WO2022087818A1 - 一种射频拉远单元的测试系统及方法 - Google Patents

一种射频拉远单元的测试系统及方法 Download PDF

Info

Publication number
WO2022087818A1
WO2022087818A1 PCT/CN2020/123955 CN2020123955W WO2022087818A1 WO 2022087818 A1 WO2022087818 A1 WO 2022087818A1 CN 2020123955 W CN2020123955 W CN 2020123955W WO 2022087818 A1 WO2022087818 A1 WO 2022087818A1
Authority
WO
WIPO (PCT)
Prior art keywords
test signal
module
signal
uplink
digital
Prior art date
Application number
PCT/CN2020/123955
Other languages
English (en)
French (fr)
Inventor
王龙帅
张航
刘晓锋
Original Assignee
罗森伯格技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗森伯格技术有限公司 filed Critical 罗森伯格技术有限公司
Priority to PCT/CN2020/123955 priority Critical patent/WO2022087818A1/zh
Publication of WO2022087818A1 publication Critical patent/WO2022087818A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/17Detection of non-compliance or faulty performance, e.g. response deviations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing

Definitions

  • the present invention relates to the technical field of communications, and in particular, to a testing system and method of a remote radio unit.
  • Radio Remote Unit As an important part of wireless communication and the most critical equipment, provides a stable and reliable channel for users to exchange information, and ensures accurate and real-time delivery of information. Through complex circuit transformation, it is converted into radio waves, and finally transmitted through the antenna. At the same time, the information sent by the user terminal is received and transmitted to the core network to complete the information exchange.
  • the remote radio unit needs to undergo strict tests in the stages of research and development, joint debugging, and production, such as testing the technical indicators of the transmitting chain and the technical indicators of the receiving and transmitting chain of the remote radio unit.
  • the method often used to test the remote radio unit is to build a BBU (Building Base band Unit, baseband processing unit) and RRU (Radio Remote Unit, radio remote unit) test system.
  • BBU Building Base band Unit, baseband processing unit
  • RRU Radio Remote Unit, radio remote unit
  • RRU cannot test indicators such as receiving sensitivity test alone during RRU's R&D and production stages, and in the above test methods, RRU and BBU are relatively strongly coupled, and technical parameters such as adjustment thresholds of different BBU manufacturers There may also be some differences, resulting in the need to decouple the RRU indicator problem and the BBU demodulation problem during fault location.
  • the purpose of the present invention is to overcome the defects of the prior art, and to provide a test system and method that can test various technical indicators of the remote radio unit without using a baseband test unit.
  • a test system for a remote radio unit the system includes a test signal input unit, a remote radio unit to be tested, and a test signal analysis unit.
  • the remote radio unit to be tested includes an uplink, a downlink, and a digital signal processing module connected to the uplink and downlink, and the uplink is used to process the test signal and input it to the digital signal.
  • the digital signal processing module is used to output the test signal input from the uplink to the downlink after internal digital loopback, and the downlink is used to process the test signal and then transmit it to the test signal analysis unit;
  • the test signal input unit is connected to the uplink, and is used for inputting a test signal to the uplink;
  • the test signal analysis unit is connected to the downlink, and is used for receiving the test signal and obtaining the technical index of the remote radio unit according to the test signal.
  • the digital signal processing module includes a JESD receiving port, an uplink digital processing link, a DDC module, a DUC module, a downlink digital processing link, and a JESD transmitting port, and the JESD receiving port communicates with the JESD receiving port through the uplink digital processing link.
  • the DDC module is connected, the DUC module is connected to the JESD transmit port through the downlink digital processing link, the JESD receive port loops back the test signal to the JESD transmit port, or the DDC module loops back the test signal to the DUC module .
  • the uplink includes
  • the uplink signal preprocessing link includes an uplink filter module, a low-noise amplifier module, a radio frequency filter module, a receive gain amplifier module and a first balun that are connected in sequence along the signal transmission direction.
  • the uplink filter module is connected to the test signal input unit, using for processing test signals;
  • the ADC module is connected to the first balun, and is used for converting the test signal in analog form into the test signal in digital form.
  • the downlink includes
  • a DAC module connected to the digital signal processing module, for converting the digital-form test signal output by the digital-signal processing module into an analog-form test signal
  • the downlink signal preprocessing link includes a second balun, a variable gain attenuation module, a transmit gain amplifying module, a power amplifying module and a downlink filtering module sequentially connected along the signal transmission direction, the second balun is connected to the DAC module,
  • the downlink filtering module is connected to the test signal analysis unit, and is used for processing the test signal in the analog form and sending it to the test signal analysis unit.
  • the upstream digital processing link includes an AGC module
  • the JESD interface is connected to the DDC module through the AGC module.
  • the downlink digital processing link includes a CFR module, a DPD module and an ALC module arranged along the signal transmission direction, the CFR module is connected to the DUC module, and the ALC module is connected to the JESD transmit port.
  • the test signal input unit includes a signal source for generating an uplink test signal and an interference source for generating an interference signal, or the test signal input unit includes a signal for generating a downlink test signal source,
  • the test signal analysis unit includes a spectrum analyzer.
  • the test signal input unit includes a noise source for generating an uplink receiving link noise figure test signal
  • the noise source is connected to the uplink
  • the test signal analysis unit includes a noise meter or has a noise figure spectrum analyzer.
  • the present invention also discloses a method for testing a remote radio unit, characterized in that the method includes:
  • test signal input unit inputs a test signal to the uplink
  • the uplink processes the test signal and inputs it to the digital signal processing module, the digital signal processing module outputs the test signal input in the uplink to the downlink after internal digital loopback, the The downlink is used to process the test signal and send it to the test signal analysis unit;
  • the test signal analysis unit acquires the technical index of the remote radio unit according to the test signal.
  • the digital loopback in the digital signal processing module includes the JESD receiving port looping back the test signal to the JESD transmitting port, or the DDC module looping back the test signal to the DUC module.
  • the present invention does not need to use the baseband processing unit, so the interference caused by the fault of the baseband processing unit is eliminated, and the baseband processing unit does not need to be eliminated when a fault occurs, which improves the performance of the system. Test efficiency.
  • Fig. 1 is the test system structural block diagram schematic diagram of the present invention
  • Fig. 2 is the block diagram schematic diagram of digital signal processing module in Fig. 1;
  • Fig. 3 is the test system structural block diagram schematic diagram when testing the uplink receiving link index
  • Fig. 4 is the test system structural block diagram schematic diagram when testing the uplink receiving link noise figure index
  • FIG. 5 is a schematic structural block diagram of a test system when testing downlink receiving link indicators.
  • the test system of a remote radio unit disclosed by the present invention can test various technical indicators of the remote radio unit (RRU, Radio Remote Unit) without using a baseband processing unit (BBU, Building Base band Unit).
  • RRU Remote Radio Unit
  • BBU Building Base band Unit
  • a test system of a remote radio unit includes a test signal input unit, a remote radio unit to be tested and a test signal analysis unit, wherein the test signal input unit is used to Test the input test signal in the remote radio unit.
  • the test signal includes but is not limited to the test signal used to test the technical indicators of the uplink receiving link, the test signal used to test the technical indicators of the downlink transmission link, and the test signal used to test the noise of the uplink receiving link
  • the test signal of the coefficient; the remote radio unit to be tested includes uplink, downlink and digital signal processing modules, the input end of the uplink is connected to the test signal input unit, and the output end is connected to the digital signal processing module, which is used for The test signal is processed and sent to the digital signal processing module; the digital signal processing module is also connected to the input end of the downlink for outputting the test signal received from the uplink to the downlink after the internal digital loopback
  • the output end of the downlink is connected to the test signal analysis unit, which is used to process the test signal and send it to the test signal analysis unit; the test signal analysis unit is used to analyze the received test signal and obtain the RF to be tested.
  • uplink receiving link indicators including but not limited to receiving sensitivity, in-channel selectivity, narrowband blocking
  • uplink receiving link noise figure indicators and downlink transmit link indicators (including but not limited to transmit signal power, adjacent channel signal power ratio (ACPR), error vector magnitude (EVM), peak-to-average ratio (PAR), etc.).
  • ACPR adjacent channel signal power ratio
  • EVM error vector magnitude
  • PAR peak-to-average ratio
  • the uplink includes a connected uplink signal preprocessing link and an ADC (Analog-to-Digital Converter) module, and the uplink signal preprocessing link is used to
  • the test signal is processed, which includes an uplink filter module, a low noise amplifier module (LNA, Low Noise Amplifier), a radio frequency filter module (RF Filter), a receive gain amplifier module and a first balun connected in sequence along the signal transmission direction.
  • LNA low noise amplifier module
  • RF Filter radio frequency filter module
  • receive gain amplifier module a first balun connected in sequence along the signal transmission direction.
  • the signal input unit is connected to the upstream filter module or the test signal input unit is directly connected to the input end of the low noise amplifier module, the first balun is connected to the ADC module; the input end of the ADC module is connected to the first balun, and the output end is connected to the digital signal
  • the processing module is connected, and is used for converting the test signal in the analog form processed by the uplink signal preprocessing link into the test signal in the digital form and sending the test signal to the digital signal processing module.
  • the test signal input unit inputs the test signal to the uplink filter module for filtering processing, the test signal processed by the uplink filter module is sent to the low-noise amplifying module for signal amplification processing, and the test signal processed by the low-noise amplifying module
  • the test signal processed by the RF filter module is sent to the gain amplification module for signal amplification processing, and the test signal processed by the gain amplification module is sent to the ADC module through the first balun,
  • the ADC module converts the test signal into a digital test signal and sends it to the digital signal processing unit.
  • the downlink includes a DAC module and a downlink signal preprocessing link, wherein the input terminal of the DAC module is connected to the digital signal processing module, and the output terminal is connected to the downlink signal preprocessing link, which is used for the digital form output by the digital signal processing module.
  • the test signal is converted into an analog test signal and input to the downlink signal preprocessing link; the downlink signal preprocessing link is used to process the analog test signal and send it to the test signal analysis unit, which includes edge signal
  • the second balun, the variable gain attenuation module, the transmit gain amplifying module, the power amplifying module and the downlink filtering module are connected in sequence in the transmission direction, the second balun is connected with the DAC module, and the downlink filtering module is connected with the test signal analysis unit.
  • the digital signal processing module sends the test signal to the DAC module after internal digital loopback processing, and the looped digital signal is converted by the DAC module and then sent to the variable gain attenuation module through the second balun, which can be
  • the test signal is processed in the variable gain attenuation module and sent to the transmit gain amplifying module.
  • the transmit gain amplifying module amplifies the test signal and sends it to the power amplifying module.
  • the power amplifying module amplifies the test signal and passes the
  • the downlink filtering module is sent to the test signal analysis unit, and the test signal analysis unit analyzes and processes the test signal to obtain the technical indicators of the remote radio unit.
  • the uplink and downlink in the remote radio unit to be tested include the above modules.
  • the uplink and downlink include different signal processing modules. , may include but not limited to the above modules, and the test system of the present invention can still test the technical indicators of the remote radio unit.
  • the uplink filtering module and the downlink filtering module are implemented by a duplexer. Of course, in other embodiments, separate filtering modules can be set according to actual requirements.
  • the digital signal processing module includes a JESD receiving port, an uplink digital processing link, a downlink digital processing link, a JESD transmitting port, a DDC (Digital Down Converters, digital downconverter) module and a DUC (Digital UP Converter) module , wherein the input end of the JESD receiving port is connected to the ADC module, and the output end is connected to the DDC module through the upstream digital processing link; the DUC module is connected to the JESD transmitting port through the downstream digital processing link, the JESD transmitting port is connected to the DAC module, and the DDC module is connected to the DAC module.
  • the module is used for digital signal down-conversion processing, and the DUC module is used for digital signal up-conversion processing.
  • the digital signal processing module When the digital signal processing module loops back the test signal, it can loop back between the JESD receiving port and the JESD transmitting port, that is, the test signal processed by the ADC is sent to the JESD receiving port, and sent from the JESD receiving port to the JESD transmitting port. port, which is sent to the DAC module by the JESD transmit port.
  • test signal when the test signal is looped back, it can also be looped back between the DDC module and the DUC module, that is, the test signal processed by the ADC is sent to the DDC module through the JESD receiving module for processing, and the test signal processed by the DDC module It is sent to the DUC module, and after being processed by the DUC module, it is sent to the DAC module through the JESD transmit port.
  • the upstream digital processing link includes an AGC (Automatic Gain Control, automatic gain control) module, and the JESD receiving port is connected to the DDC module through the AGC module; Factor reduction) module, DPD (Digital Predistortion, digital predistortion) module and ALC (Automatic Level Control, automatic level control) module, the CFR module is connected to the DUC module, and the ALC module is connected to the JESD transmit port.
  • AGC Automatic Gain Control, automatic gain control
  • the JESD receiving port is connected to the DDC module through the AGC module
  • Factor reduction DPD (Digital Predistortion, digital predistortion) module
  • ALC Automatic Level Control, automatic level control
  • the test signal input unit includes a signal source and an interference source, and the signal source is used to generate the uplink receiving link test signal, The interference source is used to generate the interference signal.
  • the uplink receiving link test signal and the interference signal are synthesized and input to the uplink; the test signal analysis unit is a spectrum analyzer.
  • the test signal input unit includes a noise source, the noise source is connected to the uplink, and the noise source is used to generate a noise signal;
  • the test signal analysis unit is a noise source instrument or spectrum analyzer with noise figure.
  • the test signal input unit includes a signal source, the signal source is connected to the uplink, and the signal source is used to generate a downlink receiving link test signal; the test signal analysis unit for the spectrum analyzer.
  • testing system of the present invention tests the technical indicators of the uplink receiving link, the technical indicators of the noise coefficient of the uplink receiving link and the technical indicators of the downlink transmission link of the remote radio unit is described in detail.
  • test the signal input unit For the signal source and interference source, the test signal analysis unit is a spectrum analyzer. Specifically, the signals generated by the signal source and the interference source are synthesized and sent to the remote radio unit through the cable, and the test signal is processed by the uplink and then output to the ADC module, which converts the analog test signal into a digital form.
  • technical indicators such as uplink sensitivity, in-channel selectivity, narrowband blocking and adjacent channel selectivity (ACS)
  • the test signal analysis unit is a spectrum analyzer. Specifically, the signals generated by the signal source and the interference source are synthesized and sent to the remote radio unit through the cable, and the test signal is processed by the uplink and then output to the ADC module, which converts the analog test signal into a digital form.
  • the test signal is input to the digital signal processing module, and the digital signal processing module performs digital loopback internally, that is, the test signal is looped back between the JESD receiving port and the JESD transmitting port, and the test signal is looped back to the JESD transmitting port.
  • the JESD transmit port further outputs the test signal to the DAC module, or loops back between the DDC module and the DUC module, loops the test signal back to the DUC module, and the DUC module further processes the test signal through the downlink digital processing link and sends it
  • the JESD transmit port further outputs the test signal to the DAC module;
  • the DAC module outputs the test signal in digital form to the spectrum analyzer through the downlink, and the spectrum analyzer analyzes the test signal to obtain the receiving sensitivity, channel Internal selectivity, narrowband blocking, adjacent channel selectivity and other technical indicators.
  • the test signal can also be obtained directly after the DAC or gain amplification module through the spectrum analyzer to obtain the technical indicators of the uplink receiving link.
  • the test signal input unit is a noise source
  • the test signal analysis unit is a noise meter or a spectrum analyzer with noise figure function.
  • the test signal generated by the noise source is transmitted to the remote radio unit through the cable, and the test signal is processed by the uplink and then output to the ADC module.
  • the ADC module converts the analog test signal into a digital test signal and generates Input to the digital signal processing module, the digital signal processing module performs digital loopback internally, that is, the test signal is looped back between the JESD receiving port and the JESD transmitting port, the test signal is looped back to the JESD transmitting port, and the JESD transmitting port is further Output the test signal to the DAC module, or loop back between the DDC module and the DUC module, loop the test signal back to the DUC module, and the DUC module further processes the test signal through the downlink digital processing link and sends it to the JESD transmit port , the JESD transmit port further outputs the test signal to the DAC module; the DAC module outputs the test signal in digital form to the noise meter or spectrum analyzer with noise figure through the downlink, and the noise meter or spectrum analyzer with noise figure The signal is analyzed to obtain the receive chain noise figure.
  • the test signal can also be obtained directly after the DAC module or the transmit gain amplification
  • the receiving sensitivity index of the uplink receiving link can also be calculated according to the receiving sensitivity formula as follows.
  • Pnoise(dBm) K ⁇ T ⁇ BW
  • Pnoise(dBm) is the thermal noise of the receiver
  • NF is the receiver noise figure
  • SNR is the system output signal-to-noise ratio
  • K is the Boltzmann constant
  • T is the temperature
  • BW is the RF carrier bandwidth.
  • the test signal input unit is the signal source
  • the test signal analysis unit is the spectrum analyzer.
  • the frequency band and modulation signal type to be tested are set in the signal source, and the signal is sent to the remote radio unit through the cable.
  • the test signal is processed by the uplink and then output to the ADC module.
  • the ADC module converts the analog form
  • the test signal is converted into a digital test signal and input to the digital signal processing module.
  • the digital signal processing module performs digital loopback internally, that is, the test signal is looped back between the JESD receiving port and the JESD transmitting port, and the test signal is looped back. Loop back to the JESD transmit port, the JESD transmit port further outputs the test signal to the DAC module, or loops back between the DDC module and the DUC module, loops back the test signal to the DUC module, and the DUC module further passes the downstream digital processing chain.
  • the test signal is processed and sent to the JESD transmit port, and the JESD transmit port further outputs the test signal to the DAC module; the DAC module outputs the test signal in digital form to the spectrum analyzer through the downlink, and the spectrum analyzer analyzes the test signal , technical indicators such as downlink transmit power, ACPR (adjacent signal power ratio), EVM (error vector magnitude), and PAR (peak-to-average ratio) can be obtained.
  • the signal source can also be directly connected to the first balun of the uplink through a cable to test the technical specifications of the transmit chain.
  • the present invention When testing various technical indicators of the remote radio unit, the present invention performs digital loopback of the test signal in the digital signal processing module, without using the baseband processing unit, the remote radio unit (RRU, Radio Remote Unit) can perform various The test of this technical index solves the problem that the remote radio unit manufacturers do not have BBU in the debugging and testing stages, which saves R&D and equipment costs. There is no need to troubleshoot the baseband processing unit in the event of a failure, improving test efficiency.

Abstract

一种射频拉远单元的测试系统及方法,系统包括测试信号输入单元、待测射频拉远单元和测试信号分析单元,测试信号输入单元向射频拉远单元的上行链路中输入测试信号,上行链路对测试信号处理后输入至射频拉远单元的数字信号处理模块中,数字信号处理模块将测试信号在内部数字环回后输出至射频拉远单元的下行链路中,下行链路将测试信号处理后输送至测试信号分析单元中,测试信号分析单元根据测试信号获取射频拉远单元的技术指标。通过将测试信号在数字信号处理模块中进行数字环回,无需使用基带处理单元便可实现对射频拉远单元进行各项技术指标的测试。

Description

一种射频拉远单元的测试系统及方法 技术领域
本发明涉及通信技术领域,尤其是涉及一种射频拉远单元的测试系统及方法。
背景技术
射频拉远单元(RRU,Radio Remote Unit)作为无线通信的重要一环、最关键设备,为用户的信息交流提供稳定可靠的通道,保证了信息的精准、实时送达,其将基带数字信号,通过复杂的电路变换,转化成无线电波,最终通过天线发射出去,同时,接收用户终端发送的信息并传送到核心网,以完成信息交互。
目前,射频拉远单元在研发、联调、生产等阶段需进行严格的测试,如测试射频拉远单元的发射链路技术指标和接收发射链路技术指标等等。对射频拉远单元进行测试常采用的方法是搭建BBU(Building Base band Unit,基带处理单元)和RRU(Radio Remote Unit,射频拉远单元)测试系统。由于BBU和RRU的生产厂家不同,RRU在研发和生产阶段,RRU无法单独进行接收灵敏度测试等指标的测试,并且上述测试方法中,RRU和BBU耦合比较强,不同BBU厂家的调解门限等技术参数也可能存在一定差异,导致在故障定位时需要解耦RRU指标问题和BBU解调问题。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种无需使用基带测试 单元便可对射频拉远单元的各项技术指标进行测试的测试系统及方法。
为实现上述目的,本发明提出如下技术方案:一种射频拉远单元的测试系统,所述系统包括测试信号输入单元、待测射频拉远单元和测试信号分析单元。
所述待测射频拉远单元包括上行链路、下行链路和与所述上行链路、下行链路相连的数字信号处理模块,所述上行链路用于对测试信号进行处理并输入至数字信号处理模块中,所述数字信号处理模块用于将上行链路输入的测试信号在内部数字环回后输出至下行链路中,所述下行链路用于将测试信号处理后输送至测试信号分析单元;
所述测试信号输入单元与所述上行链路相连,用于向所述上行链路中输入测试信号;
所述测试信号分析单元与所述下行链路相连,用于接收测试信号并根据测试信号获取射频拉远单元的技术指标。
优选地,所述数字信号处理模块包括JESD接收端口、上行数字处理链路、DDC模块、DUC模块、下行数字处理链路和JESD发射端口,JESD接收端口通过所述上行数字处理链路与所述DDC模块相连,DUC模块通过所述下行数字处理链路与所述JESD发射端口相连,所述JESD接收端口将测试信号环回至JESD发射端口,或者所述DDC模块将测试信号环回至DUC模块。
优选地,所述上行链路包括
上行信号预处理链路,包括沿信号传输方向依次相连接的上行滤波模块、低噪声放大模块、射频滤波模块、接收增益放大模块和第一巴伦,上行滤波模块与测试信号输入单元相连,用于对测试信号进行处理;
ADC模块,与所述第一巴伦相连,用于将模拟形式的测试信号转换为数字形式的测试信号。
优选地,所述下行链路包括
DAC模块,与所述数字信号处理模块相连,用于将数字信号处理模块输出的数字形式的测试信号转换为模拟形式的测试信号;
下行信号预处理链路,包括沿信号传输方向依次相连的第二巴伦、可变增益衰减模块、发射增益放大模块、功率放大模块和下行滤波模块,所述第二巴伦与DAC模块相连,所述下行滤波模块与测试信号分析单元相连,用于对模拟形式的测试信号进行处理并输送至测试信号分析单元中。
优选地,所述上行数字处理链路包括AGC模块,所述JESD接端口通过所述AGC模块与所述DDC模块相连。
优选地,所述下行数字处理链路包括沿信号传输方向设置的CFR模块、DPD模块和ALC模块,所述CFR模块与所述DUC模块相连,所述ALC模块与所述JESD发射端口相连。
优选地,所述测试信号输入单元包括用于产生上行链路测试信号的信号源和用于产生干扰信号的干扰源,或者所述测试信号输入单元包括用于产生下行发射链路测试信号的信号源,
所述测试信号分析单元包括频谱仪。
优选地,所述测试信号输入单元包括用于产生上行接收链路噪声系数测试信号的噪声源,所述噪声源与所述上行链路相连,所述测试信号分析单元包括噪声仪或具有噪声系数的频谱仪。
本发明还揭示了一种射频拉远单元的测试系统的方法,其特征在于,方法包括:
S100,测试信号输入单元向所述上行链路中输入测试信号;
S200,所述上行链路对测试信号进行处理并输入至数字信号处理模块中,所述数字信号处理模块将上行链路输入的测试信号在内部数字环回后输出至下行链路中,所述下行链路用于将测试信号处理后输送至测试信号分析单元中;
S300,所述测试信号分析单元根据测试信号获取射频拉远单元的技术指标。
优选地,所述数字信号处理模块内数字环回包括JESD接收端口将测试信号环回至JESD发射端口,或者DDC模块将测试信号环回至DUC模块。
本发明的有益效果是:
(1)本发明在测试射频拉远单元各项技术指标时,通过将测试信号在数字信号处理模块内部进行数字环回,无需使用基带处理单元便可以对射频拉远单元进行各项技术指标的测试,解决了射频拉远单元厂家在调试和测试阶段没有基带处理单元的困扰。
(2)本发明在测试射频拉远单元各项技术指标时,因无需使用基带处理单元,也就排除了基带处理单元故障的干扰,在出现故障时无需对基带处理单元进行故障排除,提高了测试效率。
附图说明
图1是本发明的测试系统结构框图示意图;
图2是图1中数字信号处理模块结构框图示意图;
图3是测试上行接收链路指标时的测试系统结构框图示意图;
图4是测试上行接收链路噪声系数指标时的测试系统结构框图示意图;
图5是测试下行接收链路指标时的测试系统结构框图示意图。
具体实施方式
下面将结合本发明的附图,对本发明实施例的技术方案进行清楚、完整的描述。
本发明所揭示的一种射频拉远单元的测试系统,无需使用基带处理单元(BBU,Building Base band Unit)便可以对射频拉远单元(RRU,Radio Remote Unit)进行各项技术指标的测试。
如图1所示,为本发明所揭示的一种射频拉远单元的测试系统,包括测试信号输入单元、待测射频拉远单元和测试信号分析单元,其中,测试信号输入单元用于向待测射频拉远单元中输入测试信号,测试信号包括但不限于用于测试上行接收链路技术指标的测试信号、用于测试下行发射链路技术指标的测试信号和用于测试上行接收链路噪声系数的测试信号;待测射频拉远单元包括上行链路、下行链路和数字信号处理模块,上行链路的输入端与测试信号输入单元相连,输出端与数字信号处理模块相连,用于对测试信号进行处理并输送至数字信号处理模块中;数字信号处理模块还与下行链路的输入端相连,用于将从上行链路接收到的测试信号在内部数字环回后输出至下行链路中;下行链路的输出端与测试信号分析单元相连,用于对测试信号进行处理并输送至测试信号分析单元中;测试信号分析单元用于对接收到的测试信号进行分析,获取待测射频拉远单元的技术指标,如上行接收链路指标(包括但不限于接收灵敏度、通道内选择性、窄带阻塞)、上行接收链路噪声系数指标和下行发射链路指标(包括但不限于发射信号功率、邻道信号功率比(ACPR)、误差向量幅度(EVM)、峰均比(PAR)等)。
结合图1和图3所示,上行链路包括相连的上行信号预处理链路和ADC(Analog-to-Digital Converter,模拟数字转换器)模块,上行信号预处理链路用于对接收到的测试信号进行处理,其包括沿信号传输方向依次相连接的上行滤波模块、低噪声放大模块(LNA,Low Noise Amplifier)、射频滤波模块(RF Filter)、接收增益放大模块和第一巴伦,测试信号输入单元与上行滤波模块相连或者测试信号输入单元直接与低噪声放大模块的输入端相连,第一巴伦与ADC模块相连;ADC模块的输入端与第一巴伦相连,输出端与数字信号处理模块相连,用于将上行信号预处理链路处理后的模拟形式的测试信号转换为数字形式的测试信号并输送至数字信号处理模块中。
实施时,测试信号输入单元将测试信号输入至上行滤波模块进行滤波处理,经上行滤波模块处理后的测试信号输送至低噪声放大模块中进行信号放大处理,经低噪声放大模块处理后的测试信号输送至射频滤波模块进行再次滤波处理,经射频滤波模块处理后的测试信号输送至增益放大模块中进行信号放大处理,经增益放大模块处理后的测试信号通过第一巴伦输送至ADC模块中,ADC模块将该测试信号转换为数字形式的测试信号并输送至数字信号处理单元中。
下行链路包括DAC模块和下行信号预处理链路,其中,DAC模块的输入端与数字信号处理模块相连,输出端与下行信号预处理链路相连,用于将数字信号处理模块输出的数字形式的测试信号转换为模拟形式的测试信号并输入至下行信号预处理链路中;下行信号预处理链路用于对模拟形式的测试信号进行处理并输送至测试信号分析单元中,其包括沿信号传输方向依次相连的第二巴伦、可变增益衰减模块、发射增益放大模块、功率放大模块和下行滤波模块,第二巴伦与DAC模块相连,下行滤波模块与测试信号分析单元相连。
实施时,数字信号处理模块将测试信号在内部数字环回处理后输送至DAC模块中,该环回后的数字信号经DAC模块转换后通过第二巴伦输送至可变增益衰减模块中,可变增益衰减模块中对测试信号进行处理后并输送至发射增益放大模块中,发射增益放大模块对测试信号进行放大处理后并输送至功率放大模块中,功率放大模块对测试信号进行放大处理后通过下行滤波模块发送至测试信号分析单元中,测试信号分析单元对测试信号进行分析处理,以获得射频拉远单元的技术指标。
本实施例中,待测射频拉远单元内的上行链路和下行链路包括上述各模块,对于型号不同的射频拉远单元,其上行链路和下行链路包括的信号处理模块不尽相同,可能包括但不限于上述各模块,而本发明所述的测试系统仍然能够测试该射频拉远单元的技术指标。上行滤波模块和下行滤波 模块采用双工器实现,当然,在其他实施例中,可根据实际需求设置单独的滤波模块。
如图2所示,数字信号处理模块包括JESD接收端口、上行数字处理链路、下行数字处理链路、JESD发射端口、DDC(Digital Down Converters,数字下变频)模块和DUC(Digital UP Converter)模块,其中,JESD接收端口的输入端与ADC模块相连,输出端通过上行数字处理链路与DDC模块相连;DUC模块通过下行数字处理链路与JESD发射端口相连,JESD发射端口与DAC模块相连,DDC模块用于数字信号下变频处理,DUC模块用于数字信号上变频处理。
数字信号处理模块在进行测试信号环回时,可在JESD接收端口与JESD发射端口之间环回,也即ADC处理后的测试信号发送至JESD接收端口中,并从JESD接收端口输送至JESD发射端口,由JESD发射端口发送至DAC模块中。当然,在进行测试信号环回时,还可在DDC模块与DUC模块之间环回,也即ADC处理后的测试信号通过JESD接收模块发送至DDC模块中进行处理,DDC模块处理后的测试信号发送至DUC模块中,DUC模块处理后通过JESD发射端口发送至DAC模块中。
本实施例中,上行数字处理链路包括AGC(Automatic Gain Control,自动增益控制)模块,JESD接收端口通过AGC模块与DDC模块相连;下行数字处理链路包括沿信号传输方向依次相连的CFR(波峰因子降低)模块、DPD(Digital Predistortion,数字预失真)模块和ALC(Automatic Level Control,自动电平控制)模块,CFR模块与DUC模块相连,ALC模块与JESD发射端口相连。
结合图3~图5所示,当测试信号为用于测试上行接收链路技术指标的测试信号时,测试信号输入单元包括信号源和干扰源,信号源用于产生上行接收链路测试信号,干扰源用于产生干扰信号,实施时,上行接收链路测试信号与干扰信号合成测试信号输入至上行链路中;测试信号分析单元 为频谱仪。
当测试信号为用于测试上行接收链路噪声系数技术指标的测试信号时,测试信号输入单元包括噪声源,噪声源与上行链路相连,噪声源用于产生噪声信号;测试信号分析单元为噪声仪或具有噪声系数的频谱仪。
当测试信号为用于测试下行接收链路技术指标的测试信号时,测试信号输入单元包括信号源,信号源与上行链路相连,信号源用于产生下行接收链路测试信号;测试信号分析单元为频谱仪。
进一步地,对本发明所述的测试系统如何测试射频拉远单元的上行接收链路技术指标、上行接收链路噪声系数技术指标和下行发射链路技术指标进行详细地说明。
如图3所示,当测试射频拉远单元的上行链路技术指标时,如测试上行链路灵敏度、通道内选择性、窄带阻塞和邻道选择性(ACS)等技术指标,测试信号输入单元为信号源和干扰源,测试信号分析单元为频谱仪。具体地,信号源和干扰源产生的信号合成后通过线缆输送至射频拉远单元中,测试信号经上行链路处理后输出至ADC模块中,ADC模块将模拟形式的测试信号转换为数字形式的测试信号并输入至数字信号处理模块中,数字信号处理模块在内部进行数字环回,也即测试信号在JESD接收端口与JESD发射端口之间环回,将测试信号环回至JESD发射端口,JESD发射端口进一步将测试信号输出至DAC模块中,或者在DDC模块与DUC模块之间环回,将测试信号环回至DUC模块中,DUC模块进一步通过下行数字处理链路将测试信号处理后发送至JESD发射端口,JESD发射端口进一步将测试信号输出至DAC模块中;DAC模块将数字形式的测试信号通过下行链路输出至频谱仪中,频谱仪对测试信号进行分析,可获得接收灵敏度、通道内选择性、窄带阻塞、邻道选择性等技术指标。当然,也可通过频谱仪直接在DAC或增益放大模块后获取测试信号,以获取上行接收链路技术指标。
进一步地,为提高测试的准确性,在测试前需进行仪表校准,实施时,在信号源中设置需要测试的频率,进一步将信号源通过线缆连接至频谱分析仪中,校准线缆的插入损耗,并分别补偿至信号源和频谱仪中。
如图4所示,当测试射频拉远单元的上行接收链路噪声系数技术指标时,测试信号输入单元为噪声源,测试信号分析单元为噪声仪,或具有噪声系数功能的频谱仪。具体地,噪声源产生的测试信号通过线缆输送至射频拉远单元中,测试信号经上行链路处理后输出至ADC模块中,ADC模块将模拟形式的测试信号转换为数字形式的测试信号并输入至数字信号处理模块中,数字信号处理模块在内部进行数字环回,也即测试信号在JESD接收端口与JESD发射端口之间环回,将测试信号环回至JESD发射端口,JESD发射端口进一步将测试信号输出至DAC模块中,或者在DDC模块与DUC模块之间环回,将测试信号环回至DUC模块中,DUC模块进一步通过下行数字处理链路将测试信号处理后发送至JESD发射端口,JESD发射端口进一步将测试信号输出至DAC模块中;DAC模块将数字形式的测试信号通过下行链路输出至噪声仪或具有噪声系数的频谱仪中,噪声仪或具有噪声系数的频谱仪对测试信号进行分析,可获得接收链路噪声系数。当然,也可通过频谱仪直接在DAC模块或下行链路中的发射增益放大模块后获取测试信号,以获取接收链路技术指标。
进一步地,为提高测试的准确性,在测试前需进行仪表校准,实施时,在噪声源中设置需要测试的频率,进一步将噪声源通过线缆连接至噪声仪中或者具有噪声系数功能的频谱仪中,使用噪声仪进行校准。
本实施例中,对于接收灵敏度指标,也可在获取噪声系数后,根据接收灵敏度公式,如下,计算出上行接收链路的接收灵敏度指标。
Rs(dB)=Pnoise(dBm)+NF(dB)+SNR(dB)
其中,Pnoise(dBm)=K·T·BW,Pnoise(dBm)为接收机的热噪声,NF为接收机噪声系数,SNR为系统输出信噪比,K为玻尔兹曼常数,T为温 度,BW为射频载波带宽。
如图5所示,当测试射频拉远单元的下行发射链路技术指标时,如测试发射链路的ACPR(邻信号功率比)、EVM(误差向量幅度)、PAR(峰均比)等技术指标,测试信号输入单元为信号源,测试信号分析单元为频谱仪。具体地,在信号源中设置好需要测试的频段和调制信号类型并将信号通过线缆输送至射频拉远单元中,测试信号经上行链路处理后输出至ADC模块中,ADC模块将模拟形式的测试信号转换为数字形式的测试信号并输入至数字信号处理模块中,数字信号处理模块在内部进行数字环回,也即测试信号在JESD接收端口与JESD发射端口之间环回,将测试信号环回至JESD发射端口,JESD发射端口进一步将测试信号输出至DAC模块中,或者在DDC模块与DUC模块之间环回,将测试信号环回至DUC模块中,DUC模块进一步通过下行数字处理链路将测试信号处理后发送至JESD发射端口,JESD发射端口进一步将测试信号输出至DAC模块中;DAC模块将数字形式的测试信号通过下行链路输出至频谱仪中,频谱仪对测试信号进行分析,可获得下行链路发射功率、ACPR(邻信号功率比)、EVM(误差向量幅度)、PAR(峰均比)等技术指标。当然,也可将信号源通过线缆直接连接至上行链路的第一巴伦中,以测试发射链路的技术指标。
本发明在测试射频拉远单元各项技术指标时,通过将测试信号在数字信号处理模块中进行数字环回,无需使用基带处理单元便可以对射频拉远单元(RRU,Radio Remote Unit)进行各项技术指标的测试,解决了射频拉远单元厂家在调试和测试阶段没有BBU的困扰,节约了研发和设备成本,同时,因无需使用基带处理单元,也就排除了基带处理单元故障的干扰,在出现故障时无需对基带处理单元进行故障排除,提高了测试效率。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修 饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。

Claims (10)

  1. 一种射频拉远单元的测试系统,其特征在于,所述系统包括测试信号输入单元、待测射频拉远单元和测试信号分析单元,
    所述待测射频拉远单元包括上行链路、下行链路和与所述上行链路、下行链路相连的数字信号处理模块,所述上行链路用于对测试信号进行处理并输入至数字信号处理模块中,所述数字信号处理模块用于将上行链路输入的测试信号在内部数字环回后输出至下行链路中,所述下行链路用于将测试信号处理后输送至测试信号分析单元;
    所述测试信号输入单元与所述上行链路相连,用于向所述上行链路中输入测试信号;
    所述测试信号分析单元与所述下行链路相连,用于接收测试信号并根据测试信号获取射频拉远单元的技术指标。
  2. 根据权利要求1所述的系统,其特征在于,所述数字信号处理模块包括JESD接收端口、上行数字处理链路、DDC模块、DUC模块、下行数字处理链路和JESD发射端口,JESD接收端口通过所述上行数字处理链路与所述DDC模块相连,DUC模块通过所述下行数字处理链路与所述JESD发射端口相连,所述JESD接收端口将测试信号环回至JESD发射端口,或者所述DDC模块将测试信号环回至DUC模块。
  3. 根据权利要求1所述的系统,其特征在于,所述上行链路包括
    上行信号预处理链路,包括沿信号传输方向依次相连接的上行滤波模块、低噪声放大模块、射频滤波模块、接收增益放大模块和第一巴伦,测试信号输入单元与上行滤波模块相连或者测试信号输入单元直接与低噪声放大模块的输入端相连,用于对测试信号进行处理;
    ADC模块,与所述第一巴伦相连,用于将模拟形式的测试信号转换为数字形式的测试信号。
  4. 根据权利要求1所述的系统,其特征在于,所述下行链路包括
    DAC模块,与所述数字信号处理模块相连,用于将数字信号处理模块输出的数字形式的测试信号转换为模拟形式的测试信号;
    下行信号预处理链路,包括沿信号传输方向依次相连的第二巴伦、可变增益衰减模块、发射增益放大模块、功率放大模块和下行滤波模块,所述第二巴伦与DAC模块相连,所述下行滤波模块与测试信号分析单元相连,用于对模拟形式的测试信号进行处理并输送至测试信号分析单元中。
  5. 根据权利要求2所述的系统,其特征在于,所述上行数字处理链路包括AGC模块,所述JESD接端口通过所述AGC模块与所述DDC模块相连。
  6. 根据权利要求2所述的系统,其特征在于,所述下行数字处理链路包括沿信号传输方向设置的CFR模块、DPD模块和ALC模块,所述CFR模块与所述DUC模块相连,所述ALC模块与所述JESD发射端口相连。
  7. 根据权利要求1所述的系统,其特征在于,所述测试信号输入单元包括用于产生上行链路测试信号的信号源和用于产生干扰信号的干扰源,或者所述测试信号输入单元包括用于产生下行发射链路测试信号的信号源,所述测试信号分析单元包括频谱仪。
  8. 根据权利要求1所述的系统,其特征在于,所述测试信号输入单元包括用于产生上行接收链路噪声系数测试信号的噪声源,所述噪声源与所述上行链路相连,所述测试信号分析单元包括噪声仪或具有噪声系数测试功能的频谱仪。
  9. 一种基于权利要求1所述的射频拉远单元的测试系统的测试方法,其特征在于,方法包括:
    S100,测试信号输入单元向所述上行链路中输入测试信号;
    S200,所述上行链路对测试信号进行处理并输入至数字信号处理模块中,所述数字信号处理模块将上行链路输入的测试信号在内部数字环回后输出至下行链路中,所述下行链路用于将测试信号处理后输送至测试信号 分析单元中;
    S300,所述测试信号分析单元根据测试信号获取射频拉远单元的技术指标。
  10. 根据权利要求9所述的方法,其特征在于,所述数字信号处理模块内数字环回包括JESD接收端口将测试信号环回至JESD发射端口,或者DDC模块将测试信号环回至DUC模块。
PCT/CN2020/123955 2020-10-27 2020-10-27 一种射频拉远单元的测试系统及方法 WO2022087818A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123955 WO2022087818A1 (zh) 2020-10-27 2020-10-27 一种射频拉远单元的测试系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123955 WO2022087818A1 (zh) 2020-10-27 2020-10-27 一种射频拉远单元的测试系统及方法

Publications (1)

Publication Number Publication Date
WO2022087818A1 true WO2022087818A1 (zh) 2022-05-05

Family

ID=81383439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123955 WO2022087818A1 (zh) 2020-10-27 2020-10-27 一种射频拉远单元的测试系统及方法

Country Status (1)

Country Link
WO (1) WO2022087818A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447836A (zh) * 2008-12-30 2009-06-03 芯通科技(成都)有限公司 对td-scdma射频拉远单元的生产测试方法
CN103227683A (zh) * 2012-01-30 2013-07-31 鼎桥通信技术有限公司 一种对rru故障进行联合检测的方法及装置
CN106059660A (zh) * 2016-06-30 2016-10-26 瑞斯康达科技发展股份有限公司 一种环回检测方法、bbu、rru及光接入网络系统
CN106330346A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 射频拉远单元及其测试方法
CN107294627A (zh) * 2017-06-23 2017-10-24 武汉虹信通信技术有限责任公司 一种用于rru的整机测试、老化方法及系统
CN107360584A (zh) * 2017-08-30 2017-11-17 武汉虹信通信技术有限责任公司 一种rru测试系统和方法
US20190052294A1 (en) * 2017-08-09 2019-02-14 Isco International, Llc Method and apparatus for detecting and analyzing passive intermodulation interference in a communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447836A (zh) * 2008-12-30 2009-06-03 芯通科技(成都)有限公司 对td-scdma射频拉远单元的生产测试方法
CN103227683A (zh) * 2012-01-30 2013-07-31 鼎桥通信技术有限公司 一种对rru故障进行联合检测的方法及装置
CN106330346A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 射频拉远单元及其测试方法
CN106059660A (zh) * 2016-06-30 2016-10-26 瑞斯康达科技发展股份有限公司 一种环回检测方法、bbu、rru及光接入网络系统
CN107294627A (zh) * 2017-06-23 2017-10-24 武汉虹信通信技术有限责任公司 一种用于rru的整机测试、老化方法及系统
US20190052294A1 (en) * 2017-08-09 2019-02-14 Isco International, Llc Method and apparatus for detecting and analyzing passive intermodulation interference in a communication system
CN107360584A (zh) * 2017-08-30 2017-11-17 武汉虹信通信技术有限责任公司 一种rru测试系统和方法

Similar Documents

Publication Publication Date Title
US8918060B2 (en) 2G, 2.5G RF loopback arrangement for mobile device self-testing
Cruz et al. Designing and testing software-defined radios
US7912463B2 (en) Method of using SNR to reduce factory test time
CN101409590A (zh) 手机射频测试方法
CN110365302B (zh) 一种通信系统自动增益控制方法及装置
US10063308B2 (en) Radio frequency transmitter
WO2011160415A1 (zh) 一种无线射频拉远单元多通道的测试装置及方法
CN101227693A (zh) 一种无线链路环回测试的方法及其装置
CN112118055B (zh) 一种驻波检测装置及通信设备
WO2022087818A1 (zh) 一种射频拉远单元的测试系统及方法
CN102724153B (zh) 基于数字预失真的远端机及直放站系统
CN111181594A (zh) 基于射频收发芯片的发射本振泄露数字校准系统及方法
WO2021047504A1 (zh) 光纤直放站及其无源互调信号的检测方法、系统
CN114499708A (zh) 一种射频拉远单元的测试系统及方法
CN108964808B (zh) 一种无线局域网射频收发机芯片测试系统
CN101132249A (zh) 一种无中频声表滤波器的宽带多载频接收机
JP2004505575A (ja) 信号の測定
CN116015488A (zh) 射频芯片的接收增益补偿电路及接收增益补偿方法
US20240039624A1 (en) Satellite terminal receiver and modem performance evaluation method using same
JP5097175B2 (ja) 無線受信装置及びその試験方法
US20210242949A1 (en) Direct sampling for digital pre-distortion calibration
CN113572542A (zh) 一种高精度的射频拉远单元驻波比检测装置及方法
US9391729B2 (en) Method and apparatus for monitoring performance, and remote radio unit
CN112189325B (zh) 一种信号处理装置及信号处理方法
JP2012088327A (ja) 歪測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958983

Country of ref document: EP

Kind code of ref document: A1