WO2016208621A1 - Coated steel plate - Google Patents

Coated steel plate Download PDF

Info

Publication number
WO2016208621A1
WO2016208621A1 PCT/JP2016/068512 JP2016068512W WO2016208621A1 WO 2016208621 A1 WO2016208621 A1 WO 2016208621A1 JP 2016068512 W JP2016068512 W JP 2016068512W WO 2016208621 A1 WO2016208621 A1 WO 2016208621A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
zinc phosphate
steel sheet
carbon black
ωcm
Prior art date
Application number
PCT/JP2016/068512
Other languages
French (fr)
Japanese (ja)
Inventor
保明 河村
山岡 育郎
邦彦 東新
石塚 清和
岡田 克己
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016562605A priority Critical patent/JP6070917B1/en
Priority to CN201680019831.0A priority patent/CN107429406B/en
Publication of WO2016208621A1 publication Critical patent/WO2016208621A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a coated steel sheet suitable for a housing for AV equipment represented by a thin display such as a liquid crystal television, an organic EL television, and a plasma television.
  • a thin display such as a liquid crystal television, an organic EL television, and a plasma television.
  • a coated steel plate also referred to as a pre-coated steel plate or PCM
  • the base steel plate is painted and baked to form a coating film on the base steel plate.
  • the coated steel sheet is wound into a coil and delivered to the user in that state. The user unwinds the coil and performs punching, bending, drawing, or a combination thereof to produce a product.
  • Such a coated steel sheet is applied to many fields because it does not cause deterioration of the working environment on the user side and it is not necessary to perform the painting work on the user side.
  • the production of the coated steel sheet is performed by a 2-coat 2-bake method.
  • a base steel plate typically a galvanized steel plate including zinc plating and zinc alloy plating
  • chemical conversion treatment as a pretreatment.
  • an undercoat paint is applied and baked.
  • the top coat is applied and baked.
  • the back surface opposite to the front surface which is the outer side of the final product may be coated by a 1-coat 1-bake method using a paint developed for the back surface after the pretreatment.
  • Painted steel sheet has many performances such as corrosion resistance (suppression of white rust and / or red rust at the edge of the coating), workability, coating hardness (scratch resistance), stain resistance, chemical resistance, weather resistance, etc. Must be achieved at a high level.
  • corrosion resistance suppression of white rust and / or red rust at the edge of the coating
  • coating hardness scrtch resistance
  • stain resistance chemical resistance
  • weather resistance etc.
  • This level of coating thickness is the level of coating thickness required for chemical conversion treated steel plates and fingerprint-resistant steel plates, and this level of coating thickness was not required for conventional coated steel plates.
  • the coating film thickness When the coating film thickness is reduced, it is possible to reduce the burden on the insulator used to burn the organic solvent generated during baking of the coating film, and to reduce the CO 2 emitted therefrom. It becomes possible.
  • the amount of organic solvent discharged during coating baking depends on the coating thickness, so when the coating thickness is reduced, the line speed can be increased within the capacity of the incinator, and the painting work can be performed. It becomes possible to rationalize.
  • Patent Document 1 discloses an invention aimed at improving the corrosion resistance reduction of the coated steel sheet accompanying the thinning of the coating film.
  • Patent Document 3 discloses an invention aimed at achieving both corrosion resistance as a back panel application for a thin display.
  • Patent Document 4 discloses a surface-treated steel sheet intended to have corrosion resistance, thermal radiation, and conductivity.
  • the surface-treated steel sheet of Patent Document 4 has two chemical conversion treatment coating layers, and at least the upper chemical conversion treatment coating layer of the two chemical conversion treatment coating layers contains a color pigment.
  • Patent Document 5 discloses a surface-treated steel sheet for the purpose of stabilizing the appearance.
  • the surface-treated steel sheet of Patent Document 5 has two chemical conversion coating layers, and both chemical conversion coating layers contain a color pigment.
  • Patent Document 6 discloses a surface-treated steel sheet intended to have fingerprint resistance, corrosion resistance, and the like.
  • the surface-treated steel sheet of Patent Document 6 has a silica-organic resin composite film formed on the steel sheet surface.
  • the coated steel sheets described in Patent Documents 1, 2 and 3 all require a coating film thickness of 2.0 ⁇ m or more in order to ensure designability (overcoat). At least one of the undercoating film is provided. Therefore, it is difficult to reduce the coating thickness in the coated steel sheets described in Patent Documents 1, 2, and 3.
  • the surface-treated steel sheets described in Patent Documents 4 and 5 are provided with a chemical conversion treatment film having at least one layer of a color pigment on the steel sheet surface, and depending on the color pigment, there is a possibility of affecting the corrosion resistance of the steel sheet. .
  • the silica-organic resin composite film formed on the steel sheet surface is basically a transparent film. Therefore, the surface-treated steel sheet of Patent Document 6 may be greatly affected by the appearance (color tone and wrinkles) of the surface of the base steel sheet.
  • the present invention has been made in view of the above circumstances, and provides a coated steel sheet having excellent scratch resistance and corrosion resistance even though the film thickness of the coating film formed on the steel sheet surface is thin. With the goal.
  • the term “scratch resistance” means that when a predetermined brazing test is performed and wrinkles are imparted to the surface of the coated steel sheet, it is difficult to visually distinguish the wrinkles. .
  • the present invention adopts the following means in order to solve the above problems and achieve the object.
  • a coated steel sheet according to an aspect of the present invention is a base steel sheet, a galvanized layer formed on the base steel sheet, formed on the galvanized layer, and containing zinc phosphate crystals,
  • a zinc phosphate coating having an adhesion amount of 0.4 to 2.5 g / m 2 and an inorganic coating or an organic-inorganic composite formed on the zinc phosphate coating and having an adhesion amount of 50 to 2000 mg / m 2
  • a configuration in which a primary particle diameter of the first carbon black is smaller than a primary particle diameter of the second carbon black may be adopted.
  • the lower layer film has an electrical resistivity of 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ 10 ⁇ at a temperature of 25 ° C.
  • a configuration containing 5 to 15% by mass of one or more non-oxide ceramic particles selected from the group consisting of boride, carbide, nitride, and silicide of 6 ⁇ cm may be employed.
  • FIG. 1 is a schematic diagram showing a layer structure of a coated steel sheet 1 according to this embodiment.
  • a coated steel plate 1 includes a base steel plate 2, a galvanized layer 3 formed on the base steel plate 2, formed on the galvanized layer 3, contains zinc phosphate, and is attached.
  • the base steel plate 2 is not particularly limited, and various steel plates having known characteristics and chemical compositions can be used. Moreover, the chemical composition of the base steel plate 2 is not particularly limited.
  • the galvanized layer 3 is not particularly limited, and a generally known galvanized layer 3 can be used.
  • the adhesion amount of the galvanized layer 3 is preferably 3 to 100 g / m 2 per side.
  • the adhesion amount of the galvanized layer 3 is less than 3 g / m 2 per side, the corrosion resistance becomes insufficient, which is not preferable.
  • the workability of the zinc plating layer 3 and the adhesiveness with respect to the base-material steel plate 2 will fall when the adhesion amount of the zinc plating layer 3 is more than 100 g / m ⁇ 2 > per one side, it is unpreferable.
  • a more preferable coating amount of the galvanized layer 3 is 5 to 70 g / m 2 per side.
  • Zinc phosphate coating 4 A zinc phosphate film 4 containing zinc phosphate crystals is formed on the galvanized layer 3.
  • the thickness of the zinc phosphate coating 4 is preferably less than 1.0 ⁇ m, which further improves the design and scratch resistance of the processed part.
  • the minimum of thickness is not specifically limited, For example, 0.3 micrometer is mentioned.
  • the adhesion amount of the zinc phosphate film 4 is 0.4 to 2.5 g / m 2 .
  • the adhesion amount of the zinc phosphate coating 4 is less than 0.4 g / m 2 , many crystal scales (flakes) of the zinc phosphate coating 4 are formed on the surface of the galvanized layer 3, and sufficient scratch resistance is obtained. This is not preferable because
  • the adhesion amount of the zinc phosphate coating 4 exceeds 2.5 g / m 2 , the cohesive force of the zinc phosphate coating 4 decreases, and the possibility that the zinc phosphate coating 4 peels during processing increases.
  • the conductive pigment is added to the upper layer film 6 (colored coating film), it is difficult to obtain excellent conductivity, which is not preferable.
  • the amount of zinc phosphate coating 4 attached is more preferably 0.6 to 2.0 g / m 2 .
  • the maximum gap between the zinc phosphate crystals is 0.2 ⁇ m or less.
  • the maximum gap between the zinc phosphate crystals is 0.2 ⁇ m or less, the zinc plating layer 3 having a high L value can be concealed, the L value is lowered, and wrinkles and the like can be made inconspicuous. is there.
  • the maximum gap between the zinc phosphate crystals is more than 0.2 ⁇ m, the zinc plating layer 3 cannot be concealed and it is difficult to lower the L value, which is not preferable.
  • the maximum gap between zinc phosphate crystals is more preferably 0.15 ⁇ m or less. Thereby, the L value can be further reduced.
  • FIGS. 2 and 3 are schematic views showing a method for measuring the maximum gap between zinc phosphate crystals.
  • the base steel plate 2 on which the galvanized layer 3 and the zinc phosphate coating 4 are formed is cut to expose the cross section, and the cross section is further polished.
  • the cross section thus obtained is observed with an electron microscope, and an observation image of the cross section in the vicinity of the interface between the galvanized layer 3 and the zinc phosphate coating 4 is obtained.
  • the maximum gap between the zinc phosphate crystals at the interface between the galvanized layer 3 and the zinc phosphate coating 4 existing in the field of the observed image is measured.
  • the observation image of the cross section in the vicinity of the interface between the zinc plating layer 3 and the zinc phosphate coating 4 is in the state shown in FIG. 2, first, the point A that is a contact point between the zinc phosphate crystal and the zinc plating layer 3. ⁇ H is detected. Next, the lengths of the line segments AB, CD, EF, and GH are obtained, and the length of the line segment having the maximum length is set as the maximum gap length between the zinc phosphate crystals. In the case shown in FIG. 2, the length of the line segment AB is the length of the maximum gap between the zinc phosphate crystals.
  • FIG. 2 shows the case where the interface between the galvanized layer 3 and the zinc phosphate film 4 is a straight line, but the case where the interface between the galvanized layer 3 and the zinc phosphate film 4 is not a straight line as shown in FIG.
  • the maximum gap between zinc phosphate crystals is obtained as follows. First, as in the case of FIG. 2, points A ′ to H ′, which are contact points between the zinc phosphate crystal and the zinc plating layer 3, are detected. Next, the lengths of the line segments A′B ′, C′D ′, E′F ′, and G′H ′ are obtained.
  • the distances between A′B ′, C′D ′, E′F ′ and G′H ′ along the interface between the zinc phosphate crystal and the zinc plating layer 3 are not obtained.
  • the length of the line directly connecting the two points Similar to the case of FIG. 2, the length of the line segment having the maximum length is the length of the maximum gap between the zinc phosphate crystals. In the case shown in FIG. 3, the length of the line segment A′B ′ is the maximum gap length between the zinc phosphate crystals.
  • a lower layer film 5 is formed on the zinc phosphate film 4.
  • the lower layer film 5 is formed for the purpose of improving the adhesion and corrosion resistance between the zinc phosphate film 4 and the upper layer film 6.
  • the lower layer film 5 is an inorganic film or an organic-inorganic composite film.
  • the main film component of the lower layer film 5 include silicon compounds such as liquid phase silica, gas phase silica and silicate, and zircon compounds.
  • the lower layer film 5 may contain an organic resin in addition to the main film component.
  • the lower layer film 5 preferably does not substantially contain chromium from the viewpoint of environmental protection.
  • the adhesion amount of the lower layer film 5 is preferably in the range of 50 to 2000 mg / m 2 . If the adhesion amount of the lower layer film 5 is less than 50 mg / m 2, it is not preferable because sufficient corrosion resistance cannot be obtained. When the adhesion amount of the lower layer film 5 exceeds 2000 mg / m 2 , the cohesive force of the lower layer film 5 itself is reduced, and the possibility that the lower layer film 5 is peeled off during processing increases, and when the conductive pigment is added to the upper layer film 6 It is not preferable because it is difficult to obtain excellent conductivity. From the viewpoint of corrosion resistance, adhesion during processing, and conductivity, a more preferable adhesion amount of the lower layer film 5 is 100 to 1000 mg / m 2 .
  • the lower layer film 5 preferably further contains a color pigment from the viewpoint of making wrinkles less noticeable.
  • the lower layer film 5 is formed so as to enter the recess of the zinc phosphate film 4 and cover the zinc phosphate film 4, but the lower layer film 5 contains a color pigment, so that wrinkles generated on the surface of the upper layer film 6 are more conspicuous. It is possible to eliminate.
  • the color pigment contained in the lower layer film 5 is preferably more than 10% by mass and 50% by mass or less with respect to the weight of the lower layer film 5. If the amount of the color pigment contained in the lower layer film 5 is 10% by mass or less, the effect of making the wrinkles less noticeable is not sufficient, which is not preferable. If the amount of the color pigment contained in the lower layer film 5 is more than 50% by mass, the ratio of the base chemical solution is relatively decreased, and sufficient corrosion resistance may not be obtained.
  • Examples of the color pigments contained in the lower layer film 5 include organic color pigments.
  • a preferable example of the color pigment contained in the lower layer film 5 is carbon black (second carbon black 8).
  • the content thereof is preferably more than 10% by mass and 30% by mass or less with respect to the total weight of the lower layer film 5. If the amount of the second carbon black 8 contained in the lower layer film 5 is 10% by mass or less, the effect of making wrinkles less noticeable is not sufficient, which is not preferable. If the amount of the second carbon black 8 contained in the lower layer film 5 exceeds 30% by mass, the possibility of different metal contact corrosion between the second carbon black 8 and the galvanized layer 3 increases, and both corrosion resistance can be achieved. Since it becomes difficult, it is not preferable.
  • the particle diameter of the second carbon black 8 is preferably more than 100 nm.
  • the particle diameter of the second carbon black 8 exceeds 100 nm, the possibility that the second carbon black 8 enters the gaps in the zinc phosphate coating 4 is reduced. This is preferable because it can prevent the contact corrosion of different metals.
  • the term “particle size” as used herein refers to the average primary particle size when the carbon black particles present in the film are present alone, and the particle size at the time of aggregation when the carbon black particles are present in an aggregated state. This means the average secondary particle size, which can be determined by the following measurement method.
  • the coated steel sheet 1 on which the lower layer film 5 is formed is cut to expose the cross section, and the cross section is further polished.
  • the cross section thus obtained is observed with an electron microscope, and an observation image of the cross section of the lower layer film 5 is obtained.
  • Several are selected from the second carbon blacks 8 existing in the field of view of the observed image. Then, the long side length and the short side length of each second carbon black 8 are measured, the average value of the long side lengths and the average value of the short side lengths are calculated, and these are averaged to obtain particles. Calculate the diameter. If the above-described method is used, the particle diameter of the second carbon black 8 can be obtained even if the upper film 6 is formed on the lower film 5. In addition, it is also possible to obtain
  • the second carbon black 8 may be secondarily aggregated in the lower layer film 5. Therefore, the surface treatment for the second carbon black 8 is not essential, and the second carbon black 8 not subjected to the surface treatment may be used.
  • the upper film 6 is formed on the above-described lower film 5 and becomes the outermost layer of the coated steel sheet 1.
  • the upper layer film 6 contains 5 to 25% by mass of carbon black (first carbon black) 7 with respect to the total weight of the upper layer film 6.
  • the particle diameter of the first carbon black 7 in the upper film 6 is preferably smaller than the particle diameter of the second carbon black 8 in the lower film 5.
  • FIG. 4 is a schematic diagram showing the particle size of the second carbon black 8 included in the lower layer film 5 and the particle size of the first carbon black 7 included in the upper layer film 6. As shown in FIG. 4, even when the particle size of the second carbon black 8 is large or small, it cannot penetrate into the gap of the zinc phosphate coating 4 due to secondary aggregation. Thereby, dissimilar metal contact between the galvanized layer 3 and the second carbon black 8 can be prevented. On the other hand, it is preferable that the particle diameter of the first carbon black 7 is small so that blackness can be expressed even when the thickness of the upper film 6 is thin.
  • the particle diameter of the first carbon black 7 and the particle diameter of the second carbon black 8 satisfy the following formula (1).
  • the particle diameter of the first carbon black 7 and the particle diameter of the second carbon black 8 satisfy the following formula (1), the above-described effect can be more reliably exhibited. (Particle diameter of the first carbon black) / (Particle diameter of the second carbon black) ⁇ 0.5 (1)
  • the film thickness of the upper layer film 6 is 2.0 to 10.0 ⁇ m. When the film thickness of the upper layer film 6 is less than 2.0 ⁇ m, it is not preferable because the scratch resistance and the corrosion resistance cannot be sufficiently obtained. When the film thickness of the upper layer film 6 exceeds 10.0 ⁇ m, it is not preferable because when the conductive pigment is added, the conductivity is lowered and the economical efficiency is deteriorated.
  • the particle diameter of the first carbon black 7 is preferably 50 nm or less. When the particle diameter of the first carbon black 7 is 50 nm or less, a sufficient color tone can be exhibited even when the film thickness of the upper film 6 is 2.0 to 10.0 ⁇ m.
  • the film thickness of the upper layer film 6 is preferably 3.0 to 8.0 ⁇ m from the viewpoint of scratch resistance, corrosion resistance, weldability and economy.
  • the upper layer film 6 may contain a coloring pigment other than the first carbon black 7.
  • the color pigment other than the first carbon black 7 include known organic pigments, barium sulfate, titania and the like.
  • the content is preferably 25% by mass or less with respect to the solid content mass of the upper layer film 6. If the content of the color pigment other than the first carbon black 7 in the upper layer film 6 exceeds 25% by mass, the chemical resistance and the barrier property are deteriorated, which is not preferable.
  • the upper film 6 may include non-oxide ceramic particles selected from borides, carbides, nitrides, and silicides having an electrical resistivity at 25 ° C. of 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ 10 ⁇ 6 ⁇ cm. Since non-oxide ceramic particles are unlikely to deteriorate in water, even if the composition for forming the upper layer film 6 is an aqueous composition, it is possible to maintain high electrical conductivity. Therefore, when the upper film 6 contains non-oxide ceramic particles, the coated steel sheet 1 can maintain excellent conductivity for a long period of time.
  • the non-oxide ceramic represents a ceramic made of an element or compound not containing oxygen.
  • Boride ceramics, carbide ceramics, nitride ceramics, and silicide ceramics have boron (B), carbon (C), nitrogen (N), and silicon (Si) as main nonmetallic constituent elements, respectively.
  • Non-oxide ceramic particles have high conductivity in a small amount. Therefore, even if the content of non-oxide ceramic particles in the upper layer film 6 is small, the coated steel sheet 1 can obtain suitable conductivity. If the content of the non-oxide ceramic particles in the upper layer film 6 is small, the deterioration of corrosion resistance and formability due to the upper layer film 6 containing the non-oxide ceramic particles will not be a problem.
  • the electric resistivity of pure metal is 1.6 ⁇ 10 ⁇ 6 ⁇ cm (Ag simple substance) to 185 ⁇ 10 ⁇ 6 ⁇ cm (Mn simple substance).
  • the electrical resistivity of the non-oxide ceramic is 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ 10 ⁇ 6 ⁇ cm. From this, it can be seen that non-oxide ceramics have excellent conductivity equivalent to that of pure metal.
  • the content of non-oxide ceramic particles in the upper film 6 is preferably 0.5 to 20% by mass with respect to the total mass of the upper film 6.
  • the content of the non-oxide ceramic particles is less than 0.5% by mass, it is not preferable because preferable weldability may not be obtained even when other conductive particles are used in combination.
  • the content of the non-oxide ceramic particles exceeds 20% by mass, a phenomenon in which the non-oxide ceramic particles are stuck into the electrode during continuous welding is likely to occur, and welding failure may occur, which is not preferable.
  • the lower limit of the content of non-oxide ceramic particles is preferably 1% by mass, more preferably 5% by mass, and the upper limit is preferably 15% by mass, more preferably 10% by mass.
  • non-oxide ceramic particles examples include the following.
  • boride ceramic particles Group IV (Ti, Zr, Hf), Group V (V, Nb, Ta), Group VI (Cr, Mo, W) transition metals of the periodic table, Mn
  • examples include Fe, Co, Ni, rare earth elements, or Group II (Ca, Sr, Ba) boride ceramic particles other than Be and Mg.
  • ceramic particles for example, Be 2 B, BeB 6 etc.
  • whose electrical resistivity at 25 ° C. exceeds 185 ⁇ 10 ⁇ 6 ⁇ cm have low electrical conductivity and weldability. Is not preferred because it may decrease.
  • Mg boride ceramics (Mg 3 B 2 , MgB 2, etc.) particles are not preferable because they have low stability against water or acid and may deteriorate weldability.
  • transition metals of Group IV (Ti, Zr, Hf), Group V (V, Nb, Ta), Group VI (Cr, Mo, W) of the periodic table, or Mn examples are Fe, Co, Ni carbide ceramic particles.
  • rare earth elements and Group II carbide ceramics for example, YC 2 , LaC 2 , CeC 2 , PrC 2 , Be 2 C, Mg 2 C 3 , SrC 2, etc. particles are easily hydrolyzed in a humid atmosphere. This is not preferable because weldability may be deteriorated.
  • rare earth elements and Group II nitride (eg, LaN, Mg 3 N 2 , Ca 3 N 2, etc.) particles are not preferable because they are easily hydrolyzed in a wet atmosphere and the weldability may be reduced. .
  • Silicide ceramic particles include transition metals of Group IV (Ti, Zr, Hf), Group V (V, Nb, Ta) and Group VI (Cr, Mo, W) of the periodic table, or Mn, Fe Co, Ni silicide particles are exemplified.
  • Group IV Ti, Zr, Hf
  • Group V V, Nb, Ta
  • Group VI Cr, Mo, W
  • Mn, Fe Co, Ni silicide particles are exemplified.
  • rare earth elements and Group II silicides eg, LaSi, Mg 2 Si, SrSi 2 , BaSi 2, etc.
  • non-oxide ceramic particles particles of two or more kinds of mixtures selected from the group consisting of these boride ceramics, carbide ceramics, nitride ceramics, and silicide ceramics, these ceramics as metal binders
  • grains etc. which were mixed and sintered are illustrated.
  • the standard electrode potential of the metal constituting a part of the cermet particles is ⁇ 0.3 V or more and is water-resistant.
  • the standard electrode potential of the metal constituting a part of the cermet particles is less than ⁇ 0.3 V, if the cermet particles are present in the aqueous composition for a long time, a rust layer or a thick oxide insulating layer is likely to be formed on the surface of the particles. This is because the conductivity of the particles may be lost.
  • water-resistant cermet particles include WC-12Co, WC-12Ni, TiC-20TiN-15WC-10Mo2C-5Ni, and the like.
  • the standard electrode potentials of Co and Ni are ⁇ 0.28 V and ⁇ 0.25 V, respectively, which are nobler than ⁇ 0.3 V, and both metals are resistant to water.
  • non-oxide ceramics Cr-based ceramics (CrB, CrB 2 , Cr 3 C 2 , Cr 2 N, CrSi, etc.) are not preferable from the viewpoint of environmental properties. Many of Hf ceramics (HfB 2 , HfC, HfN, etc.) and rare earth ceramics on the rare earth side of Tb are not preferable from the viewpoints of economy and availability. Therefore, the non-oxide ceramics added to the upper layer film 6 include Cr-based ceramics, Hf-based ceramics, and non-oxide ceramic particles excluding rare earth element-based ceramics on the heavy rare earth side from Tb, or these ceramics are excluded. Also preferred are particles of a mixture of two or more non-oxide ceramics.
  • non-oxide ceramic particles are more preferably non-oxide ceramics exemplified below from the viewpoints of the presence or absence of industrial products, stable distribution in domestic and overseas markets, price, electrical resistivity, and the like. That is, non-oxide ceramic particles include BaB 6 (electric resistivity 77 ⁇ 10 ⁇ 6 ⁇ cm), CeB 6 (30 ⁇ 10 ⁇ 6 ⁇ cm), Co 2 B (33 ⁇ 10 ⁇ 6 ⁇ cm), CoB ( 76 ⁇ 10 ⁇ 6 ⁇ cm), FeB (80 ⁇ 10 ⁇ 6 ⁇ cm), GdB 4 (31 ⁇ 10 ⁇ 6 ⁇ cm), GdB 6 (45 ⁇ 10 ⁇ 6 ⁇ cm), LaB 4 (12 ⁇ ) 10 -6 ⁇ cm), LaB 6 (same 15 ⁇ 10 -6 ⁇ cm), Mo 2 B ( the 40 ⁇ 10 -6 ⁇ cm), MoB ( the 35 ⁇ 10 -6 ⁇ cm), MoB 2 ( same 45 ⁇ 10 ⁇
  • non-oxide ceramic particles having an electrical resistivity at 25 ° C. of 0.1 to 100 ⁇ 10 ⁇ 6 ⁇ cm are particularly preferable. This is because the non-oxide ceramic particles have an electric resistivity at 25 ° C. of 0.1 to 100 ⁇ 10 ⁇ 6 ⁇ cm, whereby the content of the non-oxide ceramic particles in the upper film 6 can be further reduced.
  • the content of the non-oxide ceramic particles in the upper layer film 6 By reducing the content of the non-oxide ceramic particles in the upper layer film 6, formation of a conduction path of a corrosion current that penetrates the upper layer film 6 is suppressed, and a decrease in corrosion resistance is preferably suppressed.
  • the upper film 6 may contain a rust preventive pigment.
  • the rust preventive pigment is not particularly limited, but is aluminum tripolyphosphate, phosphoric acid and phosphorous acid Zn, Mg, Al, Ti, Zr and Ce salts, hydrocalumite-treated phosphate compound (for example, zinc phosphate EXPERT NP-530 N5) manufactured by Toho Pigment, which is a hydrocalumite treatment, and Ca ion-exchanged silica, and an amorphous oil having an oil absorption of 100 to 1000 ml / 100 g, a specific surface area of 200 to 1000 m 2 / g, and an average particle size of 2 to 30 ⁇ m At least one rust preventive pigment selected from the group consisting of porous silica is preferred.
  • preferable rust preventive pigments are phosphate-based rust preventive pigments (aluminum tripolyphosphate, a phosphate compound treated with hydrocalumite, etc.), silica, from the viewpoint of improving the corrosion resistance of both the heel portion and the flat portion. It is a system antirust pigment, or a combination of both.
  • Particularly preferred anti-rust pigments are aluminum tripolyphosphate, hydrocalumite-treated phosphate compound, Ca-exchanged silica, oil absorption of 100 to 1000 ml / 100 g, specific surface area of 200 to 1000 m 2 / g, and average particle size of 2 to 30 ⁇ m. It is at least one selected from the group consisting of amorphous silica.
  • Silica oil absorption can be measured according to JIS K 5101-13-2: 2004.
  • the specific surface area of silica can be measured by the BET method.
  • the average particle diameter of silica can be measured by the same method as the average particle diameter of conductive particles.
  • the content of the rust preventive pigment is preferably 2.5 to 20% by mass relative to the total solid mass of the upper layer film 6.
  • the content of the rust preventive pigment is less than 2.5% by mass, corrosion resistance may not be sufficiently obtained, which is not preferable.
  • the content of the rust preventive pigment exceeds 20% by mass, the processability and cohesive force of the upper layer film 6 may be lowered, which is not preferable.
  • the content of the rust preventive pigment is more preferably 5 to 15% by mass with respect to the total solid mass of the upper film 6 from the viewpoint of corrosion resistance and processability.
  • the upper layer film 6 may contain other additives.
  • the additive include well-known additives such as extender pigments, solid lubricants, and leveling agents.
  • extender pigments include silica (including colloidal silica), titania, zirconia, and the like.
  • the content of the extender is preferably 0.1 to 20% by mass relative to the total solid mass of the upper layer film 6. When the content of the extender is less than 0.1% by mass, the effect of adding the extender may not be sufficiently obtained, which is not preferable.
  • the upper limit of the content of the extender pigment is not particularly limited, but if the content is excessively large, the content of other components in the upper layer film 6 may decrease, and the desired effect may not be obtained. Therefore, it is preferably about 20% by mass or less.
  • a solid lubricant to the upper film 6 because it can impart excellent lubricity to the upper film 6 and improve powdering resistance.
  • the solid lubricant include polyolefin wax, paraffin wax, and fluororesin wax.
  • the polyolefin wax and paraffin wax include polyethylene wax, synthetic paraffin, natural paraffin, micro wax, chlorinated hydrocarbon, and the like.
  • the fluororesin wax include polyfluoroethylene resin (polytetrafluoroethylene resin, etc.), polyvinyl fluoride resin, and polyvinylidene fluoride resin.
  • the average particle size of the solid lubricant is preferably 0.05 to 25 ⁇ m.
  • the average particle size of the solid lubricant is less than 0.05 ⁇ m, the area occupied by the lubricant in the surface layer of the upper film 6 is increased due to the surface concentration of the lubricant, and the adhesion between the upper film 6 and the lower film 5 is increased. Is not preferred because it may decrease.
  • the average particle size of the solid lubricant is less than 0.05 ⁇ m and when further coating (post-coating) is applied to the upper layer of the upper film 6, the adhesion between the upper film 6 and the film formed by the post-coating Is also not preferable.
  • the average particle size of the solid lubricant is more preferably from 1 to 15 ⁇ m, and even more preferably from 3 to 10 ⁇ m from the viewpoint of obtaining excellent paint adhesion, corrosion resistance, lubricity and powdering resistance.
  • the softening point of the solid lubricant is preferably 100 ° C to 135 ° C, more preferably 110 to 130 ° C.
  • the softening point of the solid lubricant is 100 ° C. to 135 ° C., the lubricity and the powdering resistance are further improved.
  • the content of the solid lubricant is preferably 0.1 to 10% by mass with respect to the total solid mass of the upper film 6.
  • the content of the solid lubricant is more preferably 0.2 to 5% by mass with respect to the total solid mass of the upper layer film 6 in terms of adhesion between the upper layer film 6 and the lower layer film 5, lubricity and corrosion resistance. More preferably, it is 0.5 to 2.5% by mass.
  • the L value is generally small.
  • the base steel plate 2 and the galvanized layer 3 are generally silver white and have a relatively large L value.
  • wrinkles occur in the upper layer film 6, when the appearance of the coated steel sheet 1 is observed, the lower base steel sheet 2 or the galvanized layer 3 may be visible. In that case, there was a problem that the color difference (difference in L value) between the portion of the upper film 6 without wrinkles and the base steel plate 2 or the galvanized layer 3 was large, and wrinkles were conspicuous.
  • the coated steel sheet 1 has a zinc phosphate film 4 containing 0.4 to 2.5 g / m 2 of zinc phosphate on the galvanized layer 3 as an adhesion amount.
  • the L value of the zinc phosphate coating 4 is smaller than that of the base steel plate 2 and the galvanized layer 3. That is, the color tone difference between the upper film 6 and the zinc phosphate film 4 is smaller than the color difference between the upper film 6 and the base steel plate 2 or the galvanized layer 3. Therefore, the formation of the zinc phosphate film 4 on the galvanized layer 3 makes the wrinkles less noticeable.
  • irregularities on the order of several ⁇ m are formed on the surface of the galvanized layer 3. It is considered that the L value of the zinc phosphate coating 4 is small because the irregularities cause irregular reflection of light.
  • the lower layer film 5 is easily peeled off, and the wrinkle is the base steel plate 2 or the galvanized plate. Easy to reach layer 3.
  • the unevenness of the zinc phosphate coating 4 as described above improves the adhesion between the zinc plating layer 3 and the lower coating 5.
  • the shaved portion of the upper layer film 6 enters the irregularities of the zinc phosphate film 4. Since the scraped portion of the upper layer film 6 includes the first carbon black 7, even if wrinkles occur, the concave portions of the zinc phosphate film 4 become black, and the wrinkles are less noticeable. Further, a color pigment such as carbon black has a large potential difference from zinc or iron contained in the plating, and the corrosion resistance of the coated steel sheet 1 may be lowered. However, the coated steel sheet 1 is configured such that the pigment (carbon black or the like) in the upper layer film 6 is not in direct contact with the galvanized layer 3 by the zinc phosphate film 4. Therefore, the coated steel sheet 1 has good corrosion resistance.
  • an upper layer film 6 is not directly formed on the zinc phosphate film 4, but a lower layer film 5 is formed between the zinc phosphate film 4 and the upper layer film 6.
  • the configuration of the back film formed on the back side of the product is not particularly limited.
  • the coated steel plate 1 can be suitably used for a housing for home appliances. Since the coated steel sheet 1 has a thin film, it can be manufactured at low cost. Therefore, the coated steel sheet 1 is suitable for a back panel of an AV device such as a thin display that is particularly required to be manufactured at a low cost.
  • the galvanized layer 3 is formed on the base steel plate 2 by subjecting the base steel plate 2 to a galvanizing step.
  • the specific method of the galvanizing process is not particularly limited, but is electro-Zn plating, electro-Zn—Ni plating, electro-Zn—Co plating, hot-dip Zn plating, alloyed hot-dip Zn plating, hot-zinc-55% Al-1.6. % Si plating, hot-dip Zn-11% Al plating, hot-melting Zn-11% Al-3% Mg plating, hot-melting Zn- 6 % Al-3% Mg plating, hot-melting Zn-11% Al-3% Mg-0.2 % Si plating and the like.
  • the base steel plate 2 When the hot dip plating method is used in the galvanizing process, the base steel plate 2 is immersed in a plating bath in which Zn or Zn alloy in a molten state is held, and the base steel plate 2 is pulled up from the plating bath. By adjusting the pulling speed of the base steel plate 2, the flow rate of the wiping gas ejected from the wiping nozzle provided above the plating bath, the flow rate adjustment, and the like, the amount of plating adhered to the base steel plate 2 is controlled.
  • the alloying process is performed by heating the base steel sheet 2 after the galvanized layer 3 is formed in a gas furnace, an induction heating furnace, a heating furnace using a combination thereof, or the like after the plating process as described above.
  • plating may be performed by either a continuous plating method of a coil or a plating method of a single cut plate.
  • a zinc phosphate coating 4 is formed on the zinc plating layer 3 by performing a zinc phosphate treatment step after the zinc plating step.
  • the specific method of the zinc phosphate treatment is not particularly limited, and any zinc phosphate treatment of reaction type treatment, coating type treatment, and electrolytic type treatment may be used.
  • the reactive zinc phosphate treatment the base steel plate 2 on which the galvanized layer 3 is formed is degreased, washed with water and subjected to surface conditioning treatment, and then contacted with a reactive treatment solution, washed with water and dried. be able to.
  • the reactive processing solution contains at least one selected from iron ions, cobalt ions, and calcium ions in an aqueous solution mainly composed of phosphate ions, nitrate ions, and zinc ions.
  • the reactive processing liquid may further contain at least one selected from peroxides, fluoride ions, complex fluoride ions, and nitrite ions.
  • a zinc phosphate treatment liquid mainly composed of phosphate ions, nitrate ions and zinc ions is applied to at least one surface of the base steel plate 2 on which the galvanized layer 3 is formed.
  • the coating method is arbitrary.
  • the coating amount can be adjusted by an air knife method or a roll squeezing method after coating by a dipping method or a spray method.
  • the zinc phosphate coating 4 can be formed by drying using a dryer, hot air furnace, high frequency induction heating furnace, or infrared furnace.
  • the base steel plate 2 As a drying method for forming the zinc phosphate coating 4 by the coating type treatment, it is preferable to dry the base steel plate 2 so that the ultimate plate temperature is 70 ° C. to 400 ° C.
  • the ultimate plate temperature during drying is lower than 70 ° C., the zinc phosphate film 4 is not sufficiently dried, the zinc phosphate film 4 becomes sticky, and not only the paint adhesion is deteriorated, but also the upper layer of the zinc phosphate film 4. This is not preferable because unevenness occurs in the film formed.
  • the ultimate plate temperature exceeds 400 ° C. not only is the effect not obtained, it is not economical, but also defects in the zinc phosphate film 4 are likely to occur and the corrosion resistance is inferior.
  • the ultimate temperature of the base steel sheet 2 during drying is more preferably 100 to 300 ° C, and further preferably 120 to 170 ° C.
  • the zinc phosphate treatment liquid may contain at least one selected from nickel ions, manganese ions, and magnesium ions in addition to zinc ions. Among them, in order to further improve the design and scratch resistance of the processed part, it is preferable that the zinc phosphate treatment liquid contains both magnesium ions and nickel ions in addition to zinc ions.
  • the magnesium ion content in the zinc phosphate treatment solution is preferably 5.0 to 40.0 g / l, more preferably 10.0 to 25.0 g / l.
  • the content of nickel ions in the zinc phosphate treatment solution is preferably 0.05 to 2.00 g / l, more preferably 0.10 to 1.50 g / l.
  • the content of phosphate ions in the zinc phosphate treatment solution is preferably 1 to 20 g / l, more preferably 3 to 10 g / l.
  • the content of Zn ions in the zinc phosphate treatment solution is preferably 0.1 to 10 g / l, more preferably 1 to 5 g / l.
  • the electrolytic treatment is performed between the counter electrode using the base steel plate 2 as a negative electrode in an electrolytic treatment liquid containing phosphate ions, nitrate ions and zinc ions as main components.
  • the amount of the zinc phosphate coating 4 attached to the base steel plate 2 on which the galvanized layer 3 is formed is controlled by adjusting the electrolyte composition, current density, and electrolysis time.
  • the lower layer film 5 is formed on the zinc phosphate film 4 by performing the lower layer film 5 forming step after the zinc phosphate treatment step.
  • the lower layer coating 5 forming step is formed by applying and baking the base chemical on the zinc phosphate coating 4.
  • the application and baking method is not particularly limited, and a known method can be used.
  • the base chemical E300 series manufactured by Nippon Parkerizing Co., Ltd., Surfcoat series manufactured by Nippon Paint Co., Ltd., or the like can be used.
  • the base chemical solution preferably does not contain chromium.
  • what is necessary is just to add a color pigment to a base chemical
  • the upper film 6 is formed on the lower film 5 by performing the upper film 6 forming process after the lower film 5 forming process.
  • the upper layer coating 6 is formed by applying and baking the base chemical on the lower layer coating 5.
  • the application and baking method is not particularly limited, and a known method can be used.
  • a known base chemical solution used for forming a surface film of a commercially available fingerprint-resistant steel sheet can be used.
  • the fingerprint-resistant steel plate is a base steel plate (usually a plated steel plate) formed with a thin film based on polyester resin, urethane resin, acrylic resin, epoxy resin, or the like.
  • a treatment liquid is prepared by appropriately adding carbon black to such a base chemical.
  • EG2 Electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 2 g / m 2 )
  • EG5 Electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 5 g / m 2 )
  • EG10 electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 10 g / m 2 )
  • EG20 electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 20 g / m 2 )
  • EG40 electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 40 g / m 2 )
  • ZL Electric Zn-10 mass% Ni alloy plated steel sheet (plate thickness 0.8 mm, plating adhesion 10 g / m 2 )
  • GI hot dip galvanized steel sheet (plate thickness 0.8 mm, plating adhesion 60 g / m 2 ) SD: Molten Zn-11 mass% Al-3 mass%
  • the base chemical p is composed of a silane coupling agent (3-glycidoxypropyltrimethoxysilane), silica fine particles (colloidal silica (Snowtex N manufactured by Nissan Chemical Co., Ltd.)), Zr compound (ammonium zirconium carbonate) and urethane resin (water dispersion).
  • An aqueous coating composition comprising a urethane resin (Superflex E-2000 manufactured by Daiichi Kogyo Co., Ltd.).
  • the base chemical solution q is composed of a silane coupling agent (3-glycidoxypropyltrimethoxysilane), silica fine particles (colloidal silica (Snowtex O manufactured by Nissan Chemical Co., Ltd.)) and polyester resin (water-dispersed polyester resin (Toyobo Co., Ltd., Bironal MD). -1200)).
  • silane coupling agent 3-glycidoxypropyltrimethoxysilane
  • silica fine particles colloidal silica (Snowtex O manufactured by Nissan Chemical Co., Ltd.)
  • polyester resin water-dispersed polyester resin (Toyobo Co., Ltd., Bironal MD). -1200)
  • a treatment liquid for forming a lower layer film was prepared by adding a pigment to the base chemical liquids p and q. Except for the level p1, the treatment solutions for forming the lower layer film include C1 (carbon black dispersion (manufactured by Toyo Ink Industries)), C2 (carbon black (MA-100, manufactured by Mitsubishi Chemical Corporation)), P (benzimidazolone (Toyo Ink) Ink Industries)) or B (Copper Phthalocyanine (Toyo Ink Industries)) was added.
  • Table 2 shows the types and contents of the base chemicals and pigments used in each of the lower layer film forming treatment liquids, and the carbon black particle diameter when carbon black is used as the pigment.
  • the processing liquid for lower layer film formation shown in Table 2 was applied to the surface of the galvanized steel sheet by the bar coat method. Thereafter, the galvanized steel sheet was transferred to a hot air furnace and dried and air-dried so that the temperature reached on the surface of the galvanized steel sheet was 70 ° C., thereby forming a lower layer film on the surface of the galvanized steel sheet.
  • the dilution conditions and the bar count were adjusted so that the adhesion amounts shown in Tables 5 to 7 were obtained.
  • NRC300 manufactured by Nippon Paint Surf Chemicals Co., Ltd. was applied so as to be 50 mg / m 2 in terms of Cr, and baked at 130 ° C. and chromated (Cr ) A film was prepared.
  • Carbon black, conductive pigment, rust preventive pigment, colloidal silica and lubricant were added to the upper layer binder to prepare an upper layer film forming treatment liquid.
  • Table 4 shows the composition of the treatment liquid for forming the upper layer film at each level.
  • Carbon black Carbon black dispersion (manufactured by Toyo Ink Industries)
  • (Conductive pigment) VB vanadium diboride particles (average particle size of 1 to 3 ⁇ m) VC: Vanadium carbide particles (average particle size of 1 to 3 ⁇ m) VN: Vanadium nitride particles (average particle size of 1 to 3 ⁇ m) ⁇ ZS: Zirconium disilicide particles (average particle size 1 to 3 ⁇ m) ZN: zirconium nitride particles (average particle size of 1 to 3 ⁇ m) TN: Titanium nitride particles (average particle size of 1 to 3 ⁇ m) SUS: SUS particles (average particle size 3-7 ⁇ m) Ni: Ni particles (average particle size 3-7 ⁇ m) (rust preventive pigment) PA: aluminum tripolyphosphate (average particle size of 1 to 2 ⁇ m) ⁇ PM: Magnesium phosphate (average particle size 1 ⁇ 2 ⁇ m) SC: Calcium ion exchanged silica (average particle size of 1 to 2 ⁇ m) Si: Silica (Amorphous silic
  • White rust is less than 2% 4: White rust is 2% or more and less than 5% 3: White rust is 5% or more and less than 10% 2: No red rust is generated, White rust is 10% or more 1: Red rust is generated, white rust 10% or more
  • the test plates according to the examples had suitable scratch resistance, corrosion resistance, adhesion, and conductivity.
  • the test plate according to the comparative example was inferior in performance.
  • the present invention even if the coating formed on the surface of the base steel sheet is thin, wrinkles from the coating surface that occurs during handling and processing are not noticeable, and the surface has relatively good corrosion resistance. It was found that a treated steel plate can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

This coated steel plate is provided with: a base steel plate; a galvanization layer formed on the base steel plate; a zinc phosphate film formed on the galvanization layer and containing zinc phosphate crystals, the zinc phosphate film being deposited in the amount of 0.4-2.5 g/m2; a lower-layer film which is an inorganic film or an organic/inorganic composite film, formed on the zinc phosphate film and deposited in the amount of 50-2000 mg/m2; and an upper-layer film formed on the lower-layer film, the upper-layer film having a film thickness of 2.0-10.0 µm and containing 5-25% by mass of a first carbon black; the maximum gap between the zinc phosphate crystals at the interface of the galvanization layer and the zinc phosphate film being 0.2 µm or less.

Description

塗装鋼板Painted steel plate
 本発明は、液晶テレビ、有機ELテレビ、プラズマテレビのような薄型ディスプレイに代表されるAV機器用筐体等に好適な塗装鋼板に関する。
 本願は、2015年6月25日に、日本に出願された特願2015-128016号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a coated steel sheet suitable for a housing for AV equipment represented by a thin display such as a liquid crystal television, an organic EL television, and a plasma television.
This application claims priority based on Japanese Patent Application No. 2015-128016 filed in Japan on June 25, 2015, the contents of which are incorporated herein by reference.
 塗装鋼板(プレコート鋼板、PCMとも呼ばれる)を製造する際には、まず基材鋼板に塗装および焼付けを施し、基材鋼板上に塗膜を形成する。塗膜形成後、塗装鋼板はコイル状に巻き取られ、その状態でユーザーに納入される。ユーザーは、コイルを巻き戻して、打ち抜き、折り曲げ、絞り加工、またはこれらを組み合わせた加工を行って製品化する。
 このような塗装鋼板は、ユーザー側での作業環境の悪化が起こらないとともに、ユーザー側で塗装作業を行う必要がないことから、多くの分野に適用されている。
When manufacturing a coated steel plate (also referred to as a pre-coated steel plate or PCM), first, the base steel plate is painted and baked to form a coating film on the base steel plate. After the coating is formed, the coated steel sheet is wound into a coil and delivered to the user in that state. The user unwinds the coil and performs punching, bending, drawing, or a combination thereof to produce a product.
Such a coated steel sheet is applied to many fields because it does not cause deterioration of the working environment on the user side and it is not necessary to perform the painting work on the user side.
 塗装鋼板の製造は、2コート2ベーク方式で行われることが一般的である。2コート2ベーク方式では、まず、基材鋼板(典型的には亜鉛めっきと亜鉛合金めっきとを含む亜鉛めっき鋼板)に前処理として化成処理を施す。次に、下塗り塗料(プライマー)の塗布と焼付けとを行う。最後に、上塗り塗料の塗布と焼付けとを行う。
 ただし、最終製品の外側となる表面とは反対側の裏面については、前処理後に裏面用に開発された塗料を用いて、1コート1ベーク方式で塗装が行われることもある。
In general, the production of the coated steel sheet is performed by a 2-coat 2-bake method. In the 2-coat 2-bake method, first, a base steel plate (typically a galvanized steel plate including zinc plating and zinc alloy plating) is subjected to chemical conversion treatment as a pretreatment. Next, an undercoat paint (primer) is applied and baked. Finally, the top coat is applied and baked.
However, the back surface opposite to the front surface which is the outer side of the final product may be coated by a 1-coat 1-bake method using a paint developed for the back surface after the pretreatment.
 塗装鋼板は、耐食性(塗膜の端部における白錆および/または赤錆発生の抑制)、加工性、塗膜硬度(耐傷つき性)、耐汚染性、耐薬品性、耐候性などの多くの性能を、いずれについても高いレベルで達成することが要求される。しかし近年は、コスト削減、環境対策及び塗装作業の合理化の観点から、塗装鋼板の意匠性等が要求される品質保障面となる塗膜に関しても、膜厚を薄くする(薄膜化する)ことが求められている。
 例えば、薄型ディスプレイのバックパネルに用いられる塗装鋼板など、最終製品の背面側に使用される塗装鋼板では、塗膜厚を10μm未満に制限することが求められる場合がある。この塗膜厚の水準は、化成処理鋼板や耐指紋性鋼板で要求される塗膜厚の水準であり、従来の塗装鋼板ではこの水準の塗膜厚は要求されなかった。
Painted steel sheet has many performances such as corrosion resistance (suppression of white rust and / or red rust at the edge of the coating), workability, coating hardness (scratch resistance), stain resistance, chemical resistance, weather resistance, etc. Must be achieved at a high level. However, in recent years, from the viewpoint of cost reduction, environmental measures, and rationalization of painting work, it is also possible to reduce the film thickness (thinner film thickness) even for coatings that provide quality assurance that requires the design of coated steel sheets. It has been demanded.
For example, in a coated steel sheet used on the back side of the final product such as a coated steel sheet used for a back panel of a thin display, it may be required to limit the coating thickness to less than 10 μm. This level of coating thickness is the level of coating thickness required for chemical conversion treated steel plates and fingerprint-resistant steel plates, and this level of coating thickness was not required for conventional coated steel plates.
 塗膜厚が薄くなると、塗膜焼き付け時に発生する有機溶剤を燃焼させるために使用しているインシネーターの負担を低減することが可能となるとともに、そこから排出されるCOを低減することが可能となる。また、塗膜焼き付け時に排出される有機溶剤の量は塗膜厚に依存していることから、塗膜厚が薄くなるとインシネーターの能力の範囲内でラインスピードを高めることができ、塗装作業を合理化することが可能となる。 When the coating film thickness is reduced, it is possible to reduce the burden on the insulator used to burn the organic solvent generated during baking of the coating film, and to reduce the CO 2 emitted therefrom. It becomes possible. In addition, the amount of organic solvent discharged during coating baking depends on the coating thickness, so when the coating thickness is reduced, the line speed can be increased within the capacity of the incinator, and the painting work can be performed. It becomes possible to rationalize.
 しかしながら、塗膜厚が薄くなると、例えば、塗装鋼板の表面の明度が悪くなったり、塗膜によって塗装鋼板の色調にバラつきが生じたり、基材鋼板の疵を隠蔽し難くなったりして、塗装鋼板としての良い外観を得ることが通常は困難となる。この点を改善させることを目的とした発明が特許文献1に開示されている。また、塗膜の薄膜化に伴う、塗装鋼板の耐食性低下を改善することを目的とした発明が特許文献2に開示されている。 However, when the coating thickness is reduced, for example, the surface brightness of the coated steel sheet is deteriorated, the color tone of the coated steel sheet varies due to the coating film, and it is difficult to conceal the wrinkles of the base steel sheet. It is usually difficult to obtain a good appearance as a steel plate. An invention aimed at improving this point is disclosed in Patent Document 1. In addition, Patent Document 2 discloses an invention aimed at improving the corrosion resistance reduction of the coated steel sheet accompanying the thinning of the coating film.
 さらに、塗膜焼付け時に発生する有機溶剤を燃焼させるために使用しているインシネーターの負担を低減する手法として、塗料中に含まれる溶剤そのものを微量または一切含まない水系塗料についても検討されており、薄型ディスプレイのバックパネル用途として耐食性を両立することを目的とした発明が、特許文献3に開示されている。 In addition, water-based paints that are free from trace amounts of solvents contained in paints are being studied as a way to reduce the burden on the insulator used to burn organic solvents generated during coating baking. Patent Document 3 discloses an invention aimed at achieving both corrosion resistance as a back panel application for a thin display.
 一方で、基材鋼板の表面に、数μm程度の薄膜が水系の薬液を用いて形成された表面処理鋼板(例えば、いわゆる耐指紋性鋼板)は多数開発されている。
 例えば、特許文献4には、耐食性、熱放射性及び導電性を有することを目的とした表面処理鋼板が開示されている。特許文献4の表面処理鋼板は、2層の化成処理皮膜層を有し、2層の化成処理皮膜層のうち少なくとも上層の化成処理皮膜層は着色顔料を含んでいる。
 特許文献5には、外観の安定化を目的とした表面処理鋼板が開示されている。特許文献5の表面処理鋼板は2層の化成処理皮膜層を有し、両方の化成処理皮膜層が着色顔料を含んでいる。
 特許文献6には、耐指紋性、耐食性等を有することを目的とした表面処理鋼板が開示されている。特許文献6の表面処理鋼板は、鋼板表面にシリカ-有機樹脂複合皮膜が形成されている。
On the other hand, many surface-treated steel sheets (for example, so-called fingerprint-resistant steel sheets) in which a thin film of about several μm is formed on the surface of a base steel sheet using an aqueous chemical solution have been developed.
For example, Patent Document 4 discloses a surface-treated steel sheet intended to have corrosion resistance, thermal radiation, and conductivity. The surface-treated steel sheet of Patent Document 4 has two chemical conversion treatment coating layers, and at least the upper chemical conversion treatment coating layer of the two chemical conversion treatment coating layers contains a color pigment.
Patent Document 5 discloses a surface-treated steel sheet for the purpose of stabilizing the appearance. The surface-treated steel sheet of Patent Document 5 has two chemical conversion coating layers, and both chemical conversion coating layers contain a color pigment.
Patent Document 6 discloses a surface-treated steel sheet intended to have fingerprint resistance, corrosion resistance, and the like. The surface-treated steel sheet of Patent Document 6 has a silica-organic resin composite film formed on the steel sheet surface.
日本国特開2008-55774号公報Japanese Unexamined Patent Publication No. 2008-55774 日本国特開2010-115902号公報Japanese Unexamined Patent Publication No. 2010-115902 日本国特開2010-247396号公報Japanese Unexamined Patent Publication No. 2010-247396 日本国特開2009-220511号公報Japanese Unexamined Patent Publication No. 2009-220511 日本国特開2013-18192号公報Japanese Unexamined Patent Publication No. 2013-18192 日本国特開2000-263695号公報Japanese Unexamined Patent Publication No. 2000-263695
 特許文献1、2及び3に記載された塗装鋼板は、いずれも意匠性を確保するために(上塗り)塗膜の膜厚が2.0μm以上必要であり、加えてその下に化成処理皮膜と下塗り塗膜との少なくとも一方を備える。そのため、特許文献1、2、3に記載された塗装鋼板では、塗膜厚を薄くすることが困難である。
 特許文献4及び5に記載された表面処理鋼板は、少なくとも1層以上の着色顔料を備えた化成処理皮膜を鋼板表面に備えており、着色顔料によっては鋼板の耐食性に影響を及ぼす可能性がある。
 特許文献6の表面処理鋼板では、鋼板表面に形成されるシリカ-有機樹脂複合皮膜は基本的に透明な皮膜である。そのため、特許文献6の表面処理鋼板は、基材鋼板の表面の外観(色調や疵)の影響を大きく受ける場合がある。
The coated steel sheets described in Patent Documents 1, 2 and 3 all require a coating film thickness of 2.0 μm or more in order to ensure designability (overcoat). At least one of the undercoating film is provided. Therefore, it is difficult to reduce the coating thickness in the coated steel sheets described in Patent Documents 1, 2, and 3.
The surface-treated steel sheets described in Patent Documents 4 and 5 are provided with a chemical conversion treatment film having at least one layer of a color pigment on the steel sheet surface, and depending on the color pigment, there is a possibility of affecting the corrosion resistance of the steel sheet. .
In the surface-treated steel sheet of Patent Document 6, the silica-organic resin composite film formed on the steel sheet surface is basically a transparent film. Therefore, the surface-treated steel sheet of Patent Document 6 may be greatly affected by the appearance (color tone and wrinkles) of the surface of the base steel sheet.
 本発明は、上記の事情に鑑みてなされたものであり、鋼板表面に形成された塗膜の膜厚が薄いにも関わらず、優れた耐疵付き性及び耐食性を有する塗装鋼板を提供することを目的とする。なお、本発明において「耐疵付き性」とは、所定の疵付試験を実施し、塗装鋼板の表面に疵を付与させた際に、疵部が目視で判別が困難であることを意味する。 The present invention has been made in view of the above circumstances, and provides a coated steel sheet having excellent scratch resistance and corrosion resistance even though the film thickness of the coating film formed on the steel sheet surface is thin. With the goal. In the present invention, the term “scratch resistance” means that when a predetermined brazing test is performed and wrinkles are imparted to the surface of the coated steel sheet, it is difficult to visually distinguish the wrinkles. .
 本発明は、上記課題を解決して、係る目的を達成するために以下の手段を採用する。 The present invention adopts the following means in order to solve the above problems and achieve the object.
(1)本発明の一態様に係る塗装鋼板は、基材鋼板と、前記基材鋼板上に形成された亜鉛めっき層と、前記亜鉛めっき層上に形成され、りん酸亜鉛結晶を含有し、付着量が0.4~2.5g/mであるりん酸亜鉛皮膜と、前記りん酸亜鉛皮膜上に形成され、付着量が50~2000mg/mであり、無機系皮膜又は有機無機複合皮膜である下層皮膜と、前記下層皮膜上に形成され、膜厚が2.0~10.0μmであり、5~25質量%の第1のカーボンブラックを含有する上層皮膜と、を備え、前記亜鉛めっき層と前記りん酸亜鉛皮膜との界面において、前記りん酸亜鉛結晶間の最大間隙が0.2μm以下である。 (1) A coated steel sheet according to an aspect of the present invention is a base steel sheet, a galvanized layer formed on the base steel sheet, formed on the galvanized layer, and containing zinc phosphate crystals, A zinc phosphate coating having an adhesion amount of 0.4 to 2.5 g / m 2 and an inorganic coating or an organic-inorganic composite formed on the zinc phosphate coating and having an adhesion amount of 50 to 2000 mg / m 2 A lower film that is a film, and an upper film that is formed on the lower film and has a film thickness of 2.0 to 10.0 μm and contains 5 to 25 mass% of the first carbon black, At the interface between the zinc plating layer and the zinc phosphate film, the maximum gap between the zinc phosphate crystals is 0.2 μm or less.
(2)上記(1)に記載の塗装鋼板において、前記下層皮膜が、10~50質量%の着色顔料を含有する構成を採用してもよい。 (2) In the coated steel sheet described in (1) above, a configuration in which the lower layer film contains 10 to 50% by mass of a color pigment may be employed.
(3)上記(2)に記載の塗装鋼板において、前記下層皮膜が、10~30質量%の着色顔料を含有する構成を採用してもよい。 (3) In the coated steel sheet described in (2) above, a configuration in which the lower layer film contains 10 to 30% by mass of a color pigment may be employed.
(4)上記(2)又は(3)に記載の塗装鋼板において、前記着色顔料が、第2のカーボンブラックである構成を採用してもよい。 (4) In the coated steel sheet according to (2) or (3) above, a configuration in which the color pigment is second carbon black may be adopted.
(5)上記(4)に記載の塗装鋼板において、前記第2のカーボンブラックの粒子径が、100nm超である構成を採用してもよい。 (5) In the coated steel sheet described in (4) above, a configuration in which the particle size of the second carbon black is more than 100 nm may be adopted.
(6)上記(4)又は(5)に記載の塗装鋼板において、前記第1のカーボンブラックの一次粒子径が、前記第2のカーボンブラックの一次粒子径よりも小さい構成を採用してもよい。 (6) In the coated steel sheet according to (4) or (5), a configuration in which a primary particle diameter of the first carbon black is smaller than a primary particle diameter of the second carbon black may be adopted. .
(7)上記(1)~(6)のいずれか一態様に記載の塗装鋼板において、前記下層皮膜が、25℃の温度下における電気抵抗率が0.1×10-6~185×10-6Ωcmであるホウ化物、炭化物、窒化物、ケイ化物からなる群から選ばれる一以上の非酸化物セラミックス粒子を5~15質量%含有する構成を採用してもよい。 (7) In the coated steel sheet according to any one of the above (1) to (6), the lower layer film has an electrical resistivity of 0.1 × 10 −6 to 185 × 10 − at a temperature of 25 ° C. A configuration containing 5 to 15% by mass of one or more non-oxide ceramic particles selected from the group consisting of boride, carbide, nitride, and silicide of 6 Ωcm may be employed.
 上記各態様によれば、鋼板表面に形成された塗膜の膜厚が薄いにも関わらず、優れた耐疵付き性及び耐食性を有する塗装鋼板を提供することが可能である。 According to each of the above aspects, it is possible to provide a coated steel sheet having excellent scratch resistance and corrosion resistance even though the coating film formed on the steel sheet surface is thin.
本実施形態に係る塗装鋼板の層構造を表す模式図である。It is a schematic diagram showing the layer structure of the coated steel plate which concerns on this embodiment. りん酸亜鉛結晶間の最大間隙の計測方法を表す模式図である。It is a schematic diagram showing the measuring method of the largest space | gap between zinc phosphate crystals. りん酸亜鉛結晶間の最大間隙の計測方法を表す模式図である。It is a schematic diagram showing the measuring method of the largest space | gap between zinc phosphate crystals. 本実施形態に係る下層皮膜に含まれるカーボンブラックの粒径と上層皮膜に含まれるカーボンブラックの粒径とを表す模式図である。It is a schematic diagram showing the particle size of the carbon black contained in the lower layer membrane | film | coat which concerns on this embodiment, and the particle size of the carbon black contained in an upper layer membrane | film | coat.
 以下、実施形態に係る塗装鋼板1及びその製造方法を、図面を参照して説明する。
(塗装鋼板1)
 最初に、塗装鋼板1について説明する。
 図1は、本実施形態に係る塗装鋼板1の層構造を表す模式図である。図1に示すように、塗装鋼板1は、基材鋼板2と、基材鋼板2上に形成された亜鉛めっき層3と、亜鉛めっき層3上に形成され、りん酸亜鉛を含有し、付着量が0.4~2.5g/mであり、最大間隙が0.2μm以下であるりん酸亜鉛皮膜4と、りん酸亜鉛皮膜4上に形成され、付着量が50~2000mg/mであり、無機系皮膜又は有機無機複合皮膜である下層皮膜5と、下層皮膜5上に形成され、膜厚が2.0~10.0μmであり、5~25質量%の第1のカーボンブラック7を含有する上層皮膜6と、を備える。
Hereinafter, the coated steel plate 1 and the manufacturing method thereof according to the embodiment will be described with reference to the drawings.
(Coated steel sheet 1)
First, the coated steel plate 1 will be described.
FIG. 1 is a schematic diagram showing a layer structure of a coated steel sheet 1 according to this embodiment. As shown in FIG. 1, a coated steel plate 1 includes a base steel plate 2, a galvanized layer 3 formed on the base steel plate 2, formed on the galvanized layer 3, contains zinc phosphate, and is attached. A zinc phosphate film 4 having an amount of 0.4 to 2.5 g / m 2 and a maximum gap of 0.2 μm or less, and a zinc phosphate film 4 formed on the zinc phosphate film 4 and having an adhesion amount of 50 to 2000 mg / m 2 A first carbon black formed on the lower layer film 5 and having a film thickness of 2.0 to 10.0 μm and having a thickness of 5 to 25% by mass. And an upper layer film 6 containing 7.
[基材鋼板2]
 基材鋼板2については、特に限定されるものではなく、公知の特性や化学組成を有する各種の鋼板を使用することが可能である。また、基材鋼板2の化学組成は、特に限定されない。
[Substrate steel plate 2]
The base steel plate 2 is not particularly limited, and various steel plates having known characteristics and chemical compositions can be used. Moreover, the chemical composition of the base steel plate 2 is not particularly limited.
[亜鉛めっき層3]
 亜鉛めっき層3は、特に限定されるものではなく、一般に知られている亜鉛めっき層3を使用することが可能である。
[Zinc plating layer 3]
The galvanized layer 3 is not particularly limited, and a generally known galvanized layer 3 can be used.
 亜鉛めっき層3の付着量は、片面当たり3~100g/mであることが好ましい。亜鉛めっき層3の付着量が片面当たり3g/m未満である場合には、耐食性が不十分となるため、好ましくない。また、亜鉛めっき層3の付着量が片面当たり100g/m超過である場合には、亜鉛めっき層3の加工性及び基材鋼板2に対する密着性が低下するため、好ましくない。
 より好ましい亜鉛めっき層3の付着量は、片面当たり5~70g/mである。
The adhesion amount of the galvanized layer 3 is preferably 3 to 100 g / m 2 per side. When the adhesion amount of the galvanized layer 3 is less than 3 g / m 2 per side, the corrosion resistance becomes insufficient, which is not preferable. Moreover, since the workability of the zinc plating layer 3 and the adhesiveness with respect to the base-material steel plate 2 will fall when the adhesion amount of the zinc plating layer 3 is more than 100 g / m < 2 > per one side, it is unpreferable.
A more preferable coating amount of the galvanized layer 3 is 5 to 70 g / m 2 per side.
[りん酸亜鉛皮膜4]
 亜鉛めっき層3上には、りん酸亜鉛結晶を含有するりん酸亜鉛皮膜4が形成される。
 りん酸亜鉛皮膜4の厚さは、1.0μm未満とすることが好ましく、加工部の意匠性や耐疵付き性がさらに向上する。なお、厚さの下限は特に限定されないが、例えば0.3μmが挙げられる。
[Zinc phosphate coating 4]
A zinc phosphate film 4 containing zinc phosphate crystals is formed on the galvanized layer 3.
The thickness of the zinc phosphate coating 4 is preferably less than 1.0 μm, which further improves the design and scratch resistance of the processed part. In addition, although the minimum of thickness is not specifically limited, For example, 0.3 micrometer is mentioned.
 りん酸亜鉛皮膜4の付着量は、0.4~2.5g/mである。りん酸亜鉛皮膜4の付着量が0.4g/m未満では、亜鉛めっき層3の表面に、りん酸亜鉛皮膜4の結晶のスケール(薄片)が多く生じ、十分な耐疵付性が得られないため好ましくない。一方、りん酸亜鉛皮膜4の付着量が2.5g/mを超えると、りん酸亜鉛皮膜4の凝集力が低下し、加工時にりん酸亜鉛皮膜4が剥離する可能性が高まると共に、後述する上層皮膜6(着色塗膜)中に導電顔料を添加した際に優れた導電性を得られにくくなるため好ましくない。
 耐疵付性、加工時の密着性及び導電性の観点から、りん酸亜鉛皮膜4の付着量は、より好ましくは0.6~2.0g/m である。
The adhesion amount of the zinc phosphate film 4 is 0.4 to 2.5 g / m 2 . When the adhesion amount of the zinc phosphate coating 4 is less than 0.4 g / m 2 , many crystal scales (flakes) of the zinc phosphate coating 4 are formed on the surface of the galvanized layer 3, and sufficient scratch resistance is obtained. This is not preferable because On the other hand, when the adhesion amount of the zinc phosphate coating 4 exceeds 2.5 g / m 2 , the cohesive force of the zinc phosphate coating 4 decreases, and the possibility that the zinc phosphate coating 4 peels during processing increases. When the conductive pigment is added to the upper layer film 6 (colored coating film), it is difficult to obtain excellent conductivity, which is not preferable.
From the viewpoint of scratch resistance, adhesion during processing, and conductivity, the amount of zinc phosphate coating 4 attached is more preferably 0.6 to 2.0 g / m 2 .
 亜鉛めっき層3とりん酸亜鉛皮膜4との界面において、りん酸亜鉛結晶間の最大間隙は、0.2μm以下である。りん酸亜鉛結晶間の最大間隙が0.2μm以下であることにより、L値の高い亜鉛めっき層3を隠ぺいすることが可能となり、L値が低下し、疵等を目立ちにくくすることが可能である。一方、りん酸亜鉛結晶間の最大間隙が0.2μm超の場合には、亜鉛めっき層3を隠ぺいすることができず、L値を低下することが難しいので好ましくない。
 りん酸亜鉛結晶間の最大間隙は、より好ましくは0.15μm以下である。これにより、よりL値を低下することができる。
At the interface between the galvanized layer 3 and the zinc phosphate coating 4, the maximum gap between the zinc phosphate crystals is 0.2 μm or less. When the maximum gap between the zinc phosphate crystals is 0.2 μm or less, the zinc plating layer 3 having a high L value can be concealed, the L value is lowered, and wrinkles and the like can be made inconspicuous. is there. On the other hand, when the maximum gap between the zinc phosphate crystals is more than 0.2 μm, the zinc plating layer 3 cannot be concealed and it is difficult to lower the L value, which is not preferable.
The maximum gap between zinc phosphate crystals is more preferably 0.15 μm or less. Thereby, the L value can be further reduced.
 図2及び3は、りん酸亜鉛結晶間の最大間隙の計測方法を表す模式図である。
 図2及び3に示すように、りん酸亜鉛結晶間の最大間隙を計測する際は、以下の方法で求めることが好ましい。まず、亜鉛めっき層3及びりん酸亜鉛皮膜4が形成された基材鋼板2を切断してその断面を露出させ、その断面をさらに研摩する。こうして得られた断面を電子顕微鏡で観察して、亜鉛めっき層3とりん酸亜鉛皮膜4との界面近傍の断面の観察像を得る。その観察像の視野に存在する亜鉛めっき層3とりん酸亜鉛皮膜4との界面に関するりん酸亜鉛結晶間の最大間隙を測定する。
2 and 3 are schematic views showing a method for measuring the maximum gap between zinc phosphate crystals.
As shown in FIGS. 2 and 3, when measuring the maximum gap between the zinc phosphate crystals, it is preferable to obtain by the following method. First, the base steel plate 2 on which the galvanized layer 3 and the zinc phosphate coating 4 are formed is cut to expose the cross section, and the cross section is further polished. The cross section thus obtained is observed with an electron microscope, and an observation image of the cross section in the vicinity of the interface between the galvanized layer 3 and the zinc phosphate coating 4 is obtained. The maximum gap between the zinc phosphate crystals at the interface between the galvanized layer 3 and the zinc phosphate coating 4 existing in the field of the observed image is measured.
 亜鉛めっき層3とりん酸亜鉛皮膜4との界面近傍の断面の観察像が図2に示す状態であった場合には、まず、りん酸亜鉛結晶と亜鉛めっき層3との接点である点A~Hを検出する。次に、線分AB,CD,EF,GHの長さを求め、最大の長さを有する線分の長さをりん酸亜鉛結晶間の最大間隙の長さとする。図2に示す場合には、線分ABの長さがりん酸亜鉛結晶間の最大間隙の長さとなる。
 図2では亜鉛めっき層3とりん酸亜鉛皮膜4との界面が直線である場合を示したが、図3に示すように亜鉛めっき層3とりん酸亜鉛皮膜4との界面が直線ではない場合には次のようにしてりん酸亜鉛結晶間の最大間隙を求める。まず、図2の場合と同様に、りん酸亜鉛結晶と亜鉛めっき層3との接点である点A’~H’を検出する。次に、線分A’B’,C’D’,E’F’,G’H’の長さを求める。この際に、りん酸亜鉛結晶と亜鉛めっき層3との界面に沿ってA’B’間,C’D’間,E’F’間及びG’H’間の距離を求めるのではなく、2点を直接結ぶ線分の長さを求める。図2の場合と同様に、最大の長さを有する線分の長さがりん酸亜鉛結晶間の最大間隙の長さとなる。図3に示す場合には、線分A’B’の長さがりん酸亜鉛結晶間の最大間隙の長さとなる。
When the observation image of the cross section in the vicinity of the interface between the zinc plating layer 3 and the zinc phosphate coating 4 is in the state shown in FIG. 2, first, the point A that is a contact point between the zinc phosphate crystal and the zinc plating layer 3. ˜H is detected. Next, the lengths of the line segments AB, CD, EF, and GH are obtained, and the length of the line segment having the maximum length is set as the maximum gap length between the zinc phosphate crystals. In the case shown in FIG. 2, the length of the line segment AB is the length of the maximum gap between the zinc phosphate crystals.
FIG. 2 shows the case where the interface between the galvanized layer 3 and the zinc phosphate film 4 is a straight line, but the case where the interface between the galvanized layer 3 and the zinc phosphate film 4 is not a straight line as shown in FIG. The maximum gap between zinc phosphate crystals is obtained as follows. First, as in the case of FIG. 2, points A ′ to H ′, which are contact points between the zinc phosphate crystal and the zinc plating layer 3, are detected. Next, the lengths of the line segments A′B ′, C′D ′, E′F ′, and G′H ′ are obtained. At this time, the distances between A′B ′, C′D ′, E′F ′ and G′H ′ along the interface between the zinc phosphate crystal and the zinc plating layer 3 are not obtained. Find the length of the line directly connecting the two points. Similar to the case of FIG. 2, the length of the line segment having the maximum length is the length of the maximum gap between the zinc phosphate crystals. In the case shown in FIG. 3, the length of the line segment A′B ′ is the maximum gap length between the zinc phosphate crystals.
[下層皮膜5]
 りん酸亜鉛皮膜4上に下層皮膜5が形成される。下層皮膜5は、りん酸亜鉛皮膜4と上層皮膜6との密着性及び耐食性の向上を目的として形成される。
 下層皮膜5は、無機系皮膜または有機無機複合皮膜である。下層皮膜5の主皮膜成分としては、液相シリカ、気相シリカ及びケイ酸塩等のケイ素化合物や、ジルコン系化合物が挙げられる。下層皮膜5は、主皮膜成分に加え、有機樹脂を含有してもよい。
 下層皮膜5は、環境保護の観点から、クロムを実質的に含有しないことが好ましい。
[Undercoat 5]
A lower layer film 5 is formed on the zinc phosphate film 4. The lower layer film 5 is formed for the purpose of improving the adhesion and corrosion resistance between the zinc phosphate film 4 and the upper layer film 6.
The lower layer film 5 is an inorganic film or an organic-inorganic composite film. Examples of the main film component of the lower layer film 5 include silicon compounds such as liquid phase silica, gas phase silica and silicate, and zircon compounds. The lower layer film 5 may contain an organic resin in addition to the main film component.
The lower layer film 5 preferably does not substantially contain chromium from the viewpoint of environmental protection.
 下層皮膜5の付着量は、50~2000mg/mの範囲であることが好ましい。下層皮膜5の付着量が50mg/m未満では、十分な耐食性が得られないため好ましくない。下層皮膜5の付着量が2000mg/mを超えると、下層皮膜5自体の凝集力が低下し、加工時に下層皮膜5が剥離する可能性が高まると共に、上層皮膜6に導電顔料を添加した際に優れた導電性を得られにくくなるため好ましくない。
 耐食性、加工時の密着性及び導電性の観点から、下層皮膜5のより好ましい付着量は、100~1000mg/mである。
The adhesion amount of the lower layer film 5 is preferably in the range of 50 to 2000 mg / m 2 . If the adhesion amount of the lower layer film 5 is less than 50 mg / m 2, it is not preferable because sufficient corrosion resistance cannot be obtained. When the adhesion amount of the lower layer film 5 exceeds 2000 mg / m 2 , the cohesive force of the lower layer film 5 itself is reduced, and the possibility that the lower layer film 5 is peeled off during processing increases, and when the conductive pigment is added to the upper layer film 6 It is not preferable because it is difficult to obtain excellent conductivity.
From the viewpoint of corrosion resistance, adhesion during processing, and conductivity, a more preferable adhesion amount of the lower layer film 5 is 100 to 1000 mg / m 2 .
 下層皮膜5は、疵を目立ちにくくする観点から、着色顔料を更に含有することが好ましい。下層皮膜5はりん酸亜鉛皮膜4の凹部に入り込み、りん酸亜鉛皮膜4を覆うように形成されるが、下層皮膜5が着色顔料を含むことで、上層皮膜6表面に発生した疵をより目立たなくさせることが可能である。
 下層皮膜5に含まれる着色顔料は、下層皮膜5の重量に対して、10質量%超50質量%以下であることが好ましい。下層皮膜5に含まれる着色顔料の量が10質量%以下では、疵を目立ちにくくする効果が十分でないため好ましくない。下層皮膜5に含まれる着色顔料の量が50質量%超では、ベース薬液の比率が相対的に減少し、十分な耐食性が得られないことがあるため好ましくない。
The lower layer film 5 preferably further contains a color pigment from the viewpoint of making wrinkles less noticeable. The lower layer film 5 is formed so as to enter the recess of the zinc phosphate film 4 and cover the zinc phosphate film 4, but the lower layer film 5 contains a color pigment, so that wrinkles generated on the surface of the upper layer film 6 are more conspicuous. It is possible to eliminate.
The color pigment contained in the lower layer film 5 is preferably more than 10% by mass and 50% by mass or less with respect to the weight of the lower layer film 5. If the amount of the color pigment contained in the lower layer film 5 is 10% by mass or less, the effect of making the wrinkles less noticeable is not sufficient, which is not preferable. If the amount of the color pigment contained in the lower layer film 5 is more than 50% by mass, the ratio of the base chemical solution is relatively decreased, and sufficient corrosion resistance may not be obtained.
 下層皮膜5に含まれる着色顔料の例としては、有機着色顔料が挙げられる。
 下層皮膜5に含まれる着色顔料の好ましい例としては、カーボンブラック(第2のカーボンブラック8)が挙げられる。下層皮膜5が第2のカーボンブラック8を含有する場合、その含有量としては、下層皮膜5の全重量に対して、10質量%超30質量%以下であることが好ましい。下層皮膜5に含まれる第2のカーボンブラック8の量が10質量%以下では、疵を目立ちにくくする効果が十分でないため好ましくない。下層皮膜5に含まれる第2のカーボンブラック8の量が30質量%超では、第2のカーボンブラック8と亜鉛めっき層3との異種金属接触腐食の可能性が高まり、耐食性を両立することが困難となるため好ましくない。
Examples of the color pigments contained in the lower layer film 5 include organic color pigments.
A preferable example of the color pigment contained in the lower layer film 5 is carbon black (second carbon black 8). When the lower layer film 5 contains the second carbon black 8, the content thereof is preferably more than 10% by mass and 30% by mass or less with respect to the total weight of the lower layer film 5. If the amount of the second carbon black 8 contained in the lower layer film 5 is 10% by mass or less, the effect of making wrinkles less noticeable is not sufficient, which is not preferable. If the amount of the second carbon black 8 contained in the lower layer film 5 exceeds 30% by mass, the possibility of different metal contact corrosion between the second carbon black 8 and the galvanized layer 3 increases, and both corrosion resistance can be achieved. Since it becomes difficult, it is not preferable.
 下層皮膜5が第2のカーボンブラック8を含有する場合、第2のカーボンブラック8の粒子径は、100nm超であることが好ましい。第2のカーボンブラック8の粒子径が100nm超であることにより、第2のカーボンブラック8がりん酸亜鉛皮膜4の間隙中に侵入する可能性が低くなる。これにより、異種金属接触腐食を防ぐことができるので好ましい。
 ここでいう「粒子径」とは、皮膜中に存在するカーボンブラック粒子が単独で存在する場合は平均1次粒径を指し、カーボンブラック粒子が凝集して存在する場合は凝集時の粒径を表す平均2次粒径を意味し、次の計測方法で求めることができる。まず、下層皮膜5が形成された塗装鋼板1を切断してその断面を露出させ、その断面をさらに研摩する。こうして得られた断面を電子顕微鏡で観察して、下層皮膜5の断面の観察像を得る。その観察像の視野に存在する第2のカーボンブラック8から数個を選び出す。そして、それぞれの第2のカーボンブラック8の長辺長さと短辺長さとを測定し、これら長辺長さの平均値と短辺長さとの平均値を算出し、さらにこれらを平均化して粒子径を算出する。
 上述の方法を用いれば、下層皮膜5上に上層皮膜6が形成されていても、第2のカーボンブラック8の粒子径を求めることが可能である。
 なお、上述の方法を用いて第1のカーボンブラック7の粒子径を求めることも可能である。
When the lower layer film 5 contains the second carbon black 8, the particle diameter of the second carbon black 8 is preferably more than 100 nm. When the particle diameter of the second carbon black 8 exceeds 100 nm, the possibility that the second carbon black 8 enters the gaps in the zinc phosphate coating 4 is reduced. This is preferable because it can prevent the contact corrosion of different metals.
The term “particle size” as used herein refers to the average primary particle size when the carbon black particles present in the film are present alone, and the particle size at the time of aggregation when the carbon black particles are present in an aggregated state. This means the average secondary particle size, which can be determined by the following measurement method. First, the coated steel sheet 1 on which the lower layer film 5 is formed is cut to expose the cross section, and the cross section is further polished. The cross section thus obtained is observed with an electron microscope, and an observation image of the cross section of the lower layer film 5 is obtained. Several are selected from the second carbon blacks 8 existing in the field of view of the observed image. Then, the long side length and the short side length of each second carbon black 8 are measured, the average value of the long side lengths and the average value of the short side lengths are calculated, and these are averaged to obtain particles. Calculate the diameter.
If the above-described method is used, the particle diameter of the second carbon black 8 can be obtained even if the upper film 6 is formed on the lower film 5.
In addition, it is also possible to obtain | require the particle diameter of the 1st carbon black 7 using the above-mentioned method.
 第2のカーボンブラック8は、下層皮膜5中で二次凝集してもよい。そのため、第2のカーボンブラック8に対する表面処理は必須ではなく、表面処理が施されていない第2のカーボンブラック8を用いてもよい。 The second carbon black 8 may be secondarily aggregated in the lower layer film 5. Therefore, the surface treatment for the second carbon black 8 is not essential, and the second carbon black 8 not subjected to the surface treatment may be used.
[上層皮膜6]
 上層皮膜6は、上述の下層皮膜5の上に形成され、塗装鋼板1の最表層となる。上層皮膜6は、上層皮膜6の全重量に対し5~25質量%のカーボンブラック(第1のカーボンブラック)7を含有する。
[Upper layer film 6]
The upper film 6 is formed on the above-described lower film 5 and becomes the outermost layer of the coated steel sheet 1. The upper layer film 6 contains 5 to 25% by mass of carbon black (first carbon black) 7 with respect to the total weight of the upper layer film 6.
 上層皮膜6中の第1のカーボンブラック7の粒子径は、下層皮膜5中の第2のカーボンブラック8の粒子径よりも小さいことが好ましい。
 図4は、下層皮膜5に含まれる第2のカーボンブラック8の粒径と上層皮膜6に含まれる第1のカーボンブラック7の粒径とを表す模式図である。
 図4に示すように、第2のカーボンブラック8の粒子径が大きい又は粒子径が小さい場合であっても二次凝集することにより、りん酸亜鉛皮膜4の間隙に侵入することができない。これにより、亜鉛めっき層3と第2のカーボンブラック8との異種金属接触を防止することができる。一方、上層皮膜6の厚みが薄い場合であっても黒色度を発現できるように、第1のカーボンブラック7の粒子径は小さいことが好ましい。
The particle diameter of the first carbon black 7 in the upper film 6 is preferably smaller than the particle diameter of the second carbon black 8 in the lower film 5.
FIG. 4 is a schematic diagram showing the particle size of the second carbon black 8 included in the lower layer film 5 and the particle size of the first carbon black 7 included in the upper layer film 6.
As shown in FIG. 4, even when the particle size of the second carbon black 8 is large or small, it cannot penetrate into the gap of the zinc phosphate coating 4 due to secondary aggregation. Thereby, dissimilar metal contact between the galvanized layer 3 and the second carbon black 8 can be prevented. On the other hand, it is preferable that the particle diameter of the first carbon black 7 is small so that blackness can be expressed even when the thickness of the upper film 6 is thin.
 より好ましくは、第1のカーボンブラック7の粒子径と第2のカーボンブラック8の粒子径とが下式(1)を充足することが好ましい。第1のカーボンブラック7の粒子径と第2のカーボンブラック8の粒子径とが下式(1)を充足することにより、より確実に上述の効果を発揮することができる。
 (第1のカーボンブラックの粒子径)/(第2のカーボンブラックの粒子径)<0.5・・・(1)
More preferably, the particle diameter of the first carbon black 7 and the particle diameter of the second carbon black 8 satisfy the following formula (1). When the particle diameter of the first carbon black 7 and the particle diameter of the second carbon black 8 satisfy the following formula (1), the above-described effect can be more reliably exhibited.
(Particle diameter of the first carbon black) / (Particle diameter of the second carbon black) <0.5 (1)
 上層皮膜6の膜厚は、2.0~10.0μmである。上層皮膜6の膜厚が2.0μm未満の場合、耐疵付性及び耐食性が十分に得られないため好ましくない。上層皮膜6の膜厚が10.0μmを超える場合、導電顔料を添加した際に導電性が低下するとともに、経済性が悪くなるため好ましくない。
 第1のカーボンブラック7の粒子径は、50nm以下であることが好ましい。第1のカーボンブラック7の粒子径が50nm以下であることにより、上層皮膜6の膜厚が2.0~10.0μmでも十分な色調を発現することが出来る。
 上層皮膜6の膜厚は、耐疵付性、耐食性、溶接性及び経済性の点から、3.0~8.0μmが好ましい。
The film thickness of the upper layer film 6 is 2.0 to 10.0 μm. When the film thickness of the upper layer film 6 is less than 2.0 μm, it is not preferable because the scratch resistance and the corrosion resistance cannot be sufficiently obtained. When the film thickness of the upper layer film 6 exceeds 10.0 μm, it is not preferable because when the conductive pigment is added, the conductivity is lowered and the economical efficiency is deteriorated.
The particle diameter of the first carbon black 7 is preferably 50 nm or less. When the particle diameter of the first carbon black 7 is 50 nm or less, a sufficient color tone can be exhibited even when the film thickness of the upper film 6 is 2.0 to 10.0 μm.
The film thickness of the upper layer film 6 is preferably 3.0 to 8.0 μm from the viewpoint of scratch resistance, corrosion resistance, weldability and economy.
 上層皮膜6は、第1のカーボンブラック7以外の着色顔料を含んでいてもよい。第1のカーボンブラック7以外の着色顔料の具体例としては、公知の有機顔料ならびに硫酸バリウム及びチタニア等が挙げられる。上層皮膜6が第1のカーボンブラック7以外の着色顔料を含む場合、その含有量は、上層皮膜6の固形分質量に対して25質量%以下であることが好ましい。上層皮膜6中の第1のカーボンブラック7以外の着色顔料の含有量が25質量%を超えると、耐薬品性及びバリア性等が低下するため、好ましくない。 The upper layer film 6 may contain a coloring pigment other than the first carbon black 7. Specific examples of the color pigment other than the first carbon black 7 include known organic pigments, barium sulfate, titania and the like. When the upper layer film 6 contains a color pigment other than the first carbon black 7, the content is preferably 25% by mass or less with respect to the solid content mass of the upper layer film 6. If the content of the color pigment other than the first carbon black 7 in the upper layer film 6 exceeds 25% by mass, the chemical resistance and the barrier property are deteriorated, which is not preferable.
 上層皮膜6は、25℃の電気抵抗率が0.1×10-6~185×10-6Ωcmのホウ化物、炭化物、窒化物及びケイ化物から選ばれる非酸化物セラミックス粒子を含んでもよい。
 非酸化物セラミックス粒子は水中で劣化し難いため、上層皮膜6を形成するための組成物が水系組成物の場合であっても、高い導電能を保持することが可能である。そのため、上層皮膜6が非酸化物セラミックス粒子を含有することにより、塗装鋼板1は優れた導電性を長期間保持することが可能となる。
The upper film 6 may include non-oxide ceramic particles selected from borides, carbides, nitrides, and silicides having an electrical resistivity at 25 ° C. of 0.1 × 10 −6 to 185 × 10 −6 Ωcm.
Since non-oxide ceramic particles are unlikely to deteriorate in water, even if the composition for forming the upper layer film 6 is an aqueous composition, it is possible to maintain high electrical conductivity. Therefore, when the upper film 6 contains non-oxide ceramic particles, the coated steel sheet 1 can maintain excellent conductivity for a long period of time.
 ここで、非酸化物セラミックスとは、酸素を含まない元素又は化合物からなるセラミックスを表す。また、ホウ化物セラミックス、炭化物セラミックス、窒化物セラミックス、及びケイ化物セラミックスとは、それぞれ、ホウ素(B)、炭素(C)、窒素(N)、ケイ素(Si)を主要な非金属構成元素とする非酸化物セラミックスを表す。これらは、いずれも25℃の電気抵抗率が0.1×10-6~185×10-6Ωcmである。 Here, the non-oxide ceramic represents a ceramic made of an element or compound not containing oxygen. Boride ceramics, carbide ceramics, nitride ceramics, and silicide ceramics have boron (B), carbon (C), nitrogen (N), and silicon (Si) as main nonmetallic constituent elements, respectively. Represents non-oxide ceramics. All of these have an electrical resistivity at 25 ° C. of 0.1 × 10 −6 to 185 × 10 −6 Ωcm.
 非酸化物セラミックス粒子は、少量で高い導電性を有する。そのため、上層皮膜6中の非酸化物セラミックス粒子の含有量が少量であっても、塗装鋼板1は好適な導電性を得ることができる。上層皮膜6中の非酸化物セラミックス粒子の含有量が少量であれば、上層皮膜6が非酸化物セラミックス粒子を含有することによる耐食性及び成形性の低下は問題とならない。
 なお、純金属の電気抵抗率は1.6×10-6Ωcm(Ag単体)~185×10-6Ωcm(Mn単体)である。一方、非酸化物セラミックスの電気抵抗率は、0.1×10-6~185×10-6Ωcmである。このことから、非酸化物セラミックスは、純金属と同程度の優れた導電性を持つことが分かる。
Non-oxide ceramic particles have high conductivity in a small amount. Therefore, even if the content of non-oxide ceramic particles in the upper layer film 6 is small, the coated steel sheet 1 can obtain suitable conductivity. If the content of the non-oxide ceramic particles in the upper layer film 6 is small, the deterioration of corrosion resistance and formability due to the upper layer film 6 containing the non-oxide ceramic particles will not be a problem.
The electric resistivity of pure metal is 1.6 × 10 −6 Ωcm (Ag simple substance) to 185 × 10 −6 Ωcm (Mn simple substance). On the other hand, the electrical resistivity of the non-oxide ceramic is 0.1 × 10 −6 to 185 × 10 −6 Ωcm. From this, it can be seen that non-oxide ceramics have excellent conductivity equivalent to that of pure metal.
 上層皮膜6中の非酸化物セラミックス粒子の含有量は、上層皮膜6の全質量に対し0.5~20質量%が好ましい。非酸化物セラミックス粒子の含有量が0.5質量%未満であると、他の導電性粒子を併用しても好ましい溶接性が得られない場合があるため好ましくない。非酸化物セラミックス粒子の含有量が20質量%を超えると、連続溶接時に電極へ非酸化物セラミックス粒子が刺さる現象が生じ易くなり、溶接不良等が発生することがあるため好ましくない。
 非酸化物セラミックス粒子の含有量の下限は、好ましくは1質量%、さらに好ましくは5質量%であり、上限は好ましくは15質量%、さらに好ましくは10質量%である。
The content of non-oxide ceramic particles in the upper film 6 is preferably 0.5 to 20% by mass with respect to the total mass of the upper film 6. When the content of the non-oxide ceramic particles is less than 0.5% by mass, it is not preferable because preferable weldability may not be obtained even when other conductive particles are used in combination. When the content of the non-oxide ceramic particles exceeds 20% by mass, a phenomenon in which the non-oxide ceramic particles are stuck into the electrode during continuous welding is likely to occur, and welding failure may occur, which is not preferable.
The lower limit of the content of non-oxide ceramic particles is preferably 1% by mass, more preferably 5% by mass, and the upper limit is preferably 15% by mass, more preferably 10% by mass.
 非酸化物セラミックス粒子としては、以下が例示される。
 ホウ化物セラミックス粒子としては、周期律表の第IV族(Ti、Zr、Hf)、第V族(V、Nb、Ta)、第VI族(Cr、Mo、W)の各遷移金属、Mn、Fe、Co、Ni、希土類元素、又は、Be及びMg以外の第II族(Ca、Sr、Ba)のホウ化物セラミックス粒子が例示される。
 ただし、Beのホウ化物セラミックス粒子のうち、25℃に於ける電気抵抗率が185×10-6Ωcmを超えるセラミックス(例えば、BeB、BeB等)粒子は、導電性能が低く、溶接性が低下することがあるため好ましくない。また、Mgのホウ化物セラミックス(Mg、MgB等)粒子は、水又は酸に対し安定性が低く、溶接性が低下することがあるため好ましくない。
Examples of the non-oxide ceramic particles include the following.
As boride ceramic particles, Group IV (Ti, Zr, Hf), Group V (V, Nb, Ta), Group VI (Cr, Mo, W) transition metals of the periodic table, Mn, Examples include Fe, Co, Ni, rare earth elements, or Group II (Ca, Sr, Ba) boride ceramic particles other than Be and Mg.
However, among the boride ceramic particles of Be, ceramic particles (for example, Be 2 B, BeB 6 etc.) whose electrical resistivity at 25 ° C. exceeds 185 × 10 −6 Ωcm have low electrical conductivity and weldability. Is not preferred because it may decrease. Further, Mg boride ceramics (Mg 3 B 2 , MgB 2, etc.) particles are not preferable because they have low stability against water or acid and may deteriorate weldability.
 炭化物セラミックス粒子としては、周期律表の第IV族(Ti、Zr、Hf)、第V族(V、Nb、Ta)、VI族(Cr、Mo、W)の各遷移金属、又は、Mn、Fe、Co、Niの炭化物セラミックス粒子が例示される。
 ただし、希土類元素及び第II族の炭化物セラミックス(例えば、YC、LaC、CeC、PrC、BeC、Mg、SrC等)粒子は、湿潤雰囲気下で加水分解し易く、溶接性が低下することがあるため好ましくない。
As the carbide ceramic particles, transition metals of Group IV (Ti, Zr, Hf), Group V (V, Nb, Ta), Group VI (Cr, Mo, W) of the periodic table, or Mn, Examples are Fe, Co, Ni carbide ceramic particles.
However, rare earth elements and Group II carbide ceramics (for example, YC 2 , LaC 2 , CeC 2 , PrC 2 , Be 2 C, Mg 2 C 3 , SrC 2, etc.) particles are easily hydrolyzed in a humid atmosphere. This is not preferable because weldability may be deteriorated.
 窒化物セラミックス粒子としては、周期律表の第IV族(Ti、Zr、Hf)、第V族(V、Nb、Ta)、第VI族(Cr、Mo、W)の各遷移金属、又は、Mn、Fe、Co、Niの窒化物セラミックス粒子が例示される。
 ただし、希土類元素及び第II族の窒化物(例えば、LaN、Mg、Ca等)粒子は、湿潤雰囲気下で加水分解し易く、溶接性が低下することがあるため好ましくない。
As nitride ceramic particles, transition metals of Group IV (Ti, Zr, Hf), Group V (V, Nb, Ta), Group VI (Cr, Mo, W) of the periodic table, or Examples thereof include nitride ceramic particles of Mn, Fe, Co, and Ni.
However, rare earth elements and Group II nitride (eg, LaN, Mg 3 N 2 , Ca 3 N 2, etc.) particles are not preferable because they are easily hydrolyzed in a wet atmosphere and the weldability may be reduced. .
 ケイ化物セラミックス粒子としては、周期律表のIV族(Ti、Zr、Hf)、V族(V、Nb、Ta)、VI族(Cr、Mo、W)の各遷移金属、又は、Mn、Fe、Co、Niのケイ化物粒子が例示される。
 ただし、希土類元素及び第II族のケイ化物(例えば、LaSi、MgSi、SrSi、BaSi等)粒子は、湿潤雰囲気下で水と反応し水素を発生し易く、溶接性が低下することがあるため好ましくない。
Silicide ceramic particles include transition metals of Group IV (Ti, Zr, Hf), Group V (V, Nb, Ta) and Group VI (Cr, Mo, W) of the periodic table, or Mn, Fe Co, Ni silicide particles are exemplified.
However, rare earth elements and Group II silicides (eg, LaSi, Mg 2 Si, SrSi 2 , BaSi 2, etc.) particles easily react with water in a humid atmosphere to generate hydrogen, resulting in poor weldability. This is not preferable.
 その他、非酸化物セラミックス粒子としては、これらホウ化物セラミックス、炭化物セラミックス、窒化物セラミックス、及びケイ化物セラミックスよりなる群から選択される2種以上の混合物の粒子、これらのセラミックスを金属の結合材と混合して焼結したサーメット粒子等が例示される。 In addition, as non-oxide ceramic particles, particles of two or more kinds of mixtures selected from the group consisting of these boride ceramics, carbide ceramics, nitride ceramics, and silicide ceramics, these ceramics as metal binders The cermet particle | grains etc. which were mixed and sintered are illustrated.
 なお、上層皮膜を水系組成物から作製する場合、サーメット粒子の一部を構成する金属の標準電極電位は、-0.3V以上で耐水劣化性であることが好ましい。サーメット粒子の一部を構成する金属の標準電極電位が-0.3V未満の場合、このサーメット粒子が水系組成物中に長期間存在すると、粒子の表面に錆層や厚い酸化絶縁層が生じ易く、粒子の導電性が失われることがあるためである。耐水劣化性のサーメット粒子としては、WC-12Co、WC-12Ni、TiC-20TiN-15WC-10Mo2C-5Ni等が挙げられる。Co、Niの標準電極電位はそれぞれ-0.28V、-0.25Vでいずれも-0.3Vより貴であり、いずれの金属も耐水劣化性である。 When the upper layer film is prepared from an aqueous composition, it is preferable that the standard electrode potential of the metal constituting a part of the cermet particles is −0.3 V or more and is water-resistant. When the standard electrode potential of the metal constituting a part of the cermet particles is less than −0.3 V, if the cermet particles are present in the aqueous composition for a long time, a rust layer or a thick oxide insulating layer is likely to be formed on the surface of the particles. This is because the conductivity of the particles may be lost. Examples of water-resistant cermet particles include WC-12Co, WC-12Ni, TiC-20TiN-15WC-10Mo2C-5Ni, and the like. The standard electrode potentials of Co and Ni are −0.28 V and −0.25 V, respectively, which are nobler than −0.3 V, and both metals are resistant to water.
 非酸化物セラミックスのうち、Cr系セラミックス(CrB、CrB、Cr、CrN、CrSi等)は、環境性の観点から好ましくない。Hf系セラミックス(HfB、HfC、HfN等)、及びTbより重希土側の希土類元素系セラミックスの多くは、経済性の観点及び入手容易性の観点から好ましくない。
 したがって、上層皮膜6に添加する非酸化物セラミックスとしては、Cr系セラミックス、Hf系セラミックス及びTbより重希土側の希土類元素系セラミックスを除いた非酸化物セラミックスの粒子、又は、これらセラミックスを除いた非酸化物セラミックスの2種以上の混合物の粒子が好ましい。
Among non-oxide ceramics, Cr-based ceramics (CrB, CrB 2 , Cr 3 C 2 , Cr 2 N, CrSi, etc.) are not preferable from the viewpoint of environmental properties. Many of Hf ceramics (HfB 2 , HfC, HfN, etc.) and rare earth ceramics on the rare earth side of Tb are not preferable from the viewpoints of economy and availability.
Therefore, the non-oxide ceramics added to the upper layer film 6 include Cr-based ceramics, Hf-based ceramics, and non-oxide ceramic particles excluding rare earth element-based ceramics on the heavy rare earth side from Tb, or these ceramics are excluded. Also preferred are particles of a mixture of two or more non-oxide ceramics.
 更に、非酸化物セラミックス粒子は、工業製品の有無、並びに、国内外市場での安定流通性、価格、及び電気抵抗率等の観点から、次に例示する非酸化物セラミックスがより好ましい。
 即ち、非酸化物セラミックス粒子は、BaB(電気抵抗率77×10-6Ωcm)、CeB(同30×10-6Ωcm)、CoB(同33×10-6Ωcm)、CoB(同76×10-6Ωcm)、FeB(同80×10-6Ωcm)、GdB(同31×10-6Ωcm)、GdB(同45×10-6Ωcm)、LaB(同12×10-6Ωcm)、LaB(同15×10-6Ωcm)、MoB(同40×10-6Ωcm)、MoB(同35×10-6Ωcm)、MoB(同45×10-6Ωcm)、Mo(同26×10-6Ωcm)、Nb(同45×10-6Ωcm)、NbB(同6.5×10-6Ωcm)、Nb(同34×10-6Ωcm)、NbB(同10×10-6Ωcm)、NdB(同39×10-6Ωcm)、NdB(同20×10-6Ωcm)、PrB(同40×10-6Ωcm)、PrB(同20×10-6Ωcm)、SrB(同77×10-6Ωcm)、TaB(同100×10-6Ωcm)、TaB(同100×10-6Ωcm)、TiB(同40×10-6Ωcm)、TiB(同28×10-6Ωcm)、VB(同35×10-6Ωcm)、VB(同150×10-6Ωcm)、W(同80×10-6Ωcm)、YB(同29×10-6Ωcm)、YB(同40×10-6Ωcm)、YB12(同95×10-6Ωcm)、ZrB(同60×10-6Ωcm)、MoC(同97×10-6Ωcm)、MoC(同100×10-6Ωcm)、NbC(同144×10-6Ωcm)、NbC(同74×10-6Ωcm)、TaC(同49×10-6Ωcm)、TaC(同30×10-6Ωcm)、TiC(同180×10-6Ωcm)、VC(同140×10-6Ωcm)、VC(同150×10-6Ωcm)、WC(同80×10-6Ωcm)、WC(同80×10-6Ωcm)、ZrC(同70×10-6Ωcm)、MoN(同20×10-6Ωcm)、NbN(同142×10-6Ωcm)、NbN(同54×10-6Ωcm)、ScN(同25×10-6Ωcm)、TaN(同135×10-6Ωcm)、TiN(同22×10-6Ωcm)、ZrN(同14×10-6Ωcm)、CoSi(同18×10-6Ωcm)、MoSi(同22×10-6Ωcm)、MoSi(同46×10-6Ωcm)、MoSi(同22×10-6Ωcm)、NbSi(同6.3×10-6Ωcm)、NiSi(同20×10-6Ωcm)、TaSi(同124×10-6Ωcm)、TaSi(同8.5×10-6Ωcm)、TiSi(同63×10-6Ωcm)、TiSi(同123×10-6Ωcm)、VSi(同115×10-6Ωcm)、VSi(同9.5×10-6Ωcm)、WSi(同93×10-6Ωcm)、WSi(同33×10-6Ωcm)、ZrSi(同49×10-6Ωcm)、ZrSi(同76×10-6Ωcm)の粒子、これらから選ばれる2種以上の混合物の粒子がより好ましい。
Further, the non-oxide ceramic particles are more preferably non-oxide ceramics exemplified below from the viewpoints of the presence or absence of industrial products, stable distribution in domestic and overseas markets, price, electrical resistivity, and the like.
That is, non-oxide ceramic particles include BaB 6 (electric resistivity 77 × 10 −6 Ωcm), CeB 6 (30 × 10 −6 Ωcm), Co 2 B (33 × 10 −6 Ωcm), CoB ( 76 × 10 −6 Ωcm), FeB (80 × 10 −6 Ωcm), GdB 4 (31 × 10 −6 Ωcm), GdB 6 (45 × 10 −6 Ωcm), LaB 4 (12 ×) 10 -6 Ωcm), LaB 6 (same 15 × 10 -6 Ωcm), Mo 2 B ( the 40 × 10 -6 Ωcm), MoB ( the 35 × 10 -6 Ωcm), MoB 2 ( same 45 × 10 - 6 Ωcm), Mo 2 B 5 (26 × 10 −6 Ωcm), Nb 3 B 2 (45 × 10 −6 Ωcm), NbB (6.5 × 10 −6 Ωcm), Nb 3 B 4 ( the 34 × 10 -6 Ωcm), NbB 2 ( same 10 × 10 -6 cm), NdB 4 (the 39 × 10 -6 Ωcm), NdB 6 ( same 20 × 10 -6 Ωcm), PrB 4 ( the 40 × 10 -6 Ωcm), PrB 6 ( same 20 × 10 -6 Ωcm) , SrB 6 (77 × 10 −6 Ωcm), TaB (100 × 10 −6 Ωcm), TaB 2 (100 × 10 −6 Ωcm), TiB (40 × 10 −6 Ωcm), TiB 2 ( 28 × 10 −6 Ωcm), VB (35 × 10 −6 Ωcm), VB 2 (150 × 10 −6 Ωcm), W 2 B 5 (80 × 10 −6 Ωcm), YB 4 (same as above) 29 × 10 −6 Ωcm), YB 6 (40 × 10 −6 Ωcm), YB 12 (95 × 10 −6 Ωcm), ZrB 2 (60 × 10 −6 Ωcm), MoC (97 × 10) −6 Ωcm), Mo 2 C (100 × 10 −6 Ωcm) Nb 2 C (144 × 10 −6 Ωcm), NbC (74 × 10 −6 Ωcm), Ta 2 C (49 × 10 −6 Ωcm), TaC (30 × 10 −6 Ωcm), TiC (180 × 10 −6 Ωcm), V 2 C (140 × 10 −6 Ωcm), VC (150 × 10 −6 Ωcm), WC (80 × 10 −6 Ωcm), W 2 C (same) 80 × 10 −6 Ωcm), ZrC (70 × 10 −6 Ωcm), Mo 2 N (20 × 10 −6 Ωcm), Nb 2 N (142 × 10 −6 Ωcm), NbN (54 ×) 10 −6 Ωcm), ScN (25 × 10 −6 Ωcm), Ta 2 N (135 × 10 −6 Ωcm), TiN (22 × 10 −6 Ωcm), ZrN (14 × 10 −6 Ωcm). ), CoSi 2 (same 18 × 10 -6 Ωcm), Mo 3 Si ( same 22 10 -6 Ωcm), Mo 5 Si 3 ( the 46 × 10 -6 Ωcm), MoSi 2 ( same 22 × 10 -6 Ωcm), NbSi 2 ( same 6.3 × 10 -6 Ωcm), Ni 2 Si ( 20 × 10 −6 Ωcm), Ta 2 Si (124 × 10 −6 Ωcm), TaSi 2 (8.5 × 10 −6 Ωcm), TiSi (63 × 10 −6 Ωcm), TiSi 2 ( 123 × 10 −6 Ωcm), V 5 Si 3 (115 × 10 −6 Ωcm), VSi 2 (9.5 × 10 −6 Ωcm), W 3 Si (93 × 10 −6 Ωcm), Particles of WSi 2 (33 × 10 −6 Ωcm), ZrSi (49 × 10 −6 Ωcm), ZrSi 2 (76 × 10 −6 Ωcm), and a mixture of two or more kinds selected from these preferable.
 これらの中でも、25℃の電気抵抗率が0.1~100×10-6Ωcmである非酸化物セラミックス粒子が、特に好ましい。非酸化物セラミックス粒子の25℃の電気抵抗率が0.1~100×10-6Ωcmであることにより、上層皮膜6中の非酸化物セラミックス粒子の含有量をより低減できるためである。上層皮膜6中の非酸化物セラミックス粒子の含有量を低減することで、上層皮膜6を貫通する腐食電流の導通路形成を抑制し、耐食性低下が抑制されるため好ましい。これに加え、上層皮膜6中の非酸化物セラミックス粒子の含有量を低減することで、プレス成形時に上層皮膜6の剥離又はかじりの誘発を抑制し、成形性の低下が抑えられるため好ましい。 Among these, non-oxide ceramic particles having an electrical resistivity at 25 ° C. of 0.1 to 100 × 10 −6 Ωcm are particularly preferable. This is because the non-oxide ceramic particles have an electric resistivity at 25 ° C. of 0.1 to 100 × 10 −6 Ωcm, whereby the content of the non-oxide ceramic particles in the upper film 6 can be further reduced. By reducing the content of the non-oxide ceramic particles in the upper layer film 6, formation of a conduction path of a corrosion current that penetrates the upper layer film 6 is suppressed, and a decrease in corrosion resistance is preferably suppressed. In addition to this, it is preferable to reduce the content of non-oxide ceramic particles in the upper layer film 6, thereby suppressing the peeling or galling of the upper layer film 6 during press molding and suppressing the decrease in formability.
 上層皮膜6は、防錆顔料を含んでもよい。防錆顔料は、特に限定されないが、トリポリリン酸アルミニウム、リン酸および亜リン酸のZn、Mg、Al、Ti、ZrおよびCe塩、ハイドロカルマイト処理されたリン酸化合物(例として、リン酸亜鉛のハイドロカルマイト処理である東邦顔料製EXPERT NP-530 N5)、Caイオン交換シリカ、並びに、吸油量100~1000ml/100g、比表面積200~1000m/g、平均粒径2~30μmの非晶質シリカよりなる群から選択される少なくとも1種の防錆顔料が好ましい。
 これらの中でも、好ましい防錆顔料は、疵部及び平面部の両方の耐食性を向上させる観点から、リン酸塩系防錆顔料(トリポリリン酸アルミニウム、ハイドロカルマイト処理されたリン酸化合物等)、シリカ系防錆顔料、又は、その両者の組み合わせである。特に、好ましい防錆顔料は、トリポリリン酸アルミニウム、ハイドロカルマイト処理されたリン酸化合物、Ca交換シリカ、吸油量100~1000ml/100g、比表面積200~1000m/g、平均粒径2~30μmの非晶質シリカよりなる群から選択される少なくとも1種である。
The upper film 6 may contain a rust preventive pigment. The rust preventive pigment is not particularly limited, but is aluminum tripolyphosphate, phosphoric acid and phosphorous acid Zn, Mg, Al, Ti, Zr and Ce salts, hydrocalumite-treated phosphate compound (for example, zinc phosphate EXPERT NP-530 N5) manufactured by Toho Pigment, which is a hydrocalumite treatment, and Ca ion-exchanged silica, and an amorphous oil having an oil absorption of 100 to 1000 ml / 100 g, a specific surface area of 200 to 1000 m 2 / g, and an average particle size of 2 to 30 μm At least one rust preventive pigment selected from the group consisting of porous silica is preferred.
Among these, preferable rust preventive pigments are phosphate-based rust preventive pigments (aluminum tripolyphosphate, a phosphate compound treated with hydrocalumite, etc.), silica, from the viewpoint of improving the corrosion resistance of both the heel portion and the flat portion. It is a system antirust pigment, or a combination of both. Particularly preferred anti-rust pigments are aluminum tripolyphosphate, hydrocalumite-treated phosphate compound, Ca-exchanged silica, oil absorption of 100 to 1000 ml / 100 g, specific surface area of 200 to 1000 m 2 / g, and average particle size of 2 to 30 μm. It is at least one selected from the group consisting of amorphous silica.
 シリカの吸油量は、JIS K 5101-13-2:2004に従って測定することができる。シリカの比表面積は、BET法により測定することができる。シリカの平均粒径は、導電性粒子の平均粒径と同様の方法で測定することができる。 Silica oil absorption can be measured according to JIS K 5101-13-2: 2004. The specific surface area of silica can be measured by the BET method. The average particle diameter of silica can be measured by the same method as the average particle diameter of conductive particles.
 防錆顔料の含有量は、上層皮膜6の全固形分質量に対して2.5~20質量%が好ましい。
 防錆顔料の含有量が2.5質量%未満の場合、耐食性が十分に得られないことがあるため好ましくない。防錆顔料の含有量が20質量%を超える場合、上層皮膜6の加工性及び凝集力が低下する場合があるため好ましくない。
 防錆顔料の含有量は、耐食性及び加工性の点から、上層皮膜6の全固形分質量に対して5~15質量%がより好ましい。
The content of the rust preventive pigment is preferably 2.5 to 20% by mass relative to the total solid mass of the upper layer film 6.
When the content of the rust preventive pigment is less than 2.5% by mass, corrosion resistance may not be sufficiently obtained, which is not preferable. When the content of the rust preventive pigment exceeds 20% by mass, the processability and cohesive force of the upper layer film 6 may be lowered, which is not preferable.
The content of the rust preventive pigment is more preferably 5 to 15% by mass with respect to the total solid mass of the upper film 6 from the viewpoint of corrosion resistance and processability.
 上層皮膜6は、その他の添加剤を含んでもよい。添加剤としては、体質顔料、固体潤滑剤、レベリング剤等の周知の添加剤が挙げられる。
 体質顔料としては、例えば、シリカ(コロイダルシリカを含む)、チタニア、ジルコニア等が挙げられる。体質顔料の含有量は、上層皮膜6の全固形分質量に対して0.1~20質量%が好ましい。体質顔料の含有量が0.1質量%未満の場合には、体質顔料を添加する効果が十分に得られないことがあるため好ましくない。体質顔料の含有量の上限は、特に制限されるものではないが、含有量が過剰に多いと上層皮膜6中の他の成分の含有量が減少し、所望の効果が得られなくなる可能性があるため、おおよそ20質量%以下とすることが好ましい。
The upper layer film 6 may contain other additives. Examples of the additive include well-known additives such as extender pigments, solid lubricants, and leveling agents.
Examples of extender pigments include silica (including colloidal silica), titania, zirconia, and the like. The content of the extender is preferably 0.1 to 20% by mass relative to the total solid mass of the upper layer film 6. When the content of the extender is less than 0.1% by mass, the effect of adding the extender may not be sufficiently obtained, which is not preferable. The upper limit of the content of the extender pigment is not particularly limited, but if the content is excessively large, the content of other components in the upper layer film 6 may decrease, and the desired effect may not be obtained. Therefore, it is preferably about 20% by mass or less.
 固体潤滑剤を上層皮膜6に添加することにより、上層皮膜6に優れた潤滑性を付与することができると共に、耐パウダリング性を改善することができるため好ましい。固体潤滑剤としては、例えば、ポリオレフィンワックスおよびパラフィンワックス並びにフッ素樹脂系ワックスが挙げられる。
 ポリオレフィンワックス及びパラフィンワックスの例としては、例えばポリエチレンワックス、合成パラフィン、天然パラフィン、マイクロワックス及び塩素化炭化水素等が挙げられる。フッ素樹脂系ワックスの例としては、ポリフルオロエチレン樹脂(ポリ4フッ化エチレン樹脂等)、ポリフッ化ビニル樹脂及びポリフッ化ビニリデン樹脂等が挙げられる。
It is preferable to add a solid lubricant to the upper film 6 because it can impart excellent lubricity to the upper film 6 and improve powdering resistance. Examples of the solid lubricant include polyolefin wax, paraffin wax, and fluororesin wax.
Examples of the polyolefin wax and paraffin wax include polyethylene wax, synthetic paraffin, natural paraffin, micro wax, chlorinated hydrocarbon, and the like. Examples of the fluororesin wax include polyfluoroethylene resin (polytetrafluoroethylene resin, etc.), polyvinyl fluoride resin, and polyvinylidene fluoride resin.
 固体潤滑剤の平均粒径は、0.05~25μmが好ましい。固体潤滑剤の平均粒径が0.05μm未満の場合、潤滑剤の表面濃化により、上層皮膜6の表層に占める潤滑剤の占有面積が大きくなり、上層皮膜6と下層皮膜5との密着性が低下することがあるため好ましくない。また、固体潤滑剤の平均粒径が0.05μm未満であり、上層皮膜6の上層にさらに塗装(後塗装)をする場合には、上層皮膜6と後塗装により形成される皮膜との密着性も低下することがあるため好ましくない。一方で、固体潤滑剤の平均粒径が25μmを超える場合、上層皮膜6から潤滑剤が脱落し易くなることにより所定の潤滑性が得られ難くなるとともに、耐食性が低下することがあるため好ましくない。
 固体潤滑剤の平均粒径は、優れた塗料密着性、耐食性、潤滑性及び耐パウダリング性を得る点から、1~15μmがより好ましく、3~10μmが更に好ましい。
The average particle size of the solid lubricant is preferably 0.05 to 25 μm. When the average particle size of the solid lubricant is less than 0.05 μm, the area occupied by the lubricant in the surface layer of the upper film 6 is increased due to the surface concentration of the lubricant, and the adhesion between the upper film 6 and the lower film 5 is increased. Is not preferred because it may decrease. In addition, when the average particle size of the solid lubricant is less than 0.05 μm and when further coating (post-coating) is applied to the upper layer of the upper film 6, the adhesion between the upper film 6 and the film formed by the post-coating Is also not preferable. On the other hand, when the average particle size of the solid lubricant exceeds 25 μm, it is difficult to obtain the predetermined lubricity due to the lubricant being easily removed from the upper layer film 6, and the corrosion resistance may be lowered. .
The average particle size of the solid lubricant is more preferably from 1 to 15 μm, and even more preferably from 3 to 10 μm from the viewpoint of obtaining excellent paint adhesion, corrosion resistance, lubricity and powdering resistance.
 固体潤滑剤の軟化点は、100℃~135℃が好ましく、110~130℃がより好ましい。固体潤滑剤の軟化点を100℃~135℃にすると、潤滑性、耐パウダリング性が更に向上する。 The softening point of the solid lubricant is preferably 100 ° C to 135 ° C, more preferably 110 to 130 ° C. When the softening point of the solid lubricant is 100 ° C. to 135 ° C., the lubricity and the powdering resistance are further improved.
 固体潤滑剤の含有量は、上層皮膜6の全固形分質量に対して0.1~10質量%が好ましい。固体潤滑剤の含有量が0.1質量%未満の場合、潤滑性が十分に得られないことがあるため好ましくない。固体潤滑剤の含有量が10質量%を超える場合、上層皮膜6と下層皮膜5との密着性及び耐食性が低下することがあるため好ましくない。
 固体潤滑剤の含有量は、上層皮膜6と下層皮膜5との密着性、潤滑性及び耐食性の点から、上層皮膜6の全固形分質量に対して0.2~5質量%がより好ましく、0.5~2.5質量%が更に好ましい。
The content of the solid lubricant is preferably 0.1 to 10% by mass with respect to the total solid mass of the upper film 6. When the content of the solid lubricant is less than 0.1% by mass, it is not preferable because sufficient lubricity may not be obtained. When the content of the solid lubricant exceeds 10% by mass, the adhesion and corrosion resistance between the upper layer film 6 and the lower layer film 5 may be lowered, which is not preferable.
The content of the solid lubricant is more preferably 0.2 to 5% by mass with respect to the total solid mass of the upper layer film 6 in terms of adhesion between the upper layer film 6 and the lower layer film 5, lubricity and corrosion resistance. More preferably, it is 0.5 to 2.5% by mass.
 上層皮膜6は、第1のカーボンブラック7を含むので、概してL値は小さい。一方、基材鋼板2及び亜鉛めっき層3は概ね銀白色であり、L値が相対的に大きい。上層皮膜6に疵が生じると、塗装鋼板1の外観を観察した場合に、下層の基材鋼板2又は亜鉛めっき層3が見える場合がある。その場合、上層皮膜6の疵の無い部分と、基材鋼板2又は亜鉛めっき層3との色調差(L値の差)が大きく、疵が目立つという問題があった。
 塗装鋼板1は、亜鉛めっき層3上に付着量として0.4~2.5g/mのりん酸亜鉛を含有するりん酸亜鉛皮膜4を有する。りん酸亜鉛皮膜4のL値は基材鋼板2及び亜鉛めっき層3よりも小さい。つまり、上層皮膜6とりん酸亜鉛皮膜4との色調差は、上層皮膜6と基材鋼板2又は亜鉛めっき層3との色調差よりも小さい。したがって、亜鉛めっき層3上にりん酸亜鉛皮膜4を形成することで、疵が目立ちにくくなる。
 亜鉛めっき層3上にりん酸亜鉛皮膜4を形成することで、亜鉛めっき層3の表面に数μmオーダーの凹凸が形成される。この凹凸が光の乱反射を引き起こすことにより、りん酸亜鉛皮膜4のL値は小さいと考えられる。
Since the upper layer film 6 includes the first carbon black 7, the L value is generally small. On the other hand, the base steel plate 2 and the galvanized layer 3 are generally silver white and have a relatively large L value. When wrinkles occur in the upper layer film 6, when the appearance of the coated steel sheet 1 is observed, the lower base steel sheet 2 or the galvanized layer 3 may be visible. In that case, there was a problem that the color difference (difference in L value) between the portion of the upper film 6 without wrinkles and the base steel plate 2 or the galvanized layer 3 was large, and wrinkles were conspicuous.
The coated steel sheet 1 has a zinc phosphate film 4 containing 0.4 to 2.5 g / m 2 of zinc phosphate on the galvanized layer 3 as an adhesion amount. The L value of the zinc phosphate coating 4 is smaller than that of the base steel plate 2 and the galvanized layer 3. That is, the color tone difference between the upper film 6 and the zinc phosphate film 4 is smaller than the color difference between the upper film 6 and the base steel plate 2 or the galvanized layer 3. Therefore, the formation of the zinc phosphate film 4 on the galvanized layer 3 makes the wrinkles less noticeable.
By forming the zinc phosphate film 4 on the galvanized layer 3, irregularities on the order of several μm are formed on the surface of the galvanized layer 3. It is considered that the L value of the zinc phosphate coating 4 is small because the irregularities cause irregular reflection of light.
 加えて、上層皮膜6の表面に疵が形成された際に、下層皮膜5と亜鉛めっき層3との密着性が良好でない場合、下層皮膜5が剥がれやすく、疵が基材鋼板2又は亜鉛めっき層3まで達しやすい。
 一方、亜鉛めっき層3上にりん酸亜鉛皮膜4を形成することで、上述のようにりん酸亜鉛皮膜4の凹凸により、亜鉛めっき層3と下層皮膜5との密着性が向上する。これにより、下層皮膜5が剥がれにくくなるので、疵が基材鋼板2又は亜鉛めっき層3まで到達しにくくなる。
In addition, when the wrinkle is formed on the surface of the upper layer film 6 and the adhesion between the lower layer film 5 and the galvanized layer 3 is not good, the lower layer film 5 is easily peeled off, and the wrinkle is the base steel plate 2 or the galvanized plate. Easy to reach layer 3.
On the other hand, by forming the zinc phosphate coating 4 on the zinc plating layer 3, the unevenness of the zinc phosphate coating 4 as described above improves the adhesion between the zinc plating layer 3 and the lower coating 5. Thereby, since the lower layer film 5 becomes difficult to peel off, it becomes difficult for the wrinkles to reach the base steel plate 2 or the galvanized layer 3.
 さらに、上層皮膜6に疵が生じた際に、上層皮膜6の削られた部分がりん酸亜鉛皮膜4の凹凸に入り込む。上層皮膜6の削られた部分は第1のカーボンブラック7を含むので、疵が発生してもりん酸亜鉛皮膜4の凹部が黒くなり、疵が目立ちにくくなる。
 また、カーボンブラック等の着色顔料は、めっきに含まれる亜鉛や鉄との電位差が大きく、塗装鋼板1の耐食性が低下する場合がある。しかしながら、塗装鋼板1では、りん酸亜鉛皮膜4によって上層皮膜6中の顔料(カーボンブラック等)が亜鉛めっき層3に直接接触しないように構成されている。そのため、塗装鋼板1は良好な耐食性を有する。
Furthermore, when wrinkles occur in the upper layer film 6, the shaved portion of the upper layer film 6 enters the irregularities of the zinc phosphate film 4. Since the scraped portion of the upper layer film 6 includes the first carbon black 7, even if wrinkles occur, the concave portions of the zinc phosphate film 4 become black, and the wrinkles are less noticeable.
Further, a color pigment such as carbon black has a large potential difference from zinc or iron contained in the plating, and the corrosion resistance of the coated steel sheet 1 may be lowered. However, the coated steel sheet 1 is configured such that the pigment (carbon black or the like) in the upper layer film 6 is not in direct contact with the galvanized layer 3 by the zinc phosphate film 4. Therefore, the coated steel sheet 1 has good corrosion resistance.
 塗装鋼板1では、りん酸亜鉛皮膜4上に直接上層皮膜6を形成するのではなく、りん酸亜鉛皮膜4と上層皮膜6との間に下層皮膜5が形成されている。これにより、りん酸亜鉛皮膜4上に直接上層皮膜6を形成する場合に比べて、塗装鋼板1全体としての厚みを低減することが可能である。 In the coated steel sheet 1, an upper layer film 6 is not directly formed on the zinc phosphate film 4, but a lower layer film 5 is formed between the zinc phosphate film 4 and the upper layer film 6. Thereby, compared with the case where the upper layer film | membrane 6 is directly formed on the zinc phosphate film | membrane 4, it is possible to reduce the thickness as the coated steel plate 1 whole.
[裏面皮膜]
 塗装鋼板1において、製品の裏側に形成される裏面皮膜の構成は特に限定されない。
[Back coating]
In the coated steel sheet 1, the configuration of the back film formed on the back side of the product is not particularly limited.
[用途]
 塗装鋼板1は、家電製品用筐体に好適に用いることができる。塗装鋼板1は、皮膜が薄く形成されているため、安価に製造可能である。よって、塗装鋼板1は、特に安価に製造することが求められる薄型ディスプレイ等のAV機器のバックパネル等に好適である。
[Usage]
The coated steel plate 1 can be suitably used for a housing for home appliances. Since the coated steel sheet 1 has a thin film, it can be manufactured at low cost. Therefore, the coated steel sheet 1 is suitable for a back panel of an AV device such as a thin display that is particularly required to be manufactured at a low cost.
(塗装鋼板1の製造方法)
 次に、塗装鋼板1の製造方法について説明する。
(Manufacturing method of the coated steel plate 1)
Next, the manufacturing method of the coated steel plate 1 is demonstrated.
[亜鉛めっき工程]
 まず、基材鋼板2に亜鉛めっき工程を施すことにより、基材鋼板2上に亜鉛めっき層3を形成する。
 亜鉛めっき工程の具体的な方法は特に限定されないが、電気Znめっき、電気Zn-Niめっき、電気Zn-Coめっき、溶融Znめっき、合金化溶融Znめっき、溶融Zn-55%Al-1.6%Siめっき、溶融Zn-11%Alめっき、溶融Zn-11%Al-3%Mgめっき、溶融Zn-6%Al-3%Mgめっき、溶融Zn-11%Al-3%Mg-0.2%Siめっき等を挙げることができる。また、上記成分のめっきを蒸着等の方法で被覆してもよい。
[Zinc plating process]
First, the galvanized layer 3 is formed on the base steel plate 2 by subjecting the base steel plate 2 to a galvanizing step.
The specific method of the galvanizing process is not particularly limited, but is electro-Zn plating, electro-Zn—Ni plating, electro-Zn—Co plating, hot-dip Zn plating, alloyed hot-dip Zn plating, hot-zinc-55% Al-1.6. % Si plating, hot-dip Zn-11% Al plating, hot-melting Zn-11% Al-3% Mg plating, hot-melting Zn- 6 % Al-3% Mg plating, hot-melting Zn-11% Al-3% Mg-0.2 % Si plating and the like. Moreover, you may coat | cover plating of the said component by methods, such as vapor deposition.
 亜鉛めっき工程で電気めっき法を使用する場合、Znイオンを含有する電解液中にて、基材鋼板2を負極として対極との間で電解処理を実施する。電解液組成や電流密度、電解時間を制御することにより、基材鋼板2へのめっき付着量を制御する。 When using an electroplating method in a galvanization process, it electrolyzes between the counter electrode by using the base-material steel plate 2 as a negative electrode in the electrolyte solution containing Zn ion. By controlling the electrolyte composition, current density, and electrolysis time, the amount of plating adhered to the base steel sheet 2 is controlled.
 亜鉛めっき工程で溶融めっき法を使用する場合、溶融した状態にあるZn又はZn合金が保持されているめっき浴に基材鋼板2を浸漬させ、めっき浴から基材鋼板2を引き上げる。基材鋼板2の引き上げ速度や、めっき浴の上方に設けられたワイピングノズルより噴出するワイピングガスの流量や、流速調整等を調整することにより、基材鋼板2へのめっき付着量を制御する。
 合金化処理は、上記のようなめっき処理後に、ガス炉や誘導加熱炉やこれらを併用した加熱炉などで亜鉛めっき層3を形成した後の基材鋼板2を加熱することで行う。
 めっき操作については、コイルの連続めっき法、あるいは、切板単体のめっき法のいずれによってめっきを行ってもよい。
When the hot dip plating method is used in the galvanizing process, the base steel plate 2 is immersed in a plating bath in which Zn or Zn alloy in a molten state is held, and the base steel plate 2 is pulled up from the plating bath. By adjusting the pulling speed of the base steel plate 2, the flow rate of the wiping gas ejected from the wiping nozzle provided above the plating bath, the flow rate adjustment, and the like, the amount of plating adhered to the base steel plate 2 is controlled.
The alloying process is performed by heating the base steel sheet 2 after the galvanized layer 3 is formed in a gas furnace, an induction heating furnace, a heating furnace using a combination thereof, or the like after the plating process as described above.
As for the plating operation, plating may be performed by either a continuous plating method of a coil or a plating method of a single cut plate.
[りん酸亜鉛処理工程]
 亜鉛めっき工程後、りん酸亜鉛処理工程を行うことにより、亜鉛めっき層3上にりん酸亜鉛皮膜4を形成する。りん酸亜鉛処理の具体的な方法は特に限定されず、反応型処理、塗布型処理及び電解型処理のいずれのりん酸亜鉛処理を用いてもよい。
 反応型のりん酸亜鉛処理では、亜鉛めっき層3が形成された基材鋼板2に脱脂、水洗及び表面調整処理を行った後に、反応型処理液に接触させ、水洗、乾燥することによって形成することができる。反応型処理液は、りん酸イオン、硝酸イオンおよび亜鉛イオンを主成分とする水溶液に、鉄イオン、コバルトイオンおよびカルシウムイオンから選ばれる少なくとも1種を含んでいる。反応型処理液は、過酸化物、フッ化物イオン、錯フッ化物イオンおよび亜硝酸イオンから選ばれる少なくとも一種を更に含んでもよい。
[Zinc phosphate treatment process]
A zinc phosphate coating 4 is formed on the zinc plating layer 3 by performing a zinc phosphate treatment step after the zinc plating step. The specific method of the zinc phosphate treatment is not particularly limited, and any zinc phosphate treatment of reaction type treatment, coating type treatment, and electrolytic type treatment may be used.
In the reactive zinc phosphate treatment, the base steel plate 2 on which the galvanized layer 3 is formed is degreased, washed with water and subjected to surface conditioning treatment, and then contacted with a reactive treatment solution, washed with water and dried. be able to. The reactive processing solution contains at least one selected from iron ions, cobalt ions, and calcium ions in an aqueous solution mainly composed of phosphate ions, nitrate ions, and zinc ions. The reactive processing liquid may further contain at least one selected from peroxides, fluoride ions, complex fluoride ions, and nitrite ions.
 塗布型のりん酸亜鉛処理では、りん酸イオン、硝酸イオンおよび亜鉛イオンを主成分とするりん酸亜鉛処理液を、亜鉛めっき層3が形成された基材鋼板2の少なくとも片面に塗布する。
 塗布方法は任意でありロールコーター法により塗布する他、浸漬法やスプレー法により塗布した後に、エアーナイフ法やロール絞り法により塗布量を調整することも可能である。りん酸亜鉛処理液を基材鋼板2の表面に塗布した後、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉を用いて乾燥することによりりん酸亜鉛皮膜4を形成することができる。
In the coating type zinc phosphate treatment, a zinc phosphate treatment liquid mainly composed of phosphate ions, nitrate ions and zinc ions is applied to at least one surface of the base steel plate 2 on which the galvanized layer 3 is formed.
The coating method is arbitrary. In addition to coating by a roll coater method, the coating amount can be adjusted by an air knife method or a roll squeezing method after coating by a dipping method or a spray method. After the zinc phosphate treatment liquid is applied to the surface of the base steel plate 2, the zinc phosphate coating 4 can be formed by drying using a dryer, hot air furnace, high frequency induction heating furnace, or infrared furnace.
 塗布型処理によりりん酸亜鉛皮膜4を形成する際の乾燥方法は、基材鋼板2の到達板温が70℃~400℃となるように乾燥するのが好ましい。乾燥する際の到達板温が70℃より低いと、りん酸亜鉛皮膜4の乾燥が不十分となり、りん酸亜鉛皮膜4がべたつき、塗料密着性の低下だけでなく、りん酸亜鉛皮膜4の上層に形成される皮膜にむらが生じるため好ましくない。また、到達板温が400℃を超えるとそれ以上の効果が得られず非経済であるだけでなく、りん酸亜鉛皮膜4の欠陥が生じやすくなり耐食性に劣るため好ましくない。
 このような観点から、乾燥時の基材鋼板2の到達温度は、より好ましくは100~300℃であり、さらに好ましくは120~170℃である。
As a drying method for forming the zinc phosphate coating 4 by the coating type treatment, it is preferable to dry the base steel plate 2 so that the ultimate plate temperature is 70 ° C. to 400 ° C. When the ultimate plate temperature during drying is lower than 70 ° C., the zinc phosphate film 4 is not sufficiently dried, the zinc phosphate film 4 becomes sticky, and not only the paint adhesion is deteriorated, but also the upper layer of the zinc phosphate film 4. This is not preferable because unevenness occurs in the film formed. Further, if the ultimate plate temperature exceeds 400 ° C., not only is the effect not obtained, it is not economical, but also defects in the zinc phosphate film 4 are likely to occur and the corrosion resistance is inferior.
From such a viewpoint, the ultimate temperature of the base steel sheet 2 during drying is more preferably 100 to 300 ° C, and further preferably 120 to 170 ° C.
 りん酸亜鉛処理液は、亜鉛イオンに加え、ニッケルイオン、マンガンイオンおよびマグネシウムイオンの中から選択される少なくとも1種を含んでもよい。そのうち、加工部の意匠性や耐疵付き性をさらに向上させるため、りん酸亜鉛処理液として、亜鉛イオンに加え、マグネシウムイオンとニッケルイオンの両方を含有することが好ましい。りん酸亜鉛処理液のマグネシウムイオンの含有量は、5.0~40.0g/lが好ましく、10.0~25.0g/lがより好ましい。りん酸亜鉛処理液のニッケルイオンの含有量は0.05~2.00g/lが好ましく、0.10~1.50g/lがより好ましい。
 また、りん酸亜鉛処理液のりん酸イオンの含有量は1~20g/lが好ましく、3~10g/lがより好ましい。りん酸亜鉛処理液のZnイオンの含有量は0.1~10g/lが好ましく、1~5g/lがより好ましい。
The zinc phosphate treatment liquid may contain at least one selected from nickel ions, manganese ions, and magnesium ions in addition to zinc ions. Among them, in order to further improve the design and scratch resistance of the processed part, it is preferable that the zinc phosphate treatment liquid contains both magnesium ions and nickel ions in addition to zinc ions. The magnesium ion content in the zinc phosphate treatment solution is preferably 5.0 to 40.0 g / l, more preferably 10.0 to 25.0 g / l. The content of nickel ions in the zinc phosphate treatment solution is preferably 0.05 to 2.00 g / l, more preferably 0.10 to 1.50 g / l.
The content of phosphate ions in the zinc phosphate treatment solution is preferably 1 to 20 g / l, more preferably 3 to 10 g / l. The content of Zn ions in the zinc phosphate treatment solution is preferably 0.1 to 10 g / l, more preferably 1 to 5 g / l.
 電解型処理としては、りん酸イオン、硝酸イオンおよび亜鉛イオンを主成分として含有する電解型処理液中にて、基材鋼板2を負極として対極との間で電解処理を実施する。亜鉛めっき層3が形成された基材鋼板2へのりん酸亜鉛皮膜4の付着量の制御は、電解液組成や電流密度、電解時間を調整することにより行う。 As the electrolytic treatment, the electrolytic treatment is performed between the counter electrode using the base steel plate 2 as a negative electrode in an electrolytic treatment liquid containing phosphate ions, nitrate ions and zinc ions as main components. The amount of the zinc phosphate coating 4 attached to the base steel plate 2 on which the galvanized layer 3 is formed is controlled by adjusting the electrolyte composition, current density, and electrolysis time.
[下層皮膜5形成工程]
 りん酸亜鉛処理工程後、下層皮膜5形成工程を行うことにより、りん酸亜鉛皮膜4上に下層皮膜5を形成する。下層皮膜5形成工程では、ベース薬液をりん酸亜鉛皮膜4上に塗布して焼き付けることによって、下層皮膜5を形成する。塗布及び焼き付け方法は特に限定されず、公知の方法を用いることができる。
 ベース薬液としては、日本パーカライジング株式会社製のE300シリーズや日本ペイント株式会社製のサーフコートシリーズ等を用いることができる。なお、環境負荷等を考慮すると、ベース薬液はクロムを含まないことが好ましい。
 なお、下層皮膜5が着色顔料を含む場合は、ベース薬液に着色顔料を適宜添加すればよい。
[Lower layer 5 forming step]
The lower layer film 5 is formed on the zinc phosphate film 4 by performing the lower layer film 5 forming step after the zinc phosphate treatment step. In the lower layer coating 5 forming step, the lower layer coating 5 is formed by applying and baking the base chemical on the zinc phosphate coating 4. The application and baking method is not particularly limited, and a known method can be used.
As the base chemical, E300 series manufactured by Nippon Parkerizing Co., Ltd., Surfcoat series manufactured by Nippon Paint Co., Ltd., or the like can be used. In consideration of the environmental load and the like, the base chemical solution preferably does not contain chromium.
In addition, what is necessary is just to add a color pigment to a base chemical | medical solution suitably, when the lower layer membrane | film | coat 5 contains a color pigment.
[上層皮膜6形成工程]
 下層皮膜5形成工程後、上層皮膜6形成工程を行うことにより、下層皮膜5上に上層皮膜6を形成する。上層皮膜6形成工程では、ベース薬液を下層皮膜5上に塗布して焼き付けることによって、上層皮膜6を形成する。塗布及び焼き付け方法は特に限定されず、公知の方法を用いることができる。
 上層皮膜6の形成には、例えば、市販の耐指紋性鋼板の表面皮膜の形成に用いられる公知のベース薬液を使用することができる。耐指紋性鋼板とは、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、またはエポキシ系樹脂等をベースとする薄膜が基材鋼板(通常はめっき鋼板)上に形成されたものである。このようなベース薬液にカーボンブラックを適宜添加して処理液を作製する。
[Upper layer 6 forming step]
The upper film 6 is formed on the lower film 5 by performing the upper film 6 forming process after the lower film 5 forming process. In the upper layer coating 6 forming step, the upper layer coating 6 is formed by applying and baking the base chemical on the lower layer coating 5. The application and baking method is not particularly limited, and a known method can be used.
For the formation of the upper layer film 6, for example, a known base chemical solution used for forming a surface film of a commercially available fingerprint-resistant steel sheet can be used. The fingerprint-resistant steel plate is a base steel plate (usually a plated steel plate) formed with a thin film based on polyester resin, urethane resin, acrylic resin, epoxy resin, or the like. A treatment liquid is prepared by appropriately adding carbon black to such a base chemical.
 以下、本発明を、実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, these examples do not limit the present invention.
[前処理工程]
 以下の9種の亜鉛めっき鋼板を、水系アルカリ脱脂剤(日本パーカライジング(株)製FC-301)を2.5質量%含み、温度が40℃である水溶液に2分間浸漬して表面を脱脂した。その後、亜鉛めっき鋼板を水洗及び乾燥した。
・EG2:電気亜鉛めっき鋼板(板厚0.8mm、めっき付着量2g/m
・EG5:電気亜鉛めっき鋼板(板厚0.8mm、めっき付着量5g/m
・EG10:電気亜鉛めっき鋼板(板厚0.8mm、めっき付着量10g/m
・EG20:電気亜鉛めっき鋼板(板厚0.8mm、めっき付着量20g/m
・EG40:電気亜鉛めっき鋼板(板厚0.8mm、めっき付着量40g/m
・ZL:電気Zn-10質量%Ni合金めっき鋼板(板厚0.8mm、めっき付着量10g/m
・GI:溶融亜鉛めっき鋼板(板厚0.8mm、めっき付着量60g/m
・SD:溶融Zn-11質量%Al-3質量%Mg-0.2質量%Si合金めっき鋼板(板厚0.8mm、めっき付着量60g/m
・GA:合金化溶融亜鉛めっき鋼板(板厚0.8mm、10質量%Fe、めっき付着量45g/m
[Pretreatment process]
The following nine types of galvanized steel sheets were degreased by immersing them in an aqueous solution containing 2.5% by mass of an aqueous alkaline degreasing agent (FC-301 manufactured by Nihon Parkerizing Co., Ltd.) at a temperature of 40 ° C. for 2 minutes. . Thereafter, the galvanized steel sheet was washed with water and dried.
EG2: Electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 2 g / m 2 )
EG5: Electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 5 g / m 2 )
EG10: electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 10 g / m 2 )
EG20: electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 20 g / m 2 )
EG40: electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 40 g / m 2 )
ZL: Electric Zn-10 mass% Ni alloy plated steel sheet (plate thickness 0.8 mm, plating adhesion 10 g / m 2 )
GI: hot dip galvanized steel sheet (plate thickness 0.8 mm, plating adhesion 60 g / m 2 )
SD: Molten Zn-11 mass% Al-3 mass% Mg-0.2 mass% Si alloy-plated steel sheet (plate thickness 0.8 mm, plating adhesion 60 g / m 2 )
GA: Alloyed hot-dip galvanized steel sheet (plate thickness 0.8 mm, 10 mass% Fe, plating adhesion 45 g / m 2 )
[りん酸亜鉛処理工程]
 前処理工程後の亜鉛めっき鋼板の表面に対して、日本パーカライジング社製チタンコロイド系表面処理剤(プレパレンZ)を用いたスプレー処理を、常温にて所定時間行った。
 次に、亜鉛めっき鋼板の表面に対して、日本パーカライジング社製りん酸亜鉛化成剤(パルボンド3312)を用いたスプレー処理を、60℃の温度下で行った。なお、各水準のりん酸亜鉛皮膜の付着量が所望の付着量となるように、各水準でりん酸亜鉛化成溶液への浸漬処理時間を調整した。
 その後、亜鉛めっき鋼板を熱風炉に移し、表面の到達温度が70℃の状態で乾燥し、所定の付着量となるりん酸亜鉛皮膜を形成した。
[Zinc phosphate treatment process]
The surface of the galvanized steel sheet after the pretreatment step was subjected to spray treatment using a titanium colloidal surface treatment agent (preparene Z) manufactured by Nihon Parkerizing Co., Ltd. at room temperature for a predetermined time.
Next, the surface of the galvanized steel sheet was subjected to spray treatment using a zinc phosphate chemical (Palbond 3312) manufactured by Nippon Parkerizing Co., Ltd. at a temperature of 60 ° C. In addition, the immersion treatment time in the zinc phosphate chemical conversion solution was adjusted at each level so that the adhesion amount of each level of the zinc phosphate film became a desired adhesion amount.
Thereafter, the galvanized steel sheet was transferred to a hot air oven, and dried at a surface temperature of 70 ° C. to form a zinc phosphate film having a predetermined adhesion amount.
[下層皮膜の形成]
 下層皮膜の形成に当たり、p及びqの2種類のベース薬液を準備した。
 ベース薬液pは、シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)、シリカ微粒子(コロイダルシリカ(日産化学社製 スノーテックスN))、Zr化合物(炭酸ジルコニウムアンモニウム)及びウレタン樹脂(水分散ウレタン樹脂(第一工業社製 スーパーフレックス E-2000))からなる水系塗装用組成物である。
 ベース薬液qは、シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)、シリカ微粒子(コロイダルシリカ(日産化学社製 スノーテックスO))及びポリエステル樹脂(水分散ポリエステル樹脂(東洋紡社製 バイロナールMD-1200))からなる水系塗装用組成物である。
 ベース薬液p及びqにおける各成分の含有量は、表1に示す通りである。
[Formation of lower layer film]
In forming the lower layer film, two types of base chemical solutions p and q were prepared.
The base chemical p is composed of a silane coupling agent (3-glycidoxypropyltrimethoxysilane), silica fine particles (colloidal silica (Snowtex N manufactured by Nissan Chemical Co., Ltd.)), Zr compound (ammonium zirconium carbonate) and urethane resin (water dispersion). An aqueous coating composition comprising a urethane resin (Superflex E-2000 manufactured by Daiichi Kogyo Co., Ltd.).
The base chemical solution q is composed of a silane coupling agent (3-glycidoxypropyltrimethoxysilane), silica fine particles (colloidal silica (Snowtex O manufactured by Nissan Chemical Co., Ltd.)) and polyester resin (water-dispersed polyester resin (Toyobo Co., Ltd., Bironal MD). -1200)).
The contents of each component in the base chemical solutions p and q are as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上述のベース薬液p、qに顔料を添加することにより、下層皮膜形成用処理液を作製した。水準p1を除き、下層皮膜形成用処理液には、C1(カーボンブラック分散液(東洋インキ工業製)),C2(カーボンブラック(三菱化学社製 MA-100)),P(ベンズイミダゾロン(東洋インキ工業製))又はB(銅フタロシアニン(東洋インキ工業製))のいずれか1種類以上の顔料を添加した。
 それぞれの下層皮膜形成用処理液に用いたベース薬液及び顔料の種類及び含有量ならびに顔料としてカーボンブラックを用いた場合にはカーボンブラックの粒子径を表2に示した。
A treatment liquid for forming a lower layer film was prepared by adding a pigment to the base chemical liquids p and q. Except for the level p1, the treatment solutions for forming the lower layer film include C1 (carbon black dispersion (manufactured by Toyo Ink Industries)), C2 (carbon black (MA-100, manufactured by Mitsubishi Chemical Corporation)), P (benzimidazolone (Toyo Ink) Ink Industries)) or B (Copper Phthalocyanine (Toyo Ink Industries)) was added.
Table 2 shows the types and contents of the base chemicals and pigments used in each of the lower layer film forming treatment liquids, and the carbon black particle diameter when carbon black is used as the pigment.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に記載の下層皮膜形成用処理液を、亜鉛めっき鋼板の表面にバーコート法で塗布した。その後、亜鉛めっき鋼板を熱風炉に移し、亜鉛めっき鋼板表面の到達温度が70℃となるように乾燥及び風乾し、亜鉛めっき鋼板の表面に下層皮膜を形成した。なお、下層皮膜を形成する際に、表5~7に記載の付着量となるように、希釈条件及びバーの番手を調整した。
 水準120では、表2に記載の下層皮膜形成用処理液に替え、日本ペイントサーフケミカルズ社製のNRC300を、Cr換算で50mg/mとなるように塗布し、130℃で焼付けしクロメート(Cr)皮膜を作製した。
The processing liquid for lower layer film formation shown in Table 2 was applied to the surface of the galvanized steel sheet by the bar coat method. Thereafter, the galvanized steel sheet was transferred to a hot air furnace and dried and air-dried so that the temperature reached on the surface of the galvanized steel sheet was 70 ° C., thereby forming a lower layer film on the surface of the galvanized steel sheet. When forming the lower layer film, the dilution conditions and the bar count were adjusted so that the adhesion amounts shown in Tables 5 to 7 were obtained.
At level 120, NRC300 manufactured by Nippon Paint Surf Chemicals Co., Ltd. was applied so as to be 50 mg / m 2 in terms of Cr, and baked at 130 ° C. and chromated (Cr ) A film was prepared.
[上層皮膜の形成]
 上層皮膜の形成に当たり、表3に示す樹脂及び硬化剤を表3に示す比率で混合し、上層バインダーB1~B8を作製した。
[Formation of upper layer film]
In forming the upper layer film, the resins shown in Table 3 and the curing agent were mixed in the ratios shown in Table 3 to prepare upper layer binders B1 to B8.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上層バインダーにカーボンブラック、導電顔料、防錆顔料、コロイダルシリカ及び潤滑剤を添加し、上層皮膜形成用処理液を作製した。各水準の上層皮膜形成用処理液の組成を表4に示した。 Carbon black, conductive pigment, rust preventive pigment, colloidal silica and lubricant were added to the upper layer binder to prepare an upper layer film forming treatment liquid. Table 4 shows the composition of the treatment liquid for forming the upper layer film at each level.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す上層皮膜形成用処理液を、下層皮膜が形成された亜鉛めっき鋼板上にバーコータで塗布し、30秒で最高到達温度200℃となるような加熱条件でオーブンを用いて乾燥することにより、上層皮膜を形成した。上層皮膜の付着量は、塗料組成物中の固形分(不揮発分)の全付着量が表4に示される付着量になるように、塗料組成物の希釈及びバーコータの番手により調整した。
 表4において、各成分の固形分濃度は、塗料組成物全体の固形分(不揮発分)に対する各成分の固形分(不揮発分)の比率(質量%、片面当たりの値)として記載した。
Apply the treatment solution for forming the upper layer film shown in Table 4 on the galvanized steel sheet on which the lower layer film is formed with a bar coater, and dry using an oven under heating conditions such that the maximum temperature reaches 200 ° C. in 30 seconds. Thus, an upper film was formed. The coating amount of the upper layer film was adjusted by dilution of the coating composition and the count of the bar coater so that the total coating amount of the solid content (nonvolatile content) in the coating composition became the deposition amount shown in Table 4.
In Table 4, the solid content concentration of each component was described as the ratio (mass%, value per side) of the solid content (nonvolatile content) of each component to the solid content (nonvolatile content) of the entire coating composition.
 表4で用いたそれぞれの化合物について具体的に下記に示す。
(カーボンブラック)
 ・C1:カーボンブラック分散液(東洋インキ工業製)
Each compound used in Table 4 is specifically shown below.
(Carbon black)
C1: Carbon black dispersion (manufactured by Toyo Ink Industries)
(導電性顔料)
 ・VB:二ホウ化バナジウム粒子(平均粒径1~3μm)
 ・VC:炭化バナジウム粒子(平均粒径1~3μm)
 ・VN:窒化バナジウム粒子(平均粒径1~3μm)
 ・ZS:二ケイ化ジルコニウム粒子(平均粒径1~3μm)
 ・ZN:窒化ジルコニウム粒子(平均粒径1~3μm)
 ・TN:窒化チタン粒子(平均粒径1~3μm)
 ・SUS:SUS粒子(平均粒径3~7μm)
 ・Ni:Ni粒子(平均粒径3~7μm)(防錆顔料)
 ・PA:トリポリリン酸アルミニウム(平均粒径1~2μm)
 ・PM:リン酸マグネシウム(平均粒径1~2μm)
 ・SC:カルシウムイオン交換シリカ(平均粒径1~2μm)
 ・Si:シリカ(吸油量100~1000ml/100g、比表面積200~1000m/g、平均粒径1~30μmの非晶質シリカ)(富士シリシア製サイロマスク02)
(Conductive pigment)
VB: vanadium diboride particles (average particle size of 1 to 3 μm)
VC: Vanadium carbide particles (average particle size of 1 to 3 μm)
VN: Vanadium nitride particles (average particle size of 1 to 3 μm)
・ ZS: Zirconium disilicide particles (average particle size 1 to 3 μm)
ZN: zirconium nitride particles (average particle size of 1 to 3 μm)
TN: Titanium nitride particles (average particle size of 1 to 3 μm)
SUS: SUS particles (average particle size 3-7 μm)
Ni: Ni particles (average particle size 3-7 μm) (rust preventive pigment)
PA: aluminum tripolyphosphate (average particle size of 1 to 2 μm)
・ PM: Magnesium phosphate (average particle size 1 ~ 2μm)
SC: Calcium ion exchanged silica (average particle size of 1 to 2 μm)
Si: Silica (Amorphous silica having an oil absorption of 100 to 1000 ml / 100 g, a specific surface area of 200 to 1000 m 2 / g, and an average particle size of 1 to 30 μm) (Fuji Silysia silo mask 02)
(コロイダルシリカ)
 ・T:コロイダルシリカ(平均粒径10~15nm)(日産化学社製スノーテックスN)
(潤滑剤)
 ・PE:ポリエチレンワックス(平均粒径1μm、軟化点132℃)(三井化学社製ケミパールW700)
(Colloidal silica)
T: Colloidal silica (average particle size: 10 to 15 nm) (Snowtex N manufactured by Nissan Chemical Co., Ltd.)
(lubricant)
PE: polyethylene wax (average particle size 1 μm, softening point 132 ° C.) (Chemical Pearl W700 manufactured by Mitsui Chemicals)
[性能評価]
 上述の方法で作製した試験板の性能評価は、以下の方法及び基準により行った。表5~7に実施例及び比較例の試験板の作製条件を、表8~10に実施例及び比較例の試験版の性能評価結果を示した。
[Performance evaluation]
The performance evaluation of the test plate produced by the above-described method was performed according to the following methods and standards. Tables 5 to 7 show the conditions for producing the test plates of the examples and comparative examples, and Tables 8 to 10 show the performance evaluation results of the test plates of the examples and comparative examples.
(耐疵付性)
 冷延鋼板(0.8mm厚)を40mmφの円盤に打ち抜き、円盤を試験板との仰角45°に傾斜させて円盤面と垂直方向に0.5kgの荷重をかけながら10mm/secのスピードで50mm引っ掻いた。引っ掻いた疵部の黒色外観を目視観察し、下記基準で評価した。
 評点が3以上の場合、耐疵付性に優れると判断した。
(Scratch resistance)
Cold-rolled steel plate (0.8mm thickness) is punched into a 40mmφ disk, and the disk is tilted at an elevation angle of 45 ° with the test plate, and a load of 0.5kg is applied in a direction perpendicular to the disk surface and 50mm at a speed of 10mm / sec. I scratched it. The black appearance of the scratched buttocks was visually observed and evaluated according to the following criteria.
When the score was 3 or more, it was judged that the scuff resistance was excellent.
 5:正常部と疵部との黒色外観に差なし。疵部も含め均一黒色外観に見える。
 4:疵部の黒色外観には差異が無いが、やや光沢度が変化して見える。
 3:疵部の黒色外観に僅かな変化は見られるが、下地の露出は全くない。
 2:疵部の黒色外観に変化が見られ、下地の露出がある。
 1:疵部の黒色外観に顕著な変化が見られ、顕著な下地の露出がある。
5: No difference in black appearance between the normal part and the buttocks. Appears to have a uniform black appearance, including the buttocks.
4: There is no difference in the black appearance of the buttocks, but the glossiness appears to change slightly.
3: A slight change is seen in the black appearance of the buttocks, but there is no exposure of the base.
2: A change is seen in the black appearance of a collar part, and there exists exposure of a foundation | substrate.
1: A noticeable change is seen in the black appearance of the buttocks, and there is a remarkable exposure of the groundwork.
(耐食性)
 未加工平板の裏面とエッジをテープシールし、塩水噴霧試験(JIS-Z-2371:2000)を120hr行った。120hr後の外観観察を行ない、腐食状況及び腐食面積率により耐食性を評価した。
 評点が3以上の場合、耐食性に優れると判断した。 
(Corrosion resistance)
The back and edges of the unprocessed flat plate were tape-sealed, and a salt spray test (JIS-Z-2371: 2000) was conducted for 120 hours. The appearance was observed after 120 hours, and the corrosion resistance was evaluated by the corrosion status and the corrosion area ratio.
When the score was 3 or more, it was judged that the corrosion resistance was excellent.
 5:白錆が2%未満
 4:白錆が2%以上5%未満
 3:白錆が5%以上10%未満
 2:赤錆発生無し、白錆が10%以上
 1:赤錆発生有り、白錆が10%以上
5: White rust is less than 2% 4: White rust is 2% or more and less than 5% 3: White rust is 5% or more and less than 10% 2: No red rust is generated, White rust is 10% or more 1: Red rust is generated, white rust 10% or more
(密着性)
 0T曲げ(180°折り曲げ)加工を施し、折り曲げ部外側をテープ剥離したのち、テープ側への塗膜付着状況を観察し、下記の評価基準で評価した。
 評点が2以上の場合、密着性に優れると判断した。
(Adhesion)
After 0T bending (180 ° bending) processing was performed and the outer side of the bent portion was peeled off from the tape, the state of adhesion of the coating film to the tape side was observed and evaluated according to the following evaluation criteria.
When the score was 2 or more, it was judged that the adhesion was excellent.
 3:テープ側に塗膜付着無し
 2:テープ側に数点の塗膜剥離が見られ、鋼板側の剥離が、10%未満
 1:テープ側に塗膜剥離あり、鋼板側の剥離が、10%以上
3: No film adhesion on the tape side 2: Several peelings on the tape side were observed, peeling on the steel sheet side was less than 10% 1: Coating film peeling on the tape side, peeling on the steel sheet side was 10 %more than
(導電性)
 ロレスター4端針を用い、20点測定し、導電率を測定した。導電率を測定した20点のうち、所定の抵抗値以下となる点の数により導電性を評価した。
 下記の評点が2又は3の場合、導電性に優れると判断した。
(Conductivity)
Using a Lorester 4-end needle, 20 points were measured and the conductivity was measured. Of the 20 points where the conductivity was measured, the conductivity was evaluated by the number of points that were below a predetermined resistance value.
When the following score was 2 or 3, it was judged that it was excellent in electroconductivity.
 3:20点全てにおいて、所定の抵抗値以下
 2:20点中10~19点において所定の抵抗値以下
 1:20点中0~9において所定の抵抗値以下
3: Less than a predetermined resistance value at all 20 points 2: Below a predetermined resistance value at 10 to 19 points out of 20 1: Below a predetermined resistance value at 0 to 9 out of 20 points
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表8~10に示したように、実施例にかかる試験板は、好適な耐疵付き性、耐食性、密着性及び導電性を有していた。一方、比較例にかかる試験板は、いずれかの性能が劣っていた。
 これにより、本発明によれば、基材鋼板の表面に形成された皮膜を薄くしても、取り扱いや加工の際に生じる塗膜表面からの疵が目立ちにくい、耐食性等も比較的良好な表面処理鋼板を得られることがわかった。
As shown in Tables 8 to 10, the test plates according to the examples had suitable scratch resistance, corrosion resistance, adhesion, and conductivity. On the other hand, the test plate according to the comparative example was inferior in performance.
As a result, according to the present invention, even if the coating formed on the surface of the base steel sheet is thin, wrinkles from the coating surface that occurs during handling and processing are not noticeable, and the surface has relatively good corrosion resistance. It was found that a treated steel plate can be obtained.
 上記一実施形態によれば、鋼板表面に形成された塗膜の膜厚が薄いにも関わらず、優れた耐疵付き性及び耐食性を有する塗装鋼板を提供することが可能である。 According to the above-described embodiment, it is possible to provide a coated steel sheet having excellent scratch resistance and corrosion resistance even though the coating film formed on the steel sheet surface is thin.
 1 塗装鋼板
 2 基材鋼板
 3 亜鉛めっき層
 4 りん酸亜鉛皮膜
 5 下層皮膜
 6 上層皮膜
 7 第1のカーボンブラック
 8 第2のカーボンブラック
DESCRIPTION OF SYMBOLS 1 Coated steel plate 2 Base steel plate 3 Zinc plating layer 4 Zinc phosphate coating 5 Lower layer coating 6 Upper layer coating 7 First carbon black 8 Second carbon black

Claims (7)

  1.  基材鋼板と;
     前記基材鋼板上に形成された亜鉛めっき層と;
     前記亜鉛めっき層上に形成され、りん酸亜鉛結晶を含有し、付着量が0.4~2.5g/mであるりん酸亜鉛皮膜と;
     前記りん酸亜鉛皮膜上に形成され、付着量が50~2000mg/mであり、無機系皮膜又は有機無機複合皮膜である下層皮膜と;
     前記下層皮膜上に形成され、膜厚が2.0~10.0μmであり、5~25質量%の第1のカーボンブラックを含有する上層皮膜と;
    を備え、
     前記亜鉛めっき層と前記りん酸亜鉛皮膜との界面において、前記りん酸亜鉛結晶間の最大間隙が0.2μm以下である
    ことを特徴とする塗装鋼板。
    A base steel plate;
    A galvanized layer formed on the base steel sheet;
    A zinc phosphate coating formed on the galvanized layer and containing zinc phosphate crystals and having an adhesion amount of 0.4 to 2.5 g / m 2 ;
    A lower layer film formed on the zinc phosphate film and having an adhesion amount of 50 to 2000 mg / m 2 and being an inorganic film or an organic-inorganic composite film;
    An upper film formed on the lower film and having a film thickness of 2.0 to 10.0 μm and containing 5 to 25% by mass of the first carbon black;
    With
    A coated steel sheet, wherein a maximum gap between the zinc phosphate crystals is 0.2 μm or less at an interface between the zinc plating layer and the zinc phosphate film.
  2.  前記下層皮膜が、10~50質量%の着色顔料を含有する
    ことを特徴とする、請求項1に記載の塗装鋼板。
    The coated steel sheet according to claim 1, wherein the lower layer film contains 10 to 50% by mass of a coloring pigment.
  3.  前記下層皮膜が、10~30質量%の着色顔料を含有する
    ことを特徴とする、請求項2に記載の塗装鋼板。
    The coated steel sheet according to claim 2, wherein the lower layer film contains 10 to 30% by mass of a coloring pigment.
  4.  前記着色顔料が、第2のカーボンブラックである
    ことを特徴とする、請求項2又は3に記載の塗装鋼板。
    The coated steel sheet according to claim 2 or 3, wherein the colored pigment is second carbon black.
  5.  前記第2のカーボンブラックの粒子径が、100nm超である
    ことを特徴とする、請求項4に記載の塗装鋼板。
    The coated steel sheet according to claim 4, wherein the particle size of the second carbon black is more than 100 nm.
  6.  前記第1のカーボンブラックの一次粒子径が、前記第2のカーボンブラックの一次粒子径よりも小さい
    ことを特徴とする、請求項4又は5に記載の塗装鋼板。
    The coated steel sheet according to claim 4 or 5, wherein a primary particle diameter of the first carbon black is smaller than a primary particle diameter of the second carbon black.
  7.  前記下層皮膜が、25℃の温度下における電気抵抗率が0.1×10-6~185×10-6Ωcmであるホウ化物、炭化物、窒化物、ケイ化物からなる群から選ばれる一以上の非酸化物セラミックス粒子を5~15質量%含有する
    ことを特徴とする請求項1~6のいずれか1項に記載の塗装鋼板。
    The lower layer film has at least one selected from the group consisting of borides, carbides, nitrides and silicides having an electrical resistivity of 0.1 × 10 −6 to 185 × 10 −6 Ωcm at a temperature of 25 ° C. The coated steel sheet according to any one of claims 1 to 6, comprising 5 to 15% by mass of non-oxide ceramic particles.
PCT/JP2016/068512 2015-06-25 2016-06-22 Coated steel plate WO2016208621A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016562605A JP6070917B1 (en) 2015-06-25 2016-06-22 Painted steel plate
CN201680019831.0A CN107429406B (en) 2015-06-25 2016-06-22 Coated steel plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015128016 2015-06-25
JP2015-128016 2015-06-25

Publications (1)

Publication Number Publication Date
WO2016208621A1 true WO2016208621A1 (en) 2016-12-29

Family

ID=57586150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068512 WO2016208621A1 (en) 2015-06-25 2016-06-22 Coated steel plate

Country Status (3)

Country Link
JP (1) JP6070917B1 (en)
CN (1) CN107429406B (en)
WO (1) WO2016208621A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047993B1 (en) * 2020-10-20 2022-04-05 日本製鉄株式会社 Zn-based plated steel sheet
WO2022085721A1 (en) * 2020-10-20 2022-04-28 日本製鉄株式会社 Zn-based plated steel sheet
TWI804081B (en) * 2021-12-02 2023-06-01 日商日本製鐵股份有限公司 Zn-based plated steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586430B (en) * 2019-09-17 2022-04-01 苏州兴禾源复合材料有限公司 PCM color coated sheet with color changing effect

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291280A (en) * 2005-04-11 2006-10-26 Toyo Kohan Co Ltd Heat radiating black steel sheet
JP2009012342A (en) * 2007-07-05 2009-01-22 Jfe Steel Kk Pre-coated color steel sheet and its manufacturing process, and worked article and panel for flat-screen television
JP2009220511A (en) * 2008-03-18 2009-10-01 Sumitomo Metal Ind Ltd Surface-treated steel sheet and coated steel sheet excellent in corrosion resistance, heat emitting property and electrical conductivity
JP2013170305A (en) * 2012-02-22 2013-09-02 Jfe Steel Corp Method for determining chemical conversion treatability of steel, and method for producing steel excellent in chemical conversion treatability
JP2013244696A (en) * 2012-05-28 2013-12-09 Jfe Steel Corp Coated steel sheet and method of manufacturing the same, processed article, and panel for thin television set
JP2014000799A (en) * 2012-05-22 2014-01-09 Jfe Steel Corp Black coated steel panel, artifact and panel for flat-screen television

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100684A (en) * 1983-11-07 1985-06-04 Nisshin Steel Co Ltd Pretreatment of galvanized steel sheet prior to painting
TW200502432A (en) * 2003-07-08 2005-01-16 Nippon Paint Co Ltd Inorganic-organic composite-treated zinc-plated steel sheet
JP4844296B2 (en) * 2006-08-31 2011-12-28 Jfeスチール株式会社 Painted steel sheets, processed products, and thin TV panels
JP5332424B2 (en) * 2008-09-09 2013-11-06 Jfeスチール株式会社 Black painted steel plate, processed product and flat panel TV
JP5626149B2 (en) * 2011-07-11 2014-11-19 新日鐵住金株式会社 Surface-treated steel sheet and housing for home appliances

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291280A (en) * 2005-04-11 2006-10-26 Toyo Kohan Co Ltd Heat radiating black steel sheet
JP2009012342A (en) * 2007-07-05 2009-01-22 Jfe Steel Kk Pre-coated color steel sheet and its manufacturing process, and worked article and panel for flat-screen television
JP2009220511A (en) * 2008-03-18 2009-10-01 Sumitomo Metal Ind Ltd Surface-treated steel sheet and coated steel sheet excellent in corrosion resistance, heat emitting property and electrical conductivity
JP2013170305A (en) * 2012-02-22 2013-09-02 Jfe Steel Corp Method for determining chemical conversion treatability of steel, and method for producing steel excellent in chemical conversion treatability
JP2014000799A (en) * 2012-05-22 2014-01-09 Jfe Steel Corp Black coated steel panel, artifact and panel for flat-screen television
JP2013244696A (en) * 2012-05-28 2013-12-09 Jfe Steel Corp Coated steel sheet and method of manufacturing the same, processed article, and panel for thin television set

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047993B1 (en) * 2020-10-20 2022-04-05 日本製鉄株式会社 Zn-based plated steel sheet
WO2022085721A1 (en) * 2020-10-20 2022-04-28 日本製鉄株式会社 Zn-based plated steel sheet
TWI804081B (en) * 2021-12-02 2023-06-01 日商日本製鐵股份有限公司 Zn-based plated steel sheet

Also Published As

Publication number Publication date
CN107429406B (en) 2019-08-20
JPWO2016208621A1 (en) 2017-06-29
JP6070917B1 (en) 2017-02-01
CN107429406A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
CN101542018B (en) Aqueous surface treatment for environment-friendly precoated metal materials, surface-treated metal materials, and environment-friendly precoated metal materials
JP6515298B2 (en) Surface-treated metal plate, coated member and method for producing coated member
JP6070917B1 (en) Painted steel plate
JP2008238814A (en) Coated steel sheet, processed article, and panel for flat screen television
JP6555133B2 (en) Coated steel sheet
US6890648B2 (en) CR-free paint compositions and painted metal sheets
JP5176890B2 (en) Coated steel sheet and casing for electronic equipment using the same
JP5544782B2 (en) Paint composition for painted metal
JP2001131763A (en) Organic composite galvanized steel sheet
JP2007119858A (en) Chromium-free precoated steel plate
JP5126548B2 (en) Coated steel sheet and electronic equipment casing using the same
JP2013193273A (en) Coated steel sheet, and housing using the same
JP6710924B2 (en) Surface-treated steel sheet and coated parts
JP4730245B2 (en) Painted steel sheets, processed products, and flat panel TVs
JP3923419B2 (en) Non-chromium treatment of non-chromium steel sheet
JP5626149B2 (en) Surface-treated steel sheet and housing for home appliances
JP3068999B2 (en) Pre-coated steel sheet with excellent backside grounding
JP6682973B2 (en) Black coated zinc-based plated steel sheet and method for producing the same
JP6772943B2 (en) Painted steel plate
JP2010242155A (en) Corrosion-proof steel, and method for producing the same
JP4116945B2 (en) Precoated metal plate with excellent bending workability
JP3068998B2 (en) Pre-coated steel sheet with excellent backside grounding
JP2011038138A (en) Painted metal material and housing made by using the same
JP4983305B2 (en) Painted steel sheets, processed products, and thin TV panels
JP2010052363A (en) Coated steel sheet, processed product and method for manufacturing this coated steel sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016562605

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814391

Country of ref document: EP

Kind code of ref document: A1