WO2016208610A1 - スポット溶接方法及びその装置 - Google Patents

スポット溶接方法及びその装置 Download PDF

Info

Publication number
WO2016208610A1
WO2016208610A1 PCT/JP2016/068465 JP2016068465W WO2016208610A1 WO 2016208610 A1 WO2016208610 A1 WO 2016208610A1 JP 2016068465 W JP2016068465 W JP 2016068465W WO 2016208610 A1 WO2016208610 A1 WO 2016208610A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
welding
workpieces
tip
spot welding
Prior art date
Application number
PCT/JP2016/068465
Other languages
English (en)
French (fr)
Inventor
美和浩
寺垣内洋平
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to GB1801322.7A priority Critical patent/GB2557069B/en
Priority to MX2018000087A priority patent/MX2018000087A/es
Priority to US15/739,207 priority patent/US10646950B2/en
Priority to CA2990778A priority patent/CA2990778C/en
Priority to CN201680037408.3A priority patent/CN107708909B/zh
Priority to JP2017524937A priority patent/JP6339292B2/ja
Priority to BR112017027987-8A priority patent/BR112017027987A2/ja
Publication of WO2016208610A1 publication Critical patent/WO2016208610A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/255Monitoring devices using digital means the measured parameter being a force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials

Definitions

  • the present invention relates to a spot welding method and apparatus for performing spot welding on a laminate formed by laminating at least three workpieces.
  • the so-called Mohawk roof of the automobile body roof is formed by, for example, integrating the laminate 1 shown in FIG. 5A by welding. That is, the laminate 1 includes two thick workpieces 2 and 3 that are made of high-tensile steel and have substantially the same thickness, and two thin workpieces 4 and 5 that are made of mild steel and have substantially the same thickness. Are laminated.
  • the two thick workpieces 2 and 3 are inner materials facing the vehicle compartment side, while the two thin workpieces 4 and 5 are outer materials facing the outside of the vehicle. In particular, the thinnest workpieces 4 and 5 are visually recognized by the user.
  • the welding of the laminated body 1 is performed by spot welding in which nuggets 6 are formed at a plurality of locations. That is, the two thick workpieces 2 and 3 and the two thin workpieces 4 and 5 are laminated in this order from below to form the laminate 1.
  • the laminate 1 is sandwiched between the upper chip 7 and the lower chip 8. At this time, the upper chip 7 contacts the uppermost thin workpiece 5 and the lower chip 8 contacts the lowermost thick workpiece 2. Then, the pressing force F1 by the upper chip 7 and the pressing force F2 by the lower chip 8 are set to be equal.
  • JP 2014-184461 A a spot welding method and apparatus that can eliminate this concern and can avoid the occurrence of spatter between adjacent workpieces.
  • an auxiliary electrode having a polarity opposite to that of the upper chip is disposed in the vicinity of the upper chip. That is, the auxiliary electrode is brought into contact with the thin workpiece simultaneously with the upper chip with respect to the laminated body.
  • the spot welding apparatus becomes relatively large.
  • the main object of the present invention is to provide a spot welding method that does not require the use of an auxiliary electrode.
  • Another object of the present invention is to provide a spot welding method capable of sufficiently growing nuggets in the vicinity of a contact surface between workpieces in a laminate.
  • Another object of the present invention is to provide a spot welding apparatus for carrying out the above-described spot welding method.
  • the first welding is performed on a laminate in which at least three workpieces are laminated, and the outermost two workpieces are a thin workpiece and a thick workpiece having different thicknesses.
  • a spot welding method for performing spot welding by sandwiching a tip and a second welding tip and passing a welding current between the first welding tip and the second welding tip, While flowing the welding current to the laminated body positioned and fixed, The first pressure applied to the laminate by the first welding tip in contact with the thin workpiece is smaller than the second pressure applied to the laminate by the second welding tip in contact with the thick workpiece.
  • a first step of generating a nugget for integrating the two workpieces between the two workpieces forming the laminate A second step in which the first pressing force and the second pressing force are made equal, and the nugget is grown toward the thick workpiece, A third step in which the first pressing force is made larger than the second pressing force, and the nugget is grown until the thick workpiece and the workpiece adjacent to the thick workpiece are integrated; A spot welding method is provided.
  • At least three workpieces are laminated, and the outermost two workpieces are positioned as a thin workpiece and a thick workpiece having different thicknesses.
  • Pressurizing force detecting means Control means for controlling the first pressurizing force and the second pressurizing force based on a detection value by the pressurizing force detecting means; Have When the control means generates a nugget that integrates the two workpieces between the two workpieces forming the laminate, the first applied pressure is set to be greater than the second applied pressure. And make it smaller When growing the nugget toward the thick workpiece side, the first pressing force and the second pressing force are equalized, Spot welding for controlling the first pressure to be greater than the second pressure when the nugget is grown until the thick workpiece and the workpiece adjacent to the thick workpiece are integrated.
  • An apparatus is provided.
  • the first pressurizing force and the second pressurizing force are relatively compared in each of the initial stage of welding (first process), the middle stage of welding (second process), and the latter stage of welding (third process). I try to change the size. Therefore, the contact resistance between the workpieces forming the laminate changes.
  • Nugget growth is promoted where contact resistance is high. Therefore, by changing the contact resistance as described above, the direction in which the nugget preferentially grows can be made different in each of the initial stage of welding, the middle stage of welding, and the latter stage of welding. Therefore, in the first step, when the first pressure and the second pressure are not changed at all, the nugget is first generated in a place where the nugget is difficult to grow, and then in the second step and the third step. When the first pressurizing force and the second pressurizing force are not changed, the nugget is grown at a location where the nugget is likely to grow, whereby a nugget that integrates all the workpieces can be formed.
  • the configuration of the spot welding apparatus is simplified. Therefore, it is easy to reduce the size.
  • a welding gun having a first welding tip and a second welding tip may be displaced with respect to the laminate.
  • the welding gun When the welding gun is supported by the robot, the welding gun can be displaced with respect to the laminated body by the operation of the robot.
  • the second welding tip may be displaced in a direction toward the thick workpiece or in a direction away from the thick workpiece. Even in this case, the first pressurizing force and the second pressurizing force can be relatively changed.
  • the relative magnitude of the pressure is changed. For this reason, since the contact resistance between the workpiece
  • the nugget is first generated at a place where the nugget is difficult to grow, and then when the first pressure and the second pressure are not changed. Control of growing the nugget toward the place where the nugget is likely to grow is possible. As a result, all the workpieces are integrated by the nugget without using the auxiliary electrode, and a bonded product exhibiting excellent bonding strength can be obtained.
  • the configuration of the spot welding apparatus can be simplified and downsized.
  • FIG. 1 is a schematic side view of an essential part of the spot welding apparatus according to the first embodiment of the present invention.
  • 2A to 2D are flowcharts showing a nugget growth process in the spot welding method according to the embodiment of the present invention.
  • FIG. 3 is a schematic side view of an essential part of the spot welding apparatus according to the second embodiment of the present invention.
  • FIG. 4 is a schematic side view of a main part of a spot welding apparatus according to the third embodiment of the present invention.
  • 5A to 5D are flowcharts showing a nugget growth process in the spot welding method according to the prior art.
  • FIG. 1 is an enlarged view of a main part of a spot welding apparatus 10 according to the first embodiment.
  • the spot welding apparatus 10 includes a robot (not shown) having an arm 12 and a welding gun 18 supported by a wrist portion 16 constituting the arm 12.
  • the welding gun 18 is attached to the wrist 16 via a hollow gun support bracket 20.
  • the welding gun 18 is a so-called C-type having a substantially C-shaped fixed arm 24 connected to the gun body 22.
  • a lower tip 26 as a second welding tip is provided at the lower end of the fixed arm 24, and the lower tip 26 extends toward the gun body 22.
  • the lower chip 26 is a fixed electrode chip that is positioned and fixed.
  • the gun body 22 houses a first servo motor and a first ball screw mechanism (both not shown).
  • the first servo motor is for rotating the first ball screw constituting the first ball screw mechanism.
  • the upper tip 30 (first welding tip) provided at the distal end portion of the connecting rod 28 and following the rotational movement of the first ball screw is opposed to the up-down direction in FIG. It is displaced in the Y2 direction or the arrow Y1 direction.
  • the upper chip 30 is a movable electrode chip that can be relatively approached or separated from the lower chip 26.
  • the lower chip 26 and the upper chip 30 sandwich the laminated body 32 to be welded between the lower chip 26 and the upper chip 30 and energize the laminated body 32.
  • the lower chip 26 is electrically connected to the negative electrode of a power source (not shown) housed in the wrist portion 16, while the upper chip 30 is connected to the positive electrode of the power source. Electrically connected. That is, in the first embodiment, a welding current flows from the upper tip 30 toward the lower tip 26. The same applies to the second and third embodiments described later.
  • a first force sensor (not shown) is embedded in the vicinity of the upper tip 30 in the connecting rod 28 .
  • a second force sensor (not shown) is embedded in the fixed arm 24 near the lower tip 26.
  • the first force sensor and the second force sensor are electrically connected to a welding timer 36 (pressurizing force detection means) via signal lines 34a and 34b, respectively.
  • the gun support bracket 20 is provided with a second ball screw mechanism 40 including a second servo motor 38.
  • the second ball screw 42 constituting the second ball screw mechanism 40 rotates under the action of the second servo motor 38.
  • the gun support bracket 20 is a hollow body having three side walls, and the wrist portion 16 is connected to one of the side walls.
  • the remaining two side walls are provided with guide rails 43 on the inner surfaces facing each other.
  • FIG. 1 only the guide rail 43 formed on the inner surface of the side wall on the back side of the paper is shown by cutting out the side wall on the front side of the paper.
  • a guide groove 45 with which the guide rail 43 engages is formed on the side wall of the nut 44 facing the guide rail 43. Further, the second ball screw 42 is screwed into the screw hole formed through the nut 44. Accordingly, as the second ball screw 42 rotates, the nut 44 is displaced in the arrow Y2 direction or the arrow Y1 direction in FIG. 1 while being guided by the guide rail 43 engaged with the guide groove 45.
  • the gun body 22 is supported by the nut 44. Accordingly, the gun body 22 and the fixed arm 24 follow the displacement of the nut 44 in the direction of the arrow Y2 or the direction of the arrow Y1, and are displaced in the same direction as the nut 44 together with the lower tip 26 and the upper tip 30.
  • the spot welding apparatus 10 further includes a clamper 46 as a positioning and fixing means.
  • the clamper 46 has a pair of claw portions 48a and 48b that hold the laminated body 32 therebetween.
  • the laminated body 32 is positioned and fixed by holding the claws 48a and 48b.
  • the first servo motor is electrically connected to the robot controller 50 via the signal lines 34c and 34d.
  • a robot controller 50 is electrically connected to the welding timer 36 via a signal line 34e, and the robot controller 50 and the welding timer 36 constitute a control means. That is, the welding timer 36 serves as a pressure detection means and a control means.
  • a second servo motor 38 is electrically connected to the welding timer 36 via signal lines 34f and 34g, and the power source is electrically connected via a signal line 34h.
  • the laminate 32 to be welded will be described briefly.
  • the laminate 32 is configured by laminating four metal plates 60, 62, 64, 66 in this order from below.
  • the thickness of the metal plates 60 and 62 is set to about 0.8 mm to about 2 mm, for example.
  • the thickness of the metal plates 64 and 66 is set to be smaller than that of the metal plates 60 and 62, and is, for example, about 0.5 mm to about 0.7 mm. That is, the metal plates 60 and 62 are thick workpieces, and the metal plates 64 and 66 are thin workpieces.
  • the metal plate 60 that is a thick workpiece faces the lower chip 26
  • the metal plate 66 that is a thin workpiece faces the upper chip 30.
  • the metal plates 60 and 62 are high-resistance workpieces made of, for example, so-called high-tensile steel JAC590, JAC780, or JAC980 (all of which are high-performance high-tensile steel plates specified in the Japan Iron and Steel Federation standard).
  • the metal plates 64 and 66 are low resistance workpieces made of, for example, so-called mild steel JAC270 (a steel plate for high-performance drawing as defined in the Japan Iron and Steel Federation standard).
  • the metal plates 60 and 62 may be the same metal species or different metal species.
  • the metal plates 64 and 66 may be the same metal species or different metal species.
  • the spot welding apparatus 10 according to the first embodiment is basically configured as described above. Next, the function and effect will be described in relation to the spot welding method according to the first embodiment. .
  • the laminated body 32 When spot welding is performed on the laminated body 32, in other words, when the metal plates 60, 62, 64, and 66 are joined and integrated, the laminated body 32 first has the claws 48a and 48b of the clamper 46. Is held and fixed in position. Next, the wrist 12, that is, the welding gun 18 is moved so that the arm 12 of the robot appropriately operates and the laminated body 32 is disposed between the lower tip 26 and the upper tip 30. At this time, the lower chip 26 contacts the metal plate 60.
  • the robot controller 50 transmits a command signal to the first servo motor via the signal line 34e.
  • the first servo motor that has received this command signal is energized, and the first ball screw starts rotating.
  • the upper chip 30 descends in the direction of the arrow Y ⁇ b> 1 so as to approach the stacked body 32.
  • the stacked body 32 is sandwiched between the lower chip 26 and the upper chip 30.
  • the first force sensor detects a first pressure F1 applied to the metal plate 66 (laminated body 32) by the upper chip 30.
  • the second force sensor detects a second pressure F2 applied to the metal plate 60 (laminated body 32) by the lower chip 26.
  • Each detected value is transmitted as a signal to the welding timer 36 via the signal lines 34a and 34b.
  • the welding timer 36 compares the first pressure F1 and the second pressure F2. Then, in the first step in the initial stage of welding, as shown in FIG. 2A, the first pressure F1 is set smaller than the second pressure F2 (F1 ⁇ F2). Specifically, the welding timer 36 rotates the second ball screw 42 by energizing the second servomotor 38 by a command signal via the signal line 34f. Accordingly, the nut 44 is slightly displaced in the direction of the arrow Y2 while being guided by the guide rail 43, and the gun body 22 and the fixed arm 24 are displaced in the direction of the arrow Y2.
  • the lower tip 26 and the upper tip 30 are slightly displaced in the arrow Y2 direction. That is, the lower chip 26 is displaced in a direction closer to the metal plate 60, and the upper chip 30 is displaced in a direction further separated from the metal plate 66. Accordingly, the second pressure F2 of the lower tip 26 against the metal plate 60 increases, while the first pressure F1 of the upper tip 30 against the metal plate 66 decreases.
  • the first pressurizing force F1 and the second pressurizing force F2 are fed back from the welding timer 36 to the second servomotor 38 via the signal line 34g. Further, since the laminated body 32 is positioned and fixed by being sandwiched between the claws 48a and 48b of the clamper 46, even if the first pressure F1 and the second pressure F2 change as described above, The body 32 is not displaced.
  • the second servo motor 38 When the difference between the first pressure F1 and the second pressure F2 reaches a predetermined value set in advance, the second servo motor 38 is deenergized. The gun body 22 and the fixed arm 24, and thus the lower tip 26 and the upper tip 30, maintain the position at the time of this deactivation.
  • the welding timer 36 further transmits a control signal for starting energization to the power source via the signal line 34h.
  • the welding current starts to flow from the upper tip 30 toward the lower tip 26. This is because, as described above, each of the upper chip 30 and the lower chip 26 is connected to the positive electrode and the negative electrode of the power source. Thereafter, the welding current is continuously supplied until spot welding is completed.
  • the metal plates 60 and 62 have higher resistance than the metal plates 64 and 66 because of the large thickness. Further, the first pressure F1 is smaller than the second pressure F2. For the above reasons, the contact resistance between the metal plates 62 and 64 is larger than the contact resistance between the metal plates 60 and 62 and between the metal plates 64 and 66. Therefore, the amount of generated Joule heat (heat generation amount) between the metal plates 62 and 64 is maximized in the laminate 32.
  • the space between the metal plate 62 and the metal plate 64 is preferentially heated, and the temperature rises sufficiently to start melting.
  • a nugget 70 is formed as a melted portion (liquid phase) between the metal plates 62 and 64. That is, the metal plates 62 and 64 are integrated.
  • the metal plates 62 and 64 slightly approach each other. Accordingly, the first pressure F1 and the second pressure F2 are reduced. In this state, the nugget 70 grows by continuously flowing the welding current. As shown in FIG. 2B, the nugget 70 grows preferentially in the direction between the metal plates 64 and 66 having a large contact resistance, and the metal plates 64 and 66 are fused and integrated.
  • the robot controller 50 recognizes that “the nugget 70 straddling the metal plates 62, 64, 66 has been formed”.
  • the second servomotor 38 rotates the second ball screw 42 in the direction opposite to the first step.
  • the nut 44 is slightly displaced in the direction of the arrow Y1
  • the lower chip 26 is displaced in a direction away from the metal plate 60
  • the upper chip 30 is displaced in a direction approaching the metal plate 66. Accordingly, the first pressing force F1 of the upper chip 30 against the metal plate 66 increases, while the second pressing force F2 of the lower chip 26 against the metal plate 60 decreases.
  • the second servo motor 38 When the first pressure F1 and the second pressure F2 become equal, the second servo motor 38 is deenergized. The lower chip 26 and the upper chip 30 maintain the positions at the time of this deactivation. Under this circumstance, when the welding current is continuously supplied, the second step is performed and the process proceeds to the middle stage of welding.
  • the first pressurizing force F1 and the second pressurizing force F2 are equal to each other, the first pressurizing force F1 is smaller than the second pressurizing force F2.
  • the contact area is reduced. For this reason, the contact resistance between the metal plates 60 and 62 becomes larger than that in the first step, and as a result, the amount of heat generated between the metal plates 60 and 62 increases.
  • the contact resistance between the metal plates 62 and 64 and between the metal plates 64 and 66 is smaller than that in the first step. This is because in the second step, the first pressure F1 is larger than that in the first step. Therefore, it is difficult for the nugget 70 to grow toward the upper chip 30 side. For the above reasons, the nugget 70 grows preferentially toward the metal plate 60 as shown in FIG. 2C. That is, the nugget 70 grows to the vicinity of the contact surface of the metal plates 60 and 62.
  • 2C shows a state where the contact surfaces of the metal plates 60 and 62 are melted, it is not particularly necessary to melt and integrate the metal plates 60 and 62 in the second step.
  • the second step may be completed when the nugget 70 has not reached the contact surface of the metal plates 60 and 62.
  • the robot controller 50 recognizes that “the nugget 70 straddling the metal plates 62, 64, 66 has grown sufficiently”.
  • the robot controller 50 transmits a command signal “make the first pressurizing force F1 larger than the second pressurizing force F2 (F1> F2)” to the second servomotor 38 via the signal line 34f. To do.
  • the second servo motor 38 rotates the second ball screw 42 in the same direction as in the second step.
  • the nut 44 is slightly displaced in the direction of the arrow Y1, and the gun body 22 and the fixed arm 24, and thus the upper tip 30 and the lower tip 26 are displaced in the direction of the arrow Y1.
  • the lower chip 26 is displaced in a direction further away from the metal plate 60
  • the second servo motor 38 When the first pressurizing force F1 becomes larger than the second pressurizing force F2, the second servo motor 38 is deenergized. The lower chip 26 and the upper chip 30 maintain the positions at the time of this deactivation. Under this circumstance, when the welding current is continuously supplied, the third step is performed and the process proceeds to the latter stage of welding.
  • the contact between the metal plates 60 and 62 is compared with that in the second step in which the first applied pressure F1 and the second applied pressure F2 are equal.
  • the area becomes even smaller. For this reason, the contact resistance between the metal plates 60 and 62 becomes larger than that in the first step and the second step, and as a result, the amount of heat generated between the metal plates 60 and 62 increases.
  • the nugget 70 is preferentially directed to the metal plate 60 side and grows so as to include the contact surface between the metal plates 60 and 62. Eventually, the nugget 70 integrates these metal plates 60 and 62. Thus, the metal plates 60, 62, 64, 66 are integrated via the nugget 70.
  • the welding current is stopped to end the third step, and the upper tip 30 is separated from the metal plate 64.
  • the time required from the start of the first step to the end of the third step is typically within 1 second.
  • the heat generation of the metal plates 60, 62, 64, 66 is also terminated.
  • the nugget 70 is cooled and solidified to form a solid phase, and a joined product in which the metal plates 60, 62, 64, 66 are integrally joined through the nugget 70 is obtained.
  • the metal plates 60, 62, 64, 66 are all changed without using the auxiliary electrode by changing the applied pressures F 1, F 2 of the lower chip 26 and the upper chip 30.
  • the nugget 70 straddling the workpiece can be grown. Accordingly, the space for spot welding is narrow, and therefore, even if it is difficult to use the auxiliary electrode, it is possible to obtain a bonded product having a high bonding strength.
  • the second force sensor may be provided on the lower chip 26 as indicated by a broken line in FIG.
  • FIG. 3 is an enlarged view of a main part of the spot welding apparatus 80 according to the second embodiment.
  • the gun body 22 of the welding gun 82 is directly supported by the robot and the wrist 16 constituting the arm 12.
  • the welding gun 82 is a C-type gun including the fixed arm 24.
  • the lower tip 26 is held at the lower end of the fixed arm 24 via an electric cylinder 84 built in the servo motor. That is, in the second embodiment, the lower tip 26 is a movable electrode tip that can be displaced in a direction approaching or separating from the upper tip 30 under the action of the electric cylinder 84.
  • the upper tip 30 follows the rotational movement of the first ball screw under the action of the first servo motor housed in the gun body 22 and is displaced in a direction approaching or separating from the lower tip 26.
  • the upper chip 30 is a movable electrode chip as in the first embodiment.
  • Spot welding using the spot welding apparatus 80 according to the second embodiment is performed as follows.
  • the laminated body 32 is held by the clamper 46 and positioned and fixed.
  • the arm 12 of the robot operates appropriately, and the welding gun 82 is moved so that the laminate 32 is disposed between the lower tip 26 and the upper tip 30.
  • the lower chip 26 may be brought into contact with the metal plate 60.
  • the welding timer 36 urges the electric cylinder 84 by a command signal via the signal line 34f, and the lower tip 26 is moved in the direction of the arrow Y2 under the action of the electric cylinder 84. Displace. As a result, the lower chip 26 comes into contact with the metal plate 60.
  • the upper tip 30 may be brought into contact with the metal plate 66 when the welding gun 82 is moved.
  • the welding timer 36 urges the first ball screw by a command signal via the signal line 34c, and the upper tip 30 is moved in the direction of the arrow Y1 under the action of the first ball screw. Displace. As a result, the upper chip 30 comes into contact with the metal plate 66.
  • the laminate 32 is sandwiched between the lower chip 26 and the upper chip 30. Either the contact of the lower chip 26 with the metal plate 60 and the contact of the upper chip 30 with the metal plate 66 may be first or simultaneously.
  • the first pressure F1 and the second pressure F2 are controlled in the same manner as in the first embodiment. That is, in the first step, as shown in FIG. 2A, the first pressure F1 is set to be smaller than the second pressure F2 (F1 ⁇ F2).
  • the welding timer 36 energizes the electric cylinder 84 by a command signal via the signal line 34f, thereby the lower tip 26. Is slightly displaced in the direction of arrow Y2. That is, the lower chip 26 is displaced in a direction closer to the metal plate 60. As a result, the second pressure F2 can be made larger than the first pressure F1.
  • the electric cylinder 84 When the difference between the first pressure F1 and the second pressure F2 reaches a predetermined value set in advance, the electric cylinder 84 is deenergized.
  • the lower chip 26 maintains the position at the time of this deactivation.
  • the upper chip 30 maintains the position when it comes into contact with the metal plate 66, and therefore the first pressure F1 is also maintained.
  • the lower chip 26 is brought into contact with the metal plate 60 so that F1 ⁇ F2, and the upper chip 30 may be brought into contact with the metal plate 66.
  • an energization start control signal is transmitted from the welding timer 36 to the power source. Thereby, a welding current flows in a direction from the upper tip 30 to the lower tip 26, and spot welding is started.
  • a nugget 70 as a melted portion (liquid phase) is formed between the metal plates 62 and 64, and the metal plates 62 and 64 are integrated with each other.
  • the electric cylinder 84 slightly displaces the lower chip 26 in the direction away from the metal plate 60 (the direction of the arrow Y1). Accordingly, the first pressure F1 of the upper chip 30 against the metal plate 66 is maintained, while the second pressure F2 of the lower chip 26 against the metal plate 60 is equal to the first pressure F1.
  • the electric cylinder 84 is deenergized.
  • the second step is performed by continuously supplying the welding current.
  • the nugget 70 is preferentially grown toward the metal plate 66.
  • the electric cylinder 84 is deenergized. Under this situation, the third step is performed by continuously supplying a welding current.
  • the nugget 70 is preferentially grown between the metal plates 60, 62, and as a result, the metal plates 60, 62, 64, 66 are integrated via the nugget 70.
  • the welding current is stopped to end the third step, and the upper tip 30 is separated from the metal plate 64. Thereafter, the nugget 70 is cooled and solidified to become a solid phase, and a joined product in which the metal plates 60, 62, 64, 66 are integrally joined is obtained.
  • the applied pressures F1 and F2 of the lower chip 26 and the upper chip 30 can be relatively changed. Therefore, even when the space for spot welding is narrow and the auxiliary electrode cannot be used for this purpose, the nugget 70 that spans all the workpieces of the metal plates 60, 62, 64, 66 can be grown. . Of course, the bonded product is excellent in bonding strength.
  • the second force sensor may be provided on the lower chip 26 as indicated by a broken line in FIG.
  • FIG. 4 is an enlarged view of a main part of a spot welding apparatus 90 according to the third embodiment.
  • the gun body 22 of the welding gun 92 is directly supported by the robot and the wrist portion 16 constituting the arm 12.
  • the welding gun 92 is a C-type gun including the fixed arm 24.
  • a lower tip 26 is provided at the lower end of the fixed arm 24. That is, in the third embodiment, the lower chip 26 is a fixed electrode chip that is positioned and fixed.
  • the upper tip 30 follows the rotational movement of the first ball screw under the action of the first servo motor housed in the gun body 22 and is displaced in a direction approaching or separating from the lower tip 26.
  • the upper chip 30 is a movable electrode chip as in the first and second embodiments.
  • the spot welding using the spot welding apparatus 90 according to the third embodiment is performed as follows.
  • the laminated body 32 is held by the clamper 46 and positioned and fixed.
  • the arm 12 of the robot operates as appropriate, and the welding gun 92 is moved so that the laminate 32 is disposed between the lower tip 26 and the upper tip 30. At this time, the lower chip 26 contacts the metal plate 60.
  • the robot controller 50 transmits a command signal to the first servo motor via the signal line 34c.
  • the first servo motor that has received this command signal is energized, and the first ball screw starts rotating.
  • the upper chip 30 descends in the direction of the arrow Y ⁇ b> 1 so as to approach the stacked body 32.
  • the stacked body 32 is sandwiched between the lower chip 26 and the upper chip 30.
  • the first pressure F1 and the second pressure F2 are controlled in the same manner as in the first and second embodiments. That is, in the first step, the arm 12 or the wrist portion 16 is operated so as to make the first pressure F1 smaller than the second pressure F2, thereby moving the lower chip 26 toward the metal plate 60. At the same time, the upper chip 30 is displaced further away from the metal plate 66. As a result, the second pressure F2 increases, while the first pressure F1 of the upper chip 30 against the metal plate 66 decreases. That is, F1 ⁇ F2.
  • the operation of the arm 12 or the wrist 16 stops.
  • the lower chip 26 and the upper chip 30 maintain the positions when the operation is stopped.
  • an energization start control signal is transmitted from the welding timer 36 to the power source. Thereby, a welding current flows in a direction from the upper tip 30 to the lower tip 26, and spot welding is started.
  • a nugget 70 as a melted portion (liquid phase) is formed between the metal plates 62 and 64, and the metal plates 62 and 64 are integrated with each other.
  • the arm 12 or the wrist 16 stops operating.
  • the second step is performed by continuously supplying the welding current.
  • the nugget 70 grows so as to be preferentially directed to the metal plate 66.
  • the first force sensor and the second force sensor detect that the first pressing force F1 and the second pressing force F2 have decreased as the nugget 70 straddling the metal plates 62, 64, 66 has sufficiently grown. Then, the robot controller 50 transmits a command signal “F1> F2” to the robot. Upon receiving this command signal, the robot operates the arm 12 or the wrist portion 16 to further displace the lower chip 26 in the direction away from the metal plate 60 (in the direction of the arrow Y1), and the upper chip 30 is moved to the metal plate 66. Is further displaced in the direction of approaching (direction of arrow Y1). Therefore, the first pressing force F1 of the upper chip 30 against the metal plate 66 increases, while the second pressing force F2 of the lower chip 26 against the metal plate 60 decreases, and F1> F2.
  • the third step is performed by continuously supplying a welding current.
  • the nugget 70 is preferentially grown between the metal plates 60, 62, and as a result, the metal plates 60, 62, 64, 66 are integrated via the nugget 70.
  • the welding current is stopped to end the third step, and the upper tip 30 is separated from the metal plate 64. Thereafter, the nugget 70 is cooled and solidified to become a solid phase, and a bonded product in which the metal plates 60, 62, 64, 66 are integrally bonded is obtained.
  • the applied pressures F1 and F2 of the lower chip 26 and the upper chip 30 can be changed. Therefore, it is possible to grow the nugget 70 that straddles all the workpieces of the metal plates 60, 62, 64, 66 without using the auxiliary electrode. Of course, the bonded product has excellent bonding strength.
  • the second force sensor may be provided on the lower chip 26 as indicated by a broken line in FIG.
  • the present invention is not particularly limited to the first to third embodiments described above, and various modifications can be made without departing from the gist of the present invention.
  • the welding current may flow from the lower tip 26 toward the upper tip 30.
  • the two metal plates 64 and 66 made of mild steel are superposed on the two metal plates 60 and 62 made of high-tensile steel. This is applicable when three or more metal plates are laminated, and one of the outermost two metal plates is a thin workpiece and the other one is a thick workpiece.
  • a ball screw mechanism including a servo motor, a linear direct motor, a piezoelectric actuator, a cylinder, or the like may be employed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

厚肉の金属板(60、62)、薄肉の金属板(64、66)からなる積層体(32)に対して溶接電流を流す間、金属板(66)に当接した上チップ(30)による積層体(32)に対する第1の加圧力(F1)と、金属板(60)に当接した下チップ(26)による積層体(32)に対する第2の加圧力(F2)とを相対的に変化させる。具体的には、溶接初期の第1工程時にはF1<F2、溶接中期の第2工程時にはF1=F2、溶接後期の第3工程時にはF1>F2とする。

Description

スポット溶接方法及びその装置
 本発明は、少なくとも3個のワークを積層して形成される積層体に対してスポット溶接を行うスポット溶接方法及びその装置に関する。
 自動車車体屋根部のいわゆるモヒカンルーフは、例えば、図5Aに示す積層体1が溶接によって一体化されることで形成されている。すなわち、積層体1は、ハイテン鋼からなり互いの厚みが略同等である2枚の厚肉ワーク2、3と、軟鋼からなり互いの厚みが略同等である2枚の薄肉ワーク4、5とが積層されてなる。2枚の厚肉ワーク2、3は車室側に臨むインナ材であり、一方、2枚の薄肉ワーク4、5は車外に臨むアウタ材である。特に、最上の薄肉ワーク4、5は、ユーザによって視認される。
 積層体1の溶接は、複数箇所にナゲット6を形成するスポット溶接によって行われる。すなわち、2枚の厚肉ワーク2、3と2枚の薄肉ワーク4、5が下方からこの順序で積層され、積層体1が形成される。そして、この積層体1が上チップ7と下チップ8で挟持される。この際、上チップ7は最上の薄肉ワーク5に当接し、下チップ8は最下の厚肉ワーク2に当接する。そして、上チップ7による加圧力F1と、下チップ8による加圧力F2が同等に設定される。
 この状態で、例えば、上チップ7から下チップ8に向かう溶接電流が流される。ここで、厚肉ワーク2、3は薄肉ワーク4、5に比して電気抵抗が大きいので、通電によって生じる発熱量が薄肉ワーク4、5よりも大きくなる。従って、ナゲット6は、図5A~図5Cに示すように、積層体1中の厚肉ワーク2、3の間で優先的に成長する。このため、図5Dに示すように、ナゲット6が薄肉ワーク4、5同士の接触面まで成長せず、該薄肉ワーク4、5同士が一体化されない懸念がある。
 本出願人は、特開2014-184461号公報において、この懸念を払拭し得、しかも、隣接するワーク同士の間にスパッタが発生することを回避可能なスポット溶接方法及びその装置を提案している。
 特開2014-184461号公報記載の技術は、上チップの近傍に、上チップとは逆の極性の補助電極を配置するものである。すなわち、積層体に対し、上チップと同時に補助電極を薄肉ワークに当接させる。
 ところで、積層体の大きさや形状によっては、補助電極を当接させるスペースを確保することが困難な場合がある。また、補助電極を設けることで、スポット溶接装置が比較的大型となる。
 本発明の主たる目的は、補助電極を用いる必要がないスポット溶接方法を提供することにある。
 本発明の別の目的は、積層体中のワーク同士の接触面近傍にナゲットを十分に成長させることが可能なスポット溶接方法を提供することにある。
 本発明のまた別の目的は、上記したスポット溶接方法を実施するためのスポット溶接装置を提供することにある。
 本発明の一実施形態によれば、少なくとも3個のワークを積層してなり、且つ最外の2個のワークが、厚みが互いに相違する薄肉ワーク及び厚肉ワークである積層体を第1溶接チップ及び第2溶接チップで挟持するとともに、前記第1溶接チップと前記第2溶接チップの間で溶接電流を流してスポット溶接を行うスポット溶接方法であって、
 位置決め固定された前記積層体に対して前記溶接電流を流す間、
 前記薄肉ワークに当接した前記第1溶接チップによる前記積層体に対する第1の加圧力を、前記厚肉ワークに当接した前記第2溶接チップによる前記積層体に対する第2の加圧力よりも小さくするとともに、前記積層体を形成する2個のワーク同士の間に、該2個のワーク同士を一体化するナゲットを生じさせる第1工程と、
 前記第1の加圧力と前記第2の加圧力を等しくするとともに、前記ナゲットを、前記厚肉ワーク側に向かって成長させる第2工程と、
 前記第1の加圧力を前記第2の加圧力よりも大きくするとともに、前記ナゲットを、前記厚肉ワークと、該厚肉ワークに隣接するワークとが一体化するまで成長させる第3工程と、
 を行うスポット溶接方法が提供される。
 本発明の別の一実施形態によれば、少なくとも3個のワークを積層してなり、且つ最外の2個のワークが、厚みが互いに相違する薄肉ワーク及び厚肉ワークである積層体を位置決め固定する位置決め固定手段と、
 前記積層体を挟持して溶接電流を流す第1溶接チップ及び第2溶接チップを含む溶接ガンと、
 前記薄肉ワークに当接した前記第1溶接チップによる前記積層体に対する第1の加圧力と、前記厚肉ワークに当接した前記第2溶接チップによる前記積層体に対する第2の加圧力とを検出する加圧力検出手段と、
 前記加圧力検出手段による検出値に基づいて前記第1の加圧力と、前記第2の加圧力とを制御する制御手段と、
 を有し、
 前記制御手段は、前記積層体を形成する2個のワーク同士の間に、該2個のワーク同士を一体化するナゲットを生じさせるとき、前記第1の加圧力を前記第2の加圧力よりも小さくし、
 前記ナゲットを、前記厚肉ワーク側に向かって成長させるとき、前記第1の加圧力と前記第2の加圧力を等しくし、
 前記ナゲットを、前記厚肉ワークと、該厚肉ワークに隣接するワークとが一体化するまで成長させるとき、前記第1の加圧力を前記第2の加圧力よりも大きくする制御を行うスポット溶接装置が提供される。
 このように、本発明では、溶接初期(第1工程)、溶接中期(第2工程)及び溶接後期(第3工程)のそれぞれにおいて、第1の加圧力と第2の加圧力の相対的な大小を変化させるようにしている。従って、積層体を形成するワーク同士の間の接触抵抗が変化する。
 ナゲットの成長は、接触抵抗が大きな箇所で促進される。従って、上記のように接触抵抗を変化させることにより、溶接初期、溶接中期、溶接後期の各々で、ナゲットが優先的に成長する方向を相違させることができる。このため、第1工程にて、第1の加圧力と第2の加圧力を何ら変化させないときにはナゲットが成長し難い箇所にナゲットを先ず生じさせ、次に、第2工程及び第3工程にて、第1の加圧力と第2の加圧力を何ら変化させないときにはナゲットが成長し易い箇所にナゲットを成長させることにより、全てのワークを一体化するナゲットを形成することができる。
 従って、本発明によれば、補助電極を用いることなく、全てのワークが接合されて一体化した接合品を得ることができる。このため、スポット溶接を行うスペースが狭小であっても、接合強度に優れた接合品を得ることが容易である。
 しかも、補助電極を設ける必要がないので、スポット溶接装置の構成が簡素となる。この分、小型化を図ることも容易である。
 第1の加圧力及び第2の加圧力を相対的に変化させるには、例えば、第1溶接チップ及び第2溶接チップを有する溶接ガンを積層体に対して変位させるようにすればよい。なお、溶接ガンがロボットに支持されているときには、ロボットの動作によって、溶接ガンを積層体に対して変位させることも可能である。
 又は、第2溶接チップを厚肉ワークに指向する方向又は離間する方向に変位させるようにしてもよい。この場合においても、第1の加圧力及び第2の加圧力を相対的に変化させることができる。
 以上のように、本発明によれば、溶接初期、溶接中期及び溶接後期のそれぞれにおいて、第1溶接チップの積層体に対する第1の加圧力と、第2溶接チップの積層体に対する第2の加圧力の相対的な大小を変化させるようにしている。このために積層体を形成するワーク同士の間の接触抵抗が変化するので、溶接初期、溶接中期、溶接後期の各々で、ナゲットが優先的に成長する方向を相違させることができる。
 従って、第1の加圧力と第2の加圧力を何ら変化させないときにはナゲットが成長し難い箇所にナゲットを先ず生じさせ、次に、第1の加圧力と第2の加圧力を何ら変化させないときにはナゲットが成長し易い箇所に向かってナゲットを成長させるという制御が可能となる。その結果、補助電極を用いることなく、全てのワークがナゲットによって一体化され、優れた接合強度を示す接合品が得られる。
 しかも、補助電極を設ける必要がないので、スポット溶接装置の構成の簡素化及び小型化を図ることができる。
 上記の目的、特徴及び利点は、添付した図面を参照して説明される以下の実施の形態の説明から容易に諒解されるであろう。
図1は、本発明の第1実施形態に係るスポット溶接装置の要部概略側面図である。 図2A~図2Dは、本発明の実施の形態に係るスポット溶接方法でのナゲットの成長過程を示すフロー図である。 図3は、本発明の第2実施形態に係るスポット溶接装置の要部概略側面図である。 図4は、本発明の第3実施形態に係るスポット溶接装置の要部概略側面図である。 図5A~図5Dは、従来技術に係るスポット溶接方法でのナゲットの成長過程を示すフロー図である。
 以下、本発明に係るスポット溶接方法につき、これを実施するスポット溶接装置との関係で好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。
 図1は、第1実施形態に係るスポット溶接装置10の要部拡大図である。このスポット溶接装置10は、アーム12を有する図示しないロボットと、アーム12を構成する手首部16に支持された溶接ガン18とを有する。
 溶接ガン18は、中空のガン支持ブラケット20を介して手首部16に取付けられる。この場合、溶接ガン18は、ガン本体22に連結された略C字形状の固定アーム24を具備する、いわゆるC型のものである。この固定アーム24の下方先端には第2溶接チップとしての下チップ26が設けられ、該下チップ26は、ガン本体22に指向して延在している。この下チップ26は、位置決め固定された固定電極チップである。
 ガン本体22には、第1サーボモータ及び第1ボールネジ機構(いずれも図示せず)が収容されている。第1サーボモータは、第1ボールネジ機構を構成する第1ボールネジを回転動作させるためのものである。そして、第1ボールネジが回転動作することに追従し、連結ロッド28の先端部に設けられて下チップ26に対向する上チップ30(第1溶接チップ)が、図1における上下方向、すなわち、矢印Y2方向又は矢印Y1方向に変位する。このように、上チップ30は、下チップ26に対して相対的に接近又は離間が可能な可動電極チップである。
 前記下チップ26及び前記上チップ30は、これら下チップ26及び上チップ30の間に溶接対象である積層体32を挟持し、且つ該積層体32に対して通電を行うものである。なお、第1実施形態においては、下チップ26は、手首部16内に収容された電源(図示せず)の負極に電気的に接続されており、一方、上チップ30は前記電源の正極に電気的に接続されている。すなわち、第1実施形態では、上チップ30から下チップ26に向かって溶接電流が流れる。後述する第2実施形態及び第3実施形態においても同様である。
 連結ロッド28における上チップ30の近傍には、図示しない第1力センサが埋設される。同様に、固定アーム24における下チップ26の近傍には、図示しない第2力センサが埋設される。第1力センサ及び第2力センサは、それぞれ、信号線34a、34bを介して溶接タイマ36(加圧力検出手段)に電気的に接続されている。
 ガン支持ブラケット20には、第2サーボモータ38を含む第2ボールネジ機構40が設けられる。第2ボールネジ機構40を構成する第2ボールネジ42は、第2サーボモータ38の作用下に回転動作する。
 ここで、ガン支持ブラケット20は3個の側壁を有する中空体であり、その中の1個の側壁に前記手首部16が連結される。また、残余の2個の側壁には、互いに対向する内面にガイドレール43が設けられる。なお、図1においては、紙面手前側の側壁を切り欠き、紙面奥側の側壁の内面に形成されたガイドレール43のみを示している。
 ナット44の、ガイドレール43を臨む側壁には、ガイドレール43が係合する案内溝45が形成される。さらに、ナット44に貫通形成されたネジ穴には第2ボールネジ42が螺合される。従って、ナット44は、第2ボールネジ42が回転することに伴い、案内溝45に係合したガイドレール43に案内されながら図1中の矢印Y2方向又は矢印Y1方向に変位する。
 ナット44には、ガン本体22が支持される。従って、ガン本体22及び固定アーム24は、ナット44が矢印Y2方向又は矢印Y1方向に変位することに追従し、下チップ26及び上チップ30ごと、ナット44と同一方向に変位する。
 スポット溶接装置10は、さらに、位置決め固定手段としてのクランパ46を備える。該クランパ46は、積層体32を挟んで保持する一対の爪部48a、48bを有する。この爪部48a、48bでの保持により、積層体32が位置決め固定される。
 以上の構成において、第1サーボモータは、信号線34c、34dを介してロボットコントローラ50に電気的に接続される。また、前記溶接タイマ36には、信号線34eを介してロボットコントローラ50が電気的に接続され、これらロボットコントローラ50と溶接タイマ36により、制御手段が構成される。すなわち、溶接タイマ36は、加圧力検出手段と制御手段を兼ねる。該溶接タイマ36には、さらに、信号線34f、34gを介して第2サーボモータ38が電気的に接続されるとともに、信号線34hを介して前記電源が電気的に接続される。
 溶接対象である積層体32につき若干説明すると、この場合、積層体32は、4枚の金属板60、62、64、66が下方からこの順序で積層されることによって構成される。この中の金属板60、62の厚みは、例えば、約0.8mm~約2mmに設定される。一方、金属板64、66の厚みは、金属板60、62に比して小寸法に設定され、例えば、約0.5mm~約0.7mm程度である。すなわち、金属板60、62は厚肉ワークであり、金属板64、66は薄肉ワークである。結局、下チップ26には厚肉ワークである金属板60が対向し、上チップ30には薄肉ワークである金属板66が対向する。
 金属板60、62は、例えば、いわゆるハイテン鋼であるJAC590、JAC780又はJAC980(いずれも日本鉄鋼連盟規格に規定される高性能高張力鋼板)からなる高抵抗ワークである。また、金属板64、66は、例えば、いわゆる軟鋼であるJAC270(日本鉄鋼連盟規格に規定される高性能絞り加工用鋼板)からなる低抵抗ワークである。金属板60、62同士は同一金属種であってもよいし、異種金属種であってもよい。同様に、金属板64、66同士も同一金属種であってもよいし、異種金属種であってもよい。
 第1実施形態に係るスポット溶接装置10は、基本的には以上のように構成されるものであり、次に、その作用効果につき、第1実施形態に係るスポット溶接方法との関係で説明する。
 積層体32に対してスポット溶接を行う際、換言すれば、金属板60、62、64、66を接合して一体化する際には、先ず、積層体32がクランパ46の爪部48a、48bによって保持され、位置決め固定される。そして、次に、前記ロボットのアーム12が適宜動作し、下チップ26と上チップ30の間に積層体32が配置されるように前記手首部16、すなわち、溶接ガン18を移動させる。この時点で、下チップ26が金属板60に当接する。
 次に、ロボットコントローラ50は、信号線34eを介して指令信号を前記第1サーボモータに発信する。この指令信号を受信した第1サーボモータが付勢されるとともに、前記第1ボールネジが回転動作を開始する。これにより、上チップ30が積層体32に対して接近するように、矢印Y1方向に向かって降下する。その結果、下チップ26と上チップ30の間に積層体32が挟持される。
 ここで、前記第1力センサは、上チップ30による金属板66(積層体32)に対する第1の加圧力F1を検出する。また、前記第2力センサは、下チップ26による金属板60(積層体32)に対する第2の加圧力F2を検出する。各々の検出値は、信号線34a、34bを介して溶接タイマ36に信号として送信される。
 溶接タイマ36は、第1の加圧力F1と第2の加圧力F2を比較する。そして、溶接初期の第1工程では、図2Aに示すように、第1の加圧力F1が第2の加圧力F2よりも小さく設定される(F1<F2)。具体的には、溶接タイマ36は、信号線34fを介する指令信号によって第2サーボモータ38を付勢することで、第2ボールネジ42を回転動作させる。これにより、ナット44をガイドレール43で案内しながら矢印Y2方向に若干変位させ、ガン本体22及び固定アーム24を矢印Y2方向に追従変位させる。
 この追従変位に伴って、下チップ26及び上チップ30が矢印Y2方向に若干変位する。すなわち、下チップ26が金属板60に向かって一層接近する方向に変位し、且つ上チップ30が金属板66から一層離間する方向に変位する。従って、金属板60に対する下チップ26の第2の加圧力F2が増加する一方で、金属板66に対する上チップ30の第1の加圧力F1が低減する。
 なお、第1の加圧力F1及び第2の加圧力F2は、溶接タイマ36から信号線34gを介して第2サーボモータ38にフィードバックされる。また、積層体32がクランパ46の爪部48a、48bで挟まれることによって位置決め固定されているため、第1の加圧力F1及び第2の加圧力F2が上記のように変化しても、積層体32が変位することはない。
 第1の加圧力F1と第2の加圧力F2の差が予め設定された所定値となると、第2サーボモータ38が滅勢される。ガン本体22及び固定アーム24、ひいては下チップ26及び上チップ30は、この滅勢時の位置を保つ。
 溶接タイマ36は、さらに、信号線34hを介して前記電源に通電開始の制御信号を発信する。これにより、上チップ30から下チップ26に向かう方向に溶接電流が流れ始める。上記したように、上チップ30、下チップ26の各々が電源の正極、負極に接続されているからである。溶接電流は、これ以降、スポット溶接が終了するまで継続して流される。
 ここで、金属板60、62は、厚みが大きい分、金属板64、66に比して高抵抗である。また、第1の加圧力F1が第2の加圧力F2に比して小さい。以上のような理由が相俟って、金属板62、64間の接触抵抗が、金属板60、62間、金属板64、66間の各接触抵抗よりも大きくなる。従って、金属板62、64間におけるジュール熱の発生量(発熱量)が、積層体32中で最大となる。
 このため、第1工程では、図2Aに示すように、金属板62と金属板64の間が優先的に加熱され、十分に温度上昇して溶融し始める。これにより、金属板62、64間に溶融部(液相)としてのナゲット70が形成される。すなわち、金属板62、64同士が一体化される。
 ナゲット70が形成されると、該ナゲット70が軟質であるため、金属板62、64が互いに若干接近する。従って、第1の加圧力F1及び第2の加圧力F2が低減する。この状態で溶接電流が継続して流されることで、ナゲット70が成長する。図2Bに示すように、ナゲット70は、接触抵抗が大きい金属板64、66間に向かう方向に優先的に成長し、該金属板64、66間を溶融して一体化する。
 このようにしてナゲット70が成長することに伴い、第1の加圧力F1及び第2の加圧力F2が一層低減する。このことが第1力センサ及び第2力センサによって検出されると、ロボットコントローラ50は、「金属板62、64、66に跨るナゲット70が形成された」と認識する。
 次に、ロボットコントローラ50は、「第1の加圧力F1と第2の加圧力F2を同等(F1=F2)にする」という指令信号を、信号線34fを介して第2サーボモータ38に発信する。この指令信号を受けた第2サーボモータ38は、第2ボールネジ42を第1工程とは逆方向に回転動作させる。これによりナット44を矢印Y1方向に若干変位させ、ガン本体22及び固定アーム24、ひいては上チップ30及び下チップ26を、矢印Y1方向に追従変位させる。
 この場合、下チップ26が金属板60から離間する方向に変位し、且つ上チップ30が金属板66に接近する方向に変位する。従って、金属板66に対する上チップ30の第1の加圧力F1が増加する一方で、金属板60に対する下チップ26の第2の加圧力F2が低減する。
 第1の加圧力F1と第2の加圧力F2が等しくなると、第2サーボモータ38が滅勢される。下チップ26及び上チップ30は、この滅勢時の位置を保つ。この状況下で溶接電流が継続的に流されることにより、第2工程が実施されて溶接中期に移行する。
 第1の加圧力F1と第2の加圧力F2とが等しいので、第1の加圧力F1を第2の加圧力F2よりも小さくした第1工程時に比して、金属板60、62間の接触面積が小さくなる。このため、金属板60、62間の接触抵抗が第1工程時に比して大きくなり、その結果、金属板60、62間の発熱量が増加する。
 その一方で、金属板62、64間、及び金属板64、66間の接触抵抗は、第1工程時に比して小さくなる。第2工程では、第1工程時よりも第1の加圧力F1が大きくなっているからである。従って、ナゲット70が上チップ30側に向かって成長することは困難である。以上のような理由から、ナゲット70は、図2Cに示すように、金属板60側に向かって優先的に成長するようになる。すなわち、ナゲット70が金属板60、62の接触面近傍まで成長する。
 なお、図2Cでは、金属板60、62の接触面が溶融された状態を示しているが、第2の工程では、金属板60、62間を溶融して一体化する必要は特にない。換言すれば、ナゲット70が金属板60、62の接触面まで到達していない段階で、第2工程を終了するようにしてもよい。
 このようにしてナゲット70が成長することに伴い、第1の加圧力F1及び第2の加圧力F2が一層低減する。このことが第1力センサ及び第2力センサによって検出されると、ロボットコントローラ50は、「金属板62、64、66に跨ったナゲット70が十分に成長した」と認識する。
 次に、ロボットコントローラ50は、「第1の加圧力F1を第2の加圧力F2よりも大きく(F1>F2)する」という指令信号を、信号線34fを介して第2サーボモータ38に発信する。この指令信号を受けた第2サーボモータ38は、第2ボールネジ42を第2工程と同一方向に回転動作させる。これによりナット44を矢印Y1方向に若干変位させ、ガン本体22及び固定アーム24、ひいては上チップ30及び下チップ26を、矢印Y1方向に追従変位させる。
 この場合、下チップ26が金属板60から一層離間する方向に変位し、且つ上チップ30が金属板66に一層接近する方向に変位する。従って、金属板66に対する上チップ30の第1の加圧力F1がさらに増加するとともに、金属板60に対する下チップ26の第2の加圧力F2がさらに低減して、F1=F2からF1>F2に変化する。
 第1の加圧力F1が第2の加圧力F2よりも大きくなると、第2サーボモータ38が滅勢される。下チップ26及び上チップ30は、この滅勢時の位置を保つ。この状況下で溶接電流が継続的に流されることにより、第3工程が実施されて溶接後期に移行する。
 第1の加圧力F1が第2の加圧力F2よりも大きいので、第1の加圧力F1と第2の加圧力F2を等しくした第2工程時に比して、金属板60、62間の接触面積が一層小さくなる。このため、金属板60、62間の接触抵抗が第1工程及び第2工程時に比して大きくなり、その結果、金属板60、62間の発熱量が増加する。
 従って、図2Dに示すように、ナゲット70が優先的に金属板60側に向かい、金属板60、62間の接触面を含むように成長する。結局、ナゲット70は、これら金属板60、62を一体化する。以上により、金属板60、62、64、66がナゲット70を介して一体化される。
 所定時間が経過した後、溶接電流を停止して第3工程を終了するとともに、上チップ30を金属板64から離間させる。第1工程の開始から第3工程の終了までに要する時間は、典型的には1秒以内である。
 このようにして通電が停止されることに伴い、金属板60、62、64、66の発熱も終了する。時間の経過とともにナゲット70が冷却固化して固相となり、このナゲット70を介して金属板60、62、64、66が一体的に接合された接合品が得られるに至る。
 以上のように、第1実施形態によれば、下チップ26及び上チップ30の加圧力F1、F2を変化させることにより、補助電極を用いることなく、金属板60、62、64、66の全ワークに跨るナゲット70を成長させることができる。従って、スポット溶接を行うスペースが狭小であり、このために補助電極を用いることが困難であっても、接合強度が大きな接合品を得ることができる。
 しかも、補助電極を設ける必要がないので、スポット溶接装置10の構成が複雑化したり、大型化したりすることを回避することができる。
 なお、第2力センサは、図1に破線で示すように、下チップ26に設けるようにしてもよい。
 次に、第2実施形態につき説明する。なお、図1及び図2A~図2Dに示される構成要素と同一の構成要素には同一の参照符号を付し、その詳細な説明を省略する。
 図3は、第2実施形態に係るスポット溶接装置80の要部拡大図である。このスポット溶接装置80では、ロボットと、アーム12を構成する手首部16に、溶接ガン82のガン本体22が直接支持されている。
 溶接ガン82は、固定アーム24を具備するC型ガンである。この固定アーム24の下方先端には、サーボモータに内蔵された電動シリンダ84を介して下チップ26が保持されている。すなわち、第2実施形態において、下チップ26は、電動シリンダ84の作用下に上チップ30に対して接近又は離間する方向に変位可能な可動電極チップである。
 一方、上チップ30は、ガン本体22に収容された前記第1サーボモータの作用下に前記第1ボールネジが回転動作することに追従し、下チップ26に対して接近又は離間する方向に変位する。すなわち、上チップ30は、第1実施形態と同様に可動電極チップである。
 第2実施形態に係るスポット溶接装置80を用いてのスポット溶接は、以下のようにして実施される。
 はじめに、積層体32がクランパ46によって保持され、位置決め固定される。そして、次に、前記ロボットのアーム12が適宜動作し、下チップ26と上チップ30の間に積層体32が配置されるように溶接ガン82を移動させる。
 この時点で、下チップ26を金属板60に当接させるようにしてもよい。下チップ26が金属板60に当接していないときには、溶接タイマ36が信号線34fを介する指令信号によって電動シリンダ84を付勢し、該電動シリンダ84の作用下に下チップ26を矢印Y2方向に変位させる。その結果、下チップ26が金属板60に当接する。
 又は、溶接ガン82を移動させたとき、上チップ30を金属板66に当接させるようにしてもよい。上チップ30が金属板66に当接していないときには、溶接タイマ36が信号線34cを介する指令信号によって第1ボールネジを付勢し、該第1ボールネジの作用下に上チップ30を矢印Y1方向に変位させる。その結果、上チップ30が金属板66に当接する。
 以上の当接により、下チップ26と上チップ30の間に積層体32が挟持される。下チップ26の金属板60への当接と、上チップ30の金属板66への当接は、いずれが先であってもよいし、同時であってもよい。
 以降は、第1実施形態と同様にして第1の加圧力F1、第2の加圧力F2が制御される。すなわち、第1工程では、図2Aに示すように、第1の加圧力F1が第2の加圧力F2よりも小さく設定される(F1<F2)。
 ここで、第1の加圧力F1を第2の加圧力F2に比して小さくするべく、溶接タイマ36は、信号線34fを介する指令信号によって電動シリンダ84を付勢し、これにより下チップ26を矢印Y2方向に若干変位させる。すなわち、下チップ26が金属板60に向かって一層接近する方向に変位する。その結果として、第2の加圧力F2を第1の加圧力F1よりも大きくすることができる。
 第1の加圧力F1と第2の加圧力F2の差が予め設定された所定値となると、電動シリンダ84が滅勢される。下チップ26は、この滅勢時の位置を保つ。また、上チップ30は、金属板66に当接したときの位置を保ち、このため、第1の加圧力F1も維持される。
 以上の動作を実施することに代替し、下チップ26と上チップ30で積層体32を挟持した時点で、F1<F2となるように下チップ26を金属板60に当接させるとともに、上チップ30を金属板66に当接させるようにしてもよい。
 この状態で、溶接タイマ36から、前記電源に通電開始の制御信号が発信される。これにより、上チップ30から下チップ26に向かう方向に溶接電流が流れ、スポット溶接が開始される。第1工程では、図2A及び図2Bに示すように、金属板62、64間に溶融部(液相)としてのナゲット70が形成され、これら金属板62、64同士が一体化される。
 ナゲット70が金属板62、64、66に跨るように成長すると、ロボットコントローラ50は、「F1=F2にする」という指令信号を、信号線34fを介して電動シリンダ84に発信する。この指令信号を受けた電動シリンダ84は、下チップ26を、金属板60から離間する方向(矢印Y1方向)に若干変位させる。従って、金属板66に対する上チップ30の第1の加圧力F1が保たれる一方で、金属板60に対する下チップ26の第2の加圧力F2が、第1の加圧力F1と同等となるまで低減する。
 第1の加圧力F1と第2の加圧力F2が等しくなると、電動シリンダ84が滅勢される。この状況下で溶接電流が継続的に流されることにより、第2工程が実施される。その結果、図2Cに示すように、ナゲット70が優先的に金属板66に向かうように成長する。
 金属板62、64、66に跨ったナゲット70が十分に成長したことに伴って第1の加圧力F1及び第2の加圧力F2が低減したことが第1力センサ及び第2力センサによって検出されると、ロボットコントローラ50は、「F1>F2にする」という指令信号を、信号線34fを介して電動シリンダ84に発信する。この指令信号を受けた電動シリンダ84は、下チップ26を矢印Y1方向に若干変位させる。このため、金属板66に対する上チップ30の第1の加圧力F1が保たれる一方で、金属板60に対する下チップ26の第2の加圧力F2が低減して第1の加圧力F1よりも小さくなる。すなわち、F1=F2からF1>F2に変化する。
 第1の加圧力F1が第2の加圧力F2よりも大きくなると、電動シリンダ84が滅勢される。この状況下で溶接電流が継続的に流されることにより、第3工程が実施される。
 第1の加圧力F1が第2の加圧力F2よりも大きいので、金属板60、62間の発熱量が増加する。従って、図2Dに示すように、ナゲット70が優先的に金属板60、62間に向かって成長し、その結果、金属板60、62、64、66がナゲット70を介して一体化される。
 所定時間が経過した後、溶接電流を停止して第3工程を終了するとともに、上チップ30を金属板64から離間させる。その後、ナゲット70が冷却固化して固相となり、金属板60、62、64、66が一体的に接合された接合品が得られるに至る。
 このように、第2実施形態においても、下チップ26及び上チップ30の加圧力F1、F2を相対的に変化させることが可能である。従って、スポット溶接を行うスペースが狭小であり、このために補助電極を用いることができないときであっても、金属板60、62、64、66の全ワークに跨るナゲット70を成長させることができる。勿論、接合品は、接合強度に優れたものとなる。
 しかも、補助電極を設ける必要がないので、スポット溶接装置10の構成が複雑化したり、大型化したりすることを回避することができる。
 なお、第2力センサは、図3に破線で示すように、下チップ26に設けるようにしてもよい。
 次に、第3実施形態につき説明する。なお、図1~図3に示される構成要素と同一の構成要素には同一の参照符号を付し、その詳細な説明を省略する。
 図4は、第3実施形態に係るスポット溶接装置90の要部拡大図である。このスポット溶接装置90では、ロボットと、アーム12を構成する手首部16に、溶接ガン92のガン本体22が直接支持されている。
 溶接ガン92は、固定アーム24を具備するC型ガンである。この固定アーム24の下方先端には、下チップ26が設けられている。すなわち、第3実施形態では、下チップ26は位置決め固定された固定電極チップである。
 一方、上チップ30は、ガン本体22に収容された前記第1サーボモータの作用下に前記第1ボールネジが回転動作することに追従し、下チップ26に対して接近又は離間する方向に変位する。すなわち、上チップ30は、第1実施形態及び第2実施形態と同様に可動電極チップである。
 第3実施形態に係るスポット溶接装置90を用いてのスポット溶接は、以下のようにして実施される。
 はじめに、積層体32がクランパ46によって保持され、位置決め固定される。そして、次に、前記ロボットのアーム12が適宜動作し、下チップ26と上チップ30の間に積層体32が配置されるように溶接ガン92を移動させる。この時点で、下チップ26が金属板60に当接する。
 次に、ロボットコントローラ50は、信号線34cを介して指令信号を前記第1サーボモータに発信する。この指令信号を受信した第1サーボモータが付勢されるとともに、前記第1ボールネジが回転動作を開始する。これにより、上チップ30が積層体32に対して接近するように、矢印Y1方向に向かって降下する。その結果、下チップ26と上チップ30の間に積層体32が挟持される。
 以降は、第1実施形態及び第2実施形態と同様にして第1の加圧力F1、第2の加圧力F2が制御される。すなわち、第1工程では、第1の加圧力F1を第2の加圧力F2に比して小さくするべく、アーム12ないし手首部16が動作し、これにより、下チップ26を金属板60に向かって一層接近する方向に変位させると同時に、上チップ30を金属板66から一層離間する方向に変位させる。その結果、第2の加圧力F2が増加する一方で、金属板66に対する上チップ30の第1の加圧力F1が低減する。すなわち、F1<F2となる。
 第1の加圧力F1と第2の加圧力F2の差が予め設定された所定値となると、アーム12ないし手首部16の動作が停止する。下チップ26及び上チップ30は、この動作停止時の位置を保つ。
 この状態で、溶接タイマ36から、前記電源に通電開始の制御信号が発信される。これにより、上チップ30から下チップ26に向かう方向に溶接電流が流れ、スポット溶接が開始される。第1工程では、図2A及び図2Bに示すように、金属板62、64間に溶融部(液相)としてのナゲット70が形成され、これら金属板62、64同士が一体化される。
 ナゲット70が金属板62、64、66に跨るように成長すると、ロボットコントローラ50は、「F1=F2にする」という指令信号を、信号線34fを介してロボットに発信する。この指令信号を受けたロボットは、アーム12ないし手首部16を動作させ、下チップ26を、金属板60から離間する方向(矢印Y1方向)に若干変位させるとともに、上チップ30を、金属板66に接近する方向(矢印Y1方向)に若干変位させる。従って、金属板66に対する上チップ30の第1の加圧力F1が増加する一方で、金属板60に対する下チップ26の第2の加圧力F2が低減し、F1=F2となる。
 第1の加圧力F1と第2の加圧力F2が等しくなると、アーム12ないし手首部16が動作停止する。この状況下で溶接電流が継続的に流されることにより、第2工程が実施される。その結果、図2Cに示すように、ナゲット70が金属板66に優先的に向かうように成長する。
 金属板62、64、66に跨ったナゲット70が十分に成長したことに伴って第1の加圧力F1及び第2の加圧力F2が低減したことが第1力センサ及び第2力センサによって検出されると、ロボットコントローラ50は、「F1>F2にする」という指令信号をロボットに発信する。この指令信号を受けたロボットは、アーム12ないし手首部16を動作させ、下チップ26を、金属板60から離間する方向(矢印Y1方向)に一層変位させるとともに、上チップ30を、金属板66に接近する方向(矢印Y1方向)に一層変位させる。このため、金属板66に対する上チップ30の第1の加圧力F1が増加する一方で、金属板60に対する下チップ26の第2の加圧力F2が低減し、F1>F2となる。
 第1の加圧力F1が第2の加圧力F2よりも大きくなると、アーム12ないし手首部16が動作停止する。この状況下で溶接電流が継続的に流されることにより、第3工程が実施される。
 第1の加圧力F1が第2の加圧力F2よりも大きいので、金属板60、62間の発熱量が増加する。従って、図2Dに示すように、ナゲット70が優先的に金属板60、62間に向かって成長し、その結果、金属板60、62、64、66がナゲット70を介して一体化される。
 所定時間が経過した後、溶接電流を停止して第3工程を終了するとともに、上チップ30を金属板64から離間させる。その後、ナゲット70が冷却固化して固相となり、金属板60、62、64、66が一体的に接合された接合品が得られる。
 以上の通り、第3実施形態においても、下チップ26及び上チップ30の加圧力F1、F2を変化させることが可能である。従って、補助電極を用いることなく金属板60、62、64、66の全ワークに跨るナゲット70を成長させることができる。接合品が接合強度に優れたものとなることは勿論である。
 しかも、補助電極を設ける必要がないので、スポット溶接装置10の構成が複雑化したり、大型化したりすることを回避することができる。
 なお、第2力センサは、図4に破線で示すように、下チップ26に設けるようにしてもよい。
 本発明は、上記した第1~第3実施形態に特に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。
 例えば、溶接電流を、下チップ26から上チップ30に向かって流すようにしてもよい。
 また、第1~第3実施形態では、ハイテン鋼からなる2枚の金属板60、62上に、軟鋼からなる2枚の金属板64、66を重畳するようにしているが、本発明は、3枚以上の金属板を積層するとともに、最外の2枚の金属板の一方が薄肉ワーク、残余の一方が厚肉ワークであるときに適用可能である。
 さらに、サーボモータを含むボールネジ機構に代替し、リニアダイレクトモータや圧電アクチュエータ、シリンダ等を採用するようにしてもよい。

Claims (7)

  1.  少なくとも3個のワーク(60、62、64、66)を積層してなり、且つ最外の2個のワーク(60、66)が、厚みが互いに相違する薄肉ワーク(66)及び厚肉ワーク(60)である積層体(32)を第1溶接チップ(30)及び第2溶接チップ(26)で挟持するとともに、前記第1溶接チップ(30)と前記第2溶接チップ(26)の間で溶接電流を流してスポット溶接を行うスポット溶接方法であって、
     位置決め固定された前記積層体(32)に対して前記溶接電流を流す間、
     前記薄肉ワーク(66)に当接した前記第1溶接チップ(30)による前記積層体(32)に対する第1の加圧力(F1)を、前記厚肉ワーク(60)に当接した前記第2溶接チップ(26)による前記積層体(32)に対する第2の加圧力(F2)よりも小さくするとともに、前記積層体(32)を形成する2個のワーク(62、64)同士の間に、該2個のワーク(62、64)同士を一体化するナゲット(70)を生じさせる第1工程と、
     前記第1の加圧力(F1)と前記第2の加圧力(F2)を等しくするとともに、前記ナゲット(70)を、前記厚肉ワーク(60)側に向かって成長させる第2工程と、
     前記第1の加圧力(F1)を前記第2の加圧力(F2)よりも大きくするとともに、前記ナゲット(70)を、前記厚肉ワーク(60)と、該厚肉ワーク(60)に隣接するワーク(62)とが一体化するまで成長させる第3工程と、
     を行うことを特徴とするスポット溶接方法。
  2.  請求項1記載のスポット溶接方法において、前記第1溶接チップ(30)及び前記第2溶接チップ(26)を有する溶接ガン(18)を前記積層体(32)に対して変位させることで、前記第1の加圧力(F1)及び前記第2の加圧力(F2)を相対的に変化させることを特徴とするスポット溶接方法。
  3.  請求項1記載のスポット溶接方法において、前記第2溶接チップ(26)を前記厚肉ワーク(60)に指向する方向又は離間する方向に変位させることで、前記第1の加圧力(F1)及び前記第2の加圧力(F2)を相対的に変化させることを特徴とするスポット溶接方法。
  4.  少なくとも3個のワーク(60、62、64、66)を積層してなり、且つ最外の2個のワーク(60、66)が、厚みが互いに相違する薄肉ワーク(66)及び厚肉ワーク(60)である積層体(32)を位置決め固定する位置決め固定手段(46)と、
     前記積層体(32)を挟持して溶接電流を流す第1溶接チップ(30)及び第2溶接チップ(26)を含む溶接ガン(18)と、
     前記薄肉ワーク(66)に当接した前記第1溶接チップ(30)による前記積層体(32)に対する第1の加圧力(F1)と、前記厚肉ワーク(60)に当接した前記第2溶接チップ(26)による前記積層体(32)に対する第2の加圧力(F2)とを検出する加圧力検出手段(36)と、
     前記加圧力検出手段(36)による検出値に基づいて前記第1の加圧力(F1)と、前記第2の加圧力(F2)とを制御する制御手段(50)と、
     を有し、
     前記制御手段(50)は、前記積層体(32)を形成する2個のワーク(62、64)同士の間に、該2個のワーク(62、64)同士を一体化するナゲット(70)を生じさせるとき、前記第1の加圧力(F1)を前記第2の加圧力(F2)よりも小さくし、
     前記ナゲット(70)を、前記厚肉ワーク(60)側に向かって成長させるとき、前記第1の加圧力(F1)と前記第2の加圧力(F2)を等しくし、
     前記ナゲット(70)を、前記厚肉ワーク(60)と、該厚肉ワーク(60)に隣接するワーク(62)とが一体化するまで成長させるとき、前記第1の加圧力(F1)を前記第2の加圧力(F2)よりも大きくする制御を行うことを特徴とするスポット溶接装置(10)。
  5.  請求項4記載のスポット溶接装置(10)において、前記制御手段(50)の制御作用下に、前記溶接ガン(18)を前記積層体(32)に対して変位させることで、前記第1の加圧力(F1)及び前記第2の加圧力(F2)を相対的に変化させることを特徴とするスポット溶接装置(10)。
  6.  請求項5記載のスポット溶接装置(10)において、前記溶接ガン(18)を支持するロボットをさらに有し、前記制御手段(50)の制御作用下に、前記ロボットが動作して前記溶接ガン(18)を前記積層体(32)に対して変位させることを特徴とするスポット溶接装置(10)。
  7.  請求項4記載のスポット溶接装置(10)において、前記制御手段(50)の制御作用下に、前記第2溶接チップ(26)を前記厚肉ワーク(60)に指向する方向又は離間する方向に変位させることで、前記第1の加圧力(F1)及び前記第2の加圧力(F2)を相対的に変化させることを特徴とするスポット溶接装置(10)。
PCT/JP2016/068465 2015-06-26 2016-06-22 スポット溶接方法及びその装置 WO2016208610A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
GB1801322.7A GB2557069B (en) 2015-06-26 2016-06-22 Spot welding method and device
MX2018000087A MX2018000087A (es) 2015-06-26 2016-06-22 Metodo de soldadura por puntos y dispositivo.
US15/739,207 US10646950B2 (en) 2015-06-26 2016-06-22 Spot welding method and device
CA2990778A CA2990778C (en) 2015-06-26 2016-06-22 Spot welding method and device
CN201680037408.3A CN107708909B (zh) 2015-06-26 2016-06-22 点焊方法和点焊装置
JP2017524937A JP6339292B2 (ja) 2015-06-26 2016-06-22 スポット溶接方法及びその装置
BR112017027987-8A BR112017027987A2 (ja) 2015-06-26 2016-06-22 A spot welding method and its device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015128232 2015-06-26
JP2015-128232 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016208610A1 true WO2016208610A1 (ja) 2016-12-29

Family

ID=57586442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068465 WO2016208610A1 (ja) 2015-06-26 2016-06-22 スポット溶接方法及びその装置

Country Status (10)

Country Link
US (1) US10646950B2 (ja)
JP (1) JP6339292B2 (ja)
CN (1) CN107708909B (ja)
BR (1) BR112017027987A2 (ja)
CA (1) CA2990778C (ja)
GB (1) GB2557069B (ja)
MX (1) MX2018000087A (ja)
MY (1) MY177658A (ja)
TW (1) TW201713440A (ja)
WO (1) WO2016208610A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021074727A (ja) * 2019-11-06 2021-05-20 ダイハツ工業株式会社 スポット溶接方法
JP2021154363A (ja) * 2020-03-27 2021-10-07 日本製鉄株式会社 スポット溶接継手の製造方法、スポット溶接装置及びプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11167378B1 (en) 2020-05-01 2021-11-09 David W. Steinmeier Techniques for determining weld quality
CN114300813A (zh) * 2021-12-30 2022-04-08 杭州捷能科技有限公司 一种电池模组焊接工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055898A (ja) * 2004-08-23 2006-03-02 Jfe Steel Kk 抵抗スポット溶接方法
JP2013132662A (ja) * 2011-12-27 2013-07-08 Fuji Heavy Ind Ltd スポット溶接装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847402B2 (ja) * 1997-03-13 2006-11-22 本田技研工業株式会社 抵抗溶接方法
JP3894545B2 (ja) 2002-03-05 2007-03-22 本田技研工業株式会社 スポット溶接方法
JP5411792B2 (ja) * 2009-06-05 2014-02-12 本田技研工業株式会社 抵抗溶接方法及びその装置
JP5427746B2 (ja) 2010-10-01 2014-02-26 本田技研工業株式会社 スポット溶接装置
JP5369150B2 (ja) 2011-08-09 2013-12-18 富士重工業株式会社 スポット溶接装置
JP5513460B2 (ja) * 2011-09-27 2014-06-04 富士重工業株式会社 スポット溶接装置
JP6049512B2 (ja) 2013-03-22 2016-12-21 本田技研工業株式会社 スポット溶接方法及びスポット溶接装置
WO2015033537A1 (ja) * 2013-09-04 2015-03-12 Jfeスチール株式会社 インダイレクトスポット溶接装置
DE102013112436A1 (de) 2013-11-12 2015-05-13 Thyssenkrupp Ag Mehrstufiges Widerstandsschweißen von Sandwichblechen
EP3266554B1 (en) * 2015-03-05 2021-08-11 JFE Steel Corporation Resistance spot welding device
JP5999293B1 (ja) * 2015-03-16 2016-09-28 Jfeスチール株式会社 抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
US10933488B2 (en) * 2015-10-21 2021-03-02 Nippon Steel Corporation Method of resistance spot welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055898A (ja) * 2004-08-23 2006-03-02 Jfe Steel Kk 抵抗スポット溶接方法
JP2013132662A (ja) * 2011-12-27 2013-07-08 Fuji Heavy Ind Ltd スポット溶接装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021074727A (ja) * 2019-11-06 2021-05-20 ダイハツ工業株式会社 スポット溶接方法
JP7382114B2 (ja) 2019-11-06 2023-11-16 ダイハツ工業株式会社 スポット溶接方法
JP2021154363A (ja) * 2020-03-27 2021-10-07 日本製鉄株式会社 スポット溶接継手の製造方法、スポット溶接装置及びプログラム
JP7410396B2 (ja) 2020-03-27 2024-01-10 日本製鉄株式会社 スポット溶接継手の製造方法、スポット溶接装置及びプログラム

Also Published As

Publication number Publication date
GB2557069B (en) 2022-03-02
MX2018000087A (es) 2018-08-15
CN107708909B (zh) 2020-01-07
GB201801322D0 (en) 2018-03-14
CN107708909A (zh) 2018-02-16
CA2990778C (en) 2020-03-10
US20180185952A1 (en) 2018-07-05
JP6339292B2 (ja) 2018-06-06
MY177658A (en) 2020-09-23
TW201713440A (zh) 2017-04-16
US10646950B2 (en) 2020-05-12
GB2557069A (en) 2018-06-13
CA2990778A1 (en) 2016-12-29
BR112017027987A2 (ja) 2018-08-28
JPWO2016208610A1 (ja) 2017-11-09

Similar Documents

Publication Publication Date Title
JP5411792B2 (ja) 抵抗溶接方法及びその装置
JP6339292B2 (ja) スポット溶接方法及びその装置
US6758382B1 (en) Auto-adjustable tool for self-reacting and conventional friction stir welding
US20110233173A1 (en) Seam welding method and machine therefor
EP2614913A1 (en) Welding method and welding device
JP5427746B2 (ja) スポット溶接装置
KR20160058787A (ko) 유도 가열 헤드를 이용한 가열 및/또는 냉각을 구비한 금속 가열 및 가공 시스템과 방법
JP2011194464A (ja) スポット溶接方法及びスポット溶接装置
WO2013172202A1 (ja) スイッチ用電極及びそれを用いた抵抗溶接装置、スポット溶接装置及びスポット溶接方法
JP5519457B2 (ja) スポット溶接方法及びその装置
JP5261984B2 (ja) 抵抗スポット溶接方法
US20160207138A1 (en) Seam welding method and seam welding device
JP2012071333A (ja) スポット溶接方法及びその装置
JP2013071124A (ja) スポット溶接方法及びスポット溶接装置
JP5609966B2 (ja) 抵抗スポット溶接方法
JP2009226467A (ja) 異種板材のスポット溶接方法及びその装置
JP5523271B2 (ja) 間接給電式溶接装置
JP2011200868A (ja) スポット溶接方法
JP6542979B2 (ja) シーム溶接方法及びシーム溶接装置
JP6104013B2 (ja) スポット溶接方法及びスポット溶接装置
JP5822904B2 (ja) スポット溶接方法及びその装置
JP6049512B2 (ja) スポット溶接方法及びスポット溶接装置
JP2013144317A (ja) スポット溶接装置
JP2019118921A (ja) 溶接装置
JP5864363B2 (ja) 抵抗溶接装置及び抵抗溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524937

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2990778

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/000087

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 201801322

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160622

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017027987

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 16814380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017027987

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171222