same cable, and transmit the power output signal of the IDU1 to the power detecting module 37.
  • the power detecting module 37 performs the external power supply function of the IDU1 according to the power output signal. Detection. The inspector can judge whether the -48V power output function of the IDU1 is normal by observing the power indicator on the power detecting module 37. Of course, the power detecting module 37 can also supply power to other modules in the detecting device 3 according to the power output signal. Since the ODU requires the IDU to provide a -48V power supply in the microwave system, it is necessary to detect the external power supply function of the IDU1.
  • the 350MHz intermediate frequency signal outputted by the IDU1 is converted into its receivable 140MHz signal by two frequency conversions, and then it is judged on the IDU1 side whether the signal after the loopback can be correctly demodulated to confirm whether the IDU itself works normally or not.
  • the loopback of the modulated signal enables self-detection of IDU1.
  • the embodiment of the present invention further provides another detecting device, which is configured to execute the latter detecting method
  • the detecting device includes a first interface module and a processing module, and further includes a second interface module, wherein the first interface module is The first device is connected to receive the first frequency signal generated and sent by the first device, and the second interface module is connected to the second device, and is configured to send the second device to the second device.
  • the frequency signal, the detecting device connects the input to the first device through the first interface module, and the output is docked to the second device through the second interface module, and the input and output are docked to different devices.
  • one of the devices is normal, one of the signals is passed.
  • the hop transmission enables detection of another device.
  • the detecting device may be configured to perform the detecting method shown in FIG. 2 above, the detecting device comprising a first interface module configured to receive a first frequency signal, the first frequency signal being an output signal generated and transmitted by the first device a processing module configured to convert the first frequency signal into the second frequency signal, the first frequency signal being different from a frequency of the second frequency signal; and a second interface module configured to be second The frequency signal is sent to the second device as a feedback signal of the output signal; the second frequency signal is used to detect the first device or the second device.
  • the processing module may include one or more frequency conversion modules configured to perform the N frequency conversion on the first frequency signal to convert into a second frequency signal, where N is a positive integer greater than or equal to 1.
  • the processing module may further comprise one or more filtering modules configured to filter the signals of the respective locations before one or more frequency conversions and/or after one or more frequency conversions.
  • the processing module may further comprise one or more channel simulation modules, configured to perform one or the following signals on the corresponding position before one or more frequency conversions, and/or after one or more frequency conversions; Multiple channel analog processing: frequency shift, multipath, selective fading.
  • the first interface module is further configured to receive a power output signal of the first device or the second device; the detecting device may further include a power detection module configured to be configured according to the power output signal received by the first interface module The external power supply function is detected.
  • the detecting device can supply power to itself according to the power output signal received by the first interface module.
  • the first interface module of the detecting device is connected to the first device
  • the second interface module is connected to the second device, receives the first frequency signal generated and transmitted by the first device, and sends the second frequency signal to the second device, and inputs
  • the output is connected to different devices.
  • detection of another device can be realized by one-hop transmission of one set of signals.
  • the detecting device 4 is a detailed embodiment of the detecting device.
  • the detecting device 4 includes: a first interface module 41, a first band pass filtering module 42, a down conversion module 43, a low pass filtering module 44, and an upconversion module. 45.
  • the first interface module 41 is connected to the IDU1 through a cable, and receives an output signal generated and transmitted by the IDU1, that is, a first frequency signal of 350 MHz; and transmits the first frequency signal to the first band pass filtering module 42, the first band pass. After the filter module 42 completes the filtering, it is transmitted to the down-conversion module 43. After the frequency conversion module 43 performs frequency conversion, the third frequency signal of 70 MHz is output, the third frequency signal is transmitted to the low-pass filter module 44, and the low-pass filter module 44 filters out the harmonics.
  • the up-conversion module 45 After the interference is output to the up-conversion module 45, the up-conversion module 45 performs frequency conversion and outputs a second frequency signal of 140 MHz, and the second frequency signal is filtered by the second band-pass filter module 46 to output the noise to the second interface module 48, The two interface module 48 transmits to the IDU 2.
  • one or more channel analog modules may be connected between the low-pass filter module 44 and the up-conversion module 45, and configured to perform one or more of the following channel analog processing on the low-frequency third frequency signal of the corresponding position: Shift, multipath and selective fading.
  • the first interface module 41 can also receive the power output signal of the IDU1, and transmit the power output signal of the IDU1 to the power detecting module 47.
  • the power detecting module 47 detects the external power supply function of the IDU1 according to the power output signal.
  • the second interface module 48 can also receive the power output signal of the IDU2, and transmit the power output signal of the IDU2 to the power detecting module 47.
  • the power detecting module 47 detects the external power supply function of the IDU2 according to the power output signal.
  • the power detecting module 47 can also supply power to other modules in the detecting device 4 according to the power output signal.
  • the detecting device 4 receives the first frequency signal generated and transmitted by the IDU1, and sends a second frequency signal to the IDU2, and the input and output are connected to different devices. When one of the devices is normal, one-hop transmission of one set of signals can be implemented to another Detection of equipment.
  • the embodiment of the present invention further provides another detecting device, which can be configured to perform the above two detecting methods.
  • the detecting device has two detecting modes. In the first testing mode, the detecting device passes The first interface module connects the input and the output to the same device, and implements self-detection of the first device by loopback of the signal; in the second test mode, the detecting device connects the input to the first device through the first interface module, and passes The second interface module connects the output to the second device, and the input and output are connected to different devices. When one of the devices is normal, the detection of the other device can be implemented. Switch between the two test modes, either by manual switching or by configuring the first switching mode Block to achieve switching.
  • the detecting device may further have a third testing module and/or a fourth testing mode, and the third testing mode is also self-detecting of the device.
  • the input is input through the second interface module.
  • the output is docked to the same device, and the self-detection of the second device is realized by the loopback of the signal;
  • the fourth test mode is also the input and output docking different devices, and when one of the devices is normal, the detection of the other device can be realized, but Different from the second test mode, the output is docked to the first device by the first interface module, and the input is docked to the second device by the second interface module.
  • the first test mode and the third test mode can be performed simultaneously, and the second test mode and the fourth test mode can also be performed simultaneously.
  • the detecting device may be configured to perform the two detecting methods shown in FIG. 1 and FIG. 2 .
  • the detecting device has two detecting modes, and the detecting device includes a first interface module, a first processing module, and a second interface module.
  • the first interface module in the first test mode, is configured to receive a first frequency signal, where the first frequency signal is an output signal generated and transmitted by the first device, and is further configured to be Transmitting a second frequency signal as a feedback signal of the output signal to a first device; the first processing module is configured to convert the first frequency signal into the second frequency signal, the first frequency signal and the The second frequency signal is used to detect the first device; in the second test mode, the first interface module is configured to receive the first frequency signal, the first The frequency signal is an output signal generated and transmitted by the first device; the second processing module is configured to convert the first frequency signal into a second frequency signal, the first frequency signal Different from the frequency of the second frequency signal; the second interface module is configured to send the second frequency signal as a feedback signal of the output signal to a second device, where the second frequency signal is used for The first device or the second device performs detection.
  • the first test mode and the second test mode can be switched manually or intelligently.
  • the first processing module and the second processing module are partially or completely shared. When the first processing module and the second processing module are all shared, the input end of the shared processing module is connected to the first interface module, and the switching position is in the shared processing.
  • the first test mode may be performed, when the output of the shared processing module is When the terminal is connected to the second interface module, the second test mode can be performed.
  • the detecting device further comprises a first switching module configured to switch between the first test mode and the second test mode.
  • the first processing module and the second processing module comprise one or more frequency conversion modules, configured to perform the N frequency conversion on the first frequency signal, and convert the signal into a second frequency signal, where N is greater than or equal to 1 Positive integer.
  • the first processing module and the second processing module further comprise one or more filtering modules, configured to signal the corresponding position after one or more frequency conversions, and/or after one or more frequency conversions. Perform filtering processing.
  • the first processing module and the second processing module further comprise one or more channel simulation modules, configured to perform one or more frequency conversions therein, and/or after one or more frequency conversions thereof, corresponding to The signal at the location performs one or more of the following channel analog processing: frequency shift, multipath, and selective fading.
  • the first interface module is further configured to receive a power supply output signal of the first device, and/or the second interface module is further configured to receive a power supply output signal of the second device;
  • the detecting device further includes a power detection module, and the setting The external power supply function of the corresponding device is detected according to the received power output signal.
  • FIG. 5 is a detailed embodiment of the detecting device.
  • the detecting device 5 includes: a first interface module 51, a first band pass filtering module 52, a down conversion module 53, a low pass filtering module 54, and a first upconversion module 55.
  • the second band pass filtering module 56 and the power detecting module 57 further include a second up-conversion module 59, a third band-pass filtering module 510, and a second interface module 58, wherein:
  • the first processing module includes: a first band pass filtering module 52, a down conversion module 53, a low pass filtering module 54, a first up conversion module 55, and a second band pass filtering module 56.
  • the second processing module includes: a first band pass The filtering module 52, the down conversion module 53, the low pass filtering module 54, the second upconversion module 59, and the third band pass filtering module 510; therefore, the first processing module and the second processing module are shared, and the sharing portion includes the first band The filter module 52, the down conversion module 53, and the low pass filter module 54 are provided.
  • the switching position is between the output terminal A of the low-pass filter module 54 and the input terminal B of the first up-conversion module 55 or the input terminal C of the second up-conversion module 59.
  • the output A of the low-pass filter module 54 is connected to the input B of the first up-conversion module 55, and the first interface module 51 is connected to the IDU1 through a cable to receive the output generated and sent by the IDU1.
  • Signal that is, a first frequency signal of 350 MHz; transmitting the first frequency signal
  • the first band pass filtering module 52 is filtered, and then transmitted to the down conversion module 53.
  • the down conversion module 53 performs frequency conversion to output a third frequency signal of 70 MHz, and the third frequency signal is transmitted to the low pass.
  • the filtering module 54 and the low-pass filtering module 54 filter out the harmonic interference and output the signal to the first up-conversion module 55.
  • the first up-conversion module 55 performs frequency conversion and outputs a second frequency signal of 140 MHz, and the second frequency signal passes through the second band.
  • the pass filtering module 56 filters out the clutter and outputs it to the multiplex port of the device, that is, the first interface module 51, and transmits it to the IDU 1 through the same cable.
  • the connection between A and B is removed, and the output A of the low-pass filter module 54 is connected to the input C of the second up-conversion module 59 (not shown),
  • the first interface module 51 is connected to the IDU1 through a cable, and receives an output signal generated and transmitted by the IDU1, that is, a first frequency signal of 350 MHz; and transmits the first frequency signal to the first band pass filtering module 52, and the first band pass filtering module 52 completes After filtering, it is transmitted to the down-conversion module 53, and the down-conversion module 53 performs frequency conversion to output a third frequency signal of 70 MHz, and the third frequency signal is transmitted to the low-pass filter module 54, and the low-pass filter module 54 filters out harmonic interference and outputs to
  • the second up-conversion module 59, the second up-conversion module 59 performs frequency conversion and outputs a second frequency signal of 140 MHz, and the second frequency signal is filtered by the third band-pass filter module 510 to output the noise to the second interface module
  • a channel analog module can also be connected, which is set to a low frequency third to the corresponding position.
  • the frequency signal is subjected to one or more of the following channel analog processing: frequency shift, multipath, and selective fading.
  • the first interface module 51 can also receive the power output signal of the IDU1, and transmit the power output signal of the IDU1 to the power detecting module 57.
  • the power detecting module 57 detects the external power supply function of the IDU1 according to the power output signal.
  • the second interface module 58 can also receive the power output signal of the IDU2, and transmit the power output signal of the IDU2 to the power detecting module 57 (not shown).
  • the power detecting module 57 performs the external power supply function of the IDU2 according to the power output signal. Detection.
  • the power detecting module 57 can also supply power to other modules in the detecting device 5 according to the power output signal.
  • the detecting device 5 has two detection modes. In the first test mode, the input and output are docked to the IDU1 through the first interface module 51, and the self-detection of the IDU1 is realized by loopback of the signal; In the second test mode, the detecting device connects the input IDU1 through the first interface module 51, and connects the output IDU2 through the second interface module 58. The input and output are connected to different devices. When one device is normal, the other device can be implemented. Detection of equipment.
  • the detection scheme provided by the present invention can accurately determine whether the signal link of the IDU multiplexed on a cable is working normally, thereby narrowing the search range of the fault and providing a basis for rapid repair.
  • the detecting device may further have a third test mode and/or a fourth test mode, correspondingly, including a third processing module and/or a fourth processing module; the third processing module and the second processing module are shared; The first processing module and the fourth processing module are partially shared; when the third processing module and the fourth processing module are simultaneously included, the third processing module and the fourth processing module are partially or completely shared:
  • the second interface module is configured to receive a first frequency signal, the first frequency signal being an output signal generated and transmitted by the second device, and further configured to use the second frequency signal as the a feedback signal of the output signal is sent to the second device;
  • the third processing module is configured to convert the first frequency signal into the second frequency signal, the frequency of the first frequency signal and the second frequency signal Differently, the second frequency signal is used to detect the second device.
  • the second interface module is configured to receive a first frequency signal, the first frequency signal is an output signal generated and transmitted by the second device; the fourth processing module is configured to Converting the first frequency signal into a second frequency signal, the first frequency signal being different from the frequency of the second frequency signal; the first interface module being configured to use the second frequency signal as the output signal
  • the feedback signal is sent to the first device, and the second frequency signal is used to detect the first device or the second device.
  • the third test mode and the fourth test mode are switchable, and may be manually switched or intelligently switched.
  • the detecting device may further include: a second switching module, configured to be in the third test mode and the fourth test Switch between modes.
  • the third test mode is also self-detection of the device.
  • the input and output are connected to the same device through the second interface module, and the self-detection of the second device is realized by loopback of the signal;
  • the test mode is also that the input and output are connected to different devices.
  • the detection of the other device can be implemented, but unlike the second test mode, the output is docked to the first device through the first interface module.
  • the two interface module will connect the input to the second device.
  • First test mode and third test mode The equations can be performed simultaneously, and the second test mode and the fourth test mode can also be performed simultaneously.
  • FIG. 6 is a detailed embodiment of the detecting device.
  • the detecting device 6 includes: a first interface module 61, a first band pass filtering module 62, a first down conversion module 63, a first low pass filtering module 64, and a first The frequency conversion module 65, the second band pass filter module 66, the power source detection module 67, the second up-conversion module 69, the third band-pass filter module 610, and the second interface module 68 further include a fourth band pass filter module 611 and a second The down conversion module 612 and the second low pass filter module 613, wherein:
  • the first processing module includes: a first band pass filtering module 62, a first down conversion module 63, a first low pass filtering module 64, a first upconversion module 65, and a second band pass filtering module 66.
  • the second processing module includes: The first band pass filter module 62, the first down conversion module 63, the first low pass filter module 64, the second upconversion module 69, and the third band pass filter module 610; the third processing module includes: a fourth band pass filter module 611.
  • the fourth processing module includes: a fourth band-pass filter module 611, and a second down-conversion The module 612, the second low-pass filter module 613, the first up-conversion module 65, and the second band-pass filter module 66; therefore, the first processing module and the second processing module are shared, and the common portion includes the first band-pass filter module 62.
  • the first down conversion module 63 and the first low pass filter module 64 are shared by the third processing module and the fourth processing module.
  • the common portion includes a fourth band pass filter module 611, a second down conversion module 612, and a second low pass. Filter module 613;
  • the processing module is shared with the fourth processing module.
  • the shared portion includes a first up-conversion module 65 and a second band-pass filter module 66.
  • the second processing module is shared with the third processing module.
  • the shared portion includes a second up-conversion module 69.
  • the manual switching is performed, and the switching position is between the output terminal A of the first low-pass filter module 54 and the input terminal B of the first up-conversion module 55 or the input terminal C of the second up-conversion module 59; the second low-pass The output D of the filtering module 54 is between the input B of the first up-conversion module 55 or the input C of the second up-conversion module 59.
  • the output A of the first low-pass filter module 64 is connected to the input B of the first up-conversion module 55, and the first interface module 61 is connected to the IDU1 through a cable, and the receive IDU1 is generated and sent.
  • the output signal that is, the first frequency signal of 350 MHz; the first frequency signal is transmitted to the first band pass filtering module 62, and the first band pass filtering module 62 performs filtering and transmits to the first down conversion module 63, the first down conversion Module 63 performs frequency conversion and outputs a third of 70 MHz.
  • the frequency signal and the third frequency signal are transmitted to the first low-pass filter module 64.
  • the first low-pass filter module 64 filters out the harmonic interference and outputs the result to the first up-conversion module 55.
  • the first up-conversion module 65 performs frequency conversion and outputs.
  • the second frequency signal of the 140MHz is filtered by the second band pass filtering module 66 and outputted to the multiplex port of the device, that is, the first interface module 61, and transmitted to the IDU1 through the same cable.
  • the connection between A and B is removed, and the output A of the first low-pass filter module 64 is connected to the input C of the second up-conversion module 69 (not shown), first
  • the interface module 61 is connected to the IDU1 through a cable, and receives an output signal generated and transmitted by the IDU1, that is, a first frequency signal of 350 MHz; and transmits the first frequency signal to the first band pass filtering module 62, and the first band pass filtering module After the filtering is completed, the signal is transmitted to the first down-converting module 63.
  • the first down-converting module 63 performs frequency conversion and outputs a third frequency signal of 70 MHz, and the third frequency signal is transmitted to the first low-pass filtering module 64, and the first low-pass filtering is performed.
  • the module 64 outputs the second frequency conversion module 69, and the second frequency conversion module 69 performs frequency conversion to output a second frequency signal of 140 MHz, and the second frequency signal is filtered by the third band pass filtering module 610.
  • the wave is output to the second interface module 68, and the second interface module 68 is transmitted to the IDU 2.
  • the output D of the second low-pass filter module 613 is connected to the input C of the second up-conversion module 69, and the second interface module 68 is connected to the IDU 2 through a cable, and the receive IDU2 is generated and transmitted.
  • the output signal that is, the first frequency signal of 350 MHz; the first frequency signal is transmitted to the fourth band pass filter module 611, and the fourth band pass filter module 611 performs filtering and transmits to the second down conversion module 612, and the second down conversion After the frequency conversion, the module 612 outputs a third frequency signal of 70 MHz, and the third frequency signal is transmitted to the second low-pass filter module 613.
  • the second low-pass filter module 613 filters out the harmonic interference and outputs the result to the second up-conversion module 69.
  • the second up-conversion module 69 performs a frequency conversion to output a second frequency signal of 140 MHz, and the second frequency signal is filtered by the third band-pass filter module 610 to output the noise to the second interface module 68, and is transmitted through the same cable. Give IDU2.
  • the connection between D and C is removed, and the output D of the second low-pass filter module 613 is connected to the input B of the first up-conversion module 65 (not shown).
  • the second interface module 68 is connected to the IDU 2 through a cable, and receives an output signal generated and transmitted by the IDU 2, that is, a first frequency signal of 350 MHz; and transmits the first frequency signal to the fourth band pass filtering module.
  • the fourth band pass filtering module 611 performs filtering and transmits to the second down conversion module 612.
  • the second down conversion module 612 performs frequency conversion to output a third frequency signal of 70 MHz, and the third frequency signal is transmitted to the second low pass filter.
  • the module 613, the second low-pass filter module 613 filters out harmonic interference and outputs the result to the first up-conversion module 65.
  • the first up-conversion module 65 performs frequency conversion and outputs a second frequency signal of 140 MHz, and the second frequency signal passes through the second.
  • the band pass filter module 66 filters out the clutter and outputs it to the first interface module 61, and the first interface module 61 transmits the signal to the IDU1.
  • a channel analog module may be connected, and the following is performed for the third frequency signal of the low frequency of the corresponding position or Multiple channel analog processing: frequency shift, multipath and selective fading.
  • the first interface module 61 can also receive the power output signal of the IDU1, and transmit the power output signal of the IDU1 to the power detecting module 67.
  • the power detecting module 67 detects the external power supply function of the IDU1 according to the power output signal.
  • the second interface module 68 can also receive the power output signal of the IDU 2, and transmit the power output signal of the IDU 2 to the power detecting module 67.
  • the power detecting module 67 detects the external power supply function of the IDU 2 according to the power output signal.
  • the power detecting module 67 can also supply power to other modules in the detecting device 6 according to the power output signal.
  • the detecting device 6 has four detection modes, the first test mode and the third test mode can be performed simultaneously, and the second test mode and the fourth test mode can also be performed simultaneously.
  • the embodiment of the invention is particularly suitable for detecting an IDU in a microwave system.
  • the former detection method can be used for loopback self-detection of the IDU, and the latter model simulates one-hop transmission of the intermediate frequency signal from the IDU1 to the IDU2 in the microwave system.
  • the process through a normal IDU to detect the performance and failure of another IDU, provides a low-cost, more efficient solution for IDU's IF performance detection and fault detection.
  • the detection scheme provided by the embodiment of the present invention can accurately determine whether the signal link multiplexed by the IDU on a cable works normally, thereby narrowing the search range of the fault and providing a basis for rapid repair.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the detection method.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the present invention is applicable to detecting an IDU in a microwave system, including: performing loopback self-detection on the IDU and performing a one-hop transmission process of the intermediate frequency signal in the microwave system from IDU1 to IDU2, and detecting another through a normal IDU.
  • An IDU's performance and faults provide a low-cost, more efficient solution for IDU's IF performance detection and fault detection.
  • the detection scheme provided by the embodiment of the present invention can accurately determine whether the signal link multiplexed by the IDU on a cable works normally, thereby narrowing the search range of the fault and providing a basis for rapid repair.

Abstract

本申请公开一种检测方法及装置,该方法包括:接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号;将所述第一频率信号转换成第二频率信号,所述第一频率信号与所述第二频率信号的频率不同;将所述第二频率信号作为所述输出信号的反馈信号发送给第一设备或第二设备,所述第二频率信号用于对所述第一设备或第二设备进行检测。

Description

一种检测方法及装置 技术领域
本申请涉及但不限于通信领域,尤其涉及一种检测方法及装置。
背景技术
目前的分体式微波系统基本由IDU(室内单元)和ODU(室外单元)两部分组成。IDU与ODU之间通过中频馈线实现互联与通信,中频信号在一根线缆上的传输走向是:中频信号1从IDU1到ODU1,再从ODU1到ODU2,最后从ODU2到达IDU2,IDU-ODU-ODU-IDU这样一条完整的信号传输路径俗称为“一跳”;同时,另一中频信号2可以从IDU2到ODU2,再从ODU2到ODU1,最后从ODU1到达IDU1。中频馈线上复用了多组不同频段的模拟信号。以某一型号的微波设备为例,中频线缆上复用的信号包括:IDU发送的350MHz载波信号,IDU接收的140MHz载波信号,IDU向ODU供电的-48V直流信号等等。
对于IDU的性能或故障检测,目前都是采用搭建IDU-ODU-ODU-IDU这样的一跳环境联调验证,这种方式有诸多不便,例如:ODU的成本很高、环境搭建复杂、ODU的高频辐射对测试人员产生不良影响,同时由于IDU和ODU之间的数据及控制信号都是通过一根射频线缆“复用”在一起进行传输的,通过一跳这样的方式很难针对一组信号进行检测,常常需要在现场借助大量的对比验证,要求维护人员具备相当的专业技术知识,并且很有可能需要后方研发人员的支持才有能完成。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种检测方法及装置,解决相关微波系统中对IDU的性能或故障检测较为复杂和困难的问题。
一种检测方法,包括:接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号;将所述第一频率信号转换成第二频率信号, 所述第一频率信号与所述第二频率信号的频率不同;将所述第二频率信号作为所述输出信号的反馈信号发送给第一设备或第二设备,所述第二频率信号用于对所述第一设备或第二设备进行检测。
可选地,将所述第一频率信号转换成第二频率信号包括:将所述第一频率信号进行N次频率转换,转换成第二频率信号,N为大于或等于1的正整数。
可选地,将所述第一频率信号转换成第二频率信号还包括:在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行滤波处理。
可选地,将所述第一频率信号转换成第二频率信号还包括:
在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行以下一种或多种信道模拟处理:频移、多径、选择性衰落。
可选地,N等于2,将所述第一频率信号转换成第二频率信号包括:将所述第一频率信号转换成第三频率信号;对所述第三频率信号进行所述信道模拟处理;将经过信道模拟处理后的第三频率信号转换成所述第二频率信号;所述第三频率信号的频率低于所述第一频率信号的频率和第二频率信号的频率。
可选地,该检测方法还包括:接收第一设备或第二设备的供电输出信号;根据接收的供电输出信号对相应设备的对外供电功能进行检测。
可选地,所述方法还包括:当所述第二频率信号发送到第一设备时,通过同一条线缆发送所述第一频率信号,并接收所述第二频率信号。
可选地,所述第一频率信号、第二频率信号为中频信号;所述第一设备、第二设备为微波系统中的室内模块IDU。
一种检测装置,包括:第一接口模块、处理模块和第二接口模块;
第一接口模块,设置为接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号;处理模块,设置为将所述第一频率信号转换成所述第二频率信号,所述第一频率信号与所述第二频率信号的频率不同;第一接口模块还设置为将第二频率信号作为所述输出信号的反馈信号发送给 第一设备;所述第二接口模块,设置为将第二频率信号作为所述输出信号的反馈信号发送给第二设备;所述第二频率信号用于对所述第一设备或第二设备进行检测。
可选地,处理模块包括一个或多个频率转换模块,设置为将所述第一频率信号进行N次频率转换,转换成第二频率信号,N为大于或等于1的正整数。
可选地,处理模块还包括一个或多个滤波模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行滤波处理。
可选地,处理模块还包括信道模拟模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行以下一种或多种信道模拟处理:频移、多径、选择性衰落。
可选地,第一接口模块还设置为接收第一设备或第二设备的供电输出信号;所述检测装置还包括电源检测模块,设置为根据第一接口模块接收的供电输出信号对相应设备的对外供电功能进行检测。
一种检测装置,包括第一接口模块、第一处理模块、第二接口模块以及第二处理模块;第一处理模块和第二处理模块部分或全部共用。
所述第一接口模块设置为,在第一测试模式下接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号,还设置为将第二频率信号作为所述输出信号的反馈信号发送给第一设备;所述第一处理模块设置为将所述第一频率信号转换成所述第二频率信号,所述第一频率信号与所述第二频率信号的频率不同,所述第二频率信号用于对所述第一设备进行检测。
所述第一接口模块还设置为,在第二测试模式下接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号;所述第二处理模块设置为将所述第一频率信号转换成第二频率信号,所述第一频率信号与所述第二频率信号的频率不同;所述第二接口模块还设置为将所述第二频率信号作为所述输出信号的反馈信号发送给第二设备,所述第二频率信号用于对所述第一设备或第二设备进行检测。
可选地,该检测装置还包括:第一切换模块,设置为在第一测试模式和第二测试模式之间切换。
可选地,第一处理模块和第二处理模块分别包括一个或多个频率转换模块,设置为将所述第一频率信号进行N次频率转换,转换成第二频率信号,N为大于或等于1的正整数。
可选地,第一处理模块和第二处理模块还包括一个或多个滤波模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行滤波处理。
可选地,第一处理模块和第二处理模块还包括信道模拟模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行以下一种或多种信道模拟处理:频移、多径、选择性衰落。
可选地,第一接口模块还设置为接收第一设备的供电输出信号,和/或第二接口模块还设置为接收第二设备的供电输出信号;所述检测装置还包括电源检测模块,设置为根据接收的供电输出信号对相应设备的对外供电功能进行检测。
可选地,检测装置还包括第三处理模块和/或第四处理模块;第三处理模块和第二处理模块部分共用;第一处理模块和第四处理模块部分共用;当同时包括第三处理模块和第四处理模块时,第三处理模块和第四处理模块部分或全部共用:
所述第二接口模块设置为在第三测试模式下,接收第一频率信号,所述第一频率信号为由第二设备生成并发送的输出信号,还设置为将第二频率信号作为所述输出信号的反馈信号发送给第二设备;所述第三处理模块设置为将所述第一频率信号转换成所述第二频率信号,所述第一频率信号与所述第二频率信号的频率不同,所述第二频率信号用于对所述第二设备进行检测。
所述第二接口模块设置为在第四测试模式下时,接收第一频率信号,所述第一频率信号为由第二设备生成并发送的输出信号;所述第四处理模块设置为将所述第一频率信号转换成第二频率信号,所述第一频率信号与所述第二频率信号的频率不同;所述第一接口模块设置为将所述第二频率信号作为 所述输出信号的反馈信号发送给第一设备,所述第二频率信号用于对所述第一设备或第二设备进行检测。
可选地,该检测装置还包括:第二切换模块,设置为在第三测试模式和第四测试模式之间切换。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现所述的检测方法。
本发明实施例适用于对微波系统中的IDU进行检测,包括:对IDU进行环回自检测以及模拟微波系统中的中频信号从IDU1到IDU2的一跳传输过程,通过一个正常的IDU来检测另一IDU的性能、故障,为IDU的中频性能检测和故障检测提供低成本、更高效的解决方案。通过本发明实施例提供的检测方案,可准确判断IDU在一根线缆上各复用的信号链路是否工作正常,从而缩小故障的查找范围,为快速修复提供依据。
附图概述
图1为本发明一实施例提供的检测方法的流程图;
图2为本发明另一实施例提供的检测方法的流程图;
图3为本发明一实施例提供的检测装置的示意图;
图4为本发明另一实施例提供的检测装置的示意图;
图5为本发明另一实施例提供的检测装置的示意图;
图6为本发明另一实施例提供的检测装置的示意图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供的一种检测方法包括:接收由第一设备生成并发送的输出信号即第一频率信号,将第一频率信号转换成第二频率信号,将第二频率信号作为该输出信号的反馈信号发送给第一设备,通过第二频率信号对该第一设备的性能或故障进行检测,第一频率信号和第二频率信号中,一个是输出信号,另一个是该输出信号的反馈信号,为一组信号,以某一型号的微波设备为例,中频线缆上复用的信号包括:IDU发送的350MHz载波信号,IDU接收的140MHz载波信号,IDU向ODU供电的-48V直流信号等等。第一频率信号、第二频率信号可以分别是IDU发送的350MHz载波信号、IDU接收的140MHz载波信号。可通过检测第二频率信号的误码率来判定第一设备的性能,可通过检测第一设备是否成功接收到第二频率信号来判定第一设备是否故障,如果第一设备未成功接收到第二频率信号,则说明第一设备故障。该检测方法中,输入、输出对接同一设备,通过第一频率信号和第二频率信号这一组信号的环回实现了对该设备的自检测。
图1为本发明一实施例提供的检测方法的流程图,如图1所示,该检测方法包括如下流程S101-S103:
S101、接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号。
S102、将所述第一频率信号转换成第二频率信号,所述第一频率信号与所述第二频率信号的频率不同。
本步骤包括:将所述第一频率信号进行N次频率转换,转换成第二频率信号,N为大于或等于1的正整数。
可选地,该方法还包括:在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行滤波处理。其作用是滤除干扰、杂波信号。
可选地,该方法还包括:在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行以下一种或多种信道模拟处理:频移、多径和选择性衰落。作用是模拟微波系统中中频信号传输的真实环境。由于频段越高对信号加扰越困难,同时高频段的信道模拟器价格不菲,因此,优选的,在低频段进行以上加扰完成信道模拟。
可选地,本步骤为:先将所述第一频率信号转换成第三频率信号;再对所述第三频率信号进行频移、多径、选择性衰落中的至少一种信道模拟处理;再将经过信道模拟处理后的第三频率信号转换成所述第二频率信号;所述第三频率信号的频率低于所述第一频率信号的频率和第二频率信号的频率。即进行两次转换,N等于2,且在低频率的第三频率信号时,对其进行信道模拟处理,当然,更优地,在每一次频率转换的前和/或后,都可以进行滤波处理,以滤除干扰、杂波信号。
S103、将所述第二频率信号作为所述输出信号的反馈信号发送给第一设备,所述第二频率信号用于对所述第一设备进行检测。
本实施例中,第一频率信号来自第一设备,其反馈信号即第二频率信号向第一设备发送,即输入、输出均对接同一设备,通过信号的环回可实现对第一设备的自检测。可通过检测第二频率信号的误码率来判定第一设备的性能,误码率低,则性能佳,误码率高,则性能差;还可通过检测第一设备是否成功接收到第二频率信号,来判定第一设备是否故障,如果第一设备未成功接收到第二频率信号,则说明第一设备故障。
可选地,还可以对第一设备的对外供电功能进行检测,包括:接收第一设备发送的供电输出信号;根据接收的供电输出信号对第一设备的对外供电功能进行检测。
可选地,通过同一条线缆接收第一设备发送的第一频率信号和向第一设备发送第二频率信号。模拟现实微波系统中的实际传输环境。可选地,第一频率信号、第二频率信号为中频信号;第一设备、第二设备为微波系统中的IDU。通过本实施例,在一根线缆上接收IDU生成并发送输出信号,和将第二频率信号作为该输出信号的反馈信号向该IDU发送,在一根线缆上完成了一组信号的环回,即可实现对该IDU的性能、故障的检测。
本发明实施例提供的另一种检测方法包括:接收由第一设备生成并发送的输出信号即第一频率信号,将第一频率信号转换成第二频率信号,将第二频率信号作为该输出信号的反馈信号向第二设备发送,通过第二频率信号对该第一设备或第二设备进行检测,如果第一设备是正常的,则该方法就可对第二设备进行检测,可通过检测第二频率信号的误码率来检测第二设备的性 能,可通过检测第二设备是否成功接收到第二频率信号来判定第二设备是否故障,如果第二设备未成功接收到第二频率信号,则说明第二设备故障。相反,如果第二设备是正常的,则该方法就可对第一设备进行检测,可通过检测第二频率信号的误码率来检测第一设备的性能,可通过检测第二设备是否成功接收到第二频率信号来判定第一设备是否故障,如果第二设备未成功接收到第二频率信号,则说明第一设备故障。该检测方法中,输入、输出对接不同设备,当其中一个设备正常时,可实现对另一设备的检测。
图2为本发明另一实施例提供的检测方法的流程图,如图2所示,该检测方法包括如下流程S201-S203:
S201、接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号。
S202、将所述第一频率信号转换成第二频率信号,所述第一频率信号与所述第二频率信号的频率不同。
S203、将所述第二频率信号作为所述输出信号的反馈信号发送给第二设备,所述第二频率信号用于对所述第一设备或第二设备进行检测。
该实施例与图1所示实施例的不同之处在于,第二频率信号向第二设备发送,第二频率信号用于对所述第一设备或第二设备进行检测。如果第一设备是正常的,则该实施例可用于对第二设备进行检测,可通过检测第二频率信号的误码率来检测第二设备的性能,可通过检测第二设备是否成功接收到第二频率信号来判定第二设备是否故障,如果第二设备未成功接收到第二频率信号,则说明第二设备故障。相反,如果第二设备是正常的,则该实施例可用于对第一设备进行检测,可通过检测第二频率信号的误码率来检测第一设备的性能,可通过检测第二设备是否成功接收到第二频率信号来判定第一设备是否故障,如果第二设备未成功接收到第二频率信号,则说明第一设备故障。本实施例中,输入、输出对接不同设备,当其中一个设备正常时,可实现对另一设备的检测。本实施例轻松的模拟了微波系统中IDU-ODU-ODU-IDU这样一条完整的信号传输路径,即一跳环境,成本大幅降低、避免了高频辐射对测试人员带来的危害。
本发明实施例还提供一种检测装置,该检测装置设置为执行上述前一种 检测方法,该检测装置包括第一接口模块和处理模块,其中第一接口模块与第一设备连接,设置为接收第一设备生成并发送的第一频率信号,还设置为向第一设备发送第二频率信号,该检测装置通过第一接口模块将输入、输出对接同一设备,通过一组信号的环回实现了对第一设备的自检测。
该检测装置可设置为执行上述图1所示的检测方法,该检测装置包括第一接口模块,设置为接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号;还设置为将第二频率信号作为所述输出信号的反馈信号发送给第一设备;所述第二频率信号用于对所述第一设备进行检测;以及处理模块,设置为将所述第一频率信号转换成所述第二频率信号,所述第一频率信号与所述第二频率信号的频率不同。
可选地,处理模块可以包括一个或多个频率转换模块,设置为将所述第一频率信号进行N次频率转换,转换成第二频率信号,N为大于或等于1的正整数。
可选地,处理模块还可以包括一个或多个滤波模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行滤波处理。
可选地,处理模块还可以包括一个或多个信道模拟模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行以下一种或多种信道模拟处理:频移、多径、选择性衰落。
可选地,第一接口模块还设置为接收第一设备的供电输出信号;该检测装置还可以包括电源检测模块,设置为根据第一接口模块接收的供电输出信号对第一设备的对外供电功能进行检测。当然,该检测装置可以根据第一接口模块接收的供电输出信号对自身进行供电。
该检测装置中的第一接口模块与第一设备连接,不但设置为接收第一设备生成并发送的第一频率信号,还设置为向第一设备发送第二频率信号,即接收和发送共用第一接口模块,通过第一接口模块将输入、输出对接同一设备,通过第一频率信号和第二频率信号这一组信号的环回实现了对第一设备的自检测。
图3为该检测装置的一种详细实施例,检测装置3包括:第一接口模块31、第一带通滤波模块32、下变频模块33、低通滤波模块34、上变频模块35和第二带通滤波模块36,以及电源检测模块37,其中,
第一接口模块31通过一根线缆与IDU1连接,接收IDU1生成并发送的输出信号,即350MHz的第一频率信号;将第一频率信号传输给第一带通滤波模块32,第一带通滤波模块32完成滤波后传输给下变频模块33,下变频模块33进行频率转换后输出70MHz的第三频率信号,第三频率信号传输至低通滤波模块34,低通滤波模块34滤除谐波干扰后输出至上变频模块35,上变频模块35进行频率转换后输出140MHz的第二频率信号,第二频率信号经过第二带通滤波模块36滤除杂波后输出到本装置的复用端口,即第一接口模块31,并通过同一根线缆传送给IDU1。
当然,在低通滤波模块34与上变频模块35之间还可以接一个或多个信道模拟模块,设置为对相应位置的低频的第三频率信号进行以下一种或多种信道模拟处理:频移、多径和选择性衰落。
当然,第一接口模块31还可以通过同一根线缆接收IDU1的供电输出信号,将IDU1的供电输出信号传输给电源检测模块37,电源检测模块37根据该供电输出信号对IDU1的对外供电功能进行检测。检测人员可以通过观察电源检测模块37上的电源指示灯来判断IDU1的-48V电源输出功能是否正常。当然,电源检测模块37还可以根据该供电输出信号对检测装置3中的其他模块进行供电。由于微波系统中,ODU需要IDU提供-48V电源,因此,对IDU1的对外供电功能进行检测是必要的。
本实施例把IDU1输出的350MHz中频信号通过两次变频变为其可接收的140MHz信号,然后在IDU1侧判断是否能正确解调环回后的信号,以确认IDU自身是否工作正常,通过一组调制信号的环回实现了对IDU1的自检测。
本发明实施例还提供另一种检测装置,该检测装置设置为执行上述后一种检测方法,该检测装置包括第一接口模块和处理模块,还包括第二接口模块,其中第一接口模块与第一设备连接,设置为接收第一设备生成并发送的第一频率信号,第二接口模块与第二设备连接,设置为向第二设备发送第二 频率信号,该检测装置通过第一接口模块将输入对接第一设备,通过第二接口模块将输出对接第二设备,输入、输出对接不同设备,当其中一个设备正常时,通过一组信号的一跳传输可实现对另一设备的检测。
该检测装置可设置为执行上述图2所示的检测方法,该检测装置包括第一接口模块,设置为接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号;处理模块,设置为将所述第一频率信号转换成所述第二频率信号,所述第一频率信号与所述第二频率信号的频率不同;以及第二接口模块,设置为将第二频率信号作为所述输出信号的反馈信号向第二设备发送;所述第二频率信号用于对所述第一设备或第二设备进行检测。
可选地,处理模块可以包括一个或多个频率转换模块,设置为将所述第一频率信号进行N次频率转换,转换成第二频率信号,N为大于或等于1的正整数。
可选地,处理模块还可以包括一个或多个滤波模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行滤波处理。
可选地,处理模块还可以包括一个或多个信道模拟模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行以下一种或多种信道模拟处理:频移、多径、选择性衰落。
可选地,第一接口模块还设置为接收第一设备或第二设备的供电输出信号;该检测装置还可以包括电源检测模块,设置为根据第一接口模块接收的供电输出信号对相应设备的对外供电功能进行检测。当然,该检测装置可以根据第一接口模块接收的供电输出信号对自身进行供电。
该检测装置中的第一接口模块与第一设备连接,第二接口模块与第二设备连接,接收第一设备生成并发送的第一频率信号,向第二设备发送第二频率信号,输入、输出对接不同设备,当其中一个设备正常时,通过一组信号的一跳传输可实现对另一设备的检测。
图4为该检测装置的一种详细实施例,检测装置4包括:第一接口模块41、第一带通滤波模块42、下变频模块43、低通滤波模块44、上变频模块 45、第二带通滤波模块46、第二接口模块48,以及电源检测模块47,其中:
第一接口模块41通过一根线缆与IDU1连接,接收IDU1生成并发送的输出信号,即350MHz的第一频率信号;将第一频率信号传输给第一带通滤波模块42,第一带通滤波模块42完成滤波后传输给下变频模块43,下变频模块43进行频率转换后输出70MHz的第三频率信号,第三频率信号传输至低通滤波模块44,低通滤波模块44滤除谐波干扰后输出至上变频模块45,上变频模块45进行频率转换后输出140MHz的第二频率信号,第二频率信号经过第二带通滤波模块46滤除杂波后输出到第二接口模块48,第二接口模块48传送给IDU2。
当然,在低通滤波模块44与上变频模块45之间还可以接一个或多个信道模拟模块,设置为对相应位置的低频的第三频率信号进行以下一种或多种信道模拟处理:频移、多径和选择性衰落。
当然,第一接口模块41还可以接收IDU1的供电输出信号,将IDU1的供电输出信号传输给电源检测模块47,电源检测模块47根据该供电输出信号对IDU1的对外供电功能进行检测。第二接口模块48也可以接收IDU2的供电输出信号,将IDU2的供电输出信号传输给电源检测模块47,电源检测模块47根据该供电输出信号对IDU2的对外供电功能进行检测。当然,电源检测模块47还可以根据该供电输出信号对检测装置4中的其他模块进行供电。
该检测装置4接收IDU1生成并发送的第一频率信号,向IDU2发送第二频率信号,输入、输出对接不同设备,当其中一个设备正常时,通过一组信号的一跳传输可实现对另一设备的检测。
此外,本发明实施例还提供另一种检测装置,该检测装置可设置为执行上述两种检测方法,对应的,该检测装置具有两种检测模式,在第一测试模式下,该检测装置通过第一接口模块将输入、输出对接同一设备,通过信号的环回实现了对第一设备的自检测;在第二测试模式下,该检测装置通过第一接口模块将输入对接第一设备,通过第二接口模块将输出对接第二设备,输入、输出对接不同设备,当其中一个设备正常时,可实现对另一设备的检测。两种测试模式之间可切换,可通过手动切换,也可通过配置第一切换模 块来实现切换。可选地,该种检测装置还可以具有第三测试模块和/或第四测试模式,第三测试模式也是对设备的自检测,与第一测试模式不同的是,通过第二接口模块将输入、输出对接同一设备,通过信号的环回实现了对第二设备的自检测;第四测试模式也是输入、输出对接不同设备,当其中一个设备正常时,可实现对另一设备的检测,但与第二测试模式不同的是,通过第一接口模块将输出对接第一设备,通过第二接口模块将输入对接第二设备。第一测试模式和第三测试模式可同时进行,第二测试模式和第四测试模式也可同时进行。
该检测装置可设置为执行图1和图2所示的两种检测方法,对应的,该检测装置具有两种检测模式,该检测装置包括第一接口模块、第一处理模块、第二接口模块以及第二处理模块;在第一测试模式下,所述第一接口模块设置为接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号,还设置为将第二频率信号作为所述输出信号的反馈信号向第一设备发送;所述第一处理模块设置为将所述第一频率信号转换成所述第二频率信号,所述第一频率信号与所述第二频率信号的频率不同,所述第二频率信号用于对所述第一设备进行检测;在第二测试模式下,所述第一接口模块设置为接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号;所述第二处理模块设置为将所述第一频率信号转换成第二频率信号,所述第一频率信号与所述第二频率信号的频率不同;所述第二接口模块设置为将所述第二频率信号作为所述输出信号的反馈信号向第二设备发送,所述第二频率信号用于对所述第一设备或第二设备进行检测。第一测试模式和第二测试模式之间可以手动或智能切换。第一处理模块和第二处理模块部分或全部共用,当第一处理模块和第二处理模块全部共用时,该共用的处理模块的输入端与第一接口模块连接,切换位置在该共用的处理模块的输出端与第一接口模块或第二接口模块之间,即当该共用的处理模块的输出端与第一接口模块连接时,可进行第一测试模式,当该共用的处理模块的输出端与第二接口模块连接时,可进行第二测试模式。
可选地,该检测装置还包括第一切换模块,设置为在第一测试模式和第二测试模式之间切换。
可选地,第一处理模块、第二处理模块包括一个或多个频率转换模块,设置为将所述第一频率信号进行N次频率转换,转换成第二频率信号,N为大于或等于1的正整数。
可选地,第一处理模块、第二处理模块还包括一个或多个滤波模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行滤波处理。
可选地,第一处理模块、第二处理模块还包括一个或多个信道模拟模块,设置为在其中一次或多次频率转换前,和/或在其中一次或多次频率转换后,对相应位置的信号进行以下一种或多种信道模拟处理:频移、多径和选择性衰落。
可选地,第一接口模块还设置为接收第一设备的供电输出信号,和/或第二接口模块还设置为接收第二设备的供电输出信号;所述检测装置还包括电源检测模块,设置为根据接收的供电输出信号对相应设备的对外供电功能进行检测。
图5为该检测装置的一种详细实施例,检测装置5包括:第一接口模块51、第一带通滤波模块52、下变频模块53、低通滤波模块54、第一上变频模块55、第二带通滤波模块56、电源检测模块57,还包括第二上变频模块59、第三带通滤波模块510,以及第二接口模块58,其中:
第一处理模块包括:第一带通滤波模块52、下变频模块53、低通滤波模块54、第一上变频模块55、第二带通滤波模块56;第二处理模块包括:第一带通滤波模块52、下变频模块53、低通滤波模块54、第二上变频模块59、第三带通滤波模块510;因此,第一处理模块和第二处理模块部分共用,共用部分包括第一带通滤波模块52、下变频模块53、低通滤波模块54。
本实施例采用手动切换,切换位置在低通滤波模块54的输出端A与第一上变频模块55的输入端B或第二上变频模块59的输入端C之间。
在第一测试模式下,低通滤波模块54的输出端A与第一上变频模块55的输入端B连接,第一接口模块51通过一根线缆与IDU1连接,接收IDU1生成并发送的输出信号,即350MHz的第一频率信号;将第一频率信号传输 给第一带通滤波模块52,第一带通滤波模块52完成滤波后传输给下变频模块53,下变频模块53进行频率转换后输出70MHz的第三频率信号,第三频率信号传输至低通滤波模块54,低通滤波模块54滤除谐波干扰后输出至第一上变频模块55,第一上变频模块55进行频率转换后输出140MHz的第二频率信号,第二频率信号经过第二带通滤波模块56滤除杂波后输出到本装置的复用端口,即第一接口模块51,并通过同一根线缆传送给IDU1。
在第二测试模式下,拆除A与B之间的连接,将低通滤波模块54的输出端A与第二上变频模块59的输入端C连接(图中未示出),第一接口模块51通过一根线缆与IDU1连接,接收IDU1生成并发送的输出信号,即350MHz的第一频率信号;将第一频率信号传输给第一带通滤波模块52,第一带通滤波模块52完成滤波后传输给下变频模块53,下变频模块53进行频率转换后输出70MHz的第三频率信号,第三频率信号传输至低通滤波模块54,低通滤波模块54滤除谐波干扰后输出至第二上变频模块59,第二上变频模块59进行频率转换后输出140MHz的第二频率信号,第二频率信号经过第三带通滤波模块510滤除杂波后输出到第二接口模块58,第二接口模块58传送给IDU2。
当然,在低通滤波模块54与第一上变频模块55之间、低通滤波模块54与第二上变频模块59之间,还可以接信道模拟模块,设置为对相应位置的低频的第三频率信号进行以下一种或多种信道模拟处理:频移、多径和选择性衰落。
当然,第一接口模块51还可以接收IDU1的供电输出信号,将IDU1的供电输出信号传输给电源检测模块57,电源检测模块57根据该供电输出信号对IDU1的对外供电功能进行检测。第二接口模块58也可以接收IDU2的供电输出信号,将IDU2的供电输出信号传输给电源检测模块57(图中未示出),电源检测模块57根据该供电输出信号对IDU2的对外供电功能进行检测。当然,电源检测模块57还可以根据该供电输出信号对检测装置5中的其他模块进行供电。
检测装置5具有两种检测模式,在第一测试模式下,通过第一接口模块51将输入、输出对接IDU1,通过信号的环回实现了对IDU1的自检测;在 第二测试模式下,该检测装置通过第一接口模块51将输入对接IDU1,通过第二接口模块58将输出对接IDU2,输入、输出对接不同设备,当其中一个设备正常时,可实现对另一设备的检测。模拟了微波系统中的中频信号从IDU1到IDU2的一跳传输过程,通过一个正常的IDU来检测另一IDU的性能、故障,为IDU的中频性能检测和故障检测提供低成本、更高效的解决方案。通过本发明提供的检测方案,可准确判断IDU在一根线缆上各复用的信号链路是否工作正常,从而缩小故障的查找范围,为快速修复提供依据。
可选地,该检测装置还可以具有第三测试模式和/或第四测试模式,对应的,包括第三处理模块和/或第四处理模块;第三处理模块和第二处理模块部分共用;第一处理模块和第四处理模块部分共用;当同时包括第三处理模块和第四处理模块时,第三处理模块和第四处理模块部分或全部共用:
在第三测试模式下,所述第二接口模块设置为接收第一频率信号,所述第一频率信号为由第二设备生成并发送的输出信号,还设置为将第二频率信号作为所述输出信号的反馈信号发送给第二设备;所述第三处理模块设置为将所述第一频率信号转换成所述第二频率信号,所述第一频率信号与所述第二频率信号的频率不同,所述第二频率信号用于对所述第二设备进行检测。
在第四测试模式下时,所述第二接口模块设置为接收第一频率信号,所述第一频率信号为由第二设备生成并发送的输出信号;所述第四处理模块设置为将所述第一频率信号转换成第二频率信号,所述第一频率信号与所述第二频率信号的频率不同;所述第一接口模块设置为将所述第二频率信号作为所述输出信号的反馈信号发送给第一设备,所述第二频率信号用于对所述第一设备或第二设备进行检测。第三测试模式和第四测试模式之间可切换,具体可通过手动切换或智能切换,可选地,该检测装置还可以包括:第二切换模块,设置为在第三测试模式和第四测试模式之间切换。第三测试模式也是对设备的自检测,与第一测试模式不同的是,通过第二接口模块将输入、输出对接同一设备,通过信号的环回实现了对第二设备的自检测;第四测试模式也是输入、输出对接不同设备,当其中一个设备正常时,可实现对另一设备的检测,但与第二测试模式不同的是,通过第一接口模块将输出对接第一设备,通过第二接口模块将输入对接第二设备。第一测试模式和第三测试模 式可同时进行,第二测试模式和第四测试模式也可同时进行。
图6为该检测装置的一种详细实施例,检测装置6包括:第一接口模块61、第一带通滤波模块62、第一下变频模块63、第一低通滤波模块64、第一上变频模块65、第二带通滤波模块66、电源检测模块67、第二上变频模块69、第三带通滤波模块610、第二接口模块68,还包括第四带通滤波模块611、第二下变频模块612、第二低通滤波模块613,其中:
第一处理模块包括:第一带通滤波模块62、第一下变频模块63、第一低通滤波模块64、第一上变频模块65、第二带通滤波模块66;第二处理模块包括:第一带通滤波模块62、第一下变频模块63、第一低通滤波模块64、第二上变频模块69、第三带通滤波模块610;第三处理模块包括:第四带通滤波模块611、第二下变频模块612、第二低通滤波模块613、第二上变频模块69、第三带通滤波模块610;第四处理模块包括:第四带通滤波模块611、第二下变频模块612、第二低通滤波模块613、第一上变频模块65、第二带通滤波模块66;因此,第一处理模块和第二处理模块部分共用,共用部分包括第一带通滤波模块62、第一下变频模块63、第一低通滤波模块64;第三处理模块和第四处理模块部分共用,共用部分包括第四带通滤波模块611、第二下变频模块612、第二低通滤波模块613;第一处理模块和第四处理模块部分共用,共用部分包括第一上变频模块65、第二带通滤波模块66;第二处理模块和第三处理模块部分共用,共用部分包括第二上变频模块69、第三带通滤波模块610。
本实施例采用手动切换,切换位置在第一低通滤波模块54的输出端A与第一上变频模块55的输入端B或第二上变频模块59的输入端C之间;第二低通滤波模块54的输出端D与第一上变频模块55的输入端B或第二上变频模块59的输入端C之间。
在第一测试模式下,第一低通滤波模块64的输出端A与第一上变频模块55的输入端B连接,第一接口模块61通过一根线缆与IDU1连接,接收IDU1生成并发送的输出信号,即350MHz的第一频率信号;将第一频率信号传输给第一带通滤波模块62,第一带通滤波模块62完成滤波后传输给第一下变频模块63,第一下变频模块63进行频率转换后输出70MHz的第三 频率信号,第三频率信号传输至第一低通滤波模块64,第一低通滤波模块64滤除谐波干扰后输出至第一上变频模块55,第一上变频模块65进行频率转换后输出140MHz的第二频率信号,第二频率信号经过第二带通滤波模块66滤除杂波后输出到本装置的复用端口,即第一接口模块61,并通过同一根线缆传送给IDU1。
在第二测试模式下,拆除A与B之间的连接,将第一低通滤波模块64的输出端A与第二上变频模块69的输入端C连接(图中未示出),第一接口模块61通过一根线缆与IDU1连接,接收IDU1生成并发送的输出信号,即350MHz的第一频率信号;将第一频率信号传输给第一带通滤波模块62,第一带通滤波模块62完成滤波后传输给第一下变频模块63,第一下变频模块63进行频率转换后输出70MHz的第三频率信号,第三频率信号传输至第一低通滤波模块64,第一低通滤波模块64滤除谐波干扰后输出至第二上变频模块69,第二上变频模块69进行频率转换后输出140MHz的第二频率信号,第二频率信号经过第三带通滤波模块610滤除杂波后输出到第二接口模块68,第二接口模块68传送给IDU2。
在第三测试模式下,第二低通滤波模块613的输出端D与第二上变频模块69的输入端C连接,第二接口模块68通过一根线缆与IDU2连接,接收IDU2生成并发送的输出信号,即350MHz的第一频率信号;将第一频率信号传输给第四带通滤波模块611,第四带通滤波模块611完成滤波后传输给第二下变频模块612,第二下变频模块612进行频率转换后输出70MHz的第三频率信号,第三频率信号传输至第二低通滤波模块613,第二低通滤波模块613滤除谐波干扰后输出至第二上变频模块69,第二上变频模块69进行频率转换后输出140MHz的第二频率信号,第二频率信号经过第三带通滤波模块610滤除杂波后输出到第二接口模块68,并通过同一根线缆传送给IDU2。
在第四测试模式下,将D与C之间的连线拆除,将第二低通滤波模块613的输出端D与第一上变频模块65的输入端B连接(图中未示出),第二接口模块68通过一根线缆与IDU2连接,接收IDU2生成并发送的输出信号,即350MHz的第一频率信号;将第一频率信号传输给第四带通滤波模块 611,第四带通滤波模块611完成滤波后传输给第二下变频模块612,第二下变频模块612进行频率转换后输出70MHz的第三频率信号,第三频率信号传输至第二低通滤波模块613,第二低通滤波模块613滤除谐波干扰后输出至第一上变频模块65,第一上变频模块65进行频率转换后输出140MHz的第二频率信号,第二频率信号经过第二带通滤波模块66滤除杂波后输出到第一接口模块61,第一接口模块61传送给IDU1。
当然,在A与B之间、A与C之间、D与B之间、D与C之间还可以接信道模拟模块,设置为对相应位置的低频的第三频率信号进行以下一种或多种信道模拟处理:频移、多径和选择性衰落。
当然,第一接口模块61还可以接收IDU1的供电输出信号,将IDU1的供电输出信号传输给电源检测模块67,电源检测模块67根据该供电输出信号对IDU1的对外供电功能进行检测。第二接口模块68也可以接收IDU2的供电输出信号,将IDU2的供电输出信号传输给电源检测模块67,电源检测模块67根据该供电输出信号对IDU2的对外供电功能进行检测。当然,电源检测模块67还可以根据该供电输出信号对检测装置6中的其他模块进行供电。
检测装置6具有四种检测模式,第一测试模式和第三测试模式可同时进行,第二测试模式和第四测试模式也可同时进行。
本发明实施例尤其适用于对微波系统中的IDU进行检测,前一种检测方法可用于对IDU进行环回自检测,后一种模拟了微波系统中的中频信号从IDU1到IDU2的一跳传输过程,通过一个正常的IDU来检测另一IDU的性能、故障,为IDU的中频性能检测和故障检测提供低成本、更高效的解决方案。通过本发明实施例提供的检测方案,可准确判断IDU在一根线缆上各复用的信号链路是否工作正常,从而缩小故障的查找范围,为快速修复提供依据。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现所述的检测方法。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质 中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例适用于对微波系统中的IDU进行检测,包括:对IDU进行环回自检测以及模拟微波系统中的中频信号从IDU1到IDU2的一跳传输过程,通过一个正常的IDU来检测另一IDU的性能、故障,为IDU的中频性能检测和故障检测提供低成本、更高效的解决方案。通过本发明实施例提供的检测方案,可准确判断IDU在一根线缆上各复用的信号链路是否工作正常,从而缩小故障的查找范围,为快速修复提供依据。

Claims (22)

  1. 一种检测方法,包括:
    接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号;
    将所述第一频率信号转换成第二频率信号,所述第一频率信号与所述第二频率信号的频率不同;
    将所述第二频率信号作为所述输出信号的反馈信号发送给第一设备或第二设备,所述第二频率信号用于对所述第一设备或第二设备进行检测。
  2. 如权利要求1所述的检测方法,其中,所述将所述第一频率信号转换成第二频率信号包括:将所述第一频率信号进行N次频率转换,转换成第二频率信号,N为大于或等于1的正整数。
  3. 如权利要求2所述的检测方法,所述将所述第一频率信号转换成第二频率信号还包括:在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行滤波处理。
  4. 如权利要求2所述的检测方法,所述将所述第一频率信号转换成第二频率信号还包括:
    在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行以下一种或多种信道模拟处理:频移、多径和选择性衰落。
  5. 如权利要求4所述的检测方法,其中,N等于2,将所述第一频率信号转换成第二频率信号包括:将所述第一频率信号转换成第三频率信号;对所述第三频率信号进行所述信道模拟处理;将经过所述信道模拟处理后的第三频率信号转换成所述第二频率信号;所述第三频率信号的频率低于所述第一频率信号的频率和第二频率信号的频率。
  6. 如权利要求1所述的检测方法,所述方法还包括:
    接收第一设备或第二设备的供电输出信号;
    根据接收的供电输出信号对相应设备的对外供电功能进行检测。
  7. 如权利要求1至6任一项所述的检测方法,所述方法还包括:当所 述第二频率信号发送到所述第一设备时,通过同一条线缆发送所述第一频率信号,并接收所述第二频率信号。
  8. 如权利要求7所述的检测方法,其中,所述第一频率信号、第二频率信号为中频信号;所述第一设备、第二设备为微波系统中的室内模块IDU。
  9. 一种检测装置,包括:第一接口模块、处理模块和第二接口模块;
    所述第一接口模块,设置为接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号;
    所述处理模块,设置为将所述第一频率信号转换成所述第二频率信号,所述第一频率信号与所述第二频率信号的频率不同;
    所述第一接口模块还设置为将第二频率信号作为所述输出信号的反馈信号发送给所述第一设备;
    所述第二接口模块,设置为将第二频率信号作为所述输出信号的反馈信号发送给第二设备;所述第二频率信号用于对所述第一设备或所述第二设备进行检测。
  10. 如权利要求9所述的检测装置,其中,所述处理模块包括一个或多个频率转换模块,设置为将所述第一频率信号进行N次频率转换,转换成第二频率信号,N为大于或等于1的正整数。
  11. 如权利要求10所述的检测装置,所述处理模块还包括一个或多个滤波模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行滤波处理。
  12. 如权利要求10所述的检测装置,所述处理模块还包括信道模拟模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行以下一种或多种信道模拟处理:频移、多径和选择性衰落。
  13. 如权利要求9所述的检测装置,所述第一接口模块还设置为接收第一设备或第二设备的供电输出信号;所述检测装置还包括电源检测模块,设置为根据第一接口模块接收的供电输出信号对相应设备的对外供电功能进行检测。
  14. 一种检测装置,包括第一接口模块、第一处理模块、第二接口模块以及第二处理模块;第一处理模块和第二处理模块部分或全部共用;
    所述第一接口模块设置为,在第一测试模式下接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号,还设置为将第二频率信号作为所述输出信号的反馈信号发送给第一设备;所述第一处理模块设置为将所述第一频率信号转换成所述第二频率信号,所述第一频率信号与所述第二频率信号的频率不同,所述第二频率信号用于对所述第一设备进行检测;
    所述第一接口模块还设置为,在第二测试模式下接收第一频率信号,所述第一频率信号为由第一设备生成并发送的输出信号;所述第二处理模块设置为将所述第一频率信号转换成第二频率信号,所述第一频率信号与所述第二频率信号的频率不同;所述第二接口模块还设置为将所述第二频率信号作为所述输出信号的反馈信号发送给第二设备,所述第二频率信号用于对所述第一设备或第二设备进行检测。
  15. 如权利要求14所述的检测装置,所述装置还包括:第一切换模块,设置为在第一测试模式和第二测试模式之间切换。
  16. 如权利要求14所述的检测装置,其中,所述第一处理模块和所述第二处理模块分别包括一个或多个频率转换模块,设置为将所述第一频率信号进行N次频率转换,转换成第二频率信号,N为大于或等于1的正整数。
  17. 如权利要求16所述的检测装置,所述第一处理模块和所述第二处理模块还包括一个或多个滤波模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行滤波处理。
  18. 如权利要求16所述的检测装置,所述第一处理模块和所述第二处理模块还包括信道模拟模块,设置为在一次或多次频率转换前,和/或在一次或多次频率转换后,对相应位置的信号进行以下一种或多种信道模拟处理:频移、多径和选择性衰落。
  19. 如权利要求16所述的检测装置,所述第一接口模块还设置为接收第一设备的供电输出信号;第二接口模块还设置为接收第二设备的供电输出信号;所述检测装置还包括电源检测模块,设置为根据接收的供电输出信号 对相应设备的对外供电功能进行检测。
  20. 如权利要求14至19任一项所述的检测装置,其特征在于,还包括第三处理模块和/或第四处理模块;第三处理模块和第二处理模块部分共用;第一处理模块和第四处理模块部分共用;当同时包括第三处理模块和第四处理模块时,第三处理模块和第四处理模块部分或全部共用:
    所述第二接口模块还设置为在第三测试模式下,接收第一频率信号,所述第一频率信号为由第二设备生成并发送的输出信号,还设置为将第二频率信号作为所述输出信号的反馈信号发送给第二设备;所述第三处理模块设置为将所述第一频率信号转换成所述第二频率信号,所述第一频率信号与所述第二频率信号的频率不同,所述第二频率信号用于对所述第二设备进行检测;
    所述第二接口模块还设置为在第四测试模式下时,接收第一频率信号,所述第一频率信号为由第二设备生成并发送的输出信号;所述第四处理模块设置为将所述第一频率信号转换成第二频率信号,所述第一频率信号与所述第二频率信号的频率不同;所述第一接口模块设置为将所述第二频率信号作为所述输出信号的反馈信号发送给第一设备,所述第二频率信号用于对所述第一设备或第二设备进行检测。
  21. 如权利要求20所述的检测装置,所述装置还包括:第二切换模块,设置为在第三测试模式和第四测试模式之间切换。
  22. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如权利要求1至8任意一项所述的检测方法。
PCT/CN2016/083674 2015-11-04 2016-05-27 一种检测方法及装置 WO2016188482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510742726.7 2015-11-04
CN201510742726.7A CN106656362B (zh) 2015-11-04 2015-11-04 一种检测方法及装置

Publications (1)

Publication Number Publication Date
WO2016188482A1 true WO2016188482A1 (zh) 2016-12-01

Family

ID=57392541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083674 WO2016188482A1 (zh) 2015-11-04 2016-05-27 一种检测方法及装置

Country Status (2)

Country Link
CN (1) CN106656362B (zh)
WO (1) WO2016188482A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847877A (zh) * 2018-08-02 2018-11-20 西安安源智造机电设备有限公司 无线通信同频转发系统
CN109981189B (zh) * 2019-03-13 2021-08-31 波达通信设备(广州)有限公司 故障检测电路及方法
CN112583500B (zh) * 2020-12-14 2022-08-05 波达通信设备(广州)有限公司 基于微波射频环回的故障检测系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013927A (zh) * 2007-02-02 2007-08-08 上海杰盛无线通讯设备有限公司 数字微波通信系统在线分析仪
CN101291184A (zh) * 2008-05-22 2008-10-22 上海杰盛无线通讯设备有限公司 室外单元模拟器
CN103516443A (zh) * 2012-06-19 2014-01-15 中兴通讯股份有限公司 一种对微波系统中室内单元工作状态的检测方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7461192B2 (en) * 2004-12-15 2008-12-02 Rambus Inc. Interface for bridging out-of-band information and preventing false presence detection of terminating devices
CN101404806B (zh) * 2008-11-24 2010-04-21 北京天碁科技有限公司 一种测试无线终端设备hsdpa解调解码性能的方法及系统
CN102158295B (zh) * 2011-04-02 2014-03-26 京信通信技术(广州)有限公司 多频段信号发射设备的信号功率检测装置与方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013927A (zh) * 2007-02-02 2007-08-08 上海杰盛无线通讯设备有限公司 数字微波通信系统在线分析仪
CN101291184A (zh) * 2008-05-22 2008-10-22 上海杰盛无线通讯设备有限公司 室外单元模拟器
CN103516443A (zh) * 2012-06-19 2014-01-15 中兴通讯股份有限公司 一种对微波系统中室内单元工作状态的检测方法及装置

Also Published As

Publication number Publication date
CN106656362B (zh) 2021-10-15
CN106656362A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
JP5547311B1 (ja) 太陽光発電設備のための監視システム
US10404392B2 (en) Method and apparatus for determining propagation delay in a communications network
JP2018529967A5 (zh)
WO2016188482A1 (zh) 一种检测方法及装置
US20100216413A1 (en) Leakage suppressing circuit
CN111108694B (zh) 多通道无源互调数字抵消电路
CN108834000A (zh) 中继方法及装置
CN105375939B (zh) 一种接收信号补偿方法
CN108134645A (zh) 雷达信号同步系统
CN104506396B (zh) 设备全端口Full Mesh性能的测试方法及系统
CN104158670B (zh) 千兆以太网旁路器
CN103973377B (zh) 一种基站测试方法、装置及系统
CN104506257A (zh) 老化射频拉远单元的方法、装置、系统及射频拉远单元
JP2016518745A (ja) データストリーム低減を強制しつつ無線周波多重入出力データパケットトランシーバをテストするためのシステム及び方法
CN103516443B (zh) 一种对微波系统中室内单元工作状态的检测方法及装置
CN217363065U (zh) 一种5g室分末端天线监控装置
CN107294630B (zh) 一种载波-微功率双模模块的仿真测试系统
WO2021213360A1 (zh) 光模块及其参数传输、检测方法、控制方法、前传系统
CN104283739A (zh) 一种基于分布式issu升级的检测方法和设备
CN105049294A (zh) Eaps协议master交换机端口状态切换的自动化测试方法
EP3396873B1 (en) Mobile communication device and method
CN207396627U (zh) 一种同频抗干扰测试系统
GB2599211A (en) PIM Cancellation
WO2012149747A1 (zh) 通信设备及其性能监测方法
CA3153998A1 (en) System and method for connecting a patient support apparatus to a hospital network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799369

Country of ref document: EP

Kind code of ref document: A1