WO2023050551A1 - 拉远传输覆盖方法、系统以及拉远单元 - Google Patents

拉远传输覆盖方法、系统以及拉远单元 Download PDF

Info

Publication number
WO2023050551A1
WO2023050551A1 PCT/CN2021/133732 CN2021133732W WO2023050551A1 WO 2023050551 A1 WO2023050551 A1 WO 2023050551A1 CN 2021133732 W CN2021133732 W CN 2021133732W WO 2023050551 A1 WO2023050551 A1 WO 2023050551A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
signal
signals
frequency signals
remote unit
Prior art date
Application number
PCT/CN2021/133732
Other languages
English (en)
French (fr)
Inventor
郁洪波
Original Assignee
京信网络系统股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信网络系统股份有限公司 filed Critical 京信网络系统股份有限公司
Publication of WO2023050551A1 publication Critical patent/WO2023050551A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands

Definitions

  • the present disclosure relates to the technical field of communications, and in particular, to a remote transmission coverage method, system, and remote unit.
  • RRU Remote Radio Unit, radio frequency remote unit
  • DAS Distributed Antenna System, distributed antenna system
  • the operating bandwidth of the carrier supported by RRU, DAS or repeater is generally between 100M and 200M, which cannot meet the needs of operators for co-site co-location, multi-carrier and large-bandwidth applications.
  • each channel has a separate external antenna. Since each antenna has only one frequency band signal, so 2 antennas are required to cover a 300M signal in one direction, and more antennas are required to cover multiple directions. This makes the overall cost of the system, whether it is construction cost or operation and maintenance cost, have a large increase. At the same time, due to the mutual interference between multiple signals, the output signal quality is poor, which cannot meet the communication quality and reliability requirements of 5G new services.
  • the present disclosure provides a remote transmission coverage method, system, and remote unit.
  • a filter, a circulator, and a bridge in the remote unit Not only greatly reduces the cost, but also reduces and optimizes the influence of background noise superposition, and improves the quality and reliability of communication.
  • the present disclosure provides a remote transmission coverage method, which is applied to a remote unit, including:
  • the integrated filtering module includes a filter, a circulator and a bridge connected in sequence.
  • the remote transmission coverage method provided in the first aspect, multiple carrier signals are received, processed based on the multiple carrier signals, and multiple radio frequency signals are obtained, and the power of the multiple radio frequency signals is amplified and then input to the remote unit for filtering integration
  • the module is used to filter multi-channel radio frequency signals, combine the filtered multi-channel radio frequency signals based on the signal type of the multi-channel radio frequency signals, generate a target bandwidth radio frequency signal and send it to the antenna, and realize the transmission of a large bandwidth signal at each antenna port. Meet the needs of large bandwidth and high power signal coverage, reduce network construction costs, improve network construction convenience, and improve communication quality.
  • the present disclosure provides a remote transmission coverage method, which is applied to a remote unit, including:
  • the present disclosure provides a remote unit, which is characterized in that it includes:
  • a digital circuit configured to receive multiple carrier signals, process them based on the multiple carrier signals, obtain multiple radio frequency signals and send them to multiple radio frequency circuits respectively;
  • a plurality of power amplifier modules connected to the plurality of radio frequency circuits in one-to-one correspondence, and used to amplify the power of the multi-channel radio frequency signals;
  • An integrated filter module connected to the plurality of power amplifier modules includes a filter, a first circulator, and a bridge connected in sequence, and the filter connected to each of the power amplifier modules in one-to-one correspondence, using For filtering each radio frequency signal after power amplification;
  • a first circulator connected to each of said filters, for inputting a radio frequency signal into the bridge according to the signal type
  • the present disclosure provides a remote unit, which is characterized by comprising:
  • the electric bridge in the integrated filter module connected to the antenna is used to obtain the radio frequency signal of the target bandwidth, and divide the radio frequency signal to generate multiple radio frequency signals; wherein the integrated filter module includes a filter, The first circulator and the electric bridge are connected in sequence;
  • a first circulator connected to the bridge, for inputting each radio frequency signal into the filter
  • Each power amplifier module connected to each filter is used to amplify the power of each filtered radio frequency signal
  • a radio frequency circuit connected to each of the power amplifier modules in one-to-one correspondence, used to receive each radio frequency signal after power amplification and send it to a digital circuit;
  • the digital circuit connected to each radio frequency circuit is used for performing signal format conversion on multiple radio frequency signals, acquiring multiple carrier signals and sending them.
  • the present disclosure provides a remote transmission coverage system, including: a near-end unit, an extension unit, and the remote unit described in the embodiment of the third aspect;
  • the near-end unit is configured to receive a plurality of radio frequency signals sent by a plurality of base stations, and after amplifying and converting the frequency of the plurality of radio frequency signals through the radio frequency circuit in the near-end unit, the The digital module performs signal format conversion on the amplified and frequency-converted RF signal, generates a digital optical signal and sends it to the expansion unit;
  • the extension unit is configured to generate multiple carrier signals from the received digital optical signals of different channels according to a preset protocol and distribute them to different antenna ports of the remote unit according to the monitoring setting information;
  • the remote unit is configured to receive the multiple carrier signals, process them based on the multiple carrier signals, obtain multiple radio frequency signals, perform power amplification on the multiple radio frequency signals, and perform power amplification on the multiple radio frequency signals performing filtering, and combining the filtered multiple radio frequency signals based on the signal types of the multiple radio frequency signals to generate a radio frequency signal with a target bandwidth and send it to the antenna.
  • the present disclosure provides a remote transmission and coverage system, including a near-end unit and the remote unit described in the foregoing embodiment of the third aspect;
  • the near-end unit is configured to receive a plurality of radio frequency signals sent by a plurality of base stations, and after amplifying and converting the frequency of the plurality of radio frequency signals through the radio frequency circuit in the near-end unit, the The digital module performs signal format conversion on the amplified and frequency-converted radio frequency signal, generates multiple carrier signals and sends them to the remote unit;
  • the remote unit is configured to receive the multiple carrier signals, process them based on the multiple carrier signals, obtain multiple radio frequency signals, perform power amplification on the multiple radio frequency signals, and perform power amplification on the multiple radio frequency signals performing filtering, and combining the filtered multiple radio frequency signals based on the signal types of the multiple radio frequency signals to generate a radio frequency signal with a target bandwidth and send it to the antenna.
  • the present disclosure provides a remote transmission coverage system, including a baseband processing unit and the remote unit described in the embodiment of the aforementioned third aspect;
  • the baseband processing unit is configured to generate the plurality of carrier signals
  • the remote unit is configured to receive multiple carrier signals, perform processing based on the multiple carrier signals, obtain multiple radio frequency signals, perform power amplification on the multiple radio frequency signals, and then filter the multiple radio frequency signals and combining the filtered multiple radio frequency signals based on the signal types of the multiple radio frequency signals to generate a radio frequency signal with a target bandwidth and send it to the antenna.
  • the present disclosure provides a remote transmission coverage system, including: a near-end unit, an extension unit, and the remote unit described in the embodiment of the fourth aspect;
  • the remote unit is configured to receive a radio frequency signal of a target bandwidth, and input the radio frequency signal into an integrated filter module in the remote unit, so as to split the radio frequency signal, generate multiple radio frequency signals, and perform Filtering, performing power amplification on the filtered multi-channel radio frequency signals, performing signal format conversion on the power-amplified multi-channel radio frequency signals, acquiring multiple carrier signals and sending them to the expansion unit;
  • the extension unit is configured to receive the multiple carrier signals, analyze the multiple carrier signals, and obtain digital optical signals;
  • the near-end unit is configured to receive the digital optical signal, perform format conversion on the digital optical signal, generate a radio frequency signal, and send the radio frequency signal after processing the radio frequency signal through the radio frequency circuit in the near-end unit to the base station.
  • the present disclosure provides a remote transmission and coverage system, including a near-end unit and the remote unit described in the foregoing embodiment of the fourth aspect;
  • the remote unit receives a radio frequency signal of a target bandwidth, and inputs the radio frequency signal into an integrated filtering module in the remote unit, so as to split the radio frequency signal, generate multiple radio frequency signals and perform filtering, performing power amplification on the filtered multi-channel radio frequency signals, performing signal format conversion on the power-amplified multi-channel radio frequency signals, obtaining multiple carrier signals and sending them to the near-end unit;
  • the near-end unit is configured to perform format conversion on the plurality of carrier signals to generate a plurality of radio frequency signals, and send the radio frequency signals to the base station after being processed by the radio frequency circuit in the near-end unit.
  • the present disclosure provides a remote transmission and coverage system, including a baseband processing unit and the remote unit described in the foregoing embodiment of the fourth aspect;
  • the remote unit receives a radio frequency signal of a target bandwidth, and inputs the radio frequency signal into an integrated filtering module in the remote unit, so as to split the radio frequency signal, generate multiple radio frequency signals and perform filtering, performing power amplification on the filtered multi-channel radio frequency signals, performing signal format conversion on the power-amplified multi-channel radio frequency signals, obtaining multiple carrier signals and sending them to the baseband processing unit;
  • the baseband processing unit is configured to receive the multiple carrier signals.
  • the remote transmission coverage method provided in the above second aspect and each possible design of the above second aspect, the remote unit provided in the third and fourth aspects and each possible design of the above third and fourth aspects, and The beneficial effects of the remote transmission coverage system provided in the fifth, sixth, seventh, eighth, ninth and tenth aspects and the possible designs of the third, fourth and fifth aspects above can be referred to the first and first aspects above.
  • the beneficial effects brought by various possible implementations of the aspect will not be repeated here.
  • FIG. 1 is an example diagram of a large-bandwidth transmission in the related art
  • FIG. 2 is another example diagram of large-bandwidth transmission in the related art
  • FIG. 3 is a schematic flowchart of a remote transmission coverage method described in an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of another remote transmission coverage method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a remote unit according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another remote unit according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic structural diagram of another remote unit according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of an integrated filter module according to an embodiment of the present disclosure.
  • FIG. 9 is a structural example diagram of another filter integrated module according to an embodiment of the present disclosure.
  • FIG. 10 is a structural example diagram of another integrated filtering module according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a remote transmission coverage system according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another remote transmission coverage system according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another remote transmission coverage system according to an embodiment of the present disclosure.
  • FIG. 14 is an example diagram of a remote transmission coverage system according to an embodiment of the present disclosure.
  • FIG. 15 is an example diagram of another remote transmission coverage system according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a remote transmission and covering device according to an embodiment of the present disclosure.
  • hardware channels can be added (for example, to cover 300M bandwidth signals, 150M before channel 1 transmission, 150M after channel 2 transmission), and then each The hardware channel has a separate external antenna. Since each antenna has only one frequency band signal, two antennas are required to cover a 300M signal in one direction, and more antennas are required to cover multiple directions, or two sets of equipment are used to work separately. Covering this area together under different bandwidths increases the input cost of coverage. Moreover, the mutual interference between signals deteriorates the signal-to-noise ratio, which cannot meet the needs of new 5G services.
  • the embodiment of the present disclosure proposes a remote transmission coverage method, adding sequentially connected circulators and bridges at the back end of the filter to form an integrated filtering module to filter multi-channel radio frequency signals, based on multi-channel radio frequency signals
  • the signal type combines the filtered multi-channel RF signals to generate a target bandwidth RF signal and send it to the antenna, so that each antenna port can output a large bandwidth (such as 300M or even higher bandwidth) RF signal requirements to meet the needs of operators
  • Co-site co-location application requirements greatly facilitate the actual coverage requirements, and at the same time ensure that the non-working bandwidth noise floor output by each channel is filtered by the filter and output, and the influence of the noise floor superposition when adjacent frequency band signals are combined will be reduced and optimization, thereby improving the quality of the signal.
  • the related solution is to use one device to cover the first 160M frequency band signal, and then use another device to cover the last 140M frequency band signal), such as As shown in Figure 1, the multi-channel direct transmission coverage scheme, although the whole machine can output 300M signals, but each output port and antenna can only output 160M (or 140M) signals, and each antenna or output port cannot achieve 300M Signal coverage needs.
  • the embodiment of the present disclosure proposes a remote transmission coverage method, which can be completed with only one device, and has cost advantages and installation advantages (saving installation space).
  • the technical solution for achieving large bandwidth coverage by connecting an electric bridge externally to the device when the standing wave signal connected to any port of the antenna at the output port of the electric bridge is, for example, a 300M combined signal, the reflected signal is The combined signal of filter 1 frequency band + filter 2 frequency band signal, and the standing wave matching design of filter 1 port only matches frequency band 1, and the standing wave matching design of filter 2 port only matches frequency band 2, because the reflected signal and the filter bandwidth are different Matching, resulting in an abnormally large standing wave at the antenna port.
  • the embodiment of the present disclosure proposes a remote transmission and coverage method, which has the advantage that the standing wave circuit is intact, and at the same time, the overall installation is also beautiful, simple and convenient.
  • FIG. 3 is an exemplary flowchart of a method for remote transmission and coverage described in an embodiment of the present disclosure. The method is applied to a remote unit, as shown in FIG. 1 , including:
  • Step 301 receiving multiple carrier signals.
  • the remote unit refers to a remote unit in a repeater, or an RRU (Remote Radio Unit, remote radio unit) connected to a BBU (Base band Unite) optical fiber, or It can be a remote unit in a DAS (Distributed Antenna System).
  • RRU Remote Radio Unit, remote radio unit
  • BBU Base band Unite
  • DAS Distributed Antenna System
  • multiple carrier signals refer to digital optical signals loaded on a certain frequency signal.
  • multiple carrier signals are sent by receiving near-end units, extension units or BBUs. .
  • carrier 1-1 such as SISO (Single Input Single Output, single input single output)
  • carrier 1-2 For example, MIMO (Multiple In Multiple Out)
  • the bandwidth value of carrier 2-1 such as SISO
  • carrier 2-2 such as MIMO
  • the bandwidth value of carrier 3-1 such as SISO
  • the bandwidth value of carrier 3-2 such as MIMO
  • the bandwidth value of carrier 4-1 such as SISO
  • the bandwidth value of carrier 4-2 such as MIMO
  • Step 302 process based on multiple carrier signals, and acquire multiple radio frequency signals.
  • processing is performed based on multiple carrier signals, and there are many ways to obtain multiple radio frequency signals.
  • the multiple carrier signals are carrier signals of multiple operators.
  • the bandwidth value and signal type of the signal are combined to generate multiple target carrier signals, and the signal format conversion is performed based on the multiple target carrier signals to obtain multiple radio frequency signals.
  • the signal type such as SISO
  • MIMO MIMO
  • combine the 100M carrier 3-1 signal and 40M carrier 4- 1 signal is combined to obtain 140M carrier signal C
  • another example is MIMO
  • the carrier Signal A, carrier signal B, carrier signal C, and carrier signal D perform signal format conversion, convert digital signals into radio frequency signals, and obtain radio frequency signal A, radio frequency signal B, radio frequency signal C, and radio frequency signal D.
  • the acquired multiple carrier signals are carrier signals sent by the BBU, and directly perform signal format conversion on the multiple carrier signals to acquire multiple radio frequency signals.
  • Step 303 amplifying the power of the multi-channel radio frequency signals and inputting them into the integrated filter module in the remote unit to filter the multi-channel radio frequency signals, and combining the filtered multi-channel radio frequency signals based on the signal types of the multi-channel radio frequency signals , generating a radio frequency signal with a target bandwidth and sending it to the antenna;
  • the integrated filtering module includes a filter, a circulator and a bridge connected in sequence.
  • the remote unit includes a filtering integrated module connected in sequence with a filter, a circulator, and an electric bridge.
  • the filtered multiple radio frequency signals are combined to generate a radio frequency signal with a target bandwidth and send it to the antenna.
  • the target bandwidth can be selected and set according to the needs of the application scenario.
  • the wideband radio frequency signal is sent to the antenna, so that the integrated filter module processes it, and the recovered radio frequency signal is transmitted to the coverage area through the antenna.
  • the remote transmission coverage method of the present disclosure receives multiple carrier signals, processes them based on the multiple carrier signals, acquires multiple radio frequency signals, amplifies the power of the multiple radio frequency signals, and then inputs them into the remote unit.
  • the filtering integrated module is used to filter the multi-channel radio frequency signals, and merge the filtered multi-channel radio frequency signals based on the signal type of the multi-channel radio frequency signals to generate a target bandwidth radio frequency signal and send it to the antenna; wherein, the filtering integrated module includes Filters, circulators and bridges are connected in sequence.
  • FIG. 4 shows another remote transmission coverage method described in the embodiment of the present disclosure.
  • An example diagram of the process, this method is applied to the remote unit, as shown in Figure 4, including:
  • Step 401 receiving a radio frequency signal of a target bandwidth.
  • Step 402 input the radio frequency signal into the filtering integrated module in the remote unit, so as to divide the radio frequency signal, generate multiple radio frequency signals and perform filtering, and perform power amplification on the filtered multi-channel radio frequency signals; wherein, the filtering integrated
  • the modularization modules including filters, circulators and bridges are connected in sequence.
  • Step 403 performing signal format conversion on the power-amplified multiple radio frequency signals, acquiring multiple carrier signals and sending them.
  • the remote unit includes a filter integration module connected in sequence with a filter, a circulator, and an electric bridge. After receiving a radio frequency signal of a target bandwidth, the radio frequency signal is divided into branches, and multiple radio frequency signals are generated. Filtering, performing power amplification on the filtered multi-channel radio frequency signals, performing signal format conversion on the power-amplified multi-channel radio frequency signals, acquiring multiple carrier signals and sending them.
  • the target bandwidth can be selected and set according to the needs of the application scenario.
  • DAS receives the 300M large-bandwidth RF signal from the antenna, splits the 300M large-bandwidth RF signal, generates 140M RF signal and 160M RF signal, and then performs filtering respectively, and filters the filtered 140M RF signal and 160M RF signal. Power amplification, convert the signal format of the amplified 140M RF signal and 160M RF signal, and obtain the 140M carrier signal and 160M carrier signal for transmission.
  • embodiments of the present disclosure propose a remote unit.
  • the remote unit 100 includes a digital circuit 101, a radio frequency circuit 102, a power amplifier module 103, and an integrated filtering module 104; wherein, the integrated filtering module 104 includes a filter 1041, a first circulator 1042 and The bridges 1043 are connected in sequence.
  • the digital circuit 101 is configured to receive multiple carrier signals, process them based on the multiple carrier signals, acquire multiple radio frequency signals and send them to multiple radio frequency circuits 102 respectively.
  • Radio frequency circuits 102 connected to the digital circuit 101 are used to send multiple radio frequency signals to corresponding power amplifier modules 103 .
  • a plurality of power amplifier modules 103 connected to the plurality of radio frequency circuits 102 in one-to-one correspondence is used for amplifying the power of multiple radio frequency signals.
  • the first circulator 1042 connected to each filter 1041 in a one-to-one correspondence is used to input the radio frequency signal into the bridge 1043 according to the signal type.
  • the digital circuit 101 is specifically configured to: combine the bandwidth values and signal types of multiple carrier signals to generate multiple target carrier signals, and perform signal format based on the multiple target carrier signals Convert and obtain multiple radio frequency signals.
  • the remote unit 100 further includes a second circulator 105 , a first load 106 and a second load 107 .
  • Each second circulator 105 is connected to each power amplifier module 103 respectively, and is used to receive each channel of radio frequency signal after power amplification and send it to each filter 1041 .
  • Each pair of first circulators includes two first circulators 1042 connected to the same bridge 1043 .
  • Each first load 106 is connected to one first circulator 1042 of each pair of first circulators.
  • Each second load 107 is connected to each second circulator 105 .
  • the remote unit 100 includes a digital circuit 101, a radio frequency circuit 102, a power amplifier module 103, and an integrated filtering module 104; wherein, the integrated filtering module 104 includes a filter 1041, a first The circulator 1042 and the bridge 1043 are connected in sequence.
  • the electric bridge 1043 in the integrated filter module 104 connected to the antenna is used to obtain radio frequency signals of a target bandwidth, and split the radio frequency signals to generate multiple radio frequency signals.
  • the first circulator 1042 connected to the bridge 1043 is used to input each radio frequency signal into the filter 1041 .
  • Each power amplifier module 103 connected to each filter 1041 is used to amplify the power of each channel of the filtered radio frequency signal.
  • the radio frequency circuit 102 correspondingly connected with each power amplifier module 103 is used to receive the power amplified radio frequency signal of each channel and send it to the digital circuit 101 .
  • the digital circuit 101 connected to each radio frequency circuit 102 is used for performing signal format conversion on multiple radio frequency signals, acquiring multiple carrier signals and sending them.
  • the remote unit 100 further includes a target filter 108 , a radio frequency switch 109 and a third load 1010 .
  • one circulator 1042 of a pair of first circulators connected to the bridge 1043 is connected to the target filter 108 .
  • the radio frequency switching switch 109 is connected to the target filter 108 in sequence, and the third load 1010 is connected to the radio frequency switching switch 109 in sequence.
  • the specific implementation structure of the filter integration module 104 ensures that each downlink radio frequency port can realize the target bandwidth such as 300M signal transmission function.
  • 300M is shown as two sets of 160M+140M signals.
  • the filter bandwidth can be divided and designed according to the frequency band of the specific access operator. For example, it can also be divided into the first 150M+the last 150M, etc.) : Frequency band 3300MHZ, bandwidth 300M.
  • FIG. 9 and FIG. 10 a schematic diagram of the integrated filter module 104 connected to the power amplifier module 103,
  • ANT1_A, ANT1_B, ANT2_A, and ANT2_B in Figures 8-10 are all 300M signal outputs, and each channel realizes the standing wave detection and standing wave protection functions, and the standing waves of each node in each channel are matched Yes, there will be no standing wave deterioration after combining due to different frequency band bandwidths.
  • embodiments of the present disclosure propose a remote transmission coverage system.
  • the remote transmission coverage system includes: a local unit 100 , an extension unit 200 and a remote unit 300 .
  • the near-end unit 100 is used to receive multiple radio frequency signals sent by multiple base stations, and after amplifying and converting the multiple radio frequency signals through the radio frequency circuit in the near-end unit, the amplification and frequency conversion is performed through the digital module in the near-end unit. Afterwards, the radio frequency signal is converted into a signal format, and a digital optical signal is generated and sent to the expansion unit.
  • the extension unit 200 is configured to generate multiple carrier signals from received digital optical signals of different channels according to a preset protocol and distribute them to different antenna ports of the remote unit according to the monitoring setting information.
  • the remote unit 300 is configured to receive multiple carrier signals, perform processing based on the multiple carrier signals, acquire multiple radio frequency signals, amplify the power of the multi-channel radio frequency signals and then filter the multi-channel radio frequency signals, based on the multi-channel radio frequency signals.
  • the signal type combines the filtered multi-channel RF signals to generate a target bandwidth RF signal and send it to the antenna.
  • the remote transmission coverage system includes: a local unit 100 , an extension unit 200 and a remote unit 300 .
  • the remote unit 300 is used to receive the radio frequency signal of the target bandwidth, input the radio frequency signal into the filtering integrated module in the remote unit, so as to divide the radio frequency signal, generate multiple radio frequency signals and perform filtering, and filter the Perform power amplification on the multi-channel radio frequency signals, perform signal format conversion on the power-amplified multi-channel radio frequency signals, acquire multiple carrier signals and send them to the expansion unit 200 .
  • the extension unit 200 is configured to receive multiple carrier signals, analyze the multiple carrier signals, and obtain digital optical signals.
  • the near-end unit 100 is configured to receive a digital optical signal, perform format conversion on the digital optical signal, generate a radio frequency signal, and send the radio frequency signal to the base station after being processed by the radio frequency circuit in the near-end unit 100 .
  • the remote transmission coverage system includes: a near-end unit 100 and a remote unit 300 .
  • the near-end unit 100 is used to receive multiple radio frequency signals sent by multiple base stations, and after amplifying and converting the multiple radio frequency signals through the radio frequency circuit in the near-end unit, the digital module in the near-end unit 100 amplifies and converts the frequency The signal format of the radio frequency signal is converted, and multiple carrier signals are generated and sent to the remote unit 300 .
  • the remote unit 300 is configured to receive multiple carrier signals, perform processing based on the multiple carrier signals, acquire multiple radio frequency signals, amplify the power of the multi-channel radio frequency signals and then filter the multi-channel radio frequency signals, based on the multi-channel radio frequency signals.
  • the signal type combines the filtered multi-channel RF signals to generate a target bandwidth RF signal and send it to the antenna.
  • the remote transmission coverage system includes: a near-end unit 100 and a remote unit 300 .
  • the remote unit 300 receives the radio frequency signal of the target bandwidth, and inputs the radio frequency signal into the filter integrated module in the remote unit 300 to split the radio frequency signal, generate multiple radio frequency signals and perform filtering, and filter the filtered multi-channel Perform power amplification on the radio frequency signal, perform signal format conversion on the multiple radio frequency signals after power amplification, acquire multiple carrier signals and send them to the near-end unit 100 .
  • the near-end unit 100 is configured to perform format conversion on a plurality of carrier signals to generate a plurality of radio frequency signals, and send the radio frequency signals to the base station after being processed by the radio frequency circuit in the near-end unit 100.
  • the remote transmission coverage system includes: a remote unit 300 and a baseband processing unit 400 .
  • the baseband processing unit 400 is configured to generate multiple carrier signals.
  • the remote unit 300 is configured to receive multiple carrier signals, perform processing based on the multiple carrier signals, acquire multiple radio frequency signals, amplify the power of the multi-channel radio frequency signals and then filter the multi-channel radio frequency signals, based on the multi-channel radio frequency signals.
  • the signal type combines the filtered multi-channel RF signals to generate a target bandwidth RF signal and send it to the antenna.
  • the remote transmission coverage system includes: a remote unit 300 and a baseband processing unit 400 .
  • the remote unit 300 receives the radio frequency signal of the target bandwidth, and inputs the radio frequency signal into the filter integrated module in the remote unit 300 to split the radio frequency signal, generate multiple radio frequency signals and perform filtering, and filter the filtered multi-channel Perform power amplification on the radio frequency signal, perform signal format conversion on the multiple radio frequency signals after power amplification, acquire multiple carrier signals and send them to the baseband processing unit 400 .
  • the baseband processing unit 400 is configured to receive multiple carrier signals.
  • the remote transmission coverage system includes a near-end unit 100, an extension unit 200, and a remote unit 300.
  • the room, the extension unit 200 and the remote unit 300 are all connected through optical fibers, and base stations of multiple operators are connected through multiple radio frequency ports of the coupler near-end unit 100 .
  • the radio frequency signal output by the base station enters the near-end unit 100 after passing through the coupler, undergoes radio frequency amplification and frequency conversion, and is converted into a digital signal by an ADC (Analog-to-digital converter, analog-to-digital converter).
  • ADC Analog-to-digital converter, analog-to-digital converter
  • the corresponding digital intermediate frequency signal is down-converted to the baseband signal, and then low-pass filtered to achieve the required out-of-band rejection.
  • the processed signal data and monitoring data are merged together, they are framed according to a certain protocol (such as CPRI protocol, eCPRI protocol, etc.), and the signal after framing is sent to the photoelectric conversion module at the relay end to be converted into a digital optical signal.
  • a certain protocol such as CPRI protocol, eCPRI protocol, etc.
  • the extension unit 200 receives the digital optical signal sent by the near-end unit 100, and converts it through the photoelectric conversion module It is an electrical signal, and then deframed to separate the signal data and monitoring data.
  • the extension unit 200 distributes the received baseband signal information of different channels of the near-end unit 100 to the remote unit 300 corresponding to different optical ports according to the monitoring setting information.
  • the distributed signal data and monitoring data are merged together and framed according to a certain protocol (such as CPRI protocol, eCPRI protocol, etc.).
  • the signal after framing is sent to the extension unit 200 to be converted into a digital optical signal by the photoelectric conversion module, and then transmitted to the remote unit 300 through an optical fiber.
  • the remote unit 300 receives the digital optical signal sent by the extension unit 200 and transmits it
  • the conversion module converts it into an electrical signal, and then deframes and separates the signal data and monitoring data.
  • the signal data is digitally up-converted into a digital intermediate frequency signal.
  • the digital intermediate frequency signal of the channel is sent to the ADC/DAC subsystem to be converted into an analog intermediate frequency signal, and the frequency is up-converted by the up-conversion module to a radio frequency signal.
  • the current AD integrated chip has its own local oscillator mixing function, which can directly complete the conversion of digital signals into radio frequency signals).
  • the radio frequency signal is amplified by the power amplifier module 103, it enters the filter integrated module 104 to restore a relatively pure radio frequency signal, and then transmits the restored radio frequency signal to the coverage area through the antenna feeder system.
  • the working process of the uplink is basically the same as that of the downlink, that is, after the spatial radio frequency signal is received by the antenna, it is filtered by the integrated filter module 104 and then enters the low-noise amplifier module for amplification, and then enters the downlink.
  • the frequency conversion module down-converts the frequency to an analog IF signal
  • the ADC/DAC subsystem in the remote unit 300 converts it into a digital IF signal
  • the baseband processing unit performs digital down-conversion and frequency selection filtering to move the frequency
  • the photoelectric conversion module converts it into a digital optical signal.
  • the optical path is transmitted to the extension unit 200, and the extension unit 200 combines all the baseband signals uploaded by the optical ports connected to the remote unit 300, converts them into optical signals through an optical module, and sends them to the near-end unit 100.
  • the near-end unit 100 converts the photoelectric conversion module into a digital electrical signal
  • the baseband processing unit performs filtering and digital up-conversion into a digital intermediate frequency signal
  • the ADC/DAC subsystem converts it into an analog intermediate frequency signal
  • the relay-side up-conversion module up-converts it into a radio frequency signal 1.
  • the remote unit 300 performs radio frequency filtering (such as a bandwidth of 300M) on the uplink of the 300M signal received by the antenna port.
  • the Array Field Programmable Logic Gate Array) digital filter divides the 300M signal into 160M and 140M signals, and transmits the signal of the base station operating frequency band connected to the corresponding near-end unit 100 radio frequency port through and downlink reverse path (wherein the uplink is due to It does not involve linear technical requirements such as power amplification and power amplification.
  • signal transmission processing with a larger bandwidth than the downlink can be achieved.
  • the reception of the AD chip does not support large bandwidth signal reception, the load can be changed to the upstream output port of the circulator of this application.
  • Filter the filter is 300M bandwidth
  • switch and then connect the uplink radio frequency link, it can also realize the same downlink output of 160M and 140M for each channel respectively, combined to realize the function of 300M antenna reception).
  • the multi-channel design of the near-end unit 100 supports multi-operator signal access, and realizes the target bandwidth such as 300M baseband signal transmission (the 300M signal is divided into 2 or more) to the extension unit 200 through FPGA filtering and combining processing.
  • the extension unit 200 distributes the multi-carrier signals to the connected remote unit 300, and the digital module of the remote unit 300 sends the signals of different carriers (for example, the carrier 1 is the first 160M signal, and the carrier 2 is the last 140M signal) to the corresponding different carriers respectively.
  • the AD radio frequency path carries out radio frequency amplification, such as 2 road radio frequency paths carry out power amplification to carrier 1, carrier 2 signal respectively, then enter filter integrated module 104 to process, and filter integrated module 104 processes after 2 road signal bridges (combined Road and power division), and the external antenna is transmitted to realize the large bandwidth signal transmission of the antenna port.
  • radio frequency amplification such as 2 road radio frequency paths carry out power amplification to carrier 1, carrier 2 signal respectively
  • An embodiment of the present disclosure also provides a computer storage medium, wherein the computer storage medium can store a program, and when the program is executed, it can realize the various implementations of the remote transmission coverage method provided by the embodiments shown in FIGS. 3-4 . some or all of the steps.
  • An embodiment of the present disclosure also provides a remote transmission coverage device, which includes: a processor; a memory for storing instructions executable by the processor; wherein the processor is configured to:
  • the filter integrated module in the remote unit to filter the multi-channel radio frequency signals, and combine the filtered multi-channel radio frequency signals based on the signal type of the multi-channel radio frequency signals to generate the target
  • the wideband radio frequency signal is sent to the antenna; wherein, the integrated filter module includes a filter, a circulator and a bridge connected in sequence.
  • the processor is also configured as:
  • the filtering integrated module includes The filter, circulator and bridge are connected in sequence;
  • the remote transmission coverage device includes a processor 1610, a memory 1620, an input device 1630, and an output device 1640; the number of processors 1610 in the remote transmission coverage device may be one or more, and in FIG.
  • One processor 1610 is taken as an example; the processor 1610, the memory 1620, the input device 1630, and the output device 1640 in the remote transmission coverage device may be connected through a bus or in other ways. In FIG. 16, connection through a bus is taken as an example.
  • the memory 1620 can be used to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the remote transmission coverage method in the embodiment of the present invention.
  • the processor 1610 executes various functional applications and data processing of the electronic device by running software programs, instructions and modules stored in the memory 1620, that is, implements the remote transmission coverage method provided by the embodiment of the present invention.
  • the memory 1620 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 1620 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 1620 may further include memory located remotely relative to the processor 1610, and these remote memories may be connected to electronic devices through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 1630 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of electronic equipment, and can include a keyboard, a mouse, and the like.
  • the output device 1640 may include a display device such as a display screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

本公开涉及一种拉远传输覆盖方法、系统以及拉远单元,其中,方法包括:接收多个载波信号,基于多个载波信号进行处理,获取多路射频信号,将多路射频信号进行功率放大后输入拉远单元中的滤波一体化模块,以对多路射频信号进行滤波,基于多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线;其中,滤波一体化模块包括滤波器、环形器和电桥依次连接。由此,实现每根天线口大带宽信号发射,满足大带宽大功率信号覆盖需求,降低建网成本,提升建网便利度,同时提高通信质量。

Description

拉远传输覆盖方法、系统以及拉远单元
本公开要求于2021年9月30日提交中国专利局、申请号为2021111625675、发明名称为“拉远传输覆盖方法、系统以及拉远单元”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种拉远传输覆盖方法、系统以及拉远单元。
背景技术
随着5G时代的到来,各大通讯厂商已开发了各种类型的5G产品比如RRU(Remote Radio Unit,射频拉远单元)、DAS(Distributed Antenna System,分布式天线系统)或直放站,目前RRU、DAS或直放站支持的载波工作带宽普遍在100M~200M之间,无法满足运营商共站共址多载波大带宽应用的需求。
相关技术中,通过增加硬件通路(例如需要覆盖300M带宽信号,通道1传输前150M,通道2传输后150M),然后每个通路单独外置一个天线,由于每个天线只有一个频段的信号,所以覆盖一个方向的300M信号需要2根天线,覆盖多个方向需要的天线数更多。这使得系统整体的成本,不论是建设成本还是运营维护成本,都具有较大的增加。同时,由于多个信号之间的相互干扰,输出的信号质量较差,无法满足5G新业务对于通信质量、可靠性的要求。
发明内容
为了解决上述技术问题或者至少部分地解决上述技术问题,本公开提供了一种拉远传输覆盖方法、系统以及拉远单元,通过在拉远单元中顺序的设置滤波器、环形器和电桥,不仅极大的降低了成本,同时降低和优化了底噪叠加的影响,提高了通信的质量和可靠性。
第一方面,本公开提供了一种拉远传输覆盖方法,应用于拉远单元,包括:
接收多个载波信号;
基于所述多个载波信号进行处理,获取多路射频信号;
将所述多路射频信号进行功率放大后输入所述拉远单元中的滤波一体化模块,以对所述多路射频信号进行滤波,基于所述多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线;其中,所述 滤波一体化模块包括滤波器、环形器和电桥依次连接。
通过第一方面提供的拉远传输覆盖方法,接收多个载波信号,基于多个载波信号进行处理,获取多路射频信号,将多路射频信号进行功率放大后输入拉远单元中的滤波一体化模块,以对多路射频信号进行滤波,基于多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线,实现每根天线口大带宽信号发射,满足大带宽大功率信号覆盖需求,降低建网成本,提升建网便利度,同时提高通信质量。
第二方面,本公开提供了一种拉远传输覆盖方法,应用于拉远单元,包括:
接收目标带宽的射频信号;
将所述射频信号输入所述拉远单元中的滤波一体化模块,以对所述射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大;
对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送。
第三方面,本公开提供了一种拉远单元,其特征在于,包括:
数字电路,用于接收多个载波信号,并基于所述多个载波信号进行处理,获取多路射频信号分别发送给多个射频电路;
与所述数字电路连接的多个射频电路,用于将所述多路射频信号发送给对应的功放模块;
与所述多个射频电路一一对应连接的多个功放模块,用于对所述多路射频信号进行功率放大;
与所述多个功放模块连接的滤波一体化模块,所述滤波一体化模块包括滤波器、第一环形器和电桥依次连接,与每个所述功放模块一一对应连接的滤波器,用于对进行功率放大后的每路射频信号进行滤波;
与每个所述滤波器连接的第一环形器,用于按照信号类型将射频信号输入电桥;
与所述第一环形器连接的电桥,用于将信号类型相同的射频信号进行合并,生成目标带宽的射频信号发送给天线;其中,所述滤波器和所述第一环形器的个数均为n,所述电桥的个数为m,其中,所述m=n/2,n为大于等于2的正整数。
第四方面,本公开提供了一种拉远单元,其特征在于,包括:
与天线连接的滤波一体化模块中的电桥,用于获取目标带宽的射频信号,并对所述射频信号进行分路,生成多路射频信号;其中,所述滤波一体化模块包括滤波器、第一环形器和电桥依次连接;
与所述电桥连接的第一环形器,用于将每路射频信号输入滤波器;
与每个所述第一环形器连接的滤波器,用于对所述每路射频信号进行滤波;其中,所述滤波器和所述第一环形器的个数均为n,所述电桥的个数为m,其中,所述m=n/2,n为大于等于2的正整数;
与每个所述滤波器连接的每个功放模块,用于对滤波后的每路射频信号进行功率放大;
与每个所述功放模块一一对应连接的射频电路,用于接收功率放大后的每路射频信号并发送给数字电路;
与每个所述射频电路连接的数字电路,用于对多路射频信号进行信号格式转换,获取多个载波信号并发送。
第五方面,本公开提供了一种拉远传输覆盖系统,包括:近端单元、扩展单元和前述第三方面实施例所述拉远单元;
所述近端单元,用于接收多个基站发送的多个射频信号,并通过所述近端单元中的射频电路对所述多个射频信号进行放大变频后,通过所述近端单元中的数字模块对放大变频后射频信号进行信号格式转换,生成数字光信号发送给所述扩展单元;
所述扩展单元,用于根据监控设置信息将接收到的不同通道所述数字光信号按照预设协议生成多个载波信号分发到所述拉远单元的不同天线口;
所述拉远单元,用于接收所述多个载波信号,基于所述多个载波信号进行处理,获取多路射频信号,将所述多路射频信号进行功率放大后对所述多路射频信号进行滤波,基于所述多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线。
第六方面,本公开提供了一种拉远传输覆盖系统,包括近端单元和前述第三方面实施例所述拉远单元;
所述近端单元,用于接收多个基站发送的多个射频信号,并通过所述近端单元中的射频电路对所述多个射频信号进行放大变频后,通过所述近端单元中的数字模块对放大变频后射频信号进行信号格式转换,生成多个载波信号发送给所述拉远单元;
所述拉远单元,用于接收所述多个载波信号,基于所述多个载波信号进行处理,获取多路射频信号,将所述多路射频信号进行功率放大后对所述多路射频信号进行滤波,基于所述多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线。
第七方面,本公开提供了一种拉远传输覆盖系统,包括基带处理单元和前述第三方面实施例所述拉远单元;
所述基带处理单元,用于生成所述多个载波信号;
所述拉远单元,用于接收多个载波信号,基于所述多个载波信号进行处理,获取多路射频信号,将所述多路射频信号进行功率放大后对所述多路射频信号进行滤波,基于所述多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线。
第八方面,本公开提供了一种拉远传输覆盖系统,包括:近端单元、扩展单元和前述第四方面实施例所述拉远单元;
所述拉远单元,用于接收目标带宽的射频信号,将所述射频信号输入所述拉远单元中的滤波一体化模块,以对所述射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大,对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送给所述扩展单元;
所述扩展单元,用于接收所述多个载波信号,并对所述多个载波信号进行解析,获取数字光信号;
所述近端单元,用于接收所述数字光信号,并对所述数字光信号进行格式转换,生成射频信号,并通过所述近端单元中的射频电路对所述射频信号进行处理后发送给基站。
第九方面,本公开提供了一种拉远传输覆盖系统,包括近端单元和前述第四方面实施例所述拉远单元;
所述拉远单元,接收目标带宽的射频信号,将所述射频信号输入所述拉远单元中的滤波一体化模块,以对所述射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大,对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送给所述近端单元;
所述近端单元,用于对所述多个载波信号进行格式转换,生成多个射频信号,并通过所述近端单元中的射频电路对所述射频信号进行处理后发送给基站。
第十方面,本公开提供了一种拉远传输覆盖系统,包括基带处理单元和前述第四方面实施例所述拉远单元;
所述拉远单元,接收目标带宽的射频信号,将所述射频信号输入所述拉远单元中的滤波一体化模块,以对所述射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大,对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送给所述基带处理单元;
所述基带处理单元,用于接收所述多个载波信号。
上述第二方面以及上述第二方面的各可能的设计中所提供的拉远传输覆盖方法,第三、四方面以及上述第三、四方面的各可能的设计中所提供的拉远单元, 以及上述第五、六、七、八、九和十方面以及上述第三、四和五方面的各可能的设计中所提供的拉远传输覆盖系统,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术的一种大带宽传输示例图;
图2为相关技术的另一种大带宽传输示例图;
图3为本公开实施例所述一种拉远传输覆盖方法的流程示意图;
图4为本公开实施例所述另一种拉远传输覆盖方法的流程示意图;
图5为本公开实施例所述一种拉远单元的结构示意图;
图6为本公开实施例所述另一种拉远单元的结构示意图;
图7为本公开实施例所述又一种拉远单元的结构示意图
图8为本公开实施例所述一种滤波一体化模块的结构示意图;
图9为本公开实施例所述另一种滤波一体化模块的结构示例图;
图10为本公开实施例所述又一种滤波一体化模块的结构示例图;
图11为本公开实施例所述一种拉远传输覆盖系统的结构示意图;
图12为本公开实施例所述另一种拉远传输覆盖系统的结构示意图;
图13为本公开实施例所述又一种拉远传输覆盖系统的结构示意图;
图14为本公开实施例所述一种拉远传输覆盖系统的示例图;
图15为本公开实施例所述另一种拉远传输覆盖系统的示例图;
图16为本公开实施例所述一种拉远传输覆装置的结构示意图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开 的一部分实施例,而不是全部的实施例。
在实际应用中,为了满足运营商共站共址多载波大带宽应用的需求,可以通过增加硬件通路(例如需要覆盖300M带宽信号,通道1传输前150M,通道2传输后150M),然后每个硬件通路单独外置一个天线,由于每个天线只有一个频段的信号,所以覆盖一个方向的300M信号需要2根天线,覆盖多个方向需要的天线数更多,或者是用2套设备分别工作在不同带宽下共同覆盖这个区域,增加了覆盖的投入成本。且信号之间的相互干扰使得信噪比恶化,无法满足5G新业务的需求。
针对上述问题,本公开实施例提出一种拉远传输覆盖方法,在滤波器后端增加依序连接的环形器和电桥形成滤波一体化模块对多路射频信号进行滤波,基于多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线,实现每根天线口都能出大带宽(比如300M甚至更高带宽)射频信号的需求,满足运营商共站共址应用需求,大大方便了实际覆盖需求,同时保障了各通道输出的非工作带宽底噪均被滤波器滤波后输出,相邻频段信号合路时底噪叠加的影响将被降低和优化,进而提高了信号的质量。
具体地,以用多个设备分段对信号进行覆盖(以300M信号覆盖为例,相关方案是用一台设备进行前160M频段信号覆盖,再用一台设备进行后140M频段信号覆盖),如图1所示的采用多通道直接发射覆盖的方案,虽然整机能出300M信号,但是它的每个输出端口和天线只能出160M(或140M)信号,不能实现每根天线或输出端口300M信号覆盖的需求。
本公开实施例提出一种拉远传输覆盖方法,仅用一台设备就能完成,有成本优势和安装优势(节约安装空间)。
具体地,如图2所示的通过在设备外接电桥实现大带宽覆盖的技术方案,当电桥输出口接天线的任意一端口的驻波信号比如是一个300M的合路信号,反射信号是滤波器1频段+滤波器2频段信号的合路信号,而滤波器1端口驻波匹配设计只匹配频段1,滤波器2端口驻波匹配设计只匹配频段2,由于反射信号和滤波器带宽不匹配,导致必然天线口的驻波异常大。
本公开实施例提出一种拉远传输覆盖方法,具备驻波回路完好的优势,同时整体安装也显得美观且简洁方便。
图3为本公开实施例所述一种拉远传输覆盖方法的流程示例图,该方法应用于拉远单元,如图1所示,包括:
步骤301,接收多个载波信号。
在本公开实施例中,拉远单元指的是可以是直放站中的远端单元、也可以是 与BBU(Base band Unite)光纤连接的RRU(Remote Radio Unit,射频拉远单元)、还可以是DAS(Distributed Antenna System分布式天线系统)中的远端单元。
在公开实施例中,多个载波信号指的是加载到一定频率信号上数字光信号,针对不同场景下的拉远单元,接收近端单元、扩展单元或者是BBU发送的都是多个载波信号。
以DAS举例,接收到多个运营商的多个载波信号,比如运营商1,载波1-1(比如SISO(Single Input Single Output,单输入单输出))的带宽值为60M,载波1-2(比如MIMO(Multiple In Multiple Out,多进多出))为90M,运营商2,载波2-1(比如SISO)的带宽值为100M,载波2-2(比如MIMO)为50M,运营商3,载波3-1(比如SISO)的带宽值为100M,载波3-2(比如MIMO)为70M,运营商4,载波4-1(比如SISO)的带宽值为40M,载波4-2(比如MIMO)为90M。
步骤302,基于多个载波信号进行处理,获取多路射频信号。
在本公开实施例中,基于多个载波信号进行处理,获取多路射频信号的方式有很多种,作为一种可能实现方式,多个载波信号为多个运营商的载波信号,基于多个载波信号的带宽值和信号类型进行合并,生成多个目标载波信号,基于多个目标载波信号进行信号格式转换,获取多路射频信号。
继续以上述例子为例,按照信号类型,比如SISO,将运营商1和运营商2的60M载波1-1信号和100M载波2-1信号进行合并,获取160M载波信号A,再比如MIMO,将运营商1和运营商2的90M载波1-2信号和50M载波2-2信号进行合并,获取140M载波信号B,将运营商3和运营商4的100M载波3-1信号和40M载波4-1信号进行合并,获取140M载波信号C,再比如MIMO,将运营商3和运营商4的70M载波3-2信号和90M载波4-2信号进行合并,获取160M载波信号D,最后分别对载波信号A、载波信号B、载波信号C和载波信号D进行信号格式转换,将数字信号转换为射频信号,获取射频信号A、射频信号B、射频信号C和射频信号D。
在本公开另一种可能实现方式中,获取的多个载波信号为BBU发送的载波信号,直接将多个载波信号进行信号格式转换,获取多路射频信号。
步骤303,将多路射频信号进行功率放大后输入拉远单元中的滤波一体化模块,以对多路射频信号进行滤波,基于多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线;其中,滤波一体化模块包括滤波器、环形器和电桥依次连接。
在本公开实施例中,拉远单元包括滤波器、环形器和电桥依次连接的滤波一体化模块,接收进行功率放大后的多路射频信号进行滤波,并基于多路射频信号 的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线。其中,目标带宽可以根据应用场景需要选择设置。
继续以上述例子为例,将类型为SISO的射频信号A和射频信号C进行合并,获取300M大带宽的射频信号发送给天线,将类型为MIMO射频信号B和射频信号D进行合并,获取300M大带宽的射频信号发送给天线,由此,滤波一体化模块进行处理,获取恢复的射频信号通过天线发射到覆盖区。
综上所述,本公开的拉远传输覆盖方法,通过接收多个载波信号,基于多个载波信号进行处理,获取多路射频信号,将多路射频信号进行功率放大后输入拉远单元中的滤波一体化模块,以对多路射频信号进行滤波,基于多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线;其中,滤波一体化模块包括滤波器、环形器和电桥依次连接。由此,实现每根天线口大带宽信号发射,满足大带宽大功率信号覆盖需求,降低建网成本,提升建网便利度,同时提高通信质量。
基于上述实施例主要针对下行信号处理方式的描述,本公开提出另一种拉远传输覆盖方法,主要描述上行信号处理方式,图4为本公开实施例所述另一种拉远传输覆盖方法的流程示例图,该方法应用于拉远单元,如图4所示,包括:
步骤401,接收目标带宽的射频信号。
步骤402,将射频信号输入拉远单元中的滤波一体化模块,以对射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大;其中,滤波一体化模块包括滤波器、环形器和电桥依次连接。
步骤403,对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送。
在本公开实施例中,拉远单元包括滤波器、环形器和电桥依次连接的滤波一体化模块,接收目标带宽的射频信号后,以对射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大,对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送。其中,目标带宽可以根据应用场景需要选择设置。
以DAS举例,接收天线的300M大带宽的射频信号,将300M大带宽的射频信号进行分路,生成140M射频信号和160M射频信号后分别进行滤波,将滤波后的140M射频信号和160M射频信号进行功率放大,对功率放大后的140M射频信号和160M射频信号进行信号格式转换,获取140M载波信号和160M载波信号发送。
由此,在拉远单元中顺序的设置滤波器、环形器和电桥,不仅极大的降低了 成本,同时降低和优化了底噪叠加的影响,提高了通信的质量和可靠性。
基于上述实施例,本公开实施例提出了一种拉远单元。
下面,结合图5-6,介绍一个拉远单元100的具体实现结构。
具体地,如图5所示,拉远单元100包括数字电路101、射频电路102、功放模块103、滤波一体化模块104;其中,滤波一体化模块104包括滤波器1041、第一环形器1042和电桥1043依次连接。
数字电路101,用于接收多个载波信号,并基于多个载波信号进行处理,获取多路射频信号分别发送给多个射频电路102。
与数字电路101连接的多个射频电路102,用于将多路射频信号发送给对应的功放模块103。
与多个射频电路102一一对应连接的多个功放模块103,用于对多路射频信号进行功率放大。
与多个功放模块103连接的滤波一体化模块104,滤波一体化模块104包括滤波器1041、第一环形器1042和电桥1043依次连接,与每个功放模块103一一对应连接的滤波器1041,用于对进行功率放大后的多路射频信号进行滤波。
与每个滤波器1041一一对应连接的第一环形器1042,用于按照信号类型将射频信号输入电桥1043。
与第一环形器1042连接的电桥1043,用于将信号类型相同的射频信号进行合并,生成目标带宽的射频信号发送给天线;其中,滤波器和第一环形器的个数均为n,电桥的个数为m,其中,m=n/2,n为大于等于2的正整数。
在本公开一种可选的实施方式中,数字电路101,具体用于:基于多个载波信号的带宽值和信号类型进行合并,生成多个目标载波信号,基于多个目标载波信号进行信号格式转换,获取多路射频信号。
如图6所示,拉远单元100还包括第二环形器105、第一负载106和第二负载107。
每个第二环形器105分别与每个功放模块103连接,用于接收进行功率放大后的每路射频信号后发送给每个滤波器1041。
每对第一环形器包括与同一电桥1043连接的两个第一环形器1042。
每个第一负载106和每对第一环形器中的一个第一环形器1042连接。
每个第二负载107和每个第二环形器105连接。
在本公开实施例中,如图5所示,拉远单元100包括数字电路101、射频电路102、功放模块103、滤波一体化模块104;其中,滤波一体化模块104包括滤波器1041、第一环形器1042和电桥1043依次连接。
其中,与天线连接的滤波一体化模块104中的电桥1043,用于获取目标带宽的射频信号,并对射频信号进行分路,生成多路射频信号。
与电桥1043连接的第一环形器1042,用于将每路射频信号输入滤波器1041。
与每个第一环形器1042连接的滤波器1041,用于对每路射频信号进行滤波;其中,滤波器1041和第一环形器1042的个数均为n,电桥1043的个数为m,其中,m=n/2,n为大于等于2的正整数。
与每个滤波器1041连接的每个功放模块103,用于对滤波后的每路射频信号进行功率放大。
与每个功放模块103一一对应连接的射频电路102,用于接收功率放大后的每路射频信号并发送给数字电路101。
与每个射频电路102连接的数字电路101,用于对多路射频信号进行信号格式转换,获取多个载波信号并发送。
如图7所示,拉远单元100还包括目标滤波器108、射频切换开关109和第三负载1010。
其中,与电桥1043连接的一对第一环形器中的一个环形器1042与目标滤波器108连接。
射频切换开关109与目标滤波器108依次连接,以及第三负载1010与射频切换开关109依次连接。
作为一种示例,如图8所示,滤波一体化模块104的具体实现结构,保证了下行的每一个射频端口均实现目标带宽比如300M信号发射的功能。如图8所示(示意图中将300M示意为160M+140M的两组信号,实际应用中可以根据具体接入运营商的频段进行划分设计滤波器带宽,比如还可以分为前150M+后150M等):频段3300MHZ、带宽300M。
更具体地,如图9和图10所示,滤波一体化模块104连接功放模块103的示意图,
由此,实现图8-图10中的ANT1_A、ANT1_B、ANT2_A、ANT2_B都为300M信号输出,每一路通道都实现驻波检测和驻波保护功能,且每一路的各个节点的驻波都是匹配的,不会因为频段带宽不同导致合路后驻波变差的情况。
基于上述实施例,本公开实施例提出了一种拉远传输覆盖系统。
下面,结合图11-13,介绍一个拉远传输覆盖系统的具体实现结构。
如图11所示,拉远传输覆盖系统包括:近端单元100、扩展单元200和拉远单元300。
其中,近端单元100,用于接收多个基站发送的多个射频信号,并通过近端单 元中的射频电路对多个射频信号进行放大变频后,通过近端单元中的数字模块对放大变频后射频信号进行信号格式转换,生成数字光信号发送给扩展单元。
扩展单元200,用于根据监控设置信息将接收到的不同通道数字光信号按照预设协议生成多个载波信号分发到拉远单元的不同天线口。
拉远单元300,用于接收多个载波信号,基于多个载波信号进行处理,获取多路射频信号,将多路射频信号进行功率放大后对多路射频信号进行滤波,基于多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线。
在本公开的实施例中,如图11所示,拉远传输覆盖系统包括:近端单元100、扩展单元200和拉远单元300。
其中,拉远单元300,用于接收目标带宽的射频信号,将射频信号输入拉远单元中的滤波一体化模块,以对射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大,对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送给扩展单元200。
扩展单元200,用于接收多个载波信号,并对多个载波信号进行解析,获取数字光信号。
近端单元100,用于接收数字光信号,并对数字光信号进行格式转换,生成射频信号,并通过近端单元100中的射频电路对射频信号进行处理后发送给基站。
如图12所示,拉远传输覆盖系统包括:近端单元100和拉远单元300。
近端单元100,用于接收多个基站发送的多个射频信号,并通过近端单元中的射频电路对多个射频信号进行放大变频后,通过近端单元100中的数字模块对放大变频后射频信号进行信号格式转换,生成多个载波信号发送给拉远单元300。
拉远单元300,用于接收多个载波信号,基于多个载波信号进行处理,获取多路射频信号,将多路射频信号进行功率放大后对多路射频信号进行滤波,基于多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线。
在本公开的实施例中,如图12所示,拉远传输覆盖系统包括:近端单元100和拉远单元300。
拉远单元300,接收目标带宽的射频信号,将射频信号输入拉远单元300中的滤波一体化模块,以对射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大,对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送给近端单元100。
近端单元100,用于对多个载波信号进行格式转换,生成多个射频信号,并通 过近端单元100中的射频电路对射频信号进行处理后发送给基站。
如图13所示,拉远传输覆盖系统包括:拉远单元300和基带处理单元400。
基带处理单元400,用于生成多个载波信号。
拉远单元300,用于接收多个载波信号,基于多个载波信号进行处理,获取多路射频信号,将多路射频信号进行功率放大后对多路射频信号进行滤波,基于多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线。
在本公开的实施例中,如图13所示,拉远传输覆盖系统包括:拉远单元300和基带处理单元400。
拉远单元300,接收目标带宽的射频信号,将射频信号输入拉远单元300中的滤波一体化模块,以对射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大,对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送给基带处理单元400。
基带处理单元400,用于接收多个载波信号。
下面以图11所示的系统为例进行举例说明,如图14所示,拉远传输覆盖系统包括近端单元100、扩展单元200和拉远单元300、,近端单元100和扩展单元200之间、扩展单元200和拉远单元300之间均通过光纤连接,多家运营商基站通过耦合器近端单元100的多个射频端口连接。
更具体地,如图15所示,基站输出的射频信号,经耦合器后进入近端单元100,经过射频放大变频,再经过ADC(Analog-to-digital converter,模拟数字转换器)转换为数字中频信号,将所对应的数字中频信号再下变频至基带信号,进行低通滤波,以达到需要的带外抑制度。
经过处理后的信号数据与监控数据合并到一起后按照某种协议(如CPRI协议、eCPRI协议等)组帧,组帧之后的信号送入中继端光电转换模块转换为数字光信号,经光纤传到扩展单元200(其中,扩展单元200接收的基带信号包含了近端单元100所有通道的信号),扩展单元200接收到近端单元100发来的数字光信号,将其经过光电转换模块转为电信号,然后解帧分离出信号数据和监控数据。
扩展单元200根据监控设置信息将接收到的近端单元100不同通道的基带信号信息分发到不同光口对应的拉远单元300上,具体发送原理和近端单元100发送到扩展单元200类似,即经过分发的信号数据与监控数据合并到一起后按照某种协议(如CPRI协议、eCPRI协议等)组帧。组帧之后的信号送入扩展单元200光电转换模块转换为数字光信号,经光纤传到拉远单元300,拉远单元300接收到扩展单元200发来的数字光信号,将其经过远端光电转换模块转为电信号,然后 解帧分离出信号数据和监控数据。
信号数据在经过滤波处理后进行数字上变频成为数字中频信号,通过通道的设置选择,将通道的数字中频信号传送给ADC/DAC子系统转换为模拟中频信号,由上变频模块上变频至射频信号(目前的AD集成芯片自带本振混频功能,可以直接完成数字信号转换为射频信号)。射频信号经过功放模块103进行功率放大后,进入滤波一体化模块104恢复得到较为纯净的射频信号,再把恢复的射频信号接天馈系统发射到覆盖区。
需要说明的是,上行链路的工作流程基本与下行链路相同,即空间的射频信号被天线接收到后,经过滤波一体化模块104滤波后先进入低噪放模块进行放大后,再进入下变频模块下变频至模拟中频信号、拉远单元300中ADC/DAC子系统转换为数字中频信号、基带处理单元进行数字下变频和选频滤波搬频、光电转换模块转换为数字光信号、光纤进行光路传输至扩展单元200,扩展单元200将所有连接拉远单元300光口上传的基带信号合路后通过光模块转换为光信号发送给近端单元100。
近端单元100将光电转换模块转换为数字电信号、基带处理单元进行滤波和数字上变频为数字中频信号、ADC/DAC子系统转换为模拟中频信号、中继端上变频模块上变频至射频信号、将恢复的上行射频信号通过近端单元100外的耦合器直接送入基站射频接收单元。
具体地,拉远单元300上行将天线口接收到的比如300M信号进行射频滤波(比如带宽300M),射频放大进入AD(Analog-to-digital,模拟数字转换)采样后,通过FPGA(Field Programmable Gate Array现场可编程逻辑门阵列)数字滤波器将300M信号再分为160M和140M信号,通过和下行反向路径从对应近端单元100射频端口所接基站工作频段的信号进行传输(其中,上行由于不涉及功放大功率放大等线性技术要求,通常可以实现比下行更大带宽的信号传输处理,若AD芯片的接收不支持大带宽信号接收,可以在本申请的环形器上行输出口将负载改为滤波器(滤波器为300M带宽)和切换开关,然后连接上行射频链路,也可以实现如下行一致每个通道分别160M、140M输出,合路实现300M天线接收的功能)。
由此,近端单元100多通道设计,支持多运营商信号接入,并通过FPGA滤波及合路处理实现目标带宽比如300M基带信号传输(300M信号分为2个或者以上)至扩展单元200,扩展单元200将多载波信号分发至下接的拉远单元300,拉远单元300的数字模块将不同载波的信号(如载波1为前160M信号,载波2是后140M信号)分别发送至对应不同的AD射频通路进行射频放大,比如2路路射频通路分别对载波1、载波2信号进行功率放大,然后进入滤波一体化模块104处理, 滤波一体化模块104将2路信号电桥处理后(合路和功分),外接天线发射出去,实现天线口大带宽信号发射。
本公开实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时可实现图3-图4所示实施例提供的拉远传输覆盖方法的各实现方式中的部分或全部步骤。
本公开实施例还提供了一种拉远传输覆盖装置,该装置包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:
接收多个载波信号;
基于多个载波信号进行处理,获取多路射频信号;
将多路射频信号进行功率放大后输入拉远单元中的滤波一体化模块,以对多路射频信号进行滤波,基于多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线;其中,滤波一体化模块包括滤波器、环形器和电桥依次连接。
其中,所述处理器还被配置为:
接收目标带宽的射频信号;
将射频信号输入拉远单元中的滤波一体化模块,以对射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大;其中,滤波一体化模块包括滤波器、环形器和电桥依次连接;
对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送。
如图16所示,该拉远传输覆盖装置包括处理器1610、存储器1620、输入装置1630和输出装置1640;拉远传输覆盖装置中处理器1610的数量可以是一个或多个,图16中以一个处理器1610为例;拉远传输覆盖装置中的处理器1610、存储器1620、输入装置1630和输出装置1640可以通过总线或其他方式连接,图16中以通过总线连接为例。
存储器1620作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本发明实施例中的拉远传输覆盖方法对应的程序指令/模块。处理器1610通过运行存储在存储器1620中的软件程序、指令以及模块,从而执行电子设备的各种功能应用以及数据处理,即实现本发明实施例所提供的拉远传输覆盖方法。
存储器1620可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器1620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存 储器件。在一些实例中,存储器1620可进一步包括相对于处理器1610远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置1630可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入,可以包括键盘、鼠标等。输出装置1640可包括显示屏等显示设备。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (19)

  1. 一种拉远传输覆盖方法,其特征在于,应用于拉远单元,包括:
    接收多个载波信号;
    基于所述多个载波信号进行处理,获取多路射频信号;
    将所述多路射频信号进行功率放大后输入所述拉远单元中的滤波一体化模块,以对所述多路射频信号进行滤波,基于所述多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线;其中,所述滤波一体化模块包括滤波器、环形器和电桥依次连接。
  2. 根据权利要求1所述的拉远传输覆盖方法,其特征在于,所述基于所述多个载波信号进行处理,获取多路射频信号,包括:
    基于所述多个载波信号的带宽值和信号类型进行合并,生成多个目标载波信号;
    基于所述多个目标载波信号进行信号格式转换,获取所述多路射频信号。
  3. 一种拉远传输覆盖方法,其特征在于,应用于拉远单元,包括:
    接收目标带宽的射频信号;
    将所述射频信号输入所述拉远单元中的滤波一体化模块,以对所述射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大;其中,滤波一体化模块包括滤波器、环形器和电桥依次连接;
    对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送。
  4. 一种拉远单元,其特征在于,包括:
    数字电路,用于接收多个载波信号,并基于所述多个载波信号进行处理,获取多路射频信号分别发送给多个射频电路;
    与所述数字电路连接的多个射频电路,用于将所述多路射频信号发送给对应的功放模块;
    与所述多个射频电路一一对应连接的多个功放模块,用于对所述多路射频信号进行功率放大;
    与所述多个功放模块连接的滤波一体化模块,所述滤波一体化模块包括滤波器、第一环形器和电桥依次连接,与每个所述功放模块一一对应连接的滤波器,用于对进行功率放大后的每路射频信号进行滤波;
    与每个所述滤波器一一对应连接的第一环形器,用于按照信号类型将每路射频信号输入电桥;
    与所述第一环形器连接的电桥,用于将信号类型相同的射频信号进行合并, 生成目标带宽的射频信号发送给天线;其中,所述滤波器和所述第一环形器的个数均为n,所述电桥的个数为m,其中,所述m=n/2,n为大于等于2的正整数。
  5. 根据权利要求4所述的拉远单元,其特征在于,所述数字电路,具体用于:
    基于所述多个载波信号的带宽值和信号类型进行合并,生成多个目标载波信号;
    基于所述多个目标载波信号进行信号格式转换,获取所述多路射频信号。
  6. 根据权利要求4所述的拉远单元,其特征在于,还包括:第二环形器;
    每个所述第二环形器分别与每个所述功放模块连接,用于接收进行功率放大后的每路射频信号发送给每个所述滤波器。
  7. 根据权利要求4所述的拉远单元,其特征在于,
    两个与同一电桥连接的第一环形器构成一对第一环形器。
  8. 根据权利要求7所述的拉远单元,其特征在于,还包括:第一负载;
    每个所述第一负载和每对第一环形器中的一个第一环形器连接。
  9. 根据权利要求6所述的拉远单元,其特征在于,还包括:第二负载;
    每个所述第二负载和每个所述第二环形器连接。
  10. 一种拉远单元,其特征在于,包括:
    与天线连接的滤波一体化模块中的电桥,用于获取目标带宽的射频信号,并对所述射频信号进行分路,生成多路射频信号;
    与所述电桥连接的第一环形器,用于将每路射频信号输入滤波器;
    与每个所述第一环形器一一对应连接的滤波器,用于对所述每路射频信号进行滤波;其中,所述滤波器和所述第一环形器的个数均为n,所述电桥的个数为m,其中,所述m=n/2,n为大于等于2的正整数;
    与每个所述滤波器连接的每个功放模块,用于对滤波后的每路射频信号进行功率放大;
    与每个所述功放模块一一对应连接的射频电路,用于接收功率放大后的每路射频信号并发送给数字电路;
    与每个所述射频电路连接的数字电路,用于对多路射频信号进行信号格式转换,获取多个载波信号并发送。
  11. 根据权利要求10所述的拉远单元,其特征在于,还包括:目标滤波器、射频切换开关和第三负载;
    与同一所述电桥连接的一对第一环形器中的一个第一环形器和所述目标滤波器连接;
    所述射频切换开关与所述目标滤波器依次连接,以及所述第三负载与所述射 频切换开关依次连接。
  12. 一种拉远传输覆盖系统,其特征在于,包括:近端单元、扩展单元和如权利要求4-9任一项所述的拉远单元;
    所述近端单元,用于接收多个基站发送的多个射频信号,并通过所述近端单元中的射频电路对所述多个射频信号进行放大变频后,通过所述近端单元中的数字模块对放大变频后射频信号进行信号格式转换,生成数字光信号发送给所述扩展单元;
    所述扩展单元,用于根据监控设置信息将接收到的不同通道的所述数字光信号按照预设协议生成多个载波信号分发到所述拉远单元的不同天线口;
    所述拉远单元,用于接收所述多个载波信号,基于所述多个载波信号进行处理,获取多路射频信号,将所述多路射频信号进行功率放大后对所述多路射频信号进行滤波,基于所述多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线。
  13. 一种拉远传输覆盖系统,其特征在于,包括:近端单元和如权利要求4-9任一项所述的拉远单元;
    所述近端单元,用于接收多个基站发送的多个射频信号,并通过所述近端单元中的射频电路对所述多个射频信号进行放大变频后,通过所述近端单元中的数字模块对放大变频后射频信号进行信号格式转换,生成多个载波信号发送给所述拉远单元;
    所述拉远单元,用于接收所述多个载波信号,基于所述多个载波信号进行处理,获取多路射频信号,将所述多路射频信号进行功率放大后对所述多路射频信号进行滤波,基于所述多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线。
  14. 一种拉远传输覆盖系统,其特征在于,包括:基带处理单元和如权利要求4-9任一项所述的拉远单元;
    所述基带处理单元,用于生成多个载波信号;
    所述拉远单元,用于接收多个载波信号,基于所述多个载波信号进行处理,获取多路射频信号,将所述多路射频信号进行功率放大后对所述多路射频信号进行滤波,基于所述多路射频信号的信号类型对滤波后的多路射频信号进行合并,生成目标带宽的射频信号发送给天线。
  15. 一种拉远传输覆盖系统,其特征在于,包括:近端单元、扩展单元和如权利要求10或11所述的拉远单元;
    所述拉远单元,用于接收目标带宽的射频信号,将所述射频信号输入所述拉 远单元中的滤波一体化模块,以对所述射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大,对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送给所述扩展单元;
    所述扩展单元,用于接收所述多个载波信号,并对所述多个载波信号进行解析,获取数字光信号;
    所述近端单元,用于接收所述数字光信号,并对所述数字光信号进行格式转换,生成射频信号,并通过所述近端单元中的射频电路对所述射频信号进行处理后发送给基站。
  16. 一种拉远传输覆盖系统,其特征在于,包括:近端单元和如权利要求10或11所述的拉远单元;
    所述拉远单元,接收目标带宽的射频信号,将所述射频信号输入所述拉远单元中的滤波一体化模块,以对所述射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大,对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送给所述近端单元;
    所述近端单元,用于对所述多个载波信号进行格式转换,生成多个射频信号,并通过所述近端单元中的射频电路对所述射频信号进行处理后发送给基站。
  17. 一种拉远传输覆盖系统,其特征在于,包括:基带处理单元和如权利要求10或11所述的拉远单元;
    所述拉远单元,接收目标带宽的射频信号,将所述射频信号输入所述拉远单元中的滤波一体化模块,以对所述射频信号进行分路,生成多路射频信号后进行滤波,将滤波后的多路射频信号进行功率放大,对功率放大后的多路射频信号进行信号格式转换,获取多个载波信号并发送给所述基带处理单元;
    所述基带处理单元,用于接收所述多个载波信号。
  18. 一种电子设备,其特征在于,所述电子设备包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现上述权利要求1-3中任一所述的拉远传输覆盖方法。
  19. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-3中任一所述的拉远传输覆盖方法。
PCT/CN2021/133732 2021-09-30 2021-11-26 拉远传输覆盖方法、系统以及拉远单元 WO2023050551A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111162567.5 2021-09-30
CN202111162567.5A CN113938140A (zh) 2021-09-30 2021-09-30 拉远传输覆盖方法、系统以及拉远单元

Publications (1)

Publication Number Publication Date
WO2023050551A1 true WO2023050551A1 (zh) 2023-04-06

Family

ID=79277800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133732 WO2023050551A1 (zh) 2021-09-30 2021-11-26 拉远传输覆盖方法、系统以及拉远单元

Country Status (2)

Country Link
CN (1) CN113938140A (zh)
WO (1) WO2023050551A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116647853A (zh) * 2023-07-26 2023-08-25 赛尔通信服务技术股份有限公司 增强5g信号功率的das末端无源装置
CN117156448A (zh) * 2023-11-01 2023-12-01 中国铁塔股份有限公司 信号传输方法、设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045081A1 (zh) * 2022-08-31 2024-03-07 华为技术有限公司 一种射频系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364829A (zh) * 2008-09-04 2009-02-11 京信通信系统(中国)有限公司 多通道基带拉远系统的射频收发模块及基带拉远系统
CN101877917A (zh) * 2009-04-28 2010-11-03 大唐移动通信设备有限公司 射频拉远单元
CN102281113A (zh) * 2011-08-03 2011-12-14 京信通信系统(中国)有限公司 通信中继装置及其驻波比检测装置和方法
CN102291725A (zh) * 2011-01-04 2011-12-21 京信通信系统(中国)有限公司 多模数字射频拉远系统
CN102664683A (zh) * 2012-04-27 2012-09-12 北京汉铭通信有限公司 一种用于光纤拉远式无线分布系统的远端信号处理方法及远端机
US20160183248A1 (en) * 2014-12-19 2016-06-23 Huaning Niu Remote radio unit and baseband unit for asymetric radio area network channel processing
CN106357310A (zh) * 2016-09-14 2017-01-25 京信通信系统(中国)有限公司 多输入多输出信号传输方法和系统
CN109639354A (zh) * 2018-12-21 2019-04-16 京信通信系统(中国)有限公司 一种改变直放站数据传输速率的方法及直放站
CN109639356A (zh) * 2018-12-28 2019-04-16 深圳市菲尔康通讯有限公司 光纤分布系统
CN111181892A (zh) * 2019-12-09 2020-05-19 成都天奥集团有限公司 一种多载波超宽带射频拉远单元中频处理的装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185809B (zh) * 2011-05-06 2015-02-11 京信通信系统(中国)有限公司 一种射频拉远系统
CN202221999U (zh) * 2011-08-04 2012-05-16 京信通信系统(中国)有限公司 实现td-scdma多频段信号单端口接入基站的电路
CN202565279U (zh) * 2012-04-27 2012-11-28 北京汉铭通信有限公司 一种用于光纤拉远式无线分布系统的远端机
CN103957180B (zh) * 2014-05-13 2018-09-28 西安华为技术有限公司 数字预失真拉远的方法、装置及系统
CN111478731A (zh) * 2019-01-23 2020-07-31 广州开信通讯系统有限公司 通信系统和通信方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364829A (zh) * 2008-09-04 2009-02-11 京信通信系统(中国)有限公司 多通道基带拉远系统的射频收发模块及基带拉远系统
CN101877917A (zh) * 2009-04-28 2010-11-03 大唐移动通信设备有限公司 射频拉远单元
CN102291725A (zh) * 2011-01-04 2011-12-21 京信通信系统(中国)有限公司 多模数字射频拉远系统
CN102281113A (zh) * 2011-08-03 2011-12-14 京信通信系统(中国)有限公司 通信中继装置及其驻波比检测装置和方法
CN102664683A (zh) * 2012-04-27 2012-09-12 北京汉铭通信有限公司 一种用于光纤拉远式无线分布系统的远端信号处理方法及远端机
US20160183248A1 (en) * 2014-12-19 2016-06-23 Huaning Niu Remote radio unit and baseband unit for asymetric radio area network channel processing
CN106357310A (zh) * 2016-09-14 2017-01-25 京信通信系统(中国)有限公司 多输入多输出信号传输方法和系统
CN109639354A (zh) * 2018-12-21 2019-04-16 京信通信系统(中国)有限公司 一种改变直放站数据传输速率的方法及直放站
CN109639356A (zh) * 2018-12-28 2019-04-16 深圳市菲尔康通讯有限公司 光纤分布系统
CN111181892A (zh) * 2019-12-09 2020-05-19 成都天奥集团有限公司 一种多载波超宽带射频拉远单元中频处理的装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116647853A (zh) * 2023-07-26 2023-08-25 赛尔通信服务技术股份有限公司 增强5g信号功率的das末端无源装置
CN116647853B (zh) * 2023-07-26 2023-09-22 赛尔通信服务技术股份有限公司 增强5g信号功率的das末端无源装置
CN117156448A (zh) * 2023-11-01 2023-12-01 中国铁塔股份有限公司 信号传输方法、设备及介质
CN117156448B (zh) * 2023-11-01 2024-01-30 中国铁塔股份有限公司 信号传输方法、设备及介质

Also Published As

Publication number Publication date
CN113938140A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
US10601378B2 (en) Distributed antenna system architectures
WO2023050551A1 (zh) 拉远传输覆盖方法、系统以及拉远单元
US9859982B2 (en) Distributed antenna system
US10122476B2 (en) Radio unit with internal parallel antenna calibration
CN109845118B (zh) 一种塔顶设备及无源互调消除方法
US20160242130A1 (en) Donor unit, remote unit, and mobile communication base station system having same
CN115276679A (zh) 移频系统、移频方法
CN217656751U (zh) 一种5g射频拉远装置以及室内分布系统
CN215186707U (zh) 远端单元以及多频段分布式系统
KR102165072B1 (ko) 분산 안테나 시스템 및 이의 리모트 장치
US20180138995A1 (en) Apparatus and method for measuring broadband passive intermodulation distortion signal
CN111479230B (zh) 室内光分布系统及方法
US11736961B2 (en) Multi-band remote unit in a wireless communications system (WCS)
CN213989224U (zh) 有源5G-iLAN天线及有源5G-iLAN天线系统
CN113014275A (zh) 远端单元、多频段分布式系统以及信号处理方法
CN2927565Y (zh) 一种基站子系统
CN113037386A (zh) 中心单元和拉远单元
WO2017000228A1 (zh) 一种基于同频组网的载波处理方法及装置
US20230145768A1 (en) Shifting a frequency band of an interference signal out of a pass band of a signal path
WO2024055327A1 (zh) 子带全双工通信系统、方法及基站
KR20200013786A (ko) 안테나 시스템, 기지국, 및 통신 시스템
KR100607652B1 (ko) 섹터 병합을 위한 기지국 장치 및 그의 송수신 방법
CN115499031A (zh) 一种信号通讯终端以及信号通讯系统
CN115499030A (zh) 一种信号通讯终端以及信号通讯系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959112

Country of ref document: EP

Kind code of ref document: A1