WO2021213360A1 - 光模块及其参数传输、检测方法、控制方法、前传系统 - Google Patents

光模块及其参数传输、检测方法、控制方法、前传系统 Download PDF

Info

Publication number
WO2021213360A1
WO2021213360A1 PCT/CN2021/088298 CN2021088298W WO2021213360A1 WO 2021213360 A1 WO2021213360 A1 WO 2021213360A1 CN 2021088298 W CN2021088298 W CN 2021088298W WO 2021213360 A1 WO2021213360 A1 WO 2021213360A1
Authority
WO
WIPO (PCT)
Prior art keywords
register
optical module
remote
signal
mapping
Prior art date
Application number
PCT/CN2021/088298
Other languages
English (en)
French (fr)
Inventor
朱能念
张赟
苏展
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21792752.4A priority Critical patent/EP4138314A4/en
Priority to US17/919,572 priority patent/US20230155676A1/en
Publication of WO2021213360A1 publication Critical patent/WO2021213360A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0779Monitoring line transmitter or line receiver equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/075Monitoring an optical transmission system using a supervisory signal using a pilot tone

Definitions

  • the present disclosure relates to, but is not limited to, the field of communication technology.
  • the distributed base station system adopts a design that separates the baseband processing unit (BBU, Building Baseband Unit) and the radio remote unit (RRU, Radio Remote Unit).
  • BBU baseband processing unit
  • RRU Radio Remote Unit
  • the two-level structure composed of BBU and RRU has further evolved into a centralized unit (CU, Distribute Unit), a distributed unit (DU, Distribute Unit), and an active antenna processing unit (AAU). , Active Antenna Unit) three-level structure.
  • CU centralized unit
  • DU distributed unit
  • AAU active antenna processing unit
  • AAU Active Antenna Unit
  • the present disclosure provides a performance parameter transmission method of an optical module of a remote node, a detection method for detecting the performance of an optical module of a remote node, a control parameter transmission method of an optical module of a remote node, and a remote node.
  • the control method and fronthaul system of the optical module of the end node are provided.
  • a method for transmitting performance parameters of a remote optical module of a remote node which includes: when at least one of a plurality of registers of the remote optical module becomes a first source register, The upstream optical signal is generated according to the identification information of the first source register and the register value of the first source register, wherein the first source register is a register whose register value changes among the plurality of registers, and each register There is a mapping relationship between the register value of and each performance parameter of the remote optical module; the uplink optical signal is transmitted to the near-end optical module of the near-end node.
  • a detection method for detecting the performance of a remote optical module of a remote node includes: modifying the mapping register set of the near-end optical module of the near-end node according to a received predetermined uplink optical signal The register value of the corresponding mapping register in the corresponding mapping register, wherein the predetermined upstream optical signal is the upstream optical signal sent by the remote optical module of the remote node according to the performance parameter transmission method described in the first aspect of the present disclosure, and the mapping register set It includes a plurality of the mapping registers, and the plurality of mapping registers correspond to a plurality of registers of the remote optical module one-to-one; according to the modified register value of the mapping register, the remote optical module is determined Operating status.
  • a control parameter transmission method for controlling the remote optical module of the remote node including: when at least one mapping register in the mapping register group of the near-end optical module of the near-end node becomes the second When the source register is the source register, the downstream optical signal is generated according to the identification information of the second source register and the register value of the second source register.
  • the multiple registers in the end optical module have a one-to-one correspondence
  • the second source register is a mapping register whose register value changes in the multiple mapping registers, and the register value of each of the mapping registers corresponds to the remote optical module.
  • a method for controlling a remote optical module of a remote node includes: modifying a register value of a corresponding register in the remote optical module according to a received predetermined downlink optical signal, wherein The predetermined downlink optical signal is the downlink optical signal sent by the near-end optical module of the near-end node according to the control parameter transmission method described in the third aspect of the present disclosure, and the register value of each register of the remote optical module is There is a mapping relationship between the various control parameters of the remote optical module.
  • a remote optical module which includes: a plurality of registers for storing various performance parameters of the remote optical module; a remote signal processing unit for serving as a When at least one of the registers becomes the first source register, an upstream optical signal is generated according to the identification information of the first source register and the register value of the first source register, wherein the first source register is a plurality of sources.
  • the register whose register value changes in the register; the far-end signal transmission unit is used to transmit the upstream optical signal to the near-end optical module of the near-end node.
  • a near-end optical module including: a plurality of mapping registers, the plurality of mapping registers correspond to a plurality of registers of the far-end optical module one-to-one; the near-end signal processing unit uses According to the received predetermined uplink optical signal, the register value of the corresponding mapping register of the near-end optical module of the near-end node is modified, wherein the predetermined uplink optical signal is the far-end optical module of the remote node according to the first aspect of the present disclosure.
  • the upstream optical signal sent by the performance parameter transmission method; the near-end judging unit is used to determine the operating state of the remote optical module according to the modified register value of the mapping register.
  • a fronthaul system including a near-end node and a remote node, wherein the near-end node includes the near-end optical module according to the sixth aspect of the present disclosure, and the remote The node includes the remote optical module described in the fifth aspect of the present disclosure.
  • FIG. 1 is a flowchart of an implementation manner of the performance parameter transmission method provided by the present disclosure
  • FIG. 2 is a flowchart of another implementation manner of the performance parameter transmission method provided by the present disclosure.
  • Figure 3 is a schematic diagram of the principle of top adjustment
  • FIG. 4 is a flowchart of an embodiment of the detection method provided by the present disclosure.
  • Figure 5 is a schematic diagram of register mapping in the present disclosure
  • FIG. 6 is a flowchart of another embodiment of the detection method provided by the present disclosure.
  • FIG. 7 is a flowchart of an implementation manner of the control parameter transmission method provided by the present disclosure.
  • FIG. 8 is a flowchart of another implementation manner of the control parameter transmission method provided by the present disclosure.
  • FIG. 9 is a flowchart of an embodiment of the control method provided by the present disclosure.
  • FIG. 10 is a flowchart of another implementation manner of the control method provided by the present disclosure.
  • FIG. 11 is a schematic diagram of an embodiment of a remote optical module provided by the present disclosure.
  • FIG. 12 is a schematic diagram of an embodiment of a near-end optical module provided by the present disclosure.
  • FIG. 13 is a schematic diagram of another embodiment of the remote optical module provided by the present disclosure.
  • FIG. 14 is a schematic diagram of another embodiment of the near-end optical module provided by the present disclosure.
  • FIG. 15 is a schematic diagram of an embodiment of the fronthaul system provided by the present disclosure.
  • the BBU In a 4G distributed base station system, the BBU is usually deployed in the main base station or the central office (CO, Central Office) computer room, and the RRU is extended to the antenna end through optical fiber.
  • the fronthaul (Fronthaul) system is used between the BBU and the RRU; and
  • CU and DU are deployed together in the main base station or CO machine room, AAU is deployed at the site in a distributed manner, and eCPRI (enchanced Common Public Radio Interface) interface connection is used between DU and AAU.
  • eCPRI enhanced Common Public Radio Interface
  • the inventors of the present disclosure have discovered through research that, in the fronthaul system of the related technology, the RRU or AAU is extended by optical fiber, and the optical module on the RRU side or the optical module on the AAU side lacks remote monitoring means.
  • the fronthaul system fails, manual inspection is required to determine whether the optical module on the RRU side or the optical module on the AAU side is faulty. Therefore, it is impossible to predict the performance of the optical module on the RRU side or the optical module on the AAU side, and it is also impossible to replace the optical module in time when the performance of the optical module deteriorates, and actively avoid the optical module on the RRU side or the AAU side.
  • the business failure of the fronthaul system caused by the failure of the optical module.
  • the optical module is an optoelectronic device that performs photoelectric and electro-optical conversion and has a limited service life. Under normal circumstances, the service life of an optical module is about 5 years.
  • the performance of the optical module will gradually degrade. For example, as the operating time increases, the quantum efficiency of the laser emitting laser in the optical module will decrease, thereby causing the performance of the optical module to deteriorate.
  • the optical module may also be affected by the environment and cause failures.
  • the pollution and damage of the optical interface of the optical module will cause the loss of the optical link to increase, which will lead to the failure of the optical link; dry environment or improper operation will also cause Optical modules are susceptible to electrostatic discharge (ESD, ElectroStatic Discharge) damage, which in turn causes performance changes or failures of the optical modules.
  • ESD ElectroStatic Discharge
  • the performance parameters that characterize the performance of the optical module are stored in the register of the optical module.
  • the register is a small storage area for storing data in the optical module, and is a high-speed storage component with limited storage capacity.
  • Each optical module includes multiple registers and stores corresponding data according to different functions.
  • the optical module includes a plurality of registers for storing performance parameters of the optical module, and different performance parameters are stored respectively.
  • the performance parameters in the optical module register change dynamically within a certain range.
  • the laser bias current is an important performance parameter in the optical module, and the electro-optical conversion efficiency of the laser in the optical module is negatively related to the change of the ambient temperature.
  • the laser The bias current will increase.
  • the laser bias current will decrease, and the change in the laser bias current will be reflected in real time as the change in the value of the register corresponding to the laser bias current.
  • the received optical power is another important performance parameter in the optical module.
  • the wavelength of the laser will shift, and the optical module cooperates with the multiplexer (MUX, Multiplexer) or Demultiplexer (DEMUX, DEMultiplexer) is used.
  • the received optical power will gradually decrease, and the change of the received optical power will also be reflected in real time as the receiving Changes in the value of the register corresponding to the optical power. It should also be noted that when the performance of the optical module changes, the low-level software inside the optical module modifies the value of the register corresponding to the performance parameter of the optical module in real time.
  • the inventors of the present disclosure have discovered through research that the performance of the optical module of the remote node (such as RRU or AAU) of the fronthaul system is mainly realized by monitoring the performance parameters stored in the register of the remote optical module;
  • the remote monitoring of the performance parameters stored in the register of the remote optical module can realize the remote monitoring of the remote optical module.
  • the mapping register group includes a plurality of mapping registers, and the plurality of mapping registers are in one-to-one correspondence with the plurality of registers of the remote optical module of the remote node, and the mapping registers corresponding to each other are set with the registers of the remote optical module.
  • the register value is the same.
  • the near-end optical module can be realized.
  • the node monitors the performance of the optical module of the remote node.
  • the method for transmitting performance parameters may include steps S110 and S120.
  • step S110 when at least one of the multiple registers of the remote optical module becomes the first source register, the upstream light is generated according to the identification information of the first source register and the register value of the first source register.
  • the first source register is a register whose register value changes among the plurality of registers, and there is a mapping relationship between the register value of each register and each performance parameter of the remote optical module.
  • step S120 the uplink optical signal is transmitted to the near-end optical module of the near-end node.
  • the performance parameter transmission method is executed by the remote node.
  • the register whose register value has changed among the multiple registers of the remote optical module is called The first source register.
  • the upstream light is generated according to the identification information of the first source register and the register value of the first source register Signal.
  • the uplink optical signal is transmitted to the near-end optical module of the near-end node, thereby transmitting the identification information and register value of the first source register to the near-end node.
  • the near-end node After receiving the upstream optical signal, the near-end node determines the register identification information and register value carried in the upstream optical signal, and determines the mapping register corresponding to the first source register according to the register identification information , And modify the register value of the corresponding mapping register to the register value of the first source register.
  • the near-end optical module can determine the remote optical module by reading the register value of its mapping register. Corresponding performance parameters of the end optical module. That is to say, through the performance parameter transmission method, the performance parameters of the remote optical module of the remote node can be obtained at the near-end node, and the remote optical module can be remotely detected at the near-end node, and the remote node's performance can be judged in real time. Whether the optical module fails, it not only improves the efficiency of finding the fault, but also reduces the labor cost.
  • the present disclosure does not specifically limit the identification information of the register in the remote optical module.
  • the address of the register in the remote optical module may be used as the identification information of the register; the register of the remote optical module may also be numbered, and the number may be used as the identification information of the register of the remote optical module.
  • the direction from the BBU to the RRU is called the downstream direction, and the direction from the RRU to the BBU becomes the upstream direction; in the 5G network fronthaul system, from the DU to the AAU The direction from AAU to DU is called the downlink direction, and the direction from AAU to DU is called the uplink direction. Therefore, under the 4G network architecture, the remote node of the fronthaul system is the RRU, and the near-end node is the BBU; under the 5G network architecture, the remote node of the fronthaul system is the AAU, and the near-end node is the CU or DU.
  • the present disclosure does not specifically limit how to generate the upstream optical signal.
  • the address of the first source register and the changed performance parameters of the remote optical module stored in the first source register may be loaded onto the upstream main signal of the optical module through subcarrier modulation to generate the upstream optical module.
  • Signal; Wavelength Division Multiplexing (WDM) may also be used to couple the optical carrier signal carrying the identification information and register value of the first source register with the main signal of the remote optical module to generate the uplink optical signal.
  • WDM Wavelength Division Multiplexing
  • the identification information of the first source register and the register value of the first source register may be loaded onto the uplink main signal of the remote optical module through the top adjustment technology, thereby generating the Uplink optical signal.
  • information processing is done in the electrical domain. When a signal needs to be sent, the information is first processed to load the electrical signal, and then the electrical signal is converted into an optical signal before it can be propagated on the optical fiber.
  • step S110 may include steps S111 to S113.
  • step S111 a first top adjustment signal is generated according to the identification information of the first source register and the register value of the first source register.
  • step S112 the uplink main signal of the remote optical module is adjusted according to the first adjustment signal.
  • step S113 the adjusted uplink main signal is converted into the uplink optical signal.
  • the top adjustment technology is to transform the control signal to be transmitted through waveform transformation, modulate it on a suitable carrier as the top adjustment signal, and further superimpose the top adjustment signal on the main signal.
  • Figure 3 shows the principle of top adjustment.
  • the modulated control signal and the main signal are transmitted to the receiving end through a common transmitting device.
  • the above-mentioned control signal can be obtained through a low-pass filter and a demodulator at the receiving end, and the main signal is obtained through a high-pass filter.
  • the top signal can save the optical transmission channel, neither need to occupy the business section, nor need to add additional specific wavelengths.
  • the top adjustment signal is loaded onto the main signal of the optical module by means of subcarrier modulation, so as to realize the top adjustment of the uplink main signal of the remote optical module.
  • Subcarrier modulation means that the signal to be transmitted is modulated and loaded onto a radio frequency electric carrier, and then the radio frequency electric carrier is modulated and loaded onto another carrier.
  • the identification information of the first source register and the register value of the first source register are modulated and loaded onto a radio frequency electric carrier to obtain the first top adjustment signal;
  • the top adjustment signal is modulated and loaded on the main signal of the optical module.
  • the performance detection method may include steps S210 and S220.
  • step S210 the register value of the corresponding mapping register in the mapping register group of the near-end optical module of the near-end node is modified according to the received predetermined upstream optical signal, wherein the predetermined upstream optical signal is the far-end optical signal of the remote node.
  • step S220 the operating state of the remote optical module is determined according to the modified register value of the mapping register.
  • the performance detection method provided by the present disclosure is executed by the near-end node.
  • a mapping register group is provided in the near-end optical module of the near-end node of the fronthaul system.
  • the registers in the optical module have a one-to-one correspondence, and the corresponding mapping register has the same register value as the register of the remote optical module. Therefore, when the register value of at least one register in the remote optical module changes, the remote optical module will send the register value of the first source register and the identification information of the first source register to the upstream optical signal.
  • Near-end optical module is provided in the near-end optical module of the near-end node of the fronthaul system.
  • the near-end optical module of the near-end node receives the upstream optical signal transmitted by the far-end optical module according to the performance parameter transmission method described in the first aspect of the present disclosure
  • the near-end optical module is updated according to the received upstream optical signal
  • the register value of the mapped register After the update, a mapping relationship is established again between the register value of the mapping register of the mapping register group of the near-end optical module and the current performance parameters of the remote optical module.
  • the operating state of the remote optical module can be judged as long as the updated register value of each mapping register is read.
  • the "operation status" here includes, but is not limited to, whether the remote optical module fails.
  • the one-to-one correspondence between the multiple mapping registers and the multiple registers of the remote optical module means that a mapping is established between the multiple mapping registers and the multiple registers of the remote optical module. relation. Mapping two registers with each other can locate the corresponding register through its own identification information. For example, in the remote optical module, the register corresponding to the mapping register in the remote optical module can be located through the identification information of the mapping register in the near-end optical module. vice versa.
  • FIG. 5 is a schematic diagram of an embodiment of the mapping relationship between the mapping register of the near-end optical module and the register of the far-end optical module. It should also be noted that, as shown in Figure 5, in the near-end optical module, in addition to the registers in the mapping register group shown, it also includes the registers that the optical module should have under normal circumstances to store the near-end optical module. The performance parameters, authentication information, wavelength information and other data of the optical module of the node.
  • the identification information of the mapping register in the near-end optical module is the same as the identification information of the register corresponding to the mapping register in the far-end optical module.
  • the identification information of the mapping register is Reg1, Reg2, Regx, ... Regn.
  • the identification information of the register is Reg1, Reg2, Regx, ... Regn.
  • the mapping register whose identification information is Reg1 corresponds to the register whose identification information is Reg1 in the remote optical module
  • the mapping register whose identification information is Reg2 corresponds to the register whose identification information is Reg2 in the remote optical module
  • the identification information is the mapping of Regx
  • the register corresponds to the register whose identification information is Regx in the remote optical module
  • the mapping register whose identification information is Regn corresponds to the register whose identification information is Regn in the remote optical module.
  • mapping relationship between each mapping register of the near-end optical module and each register of the remote optical module may be stored in the near-end node in the form of a mapping table.
  • the method for detecting the performance of the remote optical module of the remote node provided by the present disclosure, after receiving the identification information of the register sent by the remote optical module and the register value of the register that can characterize the performance of the optical module, according to the register identification information and Register value, modify the register value of the corresponding mapping register in the mapping register group of the near-end optical module, and then can detect the performance of the far-end optical module by reading the register value of the mapping register, and realize the distance between the near-end node and the far-end node. Remote monitoring of the performance of end optical modules.
  • the processing of information is completed in the electrical domain.
  • the optical signal needs to be converted into an electrical signal. Therefore, in the present disclosure, when the optical module of the near-end node receives the uplink optical signal transmitted by the optical module of the remote node according to the performance parameter transmission method described in the first aspect of the present disclosure, the uplink optical signal needs to be transmitted first. The signal is converted into an uplink electrical signal.
  • step S210 further includes steps S211 to S215.
  • step S211 the predetermined upstream optical signal is converted into an upstream electrical signal.
  • step S212 the first top adjustment signal is extracted from the uplink electrical signal.
  • step S213 demodulate the first top adjustment signal, and obtain the identification information of the first source register and the register value of the first source register.
  • step S214 a mapping register corresponding to the first source register is determined according to the identification information as the first target register.
  • step S215 the register value of the first target register is modified to the corresponding register value of the first source register.
  • each optical module includes multiple registers and stores corresponding data according to different functions.
  • the optical module also includes a plurality of registers for storing control parameters.
  • the optical module performs corresponding operations according to the control parameters stored in the register to realize the corresponding function. Therefore, the control of the function of the optical module is to control the control parameter stored in the register of the optical module. If the control parameters stored in the register of the remote optical module can be controlled remotely, the remote control of the remote optical module can be realized.
  • the remote optical module can be controlled to perform a specific operation (for example, the remote optical module is controlled to perform service loopback) to determine whether the service failure is caused by the remote optical module.
  • control parameter transmission method for controlling a remote optical module of a remote node.
  • the control parameter transmission method may include steps S310 and S320.
  • step S310 when at least one mapping register in the mapping register group of the near-end optical module of the near-end node becomes the second source register, according to the identification information of the second source register and the register value of the second source register A downstream optical signal is generated, wherein a plurality of the mapping registers in the mapping register group correspond to a plurality of registers in the remote optical module of the remote node, and the second source register is a plurality of the mapping registers A mapping register whose register value changes in the register, and there is a mapping relationship between the register value of each mapping register and each control parameter of the remote optical module.
  • step S320 the downstream optical signal is transmitted to the remote optical module.
  • the multiple registers of the remote optical module include multiple registers that store the control parameters of the remote optical module; accordingly, the mapping register group of the near-end optical module includes multiple registers with storage locations.
  • the multiple registers of the control parameters of the remote optical module correspond to mapping registers one to one.
  • the register value of the mapping register can be modified through an input device.
  • the one-to-one correspondence between the multiple mapping registers described in step S310 and the multiple registers in the remote optical module is the same as the multiple mapping registers described in the second aspect of the present disclosure and the remote optical module.
  • the one-to-one correspondence between the multiple registers is the same, and the identification information of the registers is also described in the foregoing, and will not be repeated here.
  • control parameter transmission method for controlling the remote optical module of the remote node when the remote optical module is required to perform a specific operation, the register of the mapping register related to the control of the remote optical module in the near-end optical module is modified Then, the modified register value of the mapping register and the identification information of the mapping register are transmitted to the remote optical module, so that the remote optical module can modify the register value corresponding to the mapping register to the register value of the mapping register, Therefore, the specific operation can be performed according to the modified register value, and the remote control of the near-end optical module to the far-end optical module is realized.
  • step S310 further includes steps S311 to S313.
  • step S311 a second top adjustment signal is generated according to the identification information of the second source register and the register value of the second source register.
  • step S312 the downlink main signal of the near-end optical module is top-regulated according to the second top-regulation signal.
  • step S313 the top-down main downstream signal is converted into the downstream optical signal.
  • step S410 may be included.
  • step S410 the register value of the corresponding register in the remote optical module is modified according to the received predetermined downstream optical signal, where the predetermined downstream optical signal is the near-end optical module of the near-end node according to the third
  • the predetermined downstream optical signal is the near-end optical module of the near-end node according to the third
  • the remote optical module After modifying the register value of the corresponding register in the remote optical module, the remote optical module can perform specific operations according to the modified register value.
  • the method for controlling the remote optical module of the remote node modifies the register value of the corresponding register in the remote optical module according to the register value and register identification information transmitted by the near-end optical module, so that the optical module of the remote node can By reading the control parameters stored in the register to perform a specific operation, the remote control of the optical module of the near-end node to the optical module of the remote node is realized.
  • step S410 further includes steps S411 to S415.
  • step S411 the predetermined downstream optical signal is converted into a downstream electrical signal.
  • step S412 the second top adjustment signal is extracted from the downlink electrical signal.
  • step S413 demodulate the second top adjustment signal, and obtain the identification information of the second source register and the register value of the second source register.
  • step S414 the register corresponding to the second source register is determined as the second target register according to the identification information.
  • step S415 the register value of the second target register is modified to the register value of the second source register.
  • a remote optical module 100 is provided, as shown in FIG. 11, including: a plurality of registers 110 configured to store various performance parameters of the remote optical module; and remote signal processing
  • the unit 120 is configured to generate an upstream optical signal according to the identification information of the first source register and the register value of the first source register when at least one of the plurality of the registers becomes the first source register, wherein
  • the first source register is a register whose register value changes among the multiple registers;
  • the far-end signal transmission unit 130 is configured to transmit the upstream optical signal to the near-end optical module of the near-end node.
  • the remote signal transmission unit 130 may be an optical component, for example.
  • the remote signal processing unit 120 includes a remote micro-control unit MCU and a remote top adjustment unit (for example, it may be a digital signal processing circuit or a digital signal processor, Top adjustment circuit, etc.), remote optical transmitting unit TOSA (Transmitter Optical Subassembly, optical transmitting sub-module).
  • a remote micro-control unit MCU and a remote top adjustment unit (for example, it may be a digital signal processing circuit or a digital signal processor, Top adjustment circuit, etc.), remote optical transmitting unit TOSA (Transmitter Optical Subassembly, optical transmitting sub-module).
  • TOSA Transmitter Optical Subassembly, optical transmitting sub-module
  • the remote MCU is connected to the remote top adjustment unit, and is configured to generate a first top adjustment signal according to the identification information of the first source register and the register value of the first source register.
  • the remote top adjustment unit is connected to the remote TOSA, and is configured to perform top adjustment on the uplink main signal of the remote optical module according to the first top adjustment signal.
  • the remote TOSA is configured to convert the top-up upstream main signal into the upstream optical signal.
  • the far-end optical module can also perform corresponding operations according to the control parameters sent by the near-end optical module to achieve specific functions.
  • the remote signal processing unit 120 is further configured to modify the register value of the corresponding register in the plurality of registers according to the received predetermined downstream optical signal, wherein the predetermined downstream optical signal is the near-end node
  • the predetermined downstream optical signal is the near-end node
  • the remote signal processing unit 120 further includes a remote optical receiving unit ROSA (Receiver Optical Subassembly, optical receiving sub-module).
  • ROSA Remote optical receiving unit
  • the remote ROSA is connected to the remote MCU, and is configured to convert the predetermined downlink optical signal into a downlink electrical signal, and extract a second top adjustment signal from the downlink electrical signal.
  • the remote MCU is further configured to demodulate the second top adjustment signal, obtain the identification information of the second source register and the register value of the second source register, and determine the relationship with the second source register according to the identification information.
  • the register corresponding to the source register is used as the second target register, and the register value of the second target register is modified to the register value of the second source register, wherein a plurality of mapping register groups of the near-end optical module
  • the mapping register has a one-to-one correspondence with a plurality of registers of the remote optical module, and the second source register is a mapping register whose register value changes among the plurality of mapping registers.
  • the remote optical module further includes a remote clock and data recovery unit (CDR, Clock and Data Recovery) (for example, it may be a clock and data recovery circuit),
  • CDR remote clock and data recovery unit
  • the remote CDR is connected to the remote top adjustment unit and the remote ROSA, and is configured to perform symbol synchronization processing on the main signal input to the remote optical module, that is, when the remote optical module is input
  • the clock signal is extracted from the main signal and the correct phase relationship between the data and the clock is found;
  • the remote optical module also includes an optical interface and an electrical interface, and the remote optical module communicates with other nodes of the remote node through the electrical interface.
  • the components are connected, and the electrical interface interacts with other components of the remote node through the control signal and transmits the main signal;
  • the remote optical module is connected to the optical fiber through the optical interface, and establishes with the near-end optical module of the near-end node connect.
  • the remote optical module described in the fifth aspect of the present disclosure is used to implement the performance parameter transmission method described in the first aspect of the present disclosure and the control method provided in the fourth aspect of the present disclosure. The method and the control method are described in detail and will not be repeated here.
  • a near-end optical module 200 including: a plurality of mapping registers 210, the plurality of mapping registers 210 and the plurality of registers of the remote optical module one by one Corresponding; the near-end signal processing unit 220 is configured to modify the register value of the corresponding mapping register of the near-end optical module of the near-end node according to the received predetermined upstream optical signal, wherein the predetermined upstream optical signal is the far-end node's remote The upstream optical signal sent by the end optical module according to the performance parameter transmission method described in the first aspect of the present disclosure; the near-end judging unit 230 is configured to determine the remote optical module according to the modified register value of the mapping register The operating status of the.
  • the near-end judgment unit 230 may be, for example, a microprocessor, a logic processor, a logic circuit, and the like.
  • the near-end signal processing unit 220 includes a near-end MCU and a near-end ROSA.
  • the near-end ROSA is connected to the near-end MCU, and is configured to convert the predetermined upstream optical signal into an upstream electrical signal, and extract the first top adjustment signal from the upstream electrical signal.
  • the near-end MCU is configured to demodulate the first top adjustment signal, obtain the identification information of the first source register and the register value of the first source register, and determine the relationship with the first source register according to the identification information.
  • the mapping register corresponding to the register is used as the first target register, and the register value of the first target register is modified to the register value of the corresponding first source register, where the first source register is the remote The register whose value has changed among the multiple registers of the optical module.
  • the near-end optical module can also transmit control parameters to the far-end optical module of the remote node, thereby realizing remote control of the far-end optical module.
  • the near-end optical module 200 further includes a near-end signal transmission unit 240.
  • the near-end signal transmission unit 240 may be, for example, an optical component.
  • the near-end signal processing unit 220 is further configured to generate a downstream optical signal according to the identification information of the second source register and the register value of the second source register when at least one of the mapping registers becomes a second source register,
  • the second source register is a mapping register whose register value changes in a plurality of the mapping registers, and there is a mapping relationship between the register value of each mapping register and each control parameter of the remote optical module;
  • the near-end signal transmission unit 240 is configured to transmit the downstream optical signal to the far-end optical module.
  • the near-end signal processing unit further includes a near-end top adjustment unit and a near-end TOSA.
  • the near-end top adjustment unit may be, for example, a digital signal processing circuit, a digital signal processor, a top adjustment circuit, and the like.
  • the near-end MCU is further configured to generate a second top adjustment signal according to the identification information of the second source register and the register value of the second source register.
  • the near-end top-adjusting unit is connected to the near-end MCU and is configured to adjust the top-down main signal of the near-end optical module according to the second top-adjusting signal.
  • the near-end TOSA is connected to the near-end top adjustment unit, and is configured to convert the top-down main downstream signal into the downstream optical signal.
  • the near-end optical module further includes a near-end CDR (for example, a CDR circuit), and the near-end CDR is associated with the near-end top-adjusting unit and the near-end CDR.
  • End ROSA connection configured to perform symbol synchronization processing on the main signal input to the near-end optical module, that is, extract the clock signal from the main signal input to the near-end optical module and find the correct phase relationship between the data and the clock;
  • the near-end optical module also includes an optical interface and an electrical interface.
  • the near-end optical module is connected to other components of the near-end node through the electrical interface, and is connected to other components of the near-end node through the electrical interface. Part of the interactive control signal and transmission of the main signal; the near-end optical module is connected to the optical fiber through the optical interface, and a connection is established with the far-end optical module of the remote node.
  • the near-end optical module described in the sixth aspect of the present disclosure is used to implement the detection method described in the second aspect of the present disclosure and the control parameter transmission method provided in the third aspect of the present disclosure.
  • the control parameter transmission method has been described in detail, and will not be repeated here.
  • a fronthaul system including a near-end node and a remote node, wherein the near-end node includes the near-end optical module according to the sixth aspect of the present disclosure, and the remote The node includes the remote optical module described in the fifth aspect of the present disclosure.
  • FIG. 15 shows a schematic diagram of an embodiment of the fronthaul system provided by the seventh aspect of the present disclosure.
  • the near-end TOSA of the near-end optical module is connected to the far-end ROSA of the far-end optical module through an optical fiber, and the near-end ROSA of the near-end optical module is connected to the far end of the remote optical module.
  • TOSA connection in the fronthaul system, the near-end TOSA of the near-end optical module is connected to the far-end ROSA of the far-end optical module through an optical fiber, and the near-end ROSA of the near-end optical module is connected to the far end of the remote optical module.
  • a plurality of mapping registers are set in the near-end optical module, and the plurality of mapping registers correspond to a plurality of registers of the far-end optical module one-to-one.
  • the register value of at least one mapping register in the near-end optical module changes At the same time, the register value of the corresponding register in the remote optical module is synchronously modified, thereby realizing the remote control of the near-end node to the remote optical module of the remote node; when the register value of at least one register in the remote optical module changes At the same time, the register value of the corresponding mapping register in the near-end optical module is synchronously modified, so that the near-end node can monitor the performance of the far-end optical module of the remote node.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供一种远端节点的远端光模块的性能参数传输方法、一种检测远端光模块的性能的检测方法、一种控制远端节点的远端光模块的控制参数传输方法、一种远端节点的远端光模块的控制方法、远端光模块、近端光模块、前传系统。所述性能参数传输方法,包括:当所述远端光模块的多个寄存器中的至少一个成为第一源寄存器时,根据所述第一源寄存器的标识信息和所述第一源寄存器的寄存器值生成上行光信号,其中,所述第一源寄存器为多个所述寄存器中寄存器值发生变化的寄存器,且各个寄存器的寄存器值与所述远端光模块的各个性能参数之间存在映射关系;将所述上行光信号传输到近端节点的近端光模块。

Description

光模块及其参数传输、检测方法、控制方法、前传系统 技术领域
本公开涉及但不限于通信技术领域。
背景技术
分布式基站系统采用了将基带处理单元(BBU,Building Baseband Unit)和射频拉远单元(RRU,Radio Remote Unit)分离的设计。在5G无线接入网(RAN)架构中,由BBU和RRU组成的两级结构进一步演进为由集中单元(CU,Centralized Unit)、分布单元(DU,Distribute Unit)和有源天线处理单元(AAU,Active Antenna Unit)组成的三级结构。在两级结构的BBU与RRU之间、三级结构的CU、DU、AAU之间,都是通过光纤进行连接。
发明内容
本公开提供一种远端节点的光模块的性能参数传输方法、一种检测远端节点的光模块的性能的检测方法、一种控制远端节点的光模块的控制参数传输方法、一种远端节点的光模块的控制方法、前传系统。
作为本公开的第一个方面,提供一种远端节点的远端光模块的性能参数传输方法,包括:当所述远端光模块的多个寄存器中的至少一个成为第一源寄存器时,根据所述第一源寄存器的标识信息和所述第一源寄存器的寄存器值生成上行光信号,其中,所述第一源寄存器为多个所述寄存器中寄存器值发生变化的寄存器,且各个寄存器的寄存器值与所述远端光模块的各个性能参数之间存在映射关系;将所述上行光信号传输到近端节点的近端光模块。
作为本公开的第二个方面,提供一种检测远端节点的远端光模块的性能的检测方法,包括:根据接收到的预定上行光信号修改近端节点的近端光模块的映射寄存器组中相应映射寄存器的寄存器值,其中,所述预定上行光信号为远端节点的远端光模块根据本公开第一个 方面所述的性能参数传输方法发送的上行光信号,所述映射寄存器组包括多个所述映射寄存器,且多个所述映射寄存器与所述远端光模块的多个寄存器一一对应;根据修改后的所述映射寄存器的寄存器值,确定所述远端光模块的运行状态。
作为本公开的第三个方面,提供一种控制远端节点的远端光模块的控制参数传输方法,包括:当近端节点的近端光模块的映射寄存器组中至少一个映射寄存器成为第二源寄存器时,根据所述第二源寄存器的标识信息和所述第二源寄存器的寄存器值生成下行光信号,其中,所述映射寄存器组中的多个所述映射寄存器与远端节点的远端光模块中的多个寄存器一一对应,所述第二源寄存器为多个所述映射寄存器中寄存器值发生变化的映射寄存器,且各个所述映射寄存器的寄存器值与所述远端光模块的各个控制参数之间存在映射关系;将所述下行光信号传输到所述远端光模块。
作为本公开的第四个方面,提供一种远端节点的远端光模块的控制方法,包括:根据接收到的预定下行光信号修改所述远端光模块中的相应寄存器的寄存器值,其中,所述预定下行光信号为近端节点的近端光模块根据本公开第三个方面所述的控制参数传输方法发送的下行光信号,所述远端光模块的各个寄存器的寄存器值与所述远端光模块的各个控制参数之间存在映射关系。
作为本公开的第五个方面,提供一种远端光模块,包括:多个寄存器,用于分别存储所述远端光模块的各个性能参数;远端信号处理单元,用于当多个所述寄存器中的至少一个成为第一源寄存器时,根据所述第一源寄存器的标识信息和所述第一源寄存器的寄存器值生成上行光信号,其中,所述第一源寄存器为多个所述寄存器中寄存器值发生变化的寄存器;远端信号传输单元,用于将所述上行光信号传输到近端节点的近端光模块。
作为本公开的第六个方面,提供一种近端光模块,包括:多个映射寄存器,多个所述映射寄存器与远端光模块的多个寄存器一一对应;近端信号处理单元,用于根据接收到的预定上行光信号修改近端节点的近端光模块的相应映射寄存器的寄存器值,其中,所述预定上 行光信号为远端节点的远端光模块根据本公开第一个方面所述的性能参数传输方法发送的上行光信号;近端判断单元,用于根据修改后的所述映射寄存器的寄存器值,确定所述远端光模块的运行状态。
作为本公开的第七个方面,提供一种前传系统,包括近端节点和远端节点,其中,所述近端节点包括本公开第六个方面所述的近端光模块,所述远端节点包括本公开第五个方面所述的远端光模块。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本公开提供的性能参数传输方法的一种实施方式的流程图;
图2是本公开提供的性能参数传输方法的另一种实施方式的流程图;
图3是调顶原理示意图;
图4是本公开提供的检测方法的一种实施方式的流程图;
图5是本公开中寄存器映射示意图;
图6是本公开提供的检测方法的另一种实施方式的流程图;
图7是本公开提供的控制参数传输方法的一种实施方式的流程图;
图8是本公开提供的控制参数传输方法的另一种实施方式的流程图;
图9是本公开提供的控制方法的一种实施方式的流程图;
图10是本公开提供的控制方法的另一种实施方式的流程图;
图11是本公开提供的远端光模块的一种实施方式的模块示意图;
图12是本公开提供的近端光模块的一种实施方式的模块示意图;
图13是本公开提供的远端光模块的另一种实施方式的示意图;
图14是本公开提供的近端光模块的另一种实施方式的示意图;
图15是本公开提供的前传系统的一种实施方式的示意图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在4G分布式基站系统中,BBU通常配置于主基站或中心局(CO,Central Office)机房,RRU则通过光纤拉远到天线端,其中,BBU与RRU之间为前传(Fronthaul)系统;而在5G网络架构中,将CU和DU合设部署于主基站或CO机房,AAU分布式部署于站点,DU和AAU之间采用eCPRI(enchanced Common Public Radio Interface,增强型通用公共无线电接口)接口连接,组成前传系统。本公开的发明人研究发现,相关技术的前传系统中,RRU或AAU通过光纤拉远,且RRU侧的光模块或AAU侧的光模块缺少远程监控手段。当所述前传系统出现故障时,需要通过人工检修来确定RRU侧的光模块或AAU侧的光模块是否存在故障。因此无法实现对RRU侧的光模块或AAU侧的光模块性能进行预判,也无法在光模块性能劣化的情况下,及时对光模块进行更换,并主动避免因RRU侧的光模块或AAU侧的光模块故障而引起的前传系统的业务故障。
光模块是进行光电和电光转换的光电子器件,具有有限的使用寿命。通常情况下,光模块的使用寿命在5年左右。在使用过程中,随着运行时间的增加,光模块的性能会逐渐劣化,例如,随着运行时间的增加,光模块中发射激光的激光器的量子效率会降低,从而导致光模块的性能劣化。此外,光模块还可能受到环境的影响而产生故障,例如,由于光模块的光接口的污染和损伤会引起光链路损耗变大,进而导致光链路不通;环境干燥或操作不当还会使光模块容易受到静电放电(ESD,ElectroStatic Discharge)损伤,进而引起光模块性能变化或故障。
在光模块中,表征光模块性能的性能参数存储在光模块的寄存器中。需要说明的是,所述寄存器是光模块中用于存储数据的小型存储区域,是一种具有有限存储容量的高速存储部件。每一个光模块中 都包括多个寄存器,且根据功能的不同存储相应的数据。在本公开中,所述光模块中包括多个用于存储光模块的性能参数的寄存器,分别存储不同的性能参数。需要说明的是,光模块寄存器中的性能参数是在一定范围内动态变化的。例如,激光偏置电流是光模块中的一项重要的性能参数,而光模块中激光器的电光转换效率与环境温度的变化负相关,为保证激光器的出光功率不随温度变化,在高温时,激光偏置电流会增大,在低温时,激光偏置电流会减小,而激光偏置电流的变化会实时地反映为激光偏置电流对应的寄存器的值的变化。例如,接收光功率是光模块中的另一项重要的性能参数,随着光模块在线运行时间加长,激光器的波长会出现偏移,而光模块配合多路复用器(MUX,Multiplexer)或解复用器(DEMUX,DEMultiplexer)进行使用,当激光器的波长偏移超出MUX/DEMUX在该波长的通带时,接收光功率就会逐渐降低,接收光功率的变化同样会实时地反映为接收光功率对应的寄存器的值的变化。还需要说明的是,当光模块性能变化时,由光模块内部的底层软件对光模块性能参数对应的寄存器的值进行实时修改。
本公开的发明人研究发现,对前传系统的远端节点(例如RRU或AAU)的光模块性能的监测,主要是通过对远端光模块的寄存器中存储的性能参数的监测实现的;如果能对远端光模块的寄存器中存储的性能参数进行远程监测,就能实现对远端光模块的远程监测。
有鉴于此,在本公开中,提出了在前传系统的近端节点(例如BBU或DU)的近端光模块中,除了常规的寄存器之外,所述近端光模块中还设置了映射寄存器组这一构思。其中,所述映射寄存器组中包括多个映射寄存器,且多个映射寄存器与远端节点的远端光模块的多个寄存器一一对应,将互相对应的映射寄存器与远端光模块的寄存器设置为寄存器值相同。因此,当远端光模块中,存储所述远端光模块的性能参数的寄存器的寄存器值发生变化时,如果能同步修改近端光模块中对应的映射寄存器的寄存器值,就能实现近端节点对远端节点的光模块的性能进行监测。
有鉴于此,作为本公开的第一个方面,提供一种远端节点的远 端光模块的性能参数传输方法,如图1所示,所述性能参数传输方法可以包括步骤S110和S120。
在步骤S110中,当所述远端光模块的多个寄存器中的至少一个成为第一源寄存器时,根据所述第一源寄存器的标识信息和所述第一源寄存器的寄存器值生成上行光信号,其中,所述第一源寄存器为多个所述寄存器中寄存器值发生变化的寄存器,且各个寄存器的寄存器值与所述远端光模块的各个性能参数之间存在映射关系。
在步骤S120中,将所述上行光信号传输到近端节点的近端光模块。
所述性能参数传输方法由远端节点所执行。为了同步修改近端光模块的映射寄存器的寄存器值,在所述性能参数传输方法的步骤S110中,为了便于描述,将所述远端光模块的多个寄存器中寄存器值发生变化的寄存器称为第一源寄存器,当所述远端光模块的多个寄存器中的至少一个成为第一源寄存器时,根据所述第一源寄存器的标识信息和所述第一源寄存器的寄存器值生成上行光信号。在步骤S120中,将所述上行光信号传输到近端节点的近端光模块,从而将所述第一源寄存器的标识信息与寄存器值传输到近端节点。
所述近端节点在接收到所述上行光信号后,确定所述上行光信号中携带的寄存器标识信息、以及寄存器值,根据所述寄存器标识信息确定与所述第一源寄存器对应的映射寄存器,并将所述对应的映射寄存器的寄存器值修改为所述第一源寄存器的寄存器值。
由于远端光模块的各个寄存器的寄存器值与所述远端光模块的各个性能参数之间存在映射关系,因此所述近端光模块能够通过读取其映射寄存器的寄存器值来确定所述远端光模块的相应性能参数。也就是说,通过所述性能参数传输方法,可以在近端节点获取远端节点的远端光模块的性能参数,可以在近端节点远程检测所述远端光模块,实时判断远端节点的光模块是否发生故障,既提高了发现故障的效率,又降低了人力成本。
需要说明的是,本公开对所述远端光模块中寄存器的标识信息不做特殊限定。例如,可以将所述远端光模块中寄存器的地址作为寄 存器的标识信息;还可以对所述远端光模块的寄存器进行编号,将该编号作为所述远端光模块的寄存器的标识信息。
需要说明的是,根据协议规定,在4G网络的前传系统中,从BBU流向RRU的方向称为下行方向,从RRU流向BBU的方向成为上行方向;在5G网络的前传系统中,从DU流向AAU的方向称为下行方向,从AAU流向DU的方向称为上行方向。因此,在4G网络架构下,所述前传系统的远端节点为RRU,近端节点为BBU;在5G网络架构下,所述前传系统的远端节点为AAU,近端节点为CU或DU。
本公开对于如何生成所述上行光信号不做特殊限定。例如,可以通过副载波调制将第一源寄存器的地址与所述第一源寄存器存储的变化后的所述远端光模块的性能参数加载到光模块的上行主信号上,生成所述上行光信号;还可以通过波分复用(WDM,Wavelength Division Multiplexing)将承载第一源寄存器的标识信息和寄存器值的光载波信号与所述远端光模块的主信号耦合生成所述上行光信号。
作为一种可选的实施方式,可以通过调顶技术将第一源寄存器的标识信息与所述第一源寄存器的寄存器值加载到所述远端光模块的上行主信号上,从而生成所述上行光信号。此外,在光模块中,信息的处理都是在电域内完成的,当需要发送信号,首先经过处理将信息加载到电信号上,然后将电信号转换成光信号,之后才能在光纤上传播。相应地,如图2所示,步骤S110可以包括步骤S111至S113。
在步骤S111中,根据所述第一源寄存器的标识信息与所述第一源寄存器的寄存器值生成第一调顶信号。
在步骤S112中,根据所述第一调顶信号对所述远端光模块的上行主信号进行调顶。
在步骤S113中,将调顶后的上行主信号转换为所述上行光信号。
需要说明的是,调顶技术为将需要传输的控制信号通过波形变换,调制到一个合适的载波上,作为调顶信号,并进一步将该调顶信号叠加到主信号上。图3示出了调顶的原理。调制后的控制信号与主信号一起通过共同的发射装置发射到接收端。在接收端通过低通滤波 器和解调器就可以获得上述控制信号,而主信号则通过高通滤波器获得。调顶信号可以节省光传输通道,既不需要占用业务段,也不需要增加额外的特定波长。
作为一种可选的实施方式,通过副载波调制的方式将所述调顶信号加载到光模块的主信号上,实现对所述远端光模块的上行主信号进行调顶。
副载波调制是指将要传输的信号经过调制加载到射频电载波上,然后将该射频电载波经过调制加载到另一载波上。在本实施方式中,将所述第一源寄存器的标识信息与所述第一源寄存器的寄存器值经过调制加载到射频电载波上,得到所述第一调顶信号;然后将所述第一调顶信号经过调制加载到光模块的主信号上。
作为本公开的第二个方面,提供一种检测所述远端节点的远端光模块的性能的检测方法,如图4所示,所述性能检测方法可以包括步骤S210和S220。
在步骤S210中,根据接收到的预定上行光信号修改近端节点的近端光模块的映射寄存器组中相应映射寄存器的寄存器值,其中,所述预定上行光信号为远端节点的远端光模块根据本公开第一个方面所述的性能参数传输方法发送的上行光信号,所述映射寄存器组包括多个所述映射寄存器,且多个所述映射寄存器与所述远端光模块的多个寄存器一一对应。
在步骤S220中,根据修改后的所述映射寄存器的寄存器值,确定所述远端光模块的运行状态。
本公开所提供的性能检测方法由所述近端节点所执行。如上文中所述,在本公开中,在前传系统的近端节点的近端光模块中,设置了映射寄存器组,所述映射寄存器组中包括多个映射寄存器,且多个映射寄存器与远端光模块中的寄存器一一对应,相互对应的映射寄存器与远端光模块的寄存器的寄存器值相同。因此,当远端光模块中至少一个寄存器的寄存器值发生变化时,远端光模块会将第一源寄存器的寄存器值、以及第一源寄存器的标识信息以上行光信号的形式发送至所述近端光模块。当近端节点的近端光模块接收到远端光模块根据 本公开第一个方面所述的性能参数传输方法传输的上行光信号时,根据接收到的上行光信号更新所述近端光模块的映射寄存器的寄存器值。更新后,所述近端光模块的映射寄存器组的映射寄存器的寄存器值与所述远端光模块当前的各个性能参数之间再次建立了映射关系。当需要对远端节点的光模块的性能进行检测时,在步骤220中,只要读取更新后的各个映射寄存器的寄存器值,就能够判断所述远端光模块的运行状态。此处的“运行状态”包括但不限于所述远端光模块是否发生故障。
需要说明的是,多个所述映射寄存器与所述远端光模块的多个寄存器一一对应是指在多个所述映射寄存器与所述远端光模块的多个寄存器之间建立了映射关系。互为映射两个寄存器能够通过自身的标识信息定位对应的寄存器。例如,在远端光模块中,通过近端光模块中的映射寄存器的标识信息能够定位到所述远端光模块中的与该映射寄存器对应的寄存器。反之亦然。
图5为近端光模块的映射寄存器与远端光模块的寄存器的之间的映射关系的一种实施方式的示意图。还需要说明的是,如图5所示,在近端光模块中,除了所示映射寄存器组中的寄存器之外,还包括通常情况下的光模块所应有的寄存器,用来存储近端节点的光模块的性能参数、认证信息、波长信息等数据。
在图5中所示的实施方式中,所述近端光模块中的映射寄存器的标识信息与所述远端光模块中与该映射寄存器对应的寄存器的标识信息相同。
近端光模块中,映射寄存器的标识信息分别为Reg1、Reg2、Regx,…Regn。在远端光模块中,寄存器的标识信息分别为Reg1、Reg2、Regx,…Regn。
标识信息为Reg1的映射寄存器与远端光模块中标识信息为Reg1的寄存器相对应,标识信息为Reg2的映射寄存器与远端光模块中标识信息为Reg2的寄存器相对应,标识信息为Regx的映射寄存器与远端光模块中标识信息为Regx的寄存器相对应,…,标识信息为Regn的映射寄存器与远端光模块中标识信息为Regn的寄存器相 对应。
在本公开中,所述近端光模块的各个映射寄存器与所述远端光模块的各个寄存器之间的映射关系,可以以映射表的形式存储在所述近端节点。
本公开提供的远端节点的远端光模块的性能的检测方法,在接收到远端光模块发送的寄存器的标识信息与该寄存器的能够表征光模块性能的寄存器值后,根据寄存器标识信息和寄存器值,修改近端光模块的映射寄存器组中对应的映射寄存器的寄存器值,进而能够通过读取映射寄存器的寄存器值来检测远端光模块的性能,实现近端节点对远端节点的远端光模块的性能的远程监测。
如前文所述,在光模块中,信息的处理都是在电域内完成的,当接收到光信号时,需要将光信号转换为电信号。因此,在本公开中,当近端节点的光模块接收到远端节点的光模块根据本公开第一个方面所述的性能参数传输方法传输的上行光信号时,需要先将所述上行光信号转换为上行电信号。此外,当在本公开第一个方面所述的性能参数传输方法中,使用调顶技术生成所述上行光信号时,近端光模块还需要对所述上行电信号进行解调顶,并进一步解调制才能得到所述第一源寄存器的标识信息和所述第一源寄存器的寄存器值。相应地,如图6所示,步骤S210还包括步骤S211至S215。
在步骤S211中,将所述预定上行光信号转换为上行电信号。
在步骤S212中,从所述上行电信号中提取所述第一调顶信号。
在步骤S213中,对所述第一调顶信号进行解调制,获取所述第一源寄存器的标识信息和所述第一源寄存器的寄存器值。
在步骤S214中,根据所述标识信息确定与所述第一源寄存器对应的映射寄存器,作为第一目标寄存器。
在步骤S215中,将所述第一目标寄存器的寄存器值修改为对应的所述第一源寄存器的寄存器值。
如上文所述,每一个光模块中都包括多个寄存器,且根据功能的不同存储相应的数据。在本公开中,光模块中还包括多个存储控制参数的寄存器。光模块根据寄存器中存储的控制参数执行相应的操作, 实现对应的功能,因此,对光模块的功能的控制也就是对光模块的寄存器中存储的控制参数进行控制。如果能对远端光模块的寄存器中存储的控制参数进行远程控制,就能实现对远端光模块的远程控制。当前传系统出现业务故障时,就能通过控制远端光模块执行特定的操作(例如控制远端光模块进行业务环回)来判断业务故障是否由远端光模块引起的。
有鉴于此,作为本公开的第三个方面,提供一种控制远端节点的远端光模块的控制参数传输方法,如图7所示,所述控制参数传输方法可以包括步骤S310和S320。
在步骤S310中,当近端节点的近端光模块的映射寄存器组中至少一个映射寄存器成为第二源寄存器时,根据所述第二源寄存器的标识信息和所述第二源寄存器的寄存器值生成下行光信号,其中,所述映射寄存器组中的多个所述映射寄存器与远端节点的远端光模块中的多个寄存器一一对应,所述第二源寄存器为多个所述映射寄存器中寄存器值发生变化的映射寄存器,且各个所述映射寄存器的寄存器值与所述远端光模块的各个控制参数之间存在映射关系。
在步骤S320中,将所述下行光信号传输到所述远端光模块。
所述控制参数传输方法是由近端节点所执行的。在本公开中,远端光模块的多个寄存器中,包括多个存储所述远端光模块的控制参数的寄存器;相应地,近端光模块的映射寄存器组中,包括多个与存储所述远端光模块的控制参数的多个寄存器一一对应的映射寄存器。当需要控制远端光模块执行特定操作时,先修改近端光模块中相应的映射寄存器的寄存器值,然后将修改后的映射寄存器的寄存器值传输到远端光模块,使得远端光模块将对应于该映射寄存器的寄存器值修改为该映射寄存器的寄存器值,远端光模块就可以根据修改后的寄存器值执行所述特定操作。
在本公开,对如何修改映射寄存器的寄存器值并不做特殊限定。例如,可以通过输入设备对所述映射寄存器的寄存器值进行修改。
步骤S310中所述的多个所述映射寄存器与远端光模块中的多个寄存器一一对应关系,与本公开第二个方面中所述的多个所述映射寄 存器与远端光模块中的多个寄存器一一对应关系相同,所述寄存器的标识信息也在前文进行了描述,此处不再赘述。
本公开提供的控制远端节点的远端光模块的控制参数传输方法中,当需要远端光模块执行特定操作时,通过修改近端光模块中与控制远端光模块相关的映射寄存器的寄存器值,然后将修改后的映射寄存器的寄存器值和该映射寄存器的标识信息传输到远端光模块,使得远端光模块能够将对应于该映射寄存器的寄存器值修改为该映射寄存器的寄存器值,从而可以根据修改后的寄存器值执行所述特定操作,实现了近端光模块对远端光模块的远程控制。
作为一种可选的实施方式,在生成所述下行光信号时使用调顶技术,此处不再赘述调顶技术的原理;并且在生成所述下行光信号时,也需要将电信号转换为光信号。相应地,如图8所示,步骤S310还包括步骤S311至S313。
在步骤S311中,根据所述第二源寄存器的标识信息与所述第二源寄存器的寄存器值生成第二调顶信号。
在步骤S312中,根据所述第二调顶信号对所述近端光模块的下行主信号进行调顶。
在步骤S313中,将调顶后的下行主信号转换为所述下行光信号。
作为本公开的第四个方面,提供一种远端节点的光模块的控制方法,如图9所示,可以包括步骤S410。
在步骤S410中,根据接收到的预定下行光信号修改所述远端光模块中的相应寄存器的寄存器值,其中,所述预定下行光信号为近端节点的近端光模块根据本公开第三个方面所述的控制参数传输方法发送的下行光信号,所述远端光模块的各个寄存器的寄存器值与所述远端光模块的各个控制参数之间存在映射关系。
修改所述远端光模块中的相应寄存器的寄存器值后,远端光模块就可以根据修改后的寄存器值执行特定的操作。
本公开提供的远端节点的远端光模块的控制方法,根据近端光模块传输的寄存器值与寄存器标识信息,修改远端光模块中对应寄存器的寄存器值,进而远端节点的光模块能够通过读取寄存器中存储的 控制参数执行特定的操作,实现了近端节点的光模块对远端节点的光模块的远程控制。
作为一种可选地实施方式,如图10所示,步骤S410还包括步骤S411至S415。
在步骤S411中,将所述预定下行光信号转换为下行电信号。
在步骤S412中,从所述下行电信号中提取所述第二调顶信号。
在步骤S413中,对所述第二调顶信号进行解调制,获取所述第二源寄存器的标识信息与所述第二源寄存器的寄存器值。
在步骤S414中,根据所述标识信息确定与所述第二源寄存器对应的寄存器作为第二目标寄存器。
在步骤S415中,将所述第二目标寄存器的寄存器值修改为所述第二源寄存器的寄存器值。
作为本公开的第五个方面,提供一种远端光模块100,如图11所示,包括:多个寄存器110,配置为分别存储所述远端光模块的各个性能参数;远端信号处理单元120,配置为当多个所述寄存器中的至少一个成为第一源寄存器时,根据所述第一源寄存器的标识信息和所述第一源寄存器的寄存器值生成上行光信号,其中,所述第一源寄存器为多个所述寄存器中寄存器值发生变化的寄存器;远端信号传输单元130,配置为将所述上行光信号传输到近端节点的近端光模块。远端信号传输单元130例如可以为光学组件。
作为一种可选地实施方式,如图13所示,所述远端信号处理单元120包括远端微控制单元MCU、远端调顶单元(例如可以为数字信号处理电路、数字信号处理器,调顶电路等)、远端光发射单元TOSA(Transmitter Optical Subassembly,光发射次模块)。
所述远端MCU与所述远端调顶单元连接,配置为根据所述第一源寄存器的标识信息与所述第一源寄存器的寄存器值生成第一调顶信号。
所述远端调顶单元与所述远端TOSA连接,配置为根据所述第一调顶信号对所述远端光模块的上行主信号进行调顶。
所述远端TOSA配置为将调顶后的上行主信号转换为所述上行 光信号。
作为一种可选地实施方式,所述远端光模块还能够根据近端光模块发送的控制参数,执行相应的操作,实现特定的功能。相应地,所述远端信号处理单元120还配置为根据接收到的预定下行光信号修改所述多个寄存器中的相应寄存器的寄存器值,其中,所述预定下行光信号为近端节点的近端光模块根据本公开第三个方面所述的控制参数传输方法发送的下行光信号,各个所述寄存器的寄存器值与所述远端光模块的各个控制参数之间存在映射关系。
作为一种可选地实施方式,如图13所示,所述远端信号处理单元120还包括远端光接收单元ROSA(Receiver Optical Subassembly,光接收次模块)。
所述远端ROSA与所述远端MCU连接,配置为将所述预定下行光信号转换为下行电信号,并从所述下行电信号中提取第二调顶信号。
所述远端MCU还配置为对所述第二调顶信号进行解调制,获取第二源寄存器的标识信息与所述第二源寄存器的寄存器值,根据所述标识信息确定与所述第二源寄存器对应的寄存器作为第二目标寄存器,并将所述第二目标寄存器的寄存器值修改为所述第二源寄存器的寄存器值,其中,所述近端光模块的映射寄存器组中的多个所述映射寄存器与所述远端光模块的多个寄存器一一对应,所述第二源寄存器为多个所述映射寄存器中寄存器值发生变化的映射寄存器。
需要说明的是,如图13所示,在本公开中,所示远端光模块还包括远端时钟和数据恢复单元(CDR,Clock and Data Recovery)(例如可以为时钟和数据恢复电路),所述远端CDR与所述远端调顶单元和所述远端ROSA连接,配置为对输入所述远端光模块的主信号进行码元同步处理,即在输入所述远端光模块的主信号中提取时钟信号并找出数据和时钟正确的相位关系;此外,所述远端光模块还包括光接口和电接口,所述远端光模块通过所述电接口与远端节点的其他组成部分连接,并通过所述电接口与远端节点的其他组成部分交互控制信号、传输主信号;所远端光模块通过所述光接口连接光纤,并与 近端节点的近端光模块建立连接。
本公开第五个方面所述的远端光模块用于执行本公开第一个方面所述的性能参数传输方法和本公开第四个方面提供的控制方法,上文已经对所述性能参数传输方法和所述控制方法做了详细描述,此处不再赘述。
作为本公开的第六个方面,提供一种近端光模块200,如图12所示,包括:多个映射寄存器210,多个所述映射寄存器210与远端光模块的多个寄存器一一对应;近端信号处理单元220,配置为根据接收到的预定上行光信号修改近端节点的近端光模块的相应映射寄存器的寄存器值,其中,所述预定上行光信号为远端节点的远端光模块根据本公开第一个方面所述的性能参数传输方法发送的上行光信号;近端判断单元230,配置为根据修改后的所述映射寄存器的寄存器值,确定所述远端光模块的运行状态。近端判断单元230例如可以为微处理器、逻辑处理器、逻辑电路等。
作为一种可选地实施方式,如图14所示,所述近端信号处理单元220包括近端MCU、近端ROSA。
所述近端ROSA与所述近端MCU连接,配置为将所述预定上行光信号转换为上行电信号,并从所述上行电信号中提取所述第一调顶信号。
所述近端MCU配置为对所述第一调顶信号进行解调制,获取第一源寄存器的标识信息和所述第一源寄存器的寄存器值,根据所述标识信息确定与所述第一源寄存器对应的映射寄存器,作为第一目标寄存器,并将所述第一目标寄存器的寄存器值修改为对应的所述第一源寄存器的寄存器值,其中,所述第一源寄存器为所述远端光模块的多个寄存器中寄存器值发生变化的寄存器。
作为一种可选地实施方式,所述近端光模块还能够通过向远端节点的远端光模块传输控制参数,从而实现对所述远端光模块的远程控制。相应地,如图12所示,所述近端光模块200还包括近端信号传输单元240。近端信号传输单元240例如可以为光学组件。
所述近端信号处理单元220还配置为当至少一个所述映射寄存 器成为第二源寄存器时,根据所述第二源寄存器的标识信息和所述第二源寄存器的寄存器值生成下行光信号,其中,所述第二源寄存器为多个所述映射寄存器中寄存器值发生变化的映射寄存器,且各个所述映射寄存器的寄存器值与所述远端光模块的各个控制参数之间存在映射关系;所述近端信号传输单元240配置为将所述下行光信号传输到所述远端光模块。
作为一种可选的实施方式,如图14所示,所述近端信号处理单元还包括近端调顶单元、近端TOSA。近端调顶单元例如可以为数字信号处理电路、数字信号处理器、调顶电路等。
所述近端MCU还配置为根据所述第二源寄存器的标识信息与所述第二源寄存器的寄存器值生成第二调顶信号。
所述近端调顶单元与所述近端MCU连接,配置为根据所述第二调顶信号对所述近端光模块的下行主信号进行调顶。
所述近端TOSA与所述近端调顶单元连接,配置为将调顶后的下行主信号转换为所述下行光信号。
需要说明的是,如图14所示,在本公开中,所示近端光模块还包括近端CDR(例如CDR电路),所述近端CDR与所述近端调顶单元和所述近端ROSA连接,配置为对输入所述近端光模块的主信号进行码元同步处理,即在输入所述近端光模块的主信号中提取时钟信号并找出数据和时钟正确的相位关系;此外,所述近端光模块还包括光接口和电接口,所述近端光模块通过所述电接口与近端节点的其他组成部分连接,并通过所述电接口与近端节点的其他组成部分交互控制信号、传输主信号;所近端光模块通过所述光接口连接光纤,并与远端节点的远端光模块建立连接。
本公开第六个方面所述的近端光模块用于执行本公开第二个方面所述的检测方法和本公开第三个方面提供的控制参数传输方法,上文已经对所述检测方法和所述控制参数传输方法做了详细描述,此处不再赘述。
作为本公开的第七个方面,提供一种前传系统,包括近端节点和远端节点,其中,所述近端节点包括本公开第六个方面所述的近端 光模块,所述远端节点包括本公开第五个方面所述的远端光模块。
图15示出了本公开第七个方面提供的前传系统的一种实施方式的示意图。如图15所示,在所述前传系统中,近端光模块的近端TOSA通过光纤与远端光模块的远端ROSA连接,近端光模块的近端ROSA与远端光模块的远端TOSA连接。
本公开在近端光模块中设置了多个映射寄存器,多个所述映射寄存器与远端光模块的多个寄存器一一对应,当近端光模块中的至少一个映射寄存器的寄存器值发生变化时,同步修改远端光模块中对应的寄存器的寄存器值,从而实现了近端节点对远端节点的远端光模块的远程控制;当远端光模块中的至少一个寄存器的寄存器值发生变化时,同步修改近端光模块中对应的映射寄存器的寄存器值,从而实现了近端节点对远端节点的远端光模块的性能的监测。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (17)

  1. 一种远端节点的远端光模块的性能参数传输方法,包括:
    当所述远端光模块的多个寄存器中的至少一个成为第一源寄存器时,根据所述第一源寄存器的标识信息和所述第一源寄存器的寄存器值生成上行光信号,其中,所述第一源寄存器为多个所述寄存器中寄存器值发生变化的寄存器,且各个寄存器的寄存器值与所述远端光模块的各个性能参数之间存在映射关系;
    将所述上行光信号传输到近端节点的近端光模块。
  2. 根据权利要求1所述的性能参数传输方法,其中,根据所述第一源寄存器的标识信息和所述第一源寄存器的寄存器值生成上行光信号包括:
    根据所述第一源寄存器的标识信息与所述第一源寄存器的寄存器值生成第一调顶信号;
    根据所述第一调顶信号对所述远端光模块的上行主信号进行调顶;
    将调顶后的上行主信号转换为所述上行光信号。
  3. 一种检测远端节点的远端光模块的性能的检测方法,包括:
    根据接收到的预定上行光信号修改近端节点的近端光模块的映射寄存器组中相应映射寄存器的寄存器值,其中,所述预定上行光信号为远端节点的远端光模块根据权利要求1或2所述的性能参数传输方法发送的上行光信号,所述映射寄存器组包括多个所述映射寄存器,且多个所述映射寄存器与所述远端光模块的多个寄存器一一对应;
    根据修改后的所述映射寄存器的寄存器值,确定所述远端光模块的运行状态。
  4. 根据权利要求3所述的检测方法,其中,所述远端光模块生成所述上行光信号的步骤包括:
    根据第一源寄存器的标识信息与所述第一源寄存器的寄存器值生成第一调顶信号,其中,所述第一源寄存器为所述远端光模块的多个寄存器中寄存器值发生变化的寄存器;
    根据所述第一调顶信号对所述远端光模块的上行主信号进行调顶;
    将调顶后的上行主信号转换为所述上行光信号;
    根据接收到的预定上行光信号修改近端节点的近端光模块的映射寄存器组中相应映射寄存器的寄存器值,包括:
    将所述预定上行光信号转换为上行电信号;
    从所述上行电信号中提取所述第一调顶信号;
    对所述第一调顶信号进行解调制,获取所述第一源寄存器的标识信息和所述第一源寄存器的寄存器值;
    根据所述标识信息确定与所述第一源寄存器对应的映射寄存器,作为第一目标寄存器;
    将所述第一目标寄存器的寄存器值修改为对应的所述第一源寄存器的寄存器值。
  5. 一种控制远端节点的远端光模块的控制参数传输方法,包括:
    当近端节点的近端光模块的映射寄存器组中至少一个映射寄存器成为第二源寄存器时,根据所述第二源寄存器的标识信息和所述第二源寄存器的寄存器值生成下行光信号,其中,所述映射寄存器组中的多个所述映射寄存器与远端节点的远端光模块中的多个寄存器一一对应,所述第二源寄存器为多个所述映射寄存器中寄存器值发生变化的映射寄存器,且各个所述映射寄存器的寄存器值与所述远端光模块的各个控制参数之间存在映射关系;
    将所述下行光信号传输到所述远端光模块。
  6. 根据权利要求5所述的控制参数传输方法,其中,根据所述第二源寄存器的标识信息和所述第二源寄存器的寄存器值生成下行光信号包括:
    根据所述第二源寄存器的标识信息与所述第二源寄存器的寄存器值生成第二调顶信号;
    根据所述第二调顶信号对所述近端光模块的下行主信号进行调顶;
    将调顶后的下行主信号转换为所述下行光信号。
  7. 一种远端节点的远端光模块的控制方法,包括:
    根据接收到的预定下行光信号修改所述远端光模块中的相应寄存器的寄存器值,其中,所述预定下行光信号为近端节点的近端光模块根据权利要求5或6所述的控制参数传输方法发送的下行光信号,所述远端光模块的各个寄存器的寄存器值与所述远端光模块的各个控制参数之间存在映射关系。
  8. 根据权利要求7所述的控制方法,其中,所述近端光模块生成所述下行光信号的步骤包括:
    根据第二源寄存器的标识信息与所述第二源寄存器的寄存器值生成第二调顶信号,其中,所述近端光模块的映射寄存器组中的多个所述映射寄存器与所述远端光模块的多个寄存器一一对应,所述第二源寄存器为多个所述映射寄存器中寄存器值发生变化的映射寄存器;
    根据所述第二调顶信号对所述近端光模块的下行主信号进行调顶;
    将调顶后的下行主信号转换为所述下行光信号;
    根据接收到的预定下行光信号修改所述远端光模块中的相应寄存器的寄存器值包括:
    将所述预定下行光信号转换为下行电信号;
    从所述下行电信号中提取所述第二调顶信号;
    对所述第二调顶信号进行解调制,获取所述第二源寄存器的标识信息与所述第二源寄存器的寄存器值;
    根据所述标识信息确定与所述第二源寄存器对应的寄存器作为第二目标寄存器;
    将所述第二目标寄存器的寄存器值修改为所述第二源寄存器的寄存器值。
  9. 一种远端光模块,包括:
    多个寄存器,配置为分别存储所述远端光模块的各个性能参数;
    远端信号处理单元,配置为当多个所述寄存器中的至少一个成为第一源寄存器时,根据所述第一源寄存器的标识信息和所述第一源寄存器的寄存器值生成上行光信号,其中,所述第一源寄存器为多个所述寄存器中寄存器值发生变化的寄存器;
    远端信号传输单元,配置为将所述上行光信号传输到近端节点的近端光模块。
  10. 根据权利要求9所述的远端光模块,其中,所述远端信号处理单元包括远端微控制单元MCU、远端调顶单元、远端光发射单元TOSA;
    所述远端MCU的与所述远端调顶单元连接,配置为根据所述第一源寄存器的标识信息与所述第一源寄存器的寄存器值生成第一调顶信号;
    所述远端调顶单元与所述远端TOSA连接,配置为根据所述第一调顶信号对所述远端光模块的上行主信号进行调顶;
    所述远端TOSA配置为将调顶后的上行主信号转换为所述上行光信号。
  11. 根据权利要求10所述的远端光模块,其中,
    所述远端信号处理单元还配置为根据接收到的预定下行光信号修改所述多个寄存器中的相应寄存器的寄存器值,其中,所述预定下行光信号为近端节点的近端光模块根据权利要求5或6所述的控制参数传输方法发送的下行光信号。
  12. 根据权利要求11所述的远端光模块,其中,所述远端信号 处理单元还包括远端光接收单元ROSA;
    所述远端ROSA与所述远端MCU连接,配置为将所述预定下行光信号转换为下行电信号,并从所述下行电信号中提取第二调顶信号;
    所述远端MCU还配置为对所述第二调顶信号进行解调制,获取第二源寄存器的标识信息与所述第二源寄存器的寄存器值,根据所述标识信息确定与所述第二源寄存器对应的寄存器作为第二目标寄存器,并将所述第二目标寄存器的寄存器值修改为所述第二源寄存器的寄存器值,其中,所述近端光模块的映射寄存器组中的多个所述映射寄存器与所述远端光模块的多个寄存器一一对应,所述第二源寄存器为多个所述映射寄存器中寄存器值发生变化的映射寄存器。
  13. 一种近端光模块,包括:
    多个映射寄存器,多个所述映射寄存器与远端光模块的多个寄存器一一对应;
    近端信号处理单元,配置为根据接收到的预定上行光信号修改近端节点的近端光模块的相应映射寄存器的寄存器值,其中,所述预定上行光信号为远端节点的远端光模块根据权利要求1或2所述的性能参数传输方法发送的上行光信号;
    近端判断单元,配置为根据修改后的所述映射寄存器的寄存器值,确定所述远端光模块的运行状态。
  14. 根据权利要求13所述的近端光模块,其中,所述近端信号处理单元包括近端MCU、近端ROSA;
    所述近端ROSA与所述近端MCU连接,配置为将所述预定上行光信号转换为上行电信号,并从所述上行电信号中提取所述第一调顶信号;
    所述近端MCU配置为对所述第一调顶信号进行解调制,获取第一源寄存器的标识信息和所述第一源寄存器的寄存器值,根据所述标识信息确定与所述第一源寄存器对应的映射寄存器,作为第一目标寄 存器,并将所述第一目标寄存器的寄存器值修改为对应的所述第一源寄存器的寄存器值,其中,所述第一源寄存器为所述远端光模块的多个寄存器中寄存器值发生变化的寄存器。
  15. 根据权利要求14所述的近端光模块,其中,所述近端光模块还包括近端信号传输单元;
    所述近端信号处理单元还配置为当至少一个所述映射寄存器成为第二源寄存器时,根据所述第二源寄存器的标识信息和所述第二源寄存器的寄存器值生成下行光信号,其中,所述第二源寄存器为多个所述映射寄存器中寄存器值发生变化的映射寄存器,且各个所述映射寄存器的寄存器值与所述远端光模块的各个控制参数之间存在映射关系;
    所述近端信号传输单元配置为将所述下行光信号传输到所述远端光模块。
  16. 根据权利要求15所述的近端光模块,其中,所述近端信号处理单元还包括近端调顶单元、近端TOSA;
    所述近端MCU还配置为根据所述第二源寄存器的标识信息与所述第二源寄存器的寄存器值生成第二调顶信号;
    所述近端调顶单元与所述近端MCU连接,配置为根据所述第二调顶信号对所述近端光模块的下行主信号进行调顶;
    所述近端TOSA与所述近端调顶单元连接,配置为将调顶后的下行主信号转换为所述下行光信号。
  17. 一种前传系统,包括近端节点和远端节点,其中,所述近端节点包括权利要求13至16中任意一项所述的近端光模块,所述远端节点包括权利要求9至12中任意一项所述的远端光模块。
PCT/CN2021/088298 2020-04-21 2021-04-20 光模块及其参数传输、检测方法、控制方法、前传系统 WO2021213360A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21792752.4A EP4138314A4 (en) 2020-04-21 2021-04-20 OPTICAL MODULE AND PARAMETER TRANSMISSION METHOD, DETECTION METHOD AND CONTROL METHOD THEREOF AND FORWARD TRANSMISSION SYSTEM
US17/919,572 US20230155676A1 (en) 2020-04-21 2021-04-20 Optical module and parameter transmission method, detection method, control method thereof, and fronthaul system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010317367.1A CN113541783A (zh) 2020-04-21 2020-04-21 光模块及其参数传输、检测方法、控制方法、前传系统
CN202010317367.1 2020-04-21

Publications (1)

Publication Number Publication Date
WO2021213360A1 true WO2021213360A1 (zh) 2021-10-28

Family

ID=78093812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088298 WO2021213360A1 (zh) 2020-04-21 2021-04-20 光模块及其参数传输、检测方法、控制方法、前传系统

Country Status (4)

Country Link
US (1) US20230155676A1 (zh)
EP (1) EP4138314A4 (zh)
CN (1) CN113541783A (zh)
WO (1) WO2021213360A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822569B (zh) * 2019-11-15 2023-08-15 中国移动通信有限公司研究院 一种监控处理方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9787395B2 (en) * 2015-01-27 2017-10-10 Electronics And Telecommunications Research Institute Control apparatus and method for monitoring optical fiber link
TWI609575B (zh) * 2016-07-22 2017-12-21 Chunghwa Telecom Co Ltd Portable WDM interface device and method
CN108494496A (zh) * 2018-04-19 2018-09-04 青岛海信宽带多媒体技术有限公司 光功率值调整方法、系统及光模块
CN110430006A (zh) * 2019-07-10 2019-11-08 烽火通信科技股份有限公司 Wdm-pon系统及其管控方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989587B2 (en) * 2012-01-11 2015-03-24 Source Photonics, Inc. Operational state information generation in an optical transceiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9787395B2 (en) * 2015-01-27 2017-10-10 Electronics And Telecommunications Research Institute Control apparatus and method for monitoring optical fiber link
TWI609575B (zh) * 2016-07-22 2017-12-21 Chunghwa Telecom Co Ltd Portable WDM interface device and method
CN108494496A (zh) * 2018-04-19 2018-09-04 青岛海信宽带多媒体技术有限公司 光功率值调整方法、系统及光模块
CN110430006A (zh) * 2019-07-10 2019-11-08 烽火通信科技股份有限公司 Wdm-pon系统及其管控方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822569B (zh) * 2019-11-15 2023-08-15 中国移动通信有限公司研究院 一种监控处理方法及设备

Also Published As

Publication number Publication date
CN113541783A (zh) 2021-10-22
EP4138314A1 (en) 2023-02-22
US20230155676A1 (en) 2023-05-18
EP4138314A4 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
Ruffini et al. Access and metro network convergence for flexible end-to-end network design
US20090214221A1 (en) Intelligent optical systems and methods for optical-layer management
EP2939357B1 (en) Optical port discovery in a wdm optical network
US20200162186A1 (en) Optical Module and Network Device
Monroy et al. Cognitive heterogeneous reconfigurable optical networks (CHRON): Enabling technologies and techniques
CN102547491B (zh) 光线路终端、光网络单元和无源光网络系统
WO2023160620A1 (zh) 一种光分配网络装置以及一种信号处理方法
Muñoz et al. SDN control of sliceable multidimensional (spectral and spatial) transceivers with YANG/NETCONF
WO2021213360A1 (zh) 光模块及其参数传输、检测方法、控制方法、前传系统
TWI416895B (zh) 點對點光網路訊號傳送方法與其系統
Honda et al. WDM-PON management and control by auxiliary management and control channel for 5G mobile fronthaul
US9906295B2 (en) Method, device and system for detecting optical signal
Muñoz et al. Adaptive software defined networking control of space division multiplexing super-channels exploiting the spatial-mode dimension
JP2021069116A (ja) 光トランシーバのファームウェア・アップデート方法
CN111436012B (zh) 信号处理系统、交换机以及光模块
US11784742B2 (en) Optical module, management and control information processing method, and communication system
JP2017175176A (ja) 局側光回線終端装置、冗長装置切替方法及び冗長装置切替プログラム
EP3270529B1 (en) Optical transmission assembly
CN101951311B (zh) 无源光网络中在接收端动态优化调节的突发时钟恢复方法
JP6558489B1 (ja) 光通信装置、サーバ装置、光伝送システム、及び光通信方法
Jorge et al. Transmission of PAM4 signals in ICXT-impaired intra-datacenter connections with PAM2 signal interference
KR20210051917A (ko) Ftth 기반 인터넷 서비스를 제공하는 광 접속 장치 및 방법
YAN et al. Toward Low-Cost Flexible Intelligent OAM in Optical Fiber Communication Networks
Lin et al. Scalability analysis methodology for passive optical interconnects in data center networks using PAM
JP6418254B2 (ja) 伝送装置および伝送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021792752

Country of ref document: EP

Effective date: 20221116