WO2017000228A1 - 一种基于同频组网的载波处理方法及装置 - Google Patents

一种基于同频组网的载波处理方法及装置 Download PDF

Info

Publication number
WO2017000228A1
WO2017000228A1 PCT/CN2015/082842 CN2015082842W WO2017000228A1 WO 2017000228 A1 WO2017000228 A1 WO 2017000228A1 CN 2015082842 W CN2015082842 W CN 2015082842W WO 2017000228 A1 WO2017000228 A1 WO 2017000228A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
carriers
groups
module
carrier
Prior art date
Application number
PCT/CN2015/082842
Other languages
English (en)
French (fr)
Inventor
郭攀峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/082842 priority Critical patent/WO2017000228A1/zh
Priority to CN201580034401.1A priority patent/CN106489277B/zh
Publication of WO2017000228A1 publication Critical patent/WO2017000228A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications, and in particular, to a carrier processing method and apparatus based on a co-frequency networking.
  • GSM Global System for Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • the sector is networked, for example, one base station covers three sectors, which means that one base station is to transmit at least three carriers.
  • the radio frequency signal including the multiple carriers needs to be amplified by the radio frequency power amplifier, and then transmitted through the antenna.
  • the radio frequency signals of carriers containing more than two identical frequency points pass through one After the RF power amplifier is amplified, the two or more carriers of the same frequency point cannot be distinguished. Therefore, when deploying the base station, it is necessary to set a single-amp radio module (including a single RF power amplifier) that matches the number of sectors, or set support. Multi-amp radio module (including multiple RF power amplifiers).
  • the prior art provides a solution for a radio frequency module based on a single power amplifier, which firstly obtains a radio frequency signal including one or more carriers with different frequency points by using a single power amplifier radio frequency module. Secondly, the radio frequency signal is transmitted through the omnidirectional antenna; or the power divider is used to split the radio frequency signal into multiple equal energy signals and output to multiple directional antennas for transmission.
  • the gain of the omnidirectional antenna is much smaller than that of the directional antenna used in multiple sectors, so the base station using the omnidirectional antenna has a large drop in coverage area.
  • an embodiment of the present invention provides a carrier processing method and apparatus based on the same frequency networking, and the technical solution is as follows:
  • a carrier processing method based on a co-frequency networking includes:
  • the radio frequency signal includes k*N carriers, each of the carriers has a different frequency point, and k and N are positive integers, 2 ⁇ N;
  • frequency points of k carriers in each group are sequentially f1, f2, ..., fk;
  • the frequency-shifted N sets of carriers are respectively input into N directional antennas.
  • the k*N carriers are divided into N groups, including:
  • the k*N carriers are divided into N groups according to a correspondence between a preset group identifier and a frequency point.
  • the frequency shift processing is performed on each carrier in the N groups, including:
  • the center frequency point includes the f1, f2, ..., fk;
  • the frequency points of the respective carriers in the N groups are respectively frequency-shifted to the center frequency points corresponding to the frequency points of the respective carriers.
  • the inputting the frequency-shifted N sets of carriers into the N directional antennas respectively includes:
  • Each of the frequency-shifted N groups of carriers is input to a directional antenna corresponding to each group of carriers.
  • the method further includes:
  • the radio frequency signals received by the N directional antennas include k carriers, and the frequency points of the k carriers received by each of the directional antennas are sequentially the f1 F2,...,fk;
  • the k carriers received by each of the directional antennas are respectively subjected to frequency shift processing; after the frequency shift processing, the frequency of k carriers received by each of the directional antennas is different.
  • a carrier processing apparatus based on a co-frequency networking includes:
  • the radio frequency signal includes k*N carriers, each of the carriers has different frequency points, and k and N are positive integers, 2 ⁇ N;
  • a grouping module configured to divide the k*N carriers into N groups, each group comprising k carriers;
  • a first frequency shifting module configured to respectively perform frequency shift processing on each of the N groups; after frequency shift processing, frequency points of k carriers in each group are sequentially f1, f2, ..., fk;
  • the output module is configured to input the frequency-shifted N groups of carriers into the N directional antennas.
  • the grouping module includes:
  • a first determining unit configured to determine a frequency point of each of the k*N carriers
  • a grouping unit configured to divide the k*N carriers into N groups according to a correspondence between a preset group identifier and a frequency point.
  • the first frequency shifting module includes:
  • a second determining unit configured to determine, in a correspondence between the preset frequency point and the center frequency point, a center frequency point corresponding to a frequency point of each carrier in the N group; the center frequency point includes the f1, f2 ,...,fk;
  • a frequency shifting unit configured to frequency-shift a frequency point of each carrier in the N groups to a center frequency point corresponding to a frequency point of each carrier.
  • the output module includes:
  • a third determining unit configured to determine, according to a preset correspondence between the group identifier and the antenna identifier, a directional antenna corresponding to each group identifier
  • an output unit configured to input each of the frequency-shifted N groups of carriers to a directional antenna corresponding to each group of carriers.
  • the device further includes:
  • a second frequency shifting module configured to obtain radio frequency signals received by the N directional antennas; each radio frequency signal received by the directional antenna includes k carriers, and frequency points of k carriers received by each of the directional antennas Each of the k carriers received by the directional antenna is frequency-shifted respectively; and k carriers received by each of the directional antennas after the frequency shifting process The frequency is different.
  • the radio frequency signal includes k*N carriers, each carrier has a different frequency point, and k and N are positive integers, 2 ⁇ N; since each carrier has different frequency points, a single power amplifier can be used.
  • the radio frequency module obtains the radio frequency signal, can fully utilize the power of the radio frequency module, and reduces the input cost of the base station; divides k*N carriers into N groups, each group includes k carriers; respectively performs each carrier in the N group Frequency shift processing, after frequency shift processing, the frequency points of k carriers in each group are f1, f2, ..., fk in turn; the frequency shifted N groups of carriers are respectively input to N directional antennas; Containing k carriers, and the frequency points of k carriers in each group after the frequency shift processing are f1, f2, ..., fk, 2 ⁇ N, therefore, a single power amplifier RF module and at least two can be used.
  • the directional antennas realize coverage of at least two sectors under the same frequency network, and the radio frequency signal includes k*N carriers, which is equivalent to the number of carriers transmitted when the radio frequency module of the multi-amplifier is used, and can be maintained by frequency shift processing.
  • the energy of the radio frequency signal that is, the radio frequency signal energy after the frequency shift RF signal when the RF power amplifier module using multiple energy equivalent to the capacity of the base station reaches a multi power amplifier RF modules. It can be seen that when a single power amplifier RF module is used, not only the investment cost of the base station is saved, but also the coverage area and capacity of the base station when the RF module of the multi-amplifier is used.
  • FIG. 1 is a schematic structural diagram of a distributed base station provided by the present invention.
  • FIG. 2 is a schematic structural view of a radio frequency remote unit of a single power amplifier provided by the present invention
  • FIG. 3 is a flowchart of a carrier processing method based on a co-frequency networking according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a carrier processing method based on a co-frequency networking provided by an embodiment of the present invention
  • FIG. 5 is a flowchart of a carrier processing method based on a co-frequency networking according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a carrier processing apparatus based on a same frequency group network according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a carrier processing apparatus based on a same frequency group network according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a carrier processing apparatus based on a same frequency group network according to an embodiment of the present invention.
  • a distributed base station includes a base station unit (BBU) 10 , a radio remote unit (RRU) (also referred to as a radio frequency module) 20 , and an antenna 30 .
  • the BBU 10 is connected to the RRU 20 via an optical fiber, and the RRU 20 is connected to the antenna 30 via a cable.
  • the BBU 10 outputs a baseband signal to the RRU 20 through the optical interface.
  • the RRU 20 converts the baseband signal to the intermediate frequency signal, converts the intermediate frequency signal to the radio frequency signal, and then amplifies the radio frequency signal by using a power amplifier unit (such as a radio frequency power amplifier), and finally transmits the amplified radio frequency signal through the antenna 30.
  • a power amplifier unit such as a radio frequency power amplifier
  • radio frequency signals from the terminal are transmitted to the RRU 20 via the antenna 30.
  • the RRU 20 first amplifies the RF signal, converts it to an intermediate frequency signal, then converts it to a baseband signal, and then outputs the baseband signal to the BBU 10 through the optical interface.
  • the technical solution provided by the embodiment of the present invention can be applied to other types of macro base stations, such as a macro base station composed of a BBU and a radio frequency unit (RFU), in addition to the distributed base station, and the RFU can be used.
  • a macro base station composed of a BBU and a radio frequency unit (RFU) in addition to the distributed base station, and the RFU can be used.
  • RRU radio frequency unit
  • the RRU 20 shown in FIG. 1 may be a single-amplifier RRU or a multi-amplifier RRU.
  • the single-amplifier RRU includes one power amplifier unit, and the multi-amplifier RRU includes two or more power amplifier units.
  • the power amplifier unit may be a multiple carrier power amplifier (MCPA), and may perform amplification processing on a radio frequency signal including one or more carriers with different frequency points. Compared to the multi-amplifier RRU, the power of the single-amplifier RRU is relatively small.
  • MCPA multiple carrier power amplifier
  • the technical solution provided by the embodiment of the present invention is applicable to an RRU of a single power amplifier.
  • the RRU of a single power amplifier using digital intermediate frequency technology is taken as an example to briefly introduce the structure of the RRU of a single power amplifier.
  • the RRU of the single power amplifier includes a baseband processing module 20a, a digital intermediate frequency combining module 20b, a digital to analog converter (DAC) 20c, a transceiver module 20d, and an MCPA module 20e.
  • the multi-channel digital baseband signal is processed by the baseband processing module 20a and then transmitted to the digital intermediate frequency combining module 20b.
  • the digital intermediate frequency combining module 20b uses the digital intermediate frequency technology to perform frequency conversion and combining processing on the processed multiple digital baseband signals to obtain a digital intermediate frequency. signal.
  • the DAC 20c digitally converts the obtained digital intermediate frequency signal and outputs it to the transceiver module 20d.
  • the transceiver module 20d performs the conversion of the intermediate frequency signal to the radio frequency signal.
  • the RF signal converted by the MCPA 20e via the transceiver module 20d The signal is amplified and the amplified RF signal is output to the antenna for transmission.
  • the intra-frequency networking refers to that the number of carriers and the frequency of each sector covered by the base station are the same.
  • one base station covers two sectors, each sector supports one carrier, and the two sectors support a carrier frequency of 1026.0 MHz.
  • a base station covers 3 sectors, each sector supports 2 carriers, and the frequency of 2 carriers supported by any of the 3 sectors is 1024.2 MHz and 1027.4 MHz.
  • the embodiment of the invention provides a carrier processing method based on the same frequency networking, which is applicable to the distributed base station shown in FIG. Referring to Figure 3, the method flow includes:
  • Step 101 Obtain a radio frequency signal.
  • the radio frequency signal includes k*N carriers, and the frequency of each carrier is different, and k and N are positive integers, 2 ⁇ N.
  • N is equal to the number of sectors covered by the base station, and k is equal to the number of carriers supported by each sector.
  • N may be 3 and k may be 1 or 2.
  • the radio frequency signal can be obtained by using the RRU of the single power amplifier shown in FIG. 2.
  • Step 102 Divide k*N carriers into N groups, each group containing k carriers.
  • Step 103 Perform frequency shift processing on each carrier in the N group.
  • the frequency points of the k carriers in each group after the frequency shift processing are f1, f2, ..., fk.
  • f1, f2, ..., fk are frequency points at which the base station has permission on the terminal side.
  • Step 104 Input the frequency-shifted N sets of carriers to the N directional antennas.
  • each of the N directional antennas transmits a set of carriers, and each of the directional antennas transmits a different set of carriers.
  • the radio frequency signal includes k*N carriers, and the frequency of each carrier is different, and k and N are positive integers, 2 ⁇ N;
  • the radio frequency module of a single power amplifier is used to obtain the radio frequency signal, which fully utilizes the power of the radio frequency module and reduces the input cost of the base station;
  • the k*N carriers are divided into N groups, each group contains k carriers; respectively, the N groups Each carrier is frequency-shifted. After the frequency shifting process, the frequency points of k carriers in each group are f1, f2, ..., fk, respectively; and the frequency-shifted N groups of carriers are respectively input to N directional antennas.
  • a single power amplifier RF module and at least two can be used.
  • the directional antennas realize coverage of at least two sectors under the same frequency network, and the radio frequency signal includes k*N carriers, which is equivalent to the number of carriers transmitted when the radio frequency module of the multi-amplifier is used, and can be maintained by frequency shift processing.
  • the energy of the radio frequency signal that is, the energy of the radio frequency signal after the frequency shift is equivalent to the energy of the radio frequency signal when the radio frequency module of the multi-amplifier is used, and achieves the capacity when the base station adopts the radio frequency module of the multi-amplifier. It can be seen that when a single power amplifier RF module is used, not only the investment cost of the base station is saved, but also the coverage area and capacity of the base station when the RF module of the multi-amplifier is used.
  • the embodiment of the invention provides a carrier processing method based on the same frequency networking, which is applicable to the distributed base station shown in FIG. Referring to Figure 4, the method flow includes:
  • Step 201 Obtain a radio frequency signal.
  • the radio frequency signal includes k*N carriers, and the frequency of each carrier is different, and k and N are positive integers, 2 ⁇ N.
  • N is equal to the number of sectors covered by the base station, and k is equal to the number of carriers supported by each sector.
  • N may be 3 and k may be 1 or 2.
  • the RF signal can be obtained by digital intermediate frequency technology, including, firstly, receiving the k*N digital baseband signal of the BBU output.
  • Each of the digital baseband signals corresponds to one carrier, and each of the two digital baseband signals corresponds to a carrier of a different frequency point.
  • the digital intermediate frequency signal is used to frequency convert each digital baseband signal to obtain a k*N digital intermediate frequency signal; and the k*N digital intermediate frequency signal is combined to obtain a digital intermediate frequency signal.
  • the obtained digital intermediate frequency signal is converted into an analog intermediate frequency signal.
  • the converted analog IF signal is converted into a radio frequency signal.
  • the multi-carrier power amplifier unit is used to amplify the converted RF signal to obtain an amplified RF signal.
  • the obtained amplified RF signal includes k*N carriers, and the frequency of each carrier is different.
  • Step 202 Determine a frequency point of each of the k*N carriers.
  • the frequency of each carrier can be obtained from the radio frequency signal through the frequency selection circuit.
  • the frequency selection circuit can allow signals of a specified frequency point and having a specified bandwidth to pass.
  • the embodiment of the present invention does not limit the structure of the frequency selection circuit, and the frequency selection circuit may adopt any one of the frequency selection circuits provided by the related art.
  • Step 203 According to the correspondence between the preset group identifier and the frequency point, the k*N carriers are divided into N groups.
  • N group identifiers may be set in advance, and k frequency points are specified for each group identifier from k*N carrier frequency points.
  • k*N carriers are divided into N groups, and each group includes k carriers.
  • Step 204 Determine a center frequency point corresponding to a frequency point of each carrier in the N group in a correspondence between the preset frequency point and the center frequency point.
  • the center frequency point includes f1, f2, ..., fk.
  • the center frequency point is a frequency point at which the base station has permission on the terminal side.
  • the number of center frequency points is the same as the number of carriers supported by each sector, which is k. In the same frequency network, the center frequency of each sector is the same.
  • the frequency of each carrier in the k*N carriers is not f1, f2, ..., or fk.
  • the frequency points, f1, f2, ..., and fk of each of the k*N carriers are all within the legal frequency band of the wireless communication.
  • Step 205 The frequency points of the respective carriers in the N groups are respectively frequency-shifted to the center frequency points corresponding to the frequency points of the respective carriers.
  • the frequency points of the k carriers in each group after the frequency shift processing are sequentially the center frequency points f1, f2, ..., fk.
  • the frequency of each carrier can be moved to a specified frequency by a frequency shifting circuit.
  • a frequency shifting circuit It can be understood by those skilled in the art that when the frequency of the signal is frequency-shifted to a specified frequency, the energy of the signal is not lost, and the energy of the signal after the frequency shift is substantially equal to the energy of the signal before the frequency shift. Therefore, after shifting the frequency points of the respective carriers in the N groups to the center frequency points corresponding to the frequency points of the respective carriers, the energy corresponding to each carrier after the frequency shift is substantially equivalent to the energy corresponding to each carrier before the frequency shifting, and is not It will cause loss to the total energy of the RF signal.
  • the embodiment of the invention does not limit the structure of the frequency shift circuit, and the frequency shift circuit can adopt any frequency shift circuit provided by the related art.
  • Step 206 Determine a directional antenna corresponding to each group identifier according to a correspondence between the preset group identifier and the antenna identifier.
  • Step 207 Input each group of the frequency-shifted N groups of carriers into a directional antenna corresponding to each group of carriers.
  • Step 206 and step 207 are implemented, and the frequency-shifted N sets of carriers are respectively input to N.
  • Directional antenna Wherein each of the N directional antennas transmits a set of carriers, and each of the two directional antennas transmits two different sets of carriers.
  • the frequency-shifted N groups of carriers are respectively input to the N directional antennas, and when k is 1, the frequency-shifted N groups of carriers are respectively input to the N directional antennas.
  • k is greater than 1
  • each group of carriers after frequency shifting is separately combined to obtain N radio frequency signals; and N radio frequency signals are respectively input to N directional antennas.
  • Each directional antenna transmits one RF signal, and each two directional antennas transmits two different RF signals.
  • steps 201 - 207 the transmission process of the carrier is described.
  • the base station covers 3 sectors, and each sector supports 1 carrier with a frequency of 2012.6 MHz.
  • a radio frequency signal including three carriers is obtained, and the frequency of the three carriers can be 1881.0 MHz, 1882.6 MHz, and 1884.2 MHz in order.
  • the three carriers are obtained from the radio frequency signal.
  • the three carriers are separately subjected to frequency shift processing so that the frequency of each carrier is shifted to 2012.6 MHz.
  • the three carriers with a frequency of 2012.6 MHz are respectively input to three directional antennas, so that the directional antenna transmits the carrier.
  • Step 208 Obtain radio frequency signals received by N directional antennas.
  • the radio frequency signal received by each directional antenna includes k carriers, and the frequency points of the k carriers received by each directional antenna are sequentially center frequency points f1, f2, ..., fk.
  • Step 209 Perform frequency shift processing on each of the k carriers received by each directional antenna.
  • the frequency of the k carriers received by each directional antenna after the frequency shift processing is different.
  • Step 209 includes, first, determining a frequency at which the k carriers received by each directional antenna are frequency shifted.
  • the group identifier corresponding to each of the N directional antennas may be determined according to the corresponding relationship between the group identifier and the antenna identifier, and each group identifier may be determined according to a preset relationship between the group identifier and the frequency point.
  • the frequency point corresponding to the center frequency point can be determined, so that the frequency points corresponding to the k carriers received by each directional antenna can be determined, that is, the k carriers need to be obtained.
  • the frequency of the shift Secondly, the frequency points of the k carriers received by each directional antenna are respectively shifted from the center frequency point to the frequency points at which the k carriers are frequency-shifted.
  • the frequency-shifted carrier can be sent to the RRU for frequency conversion processing to obtain a baseband signal that the BBU can recognize.
  • the frequency conversion process is well known to those skilled in the art, here No longer.
  • the radio frequency signal includes k*N carriers, and the frequency of each carrier is different, and k and N are positive integers, 2 ⁇ N;
  • the radio frequency module of a single power amplifier is used to obtain the radio frequency signal, which fully utilizes the power of the radio frequency module and reduces the input cost of the base station;
  • the k*N carriers are divided into N groups, each group contains k carriers; respectively, the N groups Each carrier is frequency-shifted. After the frequency shifting process, the frequency points of k carriers in each group are f1, f2, ..., fk, respectively; and the frequency-shifted N groups of carriers are respectively input to N directional antennas.
  • each group contains k carriers, and the frequency points of k carriers in each group after the frequency shift processing are f1, f2, ..., fk, 2 ⁇ N
  • a single amplifier RF can be used.
  • the module and the at least two directional antennas implement coverage of at least two sectors under the same frequency network, and the radio frequency signal includes k*N carriers, which is equivalent to the number of carriers transmitted when the radio module of the multi-amplifier is used, and Frequency processing can maintain the energy of the radio frequency signal, that is, after frequency shifting Pilot signal energy RF signal when the RF power amplifier module using a multi-energy quite reached the capacity of a multi-base station radio power amplifier module. It can be seen that when a single power amplifier RF module is used, not only the investment cost of the base station is saved, but also the coverage area and capacity of the base station when the RF module of the multi-amplifier is used.
  • the embodiment of the invention provides a carrier processing device based on the same frequency grouping, which is suitable for being set in a macro base station.
  • the apparatus includes an acquisition module 301, a grouping module 302, a first frequency shifting module 303, and an output module 304.
  • the obtaining module 301 is configured to obtain a radio frequency signal, where the radio frequency signal includes k*N carriers, and the frequency points of each carrier are different, and k and N are positive integers, 2 ⁇ N.
  • the grouping module 302 is configured to divide the k*N carriers into N groups, each group comprising k carriers.
  • the first frequency shifting module 303 is configured to perform frequency shift processing on each carrier in the N groups respectively; after the frequency shift processing, the frequency points of the k carriers in each group are sequentially f1, f2, ..., fk.
  • the output module 304 is configured to input the frequency-shifted N groups of carriers into the N directional antennas.
  • the radio frequency signal includes k*N carriers, and the frequency of each carrier is different, and k and N are positive integers, 2 ⁇ N;
  • the radio frequency module of a single power amplifier is used to obtain the radio frequency signal, which fully utilizes the power of the radio frequency module and reduces the input cost of the base station;
  • the k*N carriers are divided into N groups, each group contains k carriers; respectively, the N groups
  • Each carrier in the group performs frequency shift processing, and after frequency shift processing, the frequency points of k carriers in each group are sequentially For f1, f2, ..., fk; input the frequency-shifted N sets of carriers to N directional antennas respectively; since each group contains k carriers, and the frequency of k carriers in each group after frequency shift processing
  • the sequence is f1, f2, ..., fk, 2 ⁇ N.
  • a single power amplifier RF module and at least two directional antennas can be used to achieve coverage of at least two sectors under the same frequency network
  • the radio frequency signal includes k*N carriers, which is equivalent to the number of carriers transmitted when the radio frequency module of the multi-amplifier is used, and the energy of the radio frequency signal can be maintained by the frequency shift processing, that is, the energy of the radio frequency signal after the frequency shift and the radio frequency using the multi-amplifier
  • the RF signal energy of the module is equivalent, which is the capacity when the base station adopts the RF module of the multi-amplifier. It can be seen that when a single power amplifier RF module is used, not only the investment cost of the base station is saved, but also the coverage area and capacity of the base station when the RF module of the multi-amplifier is used.
  • the embodiment of the invention provides a carrier processing device based on the same frequency grouping, which is suitable for being set in a macro base station.
  • the apparatus includes an acquisition module 401, a grouping module 402, a first frequency shifting module 403, and an output module 404.
  • the obtaining module 401 is the same as the acquiring module 301 in the third embodiment, and details are not described herein again.
  • the apparatus provided in Embodiment 4 of the present invention is different from the apparatus provided in Embodiment 3 as follows.
  • the grouping module 402 includes:
  • the first determining unit 4021 is configured to determine a frequency point of each of the k*N carriers.
  • the grouping unit 4022 is configured to divide the k*N carriers into N groups according to the correspondence between the preset group identifier and the frequency point.
  • the first frequency shifting module 403 includes:
  • the second determining unit 4031 is configured to determine a center frequency point corresponding to a frequency point of each carrier in the N group in the correspondence between the preset frequency point and the center frequency point; the center frequency point includes f1, f2, ..., Fk.
  • the frequency shifting unit 4032 is configured to respectively frequency shift the frequency points of the respective carriers in the N groups to the center frequency points corresponding to the frequency points of the respective carriers.
  • the output module 404 includes:
  • the third determining unit 4041 is configured to determine, according to a preset correspondence between the group identifier and the antenna identifier, a directional antenna corresponding to each group identifier.
  • the output unit 4042 is configured to input each of the frequency-shifted N groups of carriers into a directional antenna corresponding to each group of carriers.
  • the apparatus further includes a second frequency shifting module 405.
  • the second frequency shifting module 405 is configured to obtain radio frequency signals received by N directional antennas; each orientation
  • the radio frequency signal received by the antenna includes k carriers, and the frequency points of the k carriers received by each directional antenna are f1, f2, ..., fk, respectively; and the k carriers received by each directional antenna are respectively frequency-shifted. Processing; the frequency of k carriers received by each directional antenna is different after the frequency shift processing.
  • the radio frequency signal includes k*N carriers, and the frequency of each carrier is different, and k and N are positive integers, 2 ⁇ N;
  • the radio frequency module of a single power amplifier is used to obtain the radio frequency signal, which fully utilizes the power of the radio frequency module and reduces the input cost of the base station;
  • the k*N carriers are divided into N groups, each group contains k carriers; respectively, the N groups Each carrier is frequency-shifted. After the frequency shifting process, the frequency points of k carriers in each group are f1, f2, ..., fk, respectively; and the frequency-shifted N groups of carriers are respectively input to N directional antennas.
  • each group contains k carriers, and the frequency points of k carriers in each group after the frequency shift processing are f1, f2, ..., fk, 2 ⁇ N
  • a single amplifier RF can be used.
  • the module and the at least two directional antennas implement coverage of at least two sectors under the same frequency network, and the radio frequency signal includes k*N carriers, which is equivalent to the number of carriers transmitted when the radio module of the multi-amplifier is used, and Frequency processing can maintain the energy of the radio frequency signal, that is, after frequency shifting Pilot signal energy RF signal when the RF power amplifier module using a multi-energy quite reached the capacity of a multi-base station radio power amplifier module. It can be seen that when a single power amplifier RF module is used, not only the investment cost of the base station is saved, but also the coverage area and capacity of the base station when the RF module of the multi-amplifier is used.
  • Fig. 8 shows the hardware configuration of the apparatus provided in the third or fourth embodiment, which may be provided in the RRU, or the apparatus may be disposed between the RRU and the antenna. It generally includes at least one communication interface 81, a processor 82, a memory 83, and at least one communication bus 84. Those skilled in the art will appreciate that the structure illustrated in Figure 8 does not constitute a limitation to the device, it may include more or fewer components than those illustrated, or some components may be combined, or different component arrangements.
  • Communication bus 84 is used to implement connection communication between processor 82, memory 83, and communication interface 81.
  • At least one communication interface 81 implements a communication connection between the device and at least one other device (e.g., RRU, and directional antenna), and a coaxial cable or the like can be used.
  • at least one other device e.g., RRU, and directional antenna
  • a coaxial cable or the like can be used.
  • the memory 83 can be used to store software programs and application modules, and the processor 82 executes various functional applications and data processing of the devices by running software programs stored in the memory 83 and application modules.
  • the memory 83 can mainly include a storage program area and a storage data area, wherein the program area is stored
  • the operating system, at least one function required application (such as determining a center frequency point corresponding to each carrier, etc.) may be stored; the storage data area may store data created according to the use of the device (such as preset frequency points and centers) Correspondence of frequency points) and so on.
  • the memory 83 may include a high speed RAM (Random Access Memory 83), and may also include a non-volatile memory 83, such as at least one disk memory 83, a flash memory device, or other 83 pieces of lossless solid state memory.
  • RAM Random Access Memory
  • non-volatile memory 83 such as at least one disk memory 83, a flash memory device, or other 83 pieces of lossless solid state memory.
  • the processor 82 is the control center of the device, connecting various portions of the entire device using various interfaces and lines, by running or executing software programs and/or application modules stored in the memory 83, and recalling data stored in the memory 83. Performing various functions and processing data of the device to perform overall monitoring of the device.
  • processor 82 can implement obtaining a radio frequency signal; the radio frequency signal includes k*N carriers The frequency of each carrier is different, k and N are positive integers, 2 ⁇ N; k*N carriers are divided into N groups, each group contains k carriers; frequency shift processing is performed on each carrier in N groups respectively After the frequency shift processing, the frequency points of the k carriers in each group are sequentially f1, f2, ..., fk; and the frequency-shifted N groups of carriers are respectively input into N directional antennas.
  • the carrier processing device based on the same frequency network provided by the foregoing embodiment only illustrates the division of each functional module in the processing of the carrier. In actual applications, the function allocation may be different according to requirements.
  • the functional module is completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the carrier processing device based on the same frequency group and the carrier processing method based on the same frequency network are provided in the same concept. For details, refer to the method embodiment, and details are not described herein.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种基于同频组网的载波处理方法及装置,涉及通信领域,所述方法包括:获得射频信号;所述射频信号包括k*N个载波,每个所述载波的频点不同,k和N均为正整数,2≤N;将所述k*N个载波分为N组,每组包含k个载波;分别对所述N组中各个载波进行移频处理;在移频处理后每组中的k个载波的频点均依次为f1、f2、...、fk;将移频后的N组载波分别输入N个定向天线。所述装置包括获取模块、分组模块、第一移频模块和输出模块。本发明可以采用一个单功放的射频模块和至少两个定向天线实现同频组网下的至少两个扇区覆盖,并且基站的覆盖面积和容量达到了采用多功放的射频模块的基站的覆盖面积和容量。

Description

一种基于同频组网的载波处理方法及装置 技术领域
本发明涉及通信领域,特别涉及一种基于同频组网的载波处理方法及装置。
背景技术
移动通信系统,包括全球移动通信系统(Global System for Mobile Communication,简称GSM)、通用移动通信系统(Universal Mobile Telecommunications System,简称UMTS)、长期演进(Long Term Evolution,简称LTE)系统等,通常采用多扇区进行组网,例如一个基站覆盖三个扇区,这意味着一个基站要发射至少三个载波。
在基站发射载波的过程中,需要将包含有多个载波的射频信号通过射频功率放大器放大后,再经由天线发射出去。对于同频组网的移动通信系统(例如UMTS和LTE),由于分配给每个扇区的载波数量和频点均要相同,而包含有两个以上的相同频点的载波的射频信号通过一个射频功率放大器放大后将不能区分出这两个以上的相同频点的载波,因此,在部署基站时需要设置与扇区数匹配的单功放的射频模块(包含单个射频功率放大器),或者设置支持多功放的射频模块(包含多个射频功率放大器)。
在业务需求不高的基站,可能存在射频模块功率未用满的情况,因此,运营商期望采用单功放的射频模块实现多载波的发射,以降低客户使用成本。针对此,现有技术提供了一种基于单功放的射频模块的解决方式,包括,首先,通过一单功放的射频模块获得一路包含有1个或多个频点不同的载波的射频信号。其次,将该射频信号通过全向天线发射出去;或者,采用功分器将该射频信号分成多路相等能量的信号,并分别输出给多个定向天线发射。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
第一,全向天线的增益远小于多扇区使用的定向天线,因此采用全向天线的基站在覆盖面积方面会有大幅度下降。第二,在采用功分器和多个定向天线时,虽然基站的覆盖范围达到多扇区覆盖范围,但是,由于多个定向天线发射 的能量总和为一路射频信号的能量,而这一路射频信号仅包含单个扇区支持的载波数量,因此,基站的总容量只达到基站采用多功放的射频模块时的一个扇区容量。
发明内容
为了增大采用单功放的射频模块的基站的覆盖面积和容量,本发明实施例提供了一种基于同频组网的载波处理方法及装置,所述技术方案如下:
第一方面,提供了一种基于同频组网的载波处理方法,所述方法包括:
获得射频信号;所述射频信号包括k*N个载波,每个所述载波的频点不同,k和N均为正整数,2≤N;
将所述k*N个载波分为N组,每组包含k个载波;
分别对所述N组中各个载波进行移频处理;在移频处理后每组中的k个载波的频点均依次为f1、f2、...、fk;
将移频后的N组载波分别输入N个定向天线。
在第一方面的第一实施方式中,将所述k*N个载波分为N组,包括:
确定所述k*N个载波中各个载波的频点;
按照预先设置的组标识与频点的对应关系,将所述k*N个载波分为N组。
在第一方面的第二实施方式中,分别对所述N组中各个载波进行移频处理,包括:
在预置的频点与中心频点的对应关系中,确定所述N组中各个载波的频点对应的中心频点;所述中心频点包括所述f1、f2、...、fk;
分别将所述N组中各个载波的频点移频至各个载波的频点对应的中心频点。
在第一方面的第三实施方式中,所述将移频后的N组载波分别输入N个定向天线,包括:
按照预先设置的组标识与天线标识的对应关系,确定每个组标识对应的定向天线;
将所述移频后的N组载波中每组载波输入至每组载波对应的定向天线。
在第一方面的第四实施方式中,所述方法还包括:
获得所述N个定向天线接收的射频信号;每个所述定向天线接收的射频信号包含k个载波,且每个所述定向天线接收的k个载波的频点均依次为所述f1、 f2、...、fk;
对每个所述定向天线接收的k个载波分别进行移频处理;在移频处理后每个所述定向天线接收的k个载波的频点不同。
第二方面,提供了一种基于同频组网的载波处理装置,所述装置包括:
获取模块,用于获得射频信号;所述射频信号包括k*N个载波,每个所述载波的频点不同,k和N均为正整数,2≤N;
分组模块,用于将所述k*N个载波分为N组,每组包含k个载波;
第一移频模块,用于分别对所述N组中各个载波进行移频处理;在移频处理后每组中的k个载波的频点均依次为f1、f2、...、fk;
输出模块,用于将移频后的N组载波分别输入N个定向天线。
在第二方面的第一实施方式中,所述分组模块包括:
第一确定单元,用于确定所述k*N个载波中各个载波的频点;
分组单元,用于按照预先设置的组标识与频点的对应关系,将所述k*N个载波分为N组。
在第二方面的第二实施方式中,所述第一移频模块包括:
第二确定单元,用于在预置的频点与中心频点的对应关系中,确定所述N组中各个载波的频点对应的中心频点;所述中心频点包括所述f1、f2、...、fk;
移频单元,用于分别将所述N组中各个载波的频点移频至各个载波的频点对应的中心频点。
在第二方面的第三实施方式中,所述输出模块包括:
第三确定单元,用于按照预先设置的组标识与天线标识的对应关系,确定每个组标识对应的定向天线;
输出单元,用于将所述移频后的N组载波中每组载波输入至每组载波对应的定向天线。
在第二方面的第四实施方式中,所述装置还包括:
第二移频模块,用于获得所述N个定向天线接收的射频信号;每个所述定向天线接收的射频信号包含k个载波,且每个所述定向天线接收的k个载波的频点均依次为所述f1、f2、...、fk;对每个所述定向天线接收的k个载波分别进行移频处理;在移频处理后每个所述定向天线接收的k个载波的频点不同。
本发明实施例提供的技术方案的有益效果是:
通过获得射频信号,该射频信号包括k*N个载波,每个载波的频点不同,k和N均为正整数,2≤N;由于每个载波的频点不同,因此可以采用一个单功放的射频模块获得该射频信号,能够充分利用射频模块的功率,并减少了基站的投入成本;将k*N个载波分为N组,每组包含k个载波;分别对N组中各个载波进行移频处理,在移频处理后每组中k个载波的频点均依次为f1、f2、...、fk;将移频后的N组载波分别输入至N个定向天线;由于每组包含k个载波,且在移频处理后每组中k个载波的频点均依次为f1、f2、...、fk,2≤N,因此,可以采用一个单功放的射频模块和至少两个定向天线实现同频组网下的至少两个扇区覆盖,并且,该射频信号包含k*N个载波,与采用多功放的射频模块时发射的载波数相当,而通过移频处理可以保持该射频信号的能量,即移频后的射频信号能量与采用多功放的射频模块时的射频信号能量相当,达到了基站采用多功放的射频模块时的容量。可见,在采用一个单功放的射频模块时,不光节约了基站的投入成本,还保持了基站采用多功放的射频模块时的覆盖面积和容量。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的分布式基站的结构示意图;
图2是本发明提供的单功放的射频拉远单元的结构示意图;
图3是本发明实施例提供的一种基于同频组网的载波处理方法的流程图;
图4是本发明实施例提供的一种基于同频组网的载波处理方法的流程图;
图5是本发明实施例提供的一种基于同频组网的载波处理方法的流程图;
图6是本发明实施例提供的一种基于同频组网的载波处理装置的结构示意图;
图7是本发明实施例提供的一种基于同频组网的载波处理装置的结构示意图;
图8是本发明实施例提供的一种基于同频组网的载波处理装置的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
为了便于理解本发明实施例提供的技术方案,首先对基站进行介绍。在本发明实施例中,基站可以是分布式基站。参见图1,分布式基站包括基带单元(Building Base band Unit,简称BBU)10、射频拉远单元(Radio Remote Unit,简称RRU)(也称射频模块)20和天线30。BBU 10通过光纤与RRU 20连接,RRU 20通过电缆与天线30连接。在下行链路方向,BBU 10通过光接口输出基带信号至RRU 20。RRU 20将基带信号变频到中频信号,再将中频信号变频到射频信号,然后采用功放单元(例如射频功率放大器)将射频信号放大,最后将放大后的射频信号通过天线30发射出去。在上行链路方向,来自终端的射频信号经天线30传递至RRU 20。RRU 20先将射频信号放大,再变频到中频信号,接着变频到基带信号,然后通过光接口将基带信号输出至BBU 10。
需要说明的是,本发明实施例提供的技术方案除了适用分布式基站之外,还可以适用其他类型的宏基站,例如BBU和射频单元(Radio Frequency Unit,简称RFU)构成的宏基站,RFU可以实现与RRU相同的功能。
图1示出的RRU 20可以是单功放的RRU,也可以是多功放的RRU。单功放的RRU包含有1个功放单元,多功放的RRU包含有2个及以上数量的功放单元。功放单元可以是多载波功放(Multiple Carrier Power Amplifier,简称MCPA),可以对一路包含有1个或多个频点不同的载波的射频信号进行放大处理。相比于多功放的RRU,单功放的RRU的功率比较小。
本发明实施例提供的技术方案适用于单功放的RRU。下面以采用数字中频技术的单功放的RRU为例,简单介绍一下单功放的RRU的结构。参见图2,单功放的RRU包括基带处理模块20a、数字中频合路模块20b、数模转换器(Digital to Analog Converter,简称DAC)20c、收发信机模块20d和MCPA模块20e。多路数字基带信号经基带处理模块20a处理后传递给数字中频合路模块20b,数字中频合路模块20b采用数字中频技术将处理后的多路数字基带信号进行变频和合路处理,得到一路数字中频信号。DAC 20c对得到的一路数字中频信号进行数模转换,并输出给收发信机模块20d。收发信机模块20d完成中频信号到射频信号的变换。MCPA 20e对经收发信机模块20d变换后的射频 信号进行放大,并将放大后的射频信号输出至天线发射。
需要说明的是,BBU 10和天线30的工作原理为本领域技术人员熟知,在此不再赘述。
此外,在本发明实施例中,同频组网是指,基站覆盖的各个扇区的载波数量和频点均相同。例如,一个基站覆盖两个扇区,每个扇区均支持1个载波,这两个扇区支持的载波频点均为1026.0MHz。又如,一个基站覆盖3个扇区,每个扇区均支持2个载波,这3个扇区中任何一个扇区支持的2个载波的频点为1024.2MHz和1027.4MHz。
实施例一
本发明实施例提供了一种基于同频组网的载波处理方法,适用于图1示出的分布式基站。参见图3,该方法流程包括:
步骤101:获得射频信号。
其中,该射频信号包括k*N个载波,每个载波的频点不同,k和N均为正整数,2≤N。
具体地,N等于基站覆盖的扇区数,k等于每个扇区支持的载波数。作为优选的实施方式,N可以为3、且k可以为1或2。
具体地,可以采用图2示出的单功放的RRU获得该射频信号。
步骤102:将k*N个载波分为N组,每组包含k个载波。
步骤103:分别对N组中各个载波进行移频处理。
其中,在移频处理后每组中k个载波的频点均依次为f1、f2、...、fk。
其中,f1、f2、...、fk为基站在终端侧具备许可的频点。
步骤104:将移频后的N组载波分别输入至N个定向天线。
其中,N个定向天线中每个定向天线发射一组载波,且每个定向天线发射的一组载波不同。
本发明实施例通过获得射频信号,该射频信号包括k*N个载波,每个载波的频点不同,k和N均为正整数,2≤N;由于每个载波的频点不同,因此可以采用一个单功放的射频模块获得该射频信号,充分利用了射频模块的功率,并减少了基站的投入成本;将k*N个载波分为N组,每组包含k个载波;分别对N组中各个载波进行移频处理,在移频处理后每组中k个载波的频点均依次为f1、f2、...、fk;将移频后的N组载波分别输入至N个定向天线;由于每组 包含k个载波,且在移频处理后每组中k个载波的频点均依次为f1、f2、...、fk,2≤N,因此,可以采用一个单功放的射频模块和至少两个定向天线实现同频组网下的至少两个扇区覆盖,并且,该射频信号包含k*N个载波,与采用多功放的射频模块时发射的载波数相当,而通过移频处理可以保持该射频信号的能量,即移频后的射频信号能量与采用多功放的射频模块时的射频信号能量相当,达到了基站采用多功放的射频模块时的容量。可见,在采用一个单功放的射频模块时,不光节约了基站的投入成本,还保持了基站采用多功放的射频模块时的覆盖面积和容量。
实施例二
本发明实施例提供了一种基于同频组网的载波处理方法,适用于图1示出的分布式基站。参见图4,该方法流程包括:
步骤201:获得射频信号。
其中,该射频信号包括k*N个载波,每个载波的频点不同,k和N均为正整数,2≤N。
具体地,N等于基站覆盖的扇区数,k等于每个扇区支持的载波数。作为优选的实施方式,N可以为3,k可以为1或2。
射频信号可以通过数字中频技术获得,包括,首先,接收BBU输出的k*N路数字基带信号。其中,每一路数字基带信号对应一个载波,每两路数字基带信号对应不同频点的载波。其次,采用数字中频技术对每一路数字基带信号进行变频,得到k*N路数字中频信号;并将k*N路数字中频信号合路,得到一路数字中频信号。再次,将得到的一路数字中频信号转换成一路模拟中频信号。然后,将转换成的一路模拟中频信号变换成一路射频信号。最后,采用多载波功放单元对变换成的一路射频信号进行放大处理,得到一路放大后的射频信号。其中,得到的一路放大后的射频信号包括k*N个载波,每个载波的频点不同。
步骤202:确定k*N个载波中各个载波的频点。
具体地,由于k*N个载波中各个载波的频点均不相同,因此,可以通过选频电路从该射频信号中获得各个载波的频点。选频电路可以允许指定频点且具有指定带宽的信号通过。本发明实施例不限定选频电路的结构,选频电路可以采用相关技术提供的任一种选频电路。
步骤203:按照预先设置的组标识与频点的对应关系,将k*N个载波分为N组。
具体地,可以预先设置N个组标识,并从k*N个载波频点中,为每个组标识指定k个频点。
通过步骤202和步骤203实现了,将k*N个载波分为N组,每组包含k个载波。
步骤204:在预置的频点与中心频点的对应关系中,确定N组中各个载波的频点对应的中心频点。
其中,中心频点包括f1、f2、...、fk。中心频点为基站在终端侧具备许可的频点。中心频点的数量与每个扇区支持的载波数量相同,即为k。在同频组网中,每个扇区的中心频点是相同的。
作为可选的实施方式,在移频处理之前,k*N个载波中每个载波的频点不为f1、f2、...、或fk。此外,在移频处理之前,k*N个载波中每个载波的频点、f1、f2、...、以及fk均位于无线通信合法的频段之内。
步骤205:分别将N组中各个载波的频点移频至各个载波的频点对应的中心频点。
其中,在移频处理后每组中k个载波的频点均依次为中心频点f1、f2、...、fk。
具体地,可以通过移频电路将各个载波的频率搬移到指定频率。本领域技术人员可以理解的是,将信号的频率移频到指定频率时,不会对信号的能量造成损耗,移频后信号的能量与移频前信号的能量基本相当。因此,分别将N组中各个载波的频点移频至各个载波的频点对应的中心频点之后,移频后各个载波对应的能量与移频前各个载波对应的能量是基本相当的,不会对射频信号的总能量造成损耗。本发明实施例不限定移频电路的结构,移频电路可以采用相关技术提供的任一种移频电路。
通过步骤204和步骤205实现了,分别对N组中各个载波进行移频处理。
步骤206:按照预先设置的组标识与天线标识的对应关系,确定每个组标识对应的定向天线。
步骤207:将移频后的N组载波中每组载波输入至每组载波对应的定向天线。
通过步骤206和步骤207实现了,将移频后的N组载波分别输入至N个 定向天线。其中,N个定向天线中每个定向天线发射一组载波,且每两个定向天线发射两组不同的载波。
其中,将移频后的N组载波分别输入至N个定向天线,包括,当k为1时,将移频后的N组载波分别输入至N个定向天线。当k大于1时,对移频后的每组载波分别进行合路,得到N路射频信号;将N路射频信号分别输入至N个定向天线。每个定向天线发射一路射频信号,且每两个定向天线发射两路不同的射频信号。
在步骤201-步骤207中,描述了载波的发射过程。例如,假设基站覆盖3个扇区,每个扇区支持1个频点为2012.6MHz的载波。那么,可以得到N=3,k=1。首先,获得包含有3个载波的射频信号,这3个载波的频点可以依次为1881.0MHz、1882.6MHz和1884.2MHz。其次,从该射频信号中获得这3个载波。然后,对3个载波分别进行移频处理,以使每个载波的频点偏移至2012.6MHz。最后,将这3个频点为2012.6MHz的载波分别输入至3个定向天线,以使定向天线将载波发射出去。
基于步骤201-步骤207描述的载波发射过程,下面结合图5描述载波的接收过程。
步骤208:获得N个定向天线接收的射频信号。
其中,每个定向天线接收的射频信号包含k个载波,且每个定向天线接收的k个载波的频点依次为中心频点f1、f2、...、fk。
步骤209:对每个定向天线接收的k个载波分别进行移频处理。
其中,在移频处理后每个定向天线接收的k个载波的频点不同。
步骤209包括,首先,确定每个定向天线接收的k个载波需频移的频点。具体地,根据预先设置的组标识与天线标识的对应关系可以确定N个定向天线中每个定向天线对应的组标识;根据预先设置的组标识与频点的对应关系,可以确定每个组标识对应的k个频点;从而可以确定每个定向天线对应的k个频点。根据在预先设置的频点与中心频点的对应关系,可以确定中心频点对应的频点,从而可以确定每个定向天线接收的k个载波分别对应的频点,即得到k个载波需频移的频点。其次,分别将每个定向天线接收的k个载波的频点从中心频点移频至k个载波需频移的频点。
在完成移频处理之后,可以将移频后的载波送入RRU进行变频处理,以得到BBU可以识别的基带信号。变频处理过程为本领域技术人员熟知,在此 不再赘述。
本发明实施例通过获得射频信号,该射频信号包括k*N个载波,每个载波的频点不同,k和N均为正整数,2≤N;由于每个载波的频点不同,因此可以采用一个单功放的射频模块获得该射频信号,充分利用了射频模块的功率,并减少了基站的投入成本;将k*N个载波分为N组,每组包含k个载波;分别对N组中各个载波进行移频处理,在移频处理后每组中k个载波的频点均依次为f1、f2、...、fk;将移频后的N组载波分别输入至N个定向天线;由于每组包含k个载波,且在移频处理后每组中k个载波的频点均依次为f1、f2、...、fk,2≤N,因此,可以采用一个单功放的射频模块和至少两个定向天线实现同频组网下的至少两个扇区覆盖,并且,该射频信号包含k*N个载波,与采用多功放的射频模块时发射的载波数相当,而通过移频处理可以保持该射频信号的能量,即移频后的射频信号能量与采用多功放的射频模块时的射频信号能量相当,达到了基站采用多功放的射频模块时的容量。可见,在采用一个单功放的射频模块时,不光节约了基站的投入成本,还保持了基站采用多功放的射频模块时的覆盖面积和容量。
实施例三
本发明实施例提供了一种基于同频组网的载波处理装置,适用于设置在宏基站中。参见图6,该装置包括获取模块301、分组模块302、第一移频模块303和输出模块304。
获取模块301,用于获得射频信号;该射频信号包括k*N个载波,每个载波的频点不同,k和N均为正整数,2≤N。
分组模块302,用于将k*N个载波分为N组,每组包含k个载波。
第一移频模块303,用于分别对N组中各个载波进行移频处理;在移频处理后每组中的k个载波的频点均依次为f1、f2、...、fk。
输出模块304,用于将移频后的N组载波分别输入N个定向天线。
本发明实施例通过获得射频信号,该射频信号包括k*N个载波,每个载波的频点不同,k和N均为正整数,2≤N;由于每个载波的频点不同,因此可以采用一个单功放的射频模块获得该射频信号,充分利用了射频模块的功率,并减少了基站的投入成本;将k*N个载波分为N组,每组包含k个载波;分别对N组中各个载波进行移频处理,在移频处理后每组中k个载波的频点均依次 为f1、f2、...、fk;将移频后的N组载波分别输入至N个定向天线;由于每组包含k个载波,且在移频处理后每组中k个载波的频点均依次为f1、f2、...、fk,2≤N,因此,可以采用一个单功放的射频模块和至少两个定向天线实现同频组网下的至少两个扇区覆盖,并且,该射频信号包含k*N个载波,与采用多功放的射频模块时发射的载波数相当,而通过移频处理可以保持该射频信号的能量,即移频后的射频信号能量与采用多功放的射频模块时的射频信号能量相当,达到了基站采用多功放的射频模块时的容量。可见,在采用一个单功放的射频模块时,不光节约了基站的投入成本,还保持了基站采用多功放的射频模块时的覆盖面积和容量。
实施例四
本发明实施例提供了一种基于同频组网的载波处理装置,适用于设置在宏基站中。参见图7,该装置包括获取模块401、分组模块402、第一移频模块403和输出模块404。获取模块401与实施例三中获取模块301相同,在此不再赘述。本发明实施例四提供的装置与实施例三提供的装置的不同之处如下。
在第一实施方式中,分组模块402包括:
第一确定单元4021,用于确定k*N个载波中各个载波的频点。
分组单元4022,用于按照预先设置的组标识与频点的对应关系,将k*N个载波分为N组。
在第二实施方式中,第一移频模块403包括:
第二确定单元4031,用于在预置的频点与中心频点的对应关系中,确定N组中各个载波的频点对应的中心频点;中心频点包括f1、f2、...、fk。
移频单元4032,用于分别将N组中各个载波的频点移频至各个载波的频点对应的中心频点。
在第三实施方式中,输出模块404包括:
第三确定单元4041,用于按照预先设置的组标识与天线标识的对应关系,确定每个组标识对应的定向天线。
输出单元4042,用于将移频后的N组载波中每组载波输入至每组载波对应的定向天线。
在第四实施方式中,该装置还包括第二移频模块405。
该第二移频模块405用于,获得N个定向天线接收的射频信号;每个定向 天线接收的射频信号包含k个载波,且每个定向天线接收的k个载波的频点均依次为f1、f2、...、fk;对每个定向天线接收的k个载波分别进行移频处理;在移频处理后每个定向天线接收的k个载波的频点不同。
本发明实施例通过获得射频信号,该射频信号包括k*N个载波,每个载波的频点不同,k和N均为正整数,2≤N;由于每个载波的频点不同,因此可以采用一个单功放的射频模块获得该射频信号,充分利用了射频模块的功率,并减少了基站的投入成本;将k*N个载波分为N组,每组包含k个载波;分别对N组中各个载波进行移频处理,在移频处理后每组中k个载波的频点均依次为f1、f2、...、fk;将移频后的N组载波分别输入至N个定向天线;由于每组包含k个载波,且在移频处理后每组中k个载波的频点均依次为f1、f2、...、fk,2≤N,因此,可以采用一个单功放的射频模块和至少两个定向天线实现同频组网下的至少两个扇区覆盖,并且,该射频信号包含k*N个载波,与采用多功放的射频模块时发射的载波数相当,而通过移频处理可以保持该射频信号的能量,即移频后的射频信号能量与采用多功放的射频模块时的射频信号能量相当,达到了基站采用多功放的射频模块时的容量。可见,在采用一个单功放的射频模块时,不光节约了基站的投入成本,还保持了基站采用多功放的射频模块时的覆盖面积和容量。
图8示出了实施例三或四提供的装置的硬件结构,该装置可以设置在RRU中,或者该装置可以设置在RRU与天线之间。其一般包括至少一个通信接口81、处理器82、存储器83、以及至少一个通信总线84。本领域技术人员可以理解,图8中示出的结构并不构成对该装置的限定,其可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图8对该装置的各个构成部件进行具体的介绍:
通信总线84用于实现处理器82、存储器83、及通信接口81之间的连接通信。
至少一个通信接口81实现该装置与至少一个其他设备(例如RRU、以及定向天线)之间的通信连接,可以使用同轴电缆等。
存储器83可用于存储软件程序以及应用模块,处理器82通过运行存储在存储器83的软件程序以及应用模块,从而执行该装置的各种功能应用以及数据处理。存储器83可主要包括存储程序区和存储数据区,其中,存储程序区 可存储操作系统、至少一个功能所需的应用程序(比如确定各个载波对应的中心频点等)等;存储数据区可存储根据该设备的使用所创建的数据(比如预置的频点与中心频点的对应关系)等。此外,存储器83可以包括高速RAM(Random Access Memory,随机存取存储器83),还可以包括非易失性存储器83(non-volatile memory),例如至少一个磁盘存储器83件、闪存器件、或其他易失性固态存储器83件。
处理器82是该装置的控制中心,利用各种接口和线路连接整个装置的各个部分,通过运行或执行存储在存储器83内的软件程序和/或应用模块,以及调用存储在存储器83内的数据,执行该装置的各种功能和处理数据,从而对该装置进行整体监控。
具体地,通过运行或执行存储在存储器83内的软件程序和/或应用模块,以及调用存储在存储器83内的数据,处理器82可以实现,获得射频信号;该射频信号包括k*N个载波,每个载波的频点不同,k和N均为正整数,2≤N;将k*N个载波分为N组,每组包含k个载波;分别对N组中各个载波进行移频处理;在移频处理后每组中的k个载波的频点均依次为f1、f2、...、fk;将移频后的N组载波分别输入N个定向天线。
需要说明的是:上述实施例提供的基于同频组网的载波处理装置在处理载波时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的基于同频组网的载波处理装置与基于同频组网的载波处理方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于同频组网的载波处理方法,其特征在于,所述方法包括:
    获得射频信号;所述射频信号包括k*N个载波,每个所述载波的频点不同,k和N均为正整数,2≤N;
    将所述k*N个载波分为N组,每组包含k个载波;
    分别对所述N组中各个载波进行移频处理;在移频处理后每组中的k个载波的频点均依次为f1、f2、...、fk;
    将移频后的N组载波分别输入N个定向天线。
  2. 根据权利要求1所述的方法,其特征在于,将所述k*N个载波分为N组,包括:
    确定所述k*N个载波中各个载波的频点;
    按照预先设置的组标识与频点的对应关系,将所述k*N个载波分为N组。
  3. 根据权利要求1或2所述的方法,其特征在于,分别对所述N组中各个载波进行移频处理,包括:
    在预置的频点与中心频点的对应关系中,确定所述N组中各个载波的频点对应的中心频点;所述中心频点包括所述f1、f2、...、fk;
    分别将所述N组中各个载波的频点移频至各个载波的频点对应的中心频点。
  4. 根据权利要求1-3任一项权利要求所述的方法,其特征在于,所述将移频后的N组载波分别输入N个定向天线,包括:
    按照预先设置的组标识与天线标识的对应关系,确定每个组标识对应的定向天线;
    将所述移频后的N组载波中每组载波输入至每组载波对应的定向天线。
  5. 根据权利要求1-4任一项权利要求所述的方法,其特征在于,所述方法还包括:
    获得所述N个定向天线接收的射频信号;每个所述定向天线接收的射频信号包含k个载波,且每个所述定向天线接收的k个载波的频点均依次为所述f1、f2、...、fk;
    对每个所述定向天线接收的k个载波分别进行移频处理;在移频处理后每个所述定向天线接收的k个载波的频点不同。
  6. 一种基于同频组网的载波处理装置,其特征在于,所述装置包括:
    获取模块,用于获得射频信号;所述射频信号包括k*N个载波,每个所述载波的频点不同,k和N均为正整数,2≤N;
    分组模块,用于将所述k*N个载波分为N组,每组包含k个载波;
    第一移频模块,用于分别对所述N组中各个载波进行移频处理;在移频处理后每组中的k个载波的频点均依次为f1、f2、...、fk;
    输出模块,用于将移频后的N组载波分别输入N个定向天线。
  7. 根据权利要求6所述的装置,其特征在于,所述分组模块包括:
    第一确定单元,用于确定所述k*N个载波中各个载波的频点;
    分组单元,用于按照预先设置的组标识与频点的对应关系,将所述k*N个载波分为N组。
  8. 根据权利要求6或7所述的装置,其特征在于,所述第一移频模块包括:
    第二确定单元,用于在预置的频点与中心频点的对应关系中,确定所述N组中各个载波的频点对应的中心频点;所述中心频点包括所述f1、f2、...、fk;
    移频单元,用于分别将所述N组中各个载波的频点移频至各个载波的频点对应的中心频点。
  9. 根据权利要求6-8任一项所述的装置,其特征在于,所述输出模块包括:
    第三确定单元,用于按照预先设置的组标识与天线标识的对应关系,确定每个组标识对应的定向天线;
    输出单元,用于将所述移频后的N组载波中每组载波输入至每组载波对应的定向天线。
  10. 根据权利要求6-9任一项所述的装置,其特征在于,所述装置还包括:
    第二移频模块,用于获得所述N个定向天线接收的射频信号;每个所述定向天线接收的射频信号包含k个载波,且每个所述定向天线接收的k个载波的频点均依次为所述f1、f2、...、fk;对每个所述定向天线接收的k个载波分别进行移频处理;在移频处理后每个所述定向天线接收的k个载波的频点不同。
PCT/CN2015/082842 2015-06-30 2015-06-30 一种基于同频组网的载波处理方法及装置 WO2017000228A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/082842 WO2017000228A1 (zh) 2015-06-30 2015-06-30 一种基于同频组网的载波处理方法及装置
CN201580034401.1A CN106489277B (zh) 2015-06-30 2015-06-30 一种基于同频组网的载波处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082842 WO2017000228A1 (zh) 2015-06-30 2015-06-30 一种基于同频组网的载波处理方法及装置

Publications (1)

Publication Number Publication Date
WO2017000228A1 true WO2017000228A1 (zh) 2017-01-05

Family

ID=57607452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082842 WO2017000228A1 (zh) 2015-06-30 2015-06-30 一种基于同频组网的载波处理方法及装置

Country Status (2)

Country Link
CN (1) CN106489277B (zh)
WO (1) WO2017000228A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430564B (zh) * 2022-04-06 2022-06-21 南京典格通信科技有限公司 一种用于5g通信中心频点的动态识别系统及识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968054A (zh) * 2006-10-24 2007-05-23 普天信息技术研究院 一种n载频同频组网方法
CN101047937A (zh) * 2006-03-27 2007-10-03 浙江移动通信有限责任公司 基于遗传算法的移动通信频率规划方法
CN101827370A (zh) * 2009-03-05 2010-09-08 中国移动通信集团公司 基于ofdm的频率复用控制方法、系统及基站设备
CN102223642A (zh) * 2010-04-15 2011-10-19 电信科学技术研究院 多载波系统的频率规划方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619503A (en) * 1994-01-11 1997-04-08 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
US7450489B2 (en) * 2003-12-30 2008-11-11 Intel Corporation Multiple-antenna communication systems and methods for communicating in wireless local area networks that include single-antenna communication devices
CN101039136B (zh) * 2006-03-15 2011-09-14 华为技术有限公司 基于空频编码的多天线发射分集方法及其系统
CN103873204A (zh) * 2007-05-08 2014-06-18 交互数字技术公司 降低sfbc通信中的小区间干扰及接收随机化干扰的方法和wtru
US9749022B2 (en) * 2008-02-01 2017-08-29 Marvell World Trade Ltd. Channel sounding and estimation strategies in MIMO systems
CN105141402A (zh) * 2009-02-08 2015-12-09 Lg电子株式会社 在无线移动通信系统中发送终端解调的参考信号的方法以及实现该方法的装置
US20120263093A1 (en) * 2009-10-16 2012-10-18 Roessel Sabine Control Channel Coordination in Heterogeneous Networks
CN102223167B (zh) * 2010-04-16 2015-11-25 华为技术有限公司 多天线系统中的探测参考信号发送方法及装置
CN102565755A (zh) * 2011-12-28 2012-07-11 成都点阵科技有限公司 利用所测频谱数据进行宽带无线电测向的方法
GB2502279B (en) * 2012-05-21 2014-07-09 Aceaxis Ltd Reduction of intermodulation products
GB2506418A (en) * 2012-09-28 2014-04-02 Sony Corp A base station allocates a centre frequency for an OFDM virtual channel in dependence upon a terminal's bandwidth capability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047937A (zh) * 2006-03-27 2007-10-03 浙江移动通信有限责任公司 基于遗传算法的移动通信频率规划方法
CN1968054A (zh) * 2006-10-24 2007-05-23 普天信息技术研究院 一种n载频同频组网方法
CN101827370A (zh) * 2009-03-05 2010-09-08 中国移动通信集团公司 基于ofdm的频率复用控制方法、系统及基站设备
CN102223642A (zh) * 2010-04-15 2011-10-19 电信科学技术研究院 多载波系统的频率规划方法及装置

Also Published As

Publication number Publication date
CN106489277B (zh) 2019-11-12
CN106489277A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
US9356697B2 (en) Distributed antenna system and method
CN109845118B (zh) 一种塔顶设备及无源互调消除方法
US10879976B2 (en) Communications method and apparatus
US9100968B2 (en) Method and system for digital cancellation scheme with multi-beam
WO2023050551A1 (zh) 拉远传输覆盖方法、系统以及拉远单元
JP5866701B2 (ja) アンテナシステム、基地局システム、及び通信システム
US11297689B2 (en) Systems and methods for uplink noise suppression for a distributed antenna system
EP3131214B1 (en) Combiner, base station, signal combiner system and signal transmission method
US9258050B2 (en) Transceiving module, antenna, base station and signal receiving method
WO2017000228A1 (zh) 一种基于同频组网的载波处理方法及装置
CN110224704B (zh) 射频系统和基站设备
US9887714B2 (en) Remote radio head and associated method
JP2014520492A (ja) 多入力多出力信号伝送方法及び多入力多出力信号伝送装置
CN111479230A (zh) 室内光分布系统及方法
RU2543515C2 (ru) Способ, устройство и система передачи сигнала связи
US11165165B2 (en) Antenna system, base station, and communications system
WO2020192257A1 (zh) 一种处理数字中频信号的方法及装置
CN111148119B (zh) 选择性处理通信信号的方法、装置、设备和存储介质
CA2547649A1 (en) Method and apparatus for uplink coverage improvement
EP4231525A1 (en) Radio-frequency unit, antenna, and signal processing method
CN114340049B (zh) Poi设备和无线覆盖系统
US11902006B2 (en) Communication system and operating method thereof
WO2024082949A1 (zh) 一种基站
WO2024045878A1 (zh) 一种信号处理系统、射频拉远单元和天线单元
WO2023000753A1 (zh) 无源互调信号的检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896759

Country of ref document: EP

Kind code of ref document: A1