WO2024082949A1 - 一种基站 - Google Patents
一种基站 Download PDFInfo
- Publication number
- WO2024082949A1 WO2024082949A1 PCT/CN2023/122194 CN2023122194W WO2024082949A1 WO 2024082949 A1 WO2024082949 A1 WO 2024082949A1 CN 2023122194 W CN2023122194 W CN 2023122194W WO 2024082949 A1 WO2024082949 A1 WO 2024082949A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- channel
- transceiver
- shared
- sector
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 claims description 10
- 230000009347 mechanical transmission Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 20
- 230000006855 networking Effects 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 101100208113 Arabidopsis thaliana TRX7 gene Proteins 0.000 description 1
- 101100208114 Arabidopsis thaliana TRX8 gene Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/382—Monitoring; Testing of propagation channels for resource allocation, admission control or handover
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/085—Access point devices with remote components
Definitions
- the embodiments of the present disclosure relate to the field of communications, and in particular, to a base station.
- FIG1 is a schematic diagram of RRU base station networking according to the related art.
- the traditional radio remote unit (RRU) base station three-sector networking method distributes three multi-transmitting multi-mode base stations and three antennas at 120 degrees to achieve full coverage of three sectors, and each sector is connected to a multi-transmitting multi-mode base station through a cable.
- the site needs to provide three power supplies to the three base stations, that is, three power lines need to be provided, and three pairs of optical fibers are required.
- each sector also needs to be equipped with an independent outdoor lightning protection box.
- a new shared base station can greatly reduce the number of power terminals and optical fibers, which greatly reduces the supporting costs and construction difficulties, and greatly improves the convenience and speed of deployment.
- this traditional connection method is relatively fixed. No matter which sector covers an increase or decrease in the number of users, a fixed 4TR (transmit receive) RRU is used to achieve signal coverage. When the number of users decreases, there is a certain waste of resources. With the large-scale coverage of 5G base stations, the demand for 5G base stations has surged. The traditional RRU base station networking method requires a huge number of RRUs. Installing multiple RRUs at the same time also brings great challenges and difficulties to site selection and construction.
- a base station which includes: at least 4 transceiver channels, wherein the multiple transceiver channels include at least 3 fixed transceiver channels and at least 1 shared transceiver channel, the at least 3 fixed transceiver channels are respectively connected to at least 3 sectors, each sector corresponds to at least 1 fixed transceiver channel, and the at least 1 shared transceiver channel is shared with at least 3 sectors.
- FIG1 is a schematic diagram of RRU base station networking according to the related art
- FIG2 is a block diagram of a base station according to an embodiment of the present disclosure.
- FIG3 is a block diagram of a base station according to an exemplary embodiment of the present disclosure.
- FIG4 is a schematic diagram of a shared base station system according to this embodiment.
- FIG5 is a block diagram of the internal implementation of a shared base station according to this embodiment.
- FIG6 is a block diagram 1 of a circuit design of a four-sector three-sector shared base station according to this embodiment
- FIG7 is a block diagram 2 of a circuit design of a four-sector three-sector shared base station according to this embodiment
- FIG8 is a schematic diagram of sector splitting according to this embodiment.
- FIG9 is a block diagram of a 10-channel three-sector networking method according to this embodiment.
- FIG10 is a block diagram of a 10-channel four-sector networking method according to the present embodiment.
- FIG11 is a flow chart of intelligent allocation of shared base stations according to this embodiment.
- FIG2 is a block diagram of the base station according to the embodiment of the present disclosure.
- the base station includes: multiple transceiver channels, the multiple transceiver channels include at least 3 TR fixed channels and at least 1 TR shared channel, the at least 3 TR fixed channels are respectively connected to at least 3 sectors, each sector corresponds to at least 1 TR fixed channel, and the at least 1 TR shared channel is shared with at least 3 sectors.
- the TR shared channel when there is one TR shared channel, the TR shared channel is used to monitor the utilization of physical resource blocks PRB of at least three sectors, and is allocated to the target sector whose maximum utilization is greater than a first preset threshold; when there is more than one TR shared channel, the TR shared channel is used to monitor the utilization of physical resource blocks PRB of at least three sectors, and is allocated to at least one target sector whose utilization is greater than a second preset threshold.
- the first and second preset thresholds can be set according to actual conditions, for example, can be set to 50%, 55%, 60%, etc., and the first preset threshold and the second preset threshold can be the same or different.
- the target sector may also be split into at least a first sector and a second sector; at least one TR fixed channel corresponding to the target sector is used to be configured for the first sector; at least one TR shared channel corresponding to the target sector is used to be configured for the second sector, and other sectors may also be split into at least two sectors, TR fixed channels are configured for some of the sectors, and TR shared channels are configured for other sectors except the some of the sectors.
- FIG3 is a block diagram of a base station according to an exemplary embodiment of the present disclosure.
- the base station further includes a channel selection component, and at least one TR shared channel is connected to the channel selection component; the TR shared channel is used to be configured to the target sector through the channel selection component.
- the channel selection component can be arranged outside the base station, and the TR shared channel is connected to the channel selection component, and is configured to the target sector through the channel selection component, that is, the channel selection is performed through the channel selection component.
- the channel selection component can be specifically a mechanical transmission switch.
- each of the at least three sectors includes at least two antenna interfaces, and at least one of the at least two antenna interfaces is fixedly connected to at least one TR fixed channel; at least one of the at least two antenna interfaces other than the at least one antenna interface is used to connect to at least one TR shared channel.
- each of the multiple transceiver channels is used to receive baseband data from the BBU, process the baseband data, and then send it out through the antenna; and/or each of the multiple transceiver channels receives a signal from the antenna, processes the signal, and then sends it to the BBU.
- each of the multiple transceiver channels is further used to receive baseband data from the BBU, perform carrier and digital processing on the baseband data to obtain a digital signal; convert the digital signal into an analog signal; amplify the analog signal to obtain an amplified analog signal; filter the amplified analog signal to obtain a transmission signal, and The transmit signal is sent through the antenna.
- each of the multiple transceiver channels is also used to receive a signal from an antenna, filter and low-noise amplify the signal to obtain a processed target signal, convert the target signal into a digital signal, and send the converted digital signal to the BBU.
- a base station includes at least 8 TR channels and covers three sectors.
- FIG 4 is a schematic diagram of a shared base station system according to this embodiment.
- one multi-mode base station can be used to implement three traditional base stations and achieve three-sector signal coverage.
- the difficulty of base station construction can be simplified, the supporting costs can be reduced, and the power consumption of the base station can be reduced to achieve the goals of intelligence, greenness, and energy saving.
- a shared base station with 8 transmitters and 8 receivers can be used to replace the traditional three base stations with 4 transmitters and 4 receivers.
- An 8TR RRU contains 8 TR channels, of which 6 TR channels are connected to three sectors respectively, and the remaining 2TR channels are shared with three sectors. 12 antenna interfaces are output to the outside, and the shared scheduling and optimization network is performed according to the traffic volume of different cells.
- This shared base station can connect each sector through a 2TR channel to achieve signal network coverage.
- the shared 2TR channels are switched to increase signal coverage of a sector with 4TR. It can achieve the same signal coverage as before optimization while reducing the number of RRUs. Dynamic switching between channels can be achieved in the shared base station, and a channel selection module can be added to achieve dynamic allocation of channels between the base station and the antenna.
- Figure 5 is a block diagram of the internal implementation of the shared base station according to this embodiment. As shown in Figure 5, it is composed of a digital processing module, a digital-to-analog conversion module, an analog-to-digital conversion module, a transmitting module, a receiving module, a filtering module, a channel selection module and an antenna module.
- the working process of the transmission link is as follows: the digital processing module receives the baseband data from the BBU, performs carrier and digital processing on the baseband data, and the digitally processed signal is converted into an analog signal after passing through the digital-to-analog conversion module.
- the analog signal is amplified by the transmission module and then filtered by the filtering module.
- the filtered signal enters the channel selection module and is sent to the antenna module for transmission.
- the working process of the receiving link is as follows: the antenna module receives the useful signal, and sends it to the corresponding receiving channel through the channel selection module for filtering processing to filter out the blocking interference signal, and then sends it to the receiving module for low-noise amplification and other processing.
- the signal processed by the receiving module is output as a digital signal to the analog-to-digital conversion module, and then transmitted to the digital processing module for NCO frequency conversion, extraction, carrier processing and other digital processing.
- the processed digital signal is sent to the BBU for the next communication.
- the channel selection module is the key point of this architecture, which is required to withstand the performance requirements of high power capacity, high intermodulation, high isolation, low insertion loss and high reliability and long life.
- the application cost of base station products must meet the product batch requirements. Since the channel selection module needs to withstand the rated transmission power after the base station output power amplifier, it has high requirements for the switch power capacity.
- the intermodulation index of the switch is required to reach about -150dBc. The digital switch cannot meet the application of this embodiment because the passive intermodulation index is too poor.
- this embodiment selects a mechanical transmission switch to realize the channel selection function, and realizes the requirements of low insertion loss, high intermodulation, high isolation, and high power capacity through mechanical sliding, and the cost is low and easy to apply in engineering.
- Figure 6 is a block diagram 1 of the circuit design of a shared base station with four transmitters and three sectors according to the present embodiment
- Figure 7 is a block diagram 2 of the circuit design of a shared base station with four transmitters and three sectors according to the present embodiment.
- it is an 8-transmit 8-receive base station, which integrates an 8-channel switching circuit to 12 channels internally, outputs 12 antenna interfaces externally, and is connected to a four-channel three-sector antenna.
- TR1-TR8 represent the number of channels in the RRU
- ANT1-ANT12 represent the antenna names.
- the TR1-2 channel inside the RRU corresponds to sector one
- the TR3-4 channel corresponds to sector two
- the TR5-6 channel corresponds to sector three
- the TR7-8 channel is a shared channel.
- the internal integrated channel switching circuit maps the TR7 and TR8 channels to different sectors according to the traffic volume of the three sectors. According to the traffic volume of cells in different sectors, the switch is controlled to switch the channel of the shared base station to the antenna sector corresponding to the cell with the largest traffic volume.
- This switch selection module must be able to withstand the rated transmission power and meet the system passive intermodulation index requirements.
- the switch component in this embodiment adopts a mechanical transmission switch, which can respond to all frequency bands of the base station, has high passive intermodulation index, and can withstand high-power signals to meet the system application requirements.
- the switch selects the signals of TRX7 and TRX8 to n sectors, which is equivalent to two n-to-one switches, where n is the number of sectors.
- the switch component can be integrated inside the base station. As shown in Figure 7, it can also be connected to the outside of the base station as an independent module for flexible configuration.
- Figure 8 is a schematic diagram of sector splitting according to this embodiment. As shown in Figure 8, in addition to supporting 8-channel three-sector, it also supports other networking applications such as 8-channel four-sector, and supports splitting at least one sector into two sectors covering a 60° range, with 2 channels supporting one of the sectors and a shared channel supporting the other sector.
- 8-channel three-sector in addition to supporting 8-channel three-sector, it also supports other networking applications such as 8-channel four-sector, and supports splitting at least one sector into two sectors covering a 60° range, with 2 channels supporting one of the sectors and a shared channel supporting the other sector.
- FIG. 9 is a block diagram of the networking mode of 10 channels and three sectors according to this embodiment.
- the RRU includes 6 fixed channels and 4 shared channels, wherein each sector has two fixed channels, and the 4 shared channels are allocated to different sectors by monitoring the utilization rate of the PRB of each cell. At the same time, it also supports splitting a sector into more sectors and arbitrarily configuring the shared channels.
- FIG. 10 is a block diagram of the networking mode of 10 channels and four sectors according to this embodiment. As shown in FIG.
- a 4TR four-sector is realized by an 8TR shared base station, wherein TR1-TR8 are a group of two public channels of four sectors respectively, and TR9 and TR10 are shared channels. Four sectors are selected through a four-to-one switch to realize 4-channel 4-sector coverage.
- FIG. 11 is a flowchart of intelligent allocation of a shared base station according to this embodiment, as shown in FIG. 11 , including:
- Step S1101 The BBU establishes three 2TR cells, corresponding to three sectors respectively.
- Step S1102 the BBU monitors the PRB utilization of each cell in real time, which is recorded as A, B, and C;
- Step S1103 determine whether the maximum value among A, B, and C is greater than a preset threshold. If the determination result is yes, execute step S1104, otherwise end;
- Step S1104 configure the cell with the highest utilization rate as a 4TR cell.
- the preset threshold is 50%, when the three cells are less than or equal to 50%, it means that the traffic volume is low at this time, and there is no need to expand the 4TR cell to achieve the energy saving target.
- the PRB utilization of the three cells is greater than 50%, the cell with the maximum PRB utilization is configured as a 4TR cell.
- modules or steps of the present disclosure can be implemented by a general-purpose computing device, they can be concentrated on a single computing device, or distributed on a network composed of multiple computing devices, they can be implemented by a program code executable by a computing device, so that they can be stored in a storage device and executed by the computing device, and in some cases, the steps shown or described can be executed in a different order than here, or they can be made into individual integrated circuit modules, or multiple modules or steps therein can be made into a single integrated circuit module for implementation. In this way, the present disclosure is not limited to any specific combination of hardware and software.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开实施例提供了一种基站,该基站包括:多个收发通道,其中,该多个收发通道包括至少3个收发固定通道与至少1个收发共享通道,该至少3个收发固定通道分别连接该至少3个扇区,每个扇区对应至少1个收发固定通道,该至少1个收发共享通道共享给该至少3个扇区。
Description
相关申请的交叉引用
本公开基于2022年10月18日提交的发明名称为“一种基站”的中国专利申请CN202211278558.7,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
本公开实施例涉及通信领域,具体而言,涉及一种基站。
图1是根据相关技术中RRU基站组网的示意图,如图1所示,传统的射频拉远单元(Radio Remote Unit,简称为RRU)基站三扇区组网方式将三个多发多模基站和三个天线呈120度分布,实现三扇区全覆盖,每个扇区通过电缆连接一个多发多模基站。这种组网方式站点需要提供三路电源给三个基站,即需要提供三路电源线,同时需要三对光纤,有些场景每扇区还需要配置一个独立的室外防雷箱。采用新型共享基站,可以大大减少电源端子,光纤数量要求,这样大大降低了配套成本和施工难度,大幅提升部署的便利性和速度。同时这种传统的连接方式比较固定,无论哪个扇区覆盖的用户量增加还是减少,都是通过一个固定的4TR(收发,Transmit Receive)的RRU来实现信号覆盖,当用户减少时,存在一定的资源浪费。随着5G基站的大面积覆盖,5G基站的需求激增,传统的RRU基站的组网方式对RRU的需求数量庞大,同时安装多个RRU对站点选择和施工也带来很大挑战也存在难度。
针对相关技术中RRU基站的组网方式,用户减少时存在一定的资源浪费,且对RRU的需求数量庞大,同时安装多个RRU对站点选择和施工存在较大难度的问题,尚未提出解决方案。
发明内容
根据本公开的一个实施例,提供了一种基站,该基站包括:至少4个收发通道,其中,多个收发通道包括至少3个收发固定通道与至少1个收发共享通道,至少3个收发固定通道分别连接至少3个扇区,每个扇区对应至少1个收发固定通道,至少1个收发共享通道共享给至少3个扇区。
图1是根据相关技术中RRU基站组网的示意图;
图2是根据本公开实施例的基站的框图;
图3是根据本公开示例性实施例的基站的框图;
图4是根据本实施例的共享基站系统的示意图;
图5是根据本实施例的共享基站内部实现的框图;
图6是根据本实施例的四发三扇区的共享基站电路设计的框图一;
图7是根据本实施例的四发三扇区的共享基站电路设计的框图二;
图8是根据本实施例的扇区劈裂的示意图;
图9是根据本实施例的10通道三扇区组网方式的框图;
图10是根据本实施例的10通道四扇区组网方式的框图;
图11是根据本实施例的共享基站智能分配的流程图。
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本公开实施例提供了一种基站,图2是根据本公开实施例的基站的框图,如图2所示,所述基站包括:多个收发通道,该多个收发通道包括至少3个TR固定通道与至少1个TR共享通道,至少3个TR固定通道分别连接至少3个扇区,每个扇区对应至少1个TR固定通道,至少1个TR共享通道共享给至少3个扇区。
在一实施例中,在TR共享通道为1个的情况下,TR共享通道用于监测至少3个扇区的物理资源块PRB的利用率,配置给所述最大利用率大于第一预设阈值的的目标扇区;在TR共享通道为大于1个的情况下,TR共享通道用于监测至少3个扇区的物理资源块PRB的利用率,配置给利用率大于第二预设阈值的至少一个目标扇区,该第一、第二预设阈值可以根据实际情况设置,例如可以设置为50%,55%、60%等,第一预设阈值与第二预设阈值可以相同也可以不同。
在一实施例中,目标扇区还可以被劈裂成至少第一扇区与第二扇区;目标扇区对应的至少1个TR固定通道,用于配置给第一扇区;目标扇区对应的至少1个TR共享通道,用于配置给第二扇区,其他扇区也可以被劈裂成至少两个扇区,TR固定通道配置给其中的部分扇区,TR共享通道配置给其中的除该部分扇区之外的其他扇区。
图3是根据本公开示例性实施例的基站的框图,如图3所示,所述基站还包括通道选择组件,至少1个TR共享通道与通道选择组件连接;TR共享通道,用于通过该通道选择组件配置给所述目标扇区。
在一示例性实施例中,上述的通道选择组件可以设置于基站的外部,TR共享通道与通道选择组件连接,用于通过该通道选择组件配置给目标扇区,即通过通道选择组件进行通道选择。该通道选择组件具体可以为机械传动开关。
在一实施例中,至少3个扇区中的每个扇区包括至少2个天线接口,至少2个天线接口中的至少1个天线接口与至少1个TR固定通道固定连接;至少2个天线接口中除所述至少1个天线接口之外的至少1个天线接口,用于连接至少1个TR共享通道。
本实施例中,多个收发通道中的每个通道,用于接收BBU的基带数据,对该基带数据进行处理之后通过天线发送出去;和/或,所述多个收发通道中的每个通道,接收来自天线的信号,对该信号进行处理之后发送给BBU。
在一实施例中,多个收发通道中的每个通道,还用于接收来自BBU的基带数据,对该基带数据进行载波及数字处理,得到数字信号;将该数字信号转换成模拟信号;将该模拟信号进行放大处理,得到放大后的模拟信号;对放大后的模拟信号进行滤波,得到发射信号,并
通过天线发送发射信号。
在另一实施例中,多个收发通道中的每个通道,还用于接收来自天线的信号,对信号分别进行滤波与低噪声放大处理,得到处理后的目标信号,将目标信号转换为数字信号,将转换后的数字信号发送给BBU。
下面以基站包括至少8个TR通道,覆盖三个扇区为例对本公开实施例进行详细说明。
图4是根据本实施例的共享基站系统的示意图,如图4所示,可以用一个多模基站实现传统三个基站,实现三扇区信号覆盖,通过网络优化共享基站内通道,达到简化基站工程施工难度,降低配套成本,降低基站功耗实现智能,绿色,节能的目标。
在本实施例中可以用一个8发8收的共享基站代替传统的3个4发4收基站,一个8TR的RRU包含8个TR通道,其中6个TR通道分别连接三个扇区,剩下的2TR共享给三个扇区,对外输出12个天线接口,根据不同小区的业务量进行共享调度优化网络。这种共享基站可以通过2TR通道连接每个扇区实现信号网络覆盖,同时当业务量增加时,切换增加共享2TR的通道,实现4TR一个扇区的信号覆盖。可以实现在减少RRU的前提下,完成和优化之前一样的信号覆盖。可以在共享基站内实现通道之间共享动态切换,也可以外加通道选择模块,实现基站和天线之间的通道动态分配。
图5是根据本实施例的共享基站内部实现的框图,如图5所示,由数字处理模块,数模转换模块,模数转换模块,发射模块,接收模块,滤波模块,通道选择模块和天线模块组成。
发射链路工作过程如下:数字处理模块接收来自BBU的基带数据,对基带数据进行载波及数字处理,数字处理后的信号经过数模转换模块后变成模拟信号,模拟信号经过发射模块放大等处理后给滤波模块进行滤波,滤波后的信号进入通道选择模块送给天线模块发射出去。
接收链路工作过程如下:天线模块接收到有用信号,经过通道选择模块送个响应的接收通道进行滤波处理,滤除阻塞干扰信号,然后给接收模块进行低噪声放大等处理,接收模块处理后的信号给模数转换模块输出数字信号,然后传给数字处理模块进行NCO变频,抽取,载波处理等数字处理,处理后的数字信号送给BBU进行下一步通信。
其中通道选择模块为此架构关键点,要求能承受高功率容量,高互调,高隔离,低插损的性能要求和高可靠性长时间寿命要求,同时要在基站产品应用成本必须能满足产品批量要求。由于通道选择模块在基站输出功率放大器之后,需要承受额定发射功率,对开关功率容量有较高要求,同时在空口收发合并后,为了保证发射互调落入接收带内噪声不影响接收灵敏度,要求开关的互调指标达到-150dBc左右。数字开关由于无源互调指标太差满足不了本实施例的应用,同轴开关性能和功率满足但是成本太过昂贵不能满足批量工程化应用,所以本实施例选择机械传动开关实现通道选择功能,通过机械滑动的方式实现低插损,高互调,高隔离,高功率容量的要求,并且成本低,易工程化应用。
图6是根据本实施例的四发三扇区的共享基站电路设计的框图一,图7是根据本实施例的四发三扇区的共享基站电路设计的框图二,如图6和7所示,为一个8发8收基站,内部集成8通道切换12通道的电路,对外输出12个天线接口,与四通道三扇区天线对接,TR1-TR8代表RRU中的通道数量,ANT1-ANT12代表天线名称。
RRU内部的TR1-2通道对应扇区一,TR3-4通道对应扇区二,TR5-6通道对应扇区三,TR7-8通道为共享通道。
内部集成通道切换电路,将TR7和TR8通道根据三个扇区业务量大小分别对应到不同的扇区
上。根据不同扇区的小区的业务量,控制开关切换将共享基站的通道切换到业务量最大的小区对应的天线扇区。此开关选择模块要能承受额定发射功率,同时满足系统无源互调指标需求。
本实施例中的开关组件(即上述的通道选择组件)采用一种机械传动开关,该开关可以响应基站工作的所有频段,无源互调指标高,同时可以承受大功率信号,满足系统应用需求。该开关实现将TRX7和TRX8的信号选择到n个扇区,相当于两个n选一开关,其中n为扇区个数。如图6所示,该开关组件可以是集成在基站内部。如图7所示,也可以在基站外以一个独立的模块外接,灵活配置。
图8是根据本实施例的扇区劈裂的示意图,如图8所示,除了支持8通道三扇区以外,还支持8通道四扇区等其他组网应用,支持将其中至少一个扇区劈裂成为两个覆盖60°范围的扇区,2个通道支持其中一个扇区,共享通道支持另外一个扇区。
另外,本实施例不局限于8通道三扇区这种组网方式,还包括更多通道和对应更多扇区的组网方式,图9是根据本实施例的10通道三扇区组网方式的框图,如图9所示,10通道三扇区的组网方式,RRU包含6个固定通道和4个共享通道,其中每个扇区有两个固定的通道,4个共享通道通过监控每个小区的PRB的利用率来分配给不同的扇区。同时也支持将某个扇区劈裂成为更多扇区,将共享通道任意配置。图10是根据本实施例的10通道四扇区组网方式的框图,如图10所示,用一个8TR共享基站实现4TR四扇区,其中,TR1-TR8两个一组分别为四个扇区的公共通道,TR9和TR10为共享通道通过四选一开关选择四个扇区,实现4通道4扇区覆盖。
下面以一个8通道基站覆盖4通道三扇区为例,说明名单扇区单小区下共享基站的工作流程,图11是根据本实施例的共享基站智能分配的流程图,如图11所示,包括:
步骤S1101,BBU建立3个2TR的小区,分别对应3个扇区。
步骤S1102,BBU实时监测每个小区的PRB利用率,记为A、B、C;
步骤S1103,判断A、B、C中的最大值是否大于预设阈值,在判断结果为是的情况下,执行步骤S1104,否则结束;
步骤S1104,将利用率最大的小区配置成4TR小区。
若预设阈值为50%,当三个小区都小于或等于50%时,表示此时业务量低,则不需要扩展4TR小区达到节能目标。当三个小区PRB利用率大于50%,则将最大PRB利用率的小区配置成4TR小区。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
Claims (10)
- 一种基站,包括:多个收发通道,其中,所述多个收发通道包括至少3个收发固定通道与至少1个收发共享通道,所述至少3个收发固定通道分别连接至少3个扇区,每个扇区对应至少1个收发固定通道,所述至少1个收发共享通道共享给所述至少3个扇区。
- 根据权利要求1所述的基站,其中,在所述收发共享通道为1个的情况下,所述收发共享通道用于监测所述至少3个扇区的物理资源块PRB的利用率,配置给最大利用率大于第一预设阈值的目标扇区;在所述收发共享通道为大于1个的情况下,所述收发共享通道用于监测所述至少3个扇区的物理资源块PRB的利用率,配置给最大利用率大于第二预设阈值的至少一个目标扇区。
- 根据权利要求2所述的基站,其中,所述目标扇区被劈裂成至少第一扇区与第二扇区;所述目标扇区对应的所述至少1个收发固定通道,用于配置给所述第一扇区;所述目标扇区对应的所述至少1个收发共享通道,用于配置给所述第二扇区。
- 根据权利要求2所述的基站,其中,所述基站还包括通道选择组件,所述至少1个收发共享通道与所述通道选择组件连接;所述收发共享通道,用于通过所述通道选择组件配置给所述目标扇区。
- 根据权利要求2所述的基站,其中,所述收发共享通道与通道选择组件连接,用于通过所述通道选择组件配置给所述目标扇区。
- 根据权利要求4或5所述的基站,其中,所述通道选择组件为机械传动开关。
- 根据权利要求1所述的基站,其中,所述至少3个扇区中的每个扇区包括至少2个天线接口,所述至少2个天线接口中的至少1个天线接口与所述至少1个收发固定通道固定连接;所述至少2个天线接口中除所述至少1个天线接口之外的至少1个天线接口,用于连接所述至少1个收发共享通道。
- 根据权利要求1所述的基站,其中,所述多个收发通道中的每个通道,用于接收基带处理单元BBU的基带数据,对所述基带数据进行处理之后通过天线发送出去;和/或,所述多个收发通道中的每个通道,用于接收来自所述天线的信号,对所述信号进行处理之后发送给所述BBU。
- 根据权利要求8所述的基站,其中,所述多个收发通道中的每个通道,还用于:接收来自BBU的基带数据,对所述基带数据进行载波及数字处理,得到数字信号;将所述数字信号转换成模拟信号;将所述模拟信号进行放大处理,得到放大后的模拟信号;对所述放大后的模拟信号进行滤波,得到发射信号,并通过天线发送所述发射信号。
- 根据权利要求8所述的基站,其中,所述多个收发通道中的每个通道,还用于:接收来自天线的信号;对所述信号分别进行滤波与低噪声放大处理,得到处理后的目标信号;将所述目标信号转换为数字信号;将转换后的数字信号发送给所述BBU。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211278558.7 | 2022-10-18 | ||
CN202211278558.7A CN117915350A (zh) | 2022-10-18 | 2022-10-18 | 一种基站 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024082949A1 true WO2024082949A1 (zh) | 2024-04-25 |
Family
ID=90693496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/122194 WO2024082949A1 (zh) | 2022-10-18 | 2023-09-27 | 一种基站 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117915350A (zh) |
WO (1) | WO2024082949A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1250331A (zh) * | 1998-08-13 | 2000-04-12 | 三星电子株式会社 | 码分多址系统中在基站扇区和频率分配间共享信道的方法 |
CN1797967A (zh) * | 2004-12-24 | 2006-07-05 | 中兴通讯股份有限公司 | 一种基于信道共享的多载波收发系统及其实现方法 |
EP1937011A1 (fr) * | 2006-12-20 | 2008-06-25 | Sagem Communications | Procédé et disposition de gestion dynamique de sous-secteurs dans un système de communication cellulaire |
CN104521152A (zh) * | 2013-08-09 | 2015-04-15 | 华为技术有限公司 | 多运营商共享天线的方法、系统和射频数字转换单元 |
CN111934798A (zh) * | 2020-08-10 | 2020-11-13 | 河北电信设计咨询有限公司 | 以用户为中心的可动态分配通道的rru模块及其通道动态分配方法 |
-
2022
- 2022-10-18 CN CN202211278558.7A patent/CN117915350A/zh active Pending
-
2023
- 2023-09-27 WO PCT/CN2023/122194 patent/WO2024082949A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1250331A (zh) * | 1998-08-13 | 2000-04-12 | 三星电子株式会社 | 码分多址系统中在基站扇区和频率分配间共享信道的方法 |
CN1797967A (zh) * | 2004-12-24 | 2006-07-05 | 中兴通讯股份有限公司 | 一种基于信道共享的多载波收发系统及其实现方法 |
EP1937011A1 (fr) * | 2006-12-20 | 2008-06-25 | Sagem Communications | Procédé et disposition de gestion dynamique de sous-secteurs dans un système de communication cellulaire |
CN104521152A (zh) * | 2013-08-09 | 2015-04-15 | 华为技术有限公司 | 多运营商共享天线的方法、系统和射频数字转换单元 |
CN111934798A (zh) * | 2020-08-10 | 2020-11-13 | 河北电信设计咨询有限公司 | 以用户为中心的可动态分配通道的rru模块及其通道动态分配方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117915350A (zh) | 2024-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11923905B2 (en) | Distributed antenna system, method and apparatus | |
CN106712851B (zh) | 一种分布式无线信号覆盖系统 | |
CN101426303B (zh) | 通信系统、设备和方法 | |
EP2611229B1 (en) | Baseband signal transmission method and apparatus | |
CN211830769U (zh) | 一种5g变频光分布系统 | |
US10383171B2 (en) | Digital data transmission in distributed antenna system | |
JPH05122135A (ja) | マイクロ基地局、センタ基地局および移動通信装置 | |
CN109963290B (zh) | 多业务室内覆盖系统及工作方法 | |
CN209767546U (zh) | 分布式天线系统 | |
WO2023115907A1 (zh) | 一种多业务有源分布系统 | |
CN111405580A (zh) | 一种5g室内覆盖系统及工作方法 | |
CN103905122A (zh) | 一种双模基站Ir接口间数据传输的方法及系统 | |
WO2022160950A1 (zh) | 分布式天线系统和信号传输方法 | |
CN111935730A (zh) | 实现分布式基站信号覆盖的方法、装置及基站网络 | |
WO2024082949A1 (zh) | 一种基站 | |
CN111343641A (zh) | 一种智慧5g网络系统 | |
CN215300635U (zh) | 一种5g基站耦合拉远系统 | |
US11558117B2 (en) | Wireless radio frequency conversion system | |
CN112751575B (zh) | 信号处理方法、系统及设备 | |
KR101822863B1 (ko) | 셀룰라 통신 시스템 | |
CN213072889U (zh) | 一种基于docsis的5g光平台 | |
CN212969930U (zh) | 一种5g室分基站的新型扩展覆盖端及系统 | |
CN211509298U (zh) | 一种5g信号射频变频分布系统 | |
CN113225132A (zh) | 一种5g基站耦合拉远系统 | |
CN215990809U (zh) | 一种高频光纤扩展型信号覆盖系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23878941 Country of ref document: EP Kind code of ref document: A1 |