WO2016208542A1 - Method for producing polyhydroxyalkanoic acid using purple photosynthetic bacterium - Google Patents

Method for producing polyhydroxyalkanoic acid using purple photosynthetic bacterium Download PDF

Info

Publication number
WO2016208542A1
WO2016208542A1 PCT/JP2016/068282 JP2016068282W WO2016208542A1 WO 2016208542 A1 WO2016208542 A1 WO 2016208542A1 JP 2016068282 W JP2016068282 W JP 2016068282W WO 2016208542 A1 WO2016208542 A1 WO 2016208542A1
Authority
WO
WIPO (PCT)
Prior art keywords
red
medium
pha
production method
photosynthetic bacteria
Prior art date
Application number
PCT/JP2016/068282
Other languages
French (fr)
Japanese (ja)
Inventor
圭司 沼田
美栄子 樋口
里奈 青木
哲也 藤木
Original Assignee
国立研究開発法人理化学研究所
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所, 株式会社カネカ filed Critical 国立研究開発法人理化学研究所
Publication of WO2016208542A1 publication Critical patent/WO2016208542A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to a method for producing polyhydroxyalkanoic acid, which is a bioplastic, using red photosynthetic bacteria.
  • Synthetic resins so-called plastics, are lightweight and strong materials that are easy to mold and color, have high corrosion resistance, and have excellent advantages such as mass production. Although it is highly convenient and used in various ways in daily life and industrial fields, it is an indispensable material in modern life, but it also has major problems to be solved.
  • plastics remain in nature without being decomposed by microorganisms or the like due to their high corrosion resistance. Also, when incinerated, not only a large amount of carbon dioxide is generated, but also harmful gases such as dioxins can be generated. Furthermore, since the calorific value at the time of incineration is high, it may cause destruction of the incinerator.
  • Biomass plastics used as raw materials as new plastic materials to replace the petroleum-based plastics.
  • Biomass is a renewable resource and does not cause the depletion problem of fossil fuels.
  • carbon dioxide generated by the combustion of biomass is carbon neutral because carbon dioxide in the atmosphere is originally fixed by photosynthesis by photosynthetic organisms, and is therefore carbon neutral, increasing the amount of carbon dioxide in the atmosphere.
  • Non-Patent Document 1 Non-Patent Document 1
  • biodegradable plastics have been developed to solve the problem of waste plastic treatment.
  • the biodegradable plastic is a plastic having properties and properties as a plastic and having a property of being completely decomposed in nature by an enzymatic action of microorganisms, and examples thereof include polyester synthesized from petroleum.
  • Biodegradable plastic does not hurt the incinerator because it has a low calorific value even when incinerated, and does not release harmful substances.
  • biodegradable bioplastics that have both the properties of bioplastics and biodegradable plastics have been developed.
  • Known biodegradable bioplastics include polyhydroxyalkanoic acid (PHA), polylactic acid (PLA), starch resin, polybutylene succinate (PBS), and the like.
  • PHA is a kind of biopolyester in which microorganisms accumulate in the body, and is a carbon and energy storage substance that is synthesized and accumulated in cells using glucose as a carbon source in preparation for poor nutrition.
  • PHA is a hard bioplastic and is expected to be applied in various fields such as pharmaceuticals, agricultural chemicals, medical materials, and industrial materials.
  • Patent Document 1 discloses a method for producing polyhydroxybutanoic acid (PHB), which is a kind of PHA, using an alkaligenes bacterium.
  • PHB polyhydroxybutanoic acid
  • Patent Document 1 discloses a method for producing polyhydroxybutanoic acid (PHB), which is a kind of PHA, using an alkaligenes bacterium.
  • PHB polyhydroxybutanoic acid
  • Patent Document 1 requires an organic carbon source as an assimilating carbon source for propagation, and the productivity is low, resulting in an increase in manufacturing cost. there were.
  • Non-Patent Document 2 discloses a method for producing PHA using cyanobacteria that perform photosynthesis. Cyanobacteria can acquire assimilable carbon sources by photosynthesis themselves. Although it is excellent as a host bacterium for PHA production in that it does not require an organic carbon source, it can only produce PHB, which is a homopolymer, as PHA. PHB has the same melting point (180 ° C.) and fracture strength as polypropylene, but has a physical defect of being hard and brittle because it has lower fracture elongation and higher crystallinity than polypropylene.
  • the present invention is to develop and provide a method for producing PHA efficiently and in large quantities by using microorganisms while reducing the production cost.
  • photosynthetic bacteria As in the case of cyanobacteria, photosynthetic bacteria do not need an organic carbon source because they can acquire an assimilating carbon source by photosynthesis themselves. Furthermore, marine photosynthetic bacteria that inhabit seawater can use a large amount of seawater as a medium, thereby reducing the production cost of PHA. In addition, since the culture is performed in a high salt concentration medium, there is an advantage that there is little contamination of other bacteria. However, the photosynthetic bacterium has a problem that it is difficult to cultivate efficiently for producing PHA because the culturing method is not well established.
  • a method for producing PHA using a red photosynthetic bacterium comprising a culture step of culturing the red photosynthetic bacterium by irradiating far red light while stirring a liquid medium.
  • the production method according to (1) wherein the far red light is light having a peak wavelength at 720 nm to 860 nm.
  • the culturing step includes a growth step of cultivating the red photosynthetic bacteria in a growth medium, a cell collection step for recovering the red photosynthetic bacteria in the culture solution after the growth step, and the recovered red photosynthetic bacteria as an organic acid. And / or the production method according to (1) or (2), comprising a PHA accumulation step of culturing in a PHA production medium containing carbon dioxide as a carbon source.
  • the red photosynthetic bacteria are cultured until the logarithmic growth phase.
  • the red photosynthetic bacteria are selected from Marichromatium bheemlicum, Thiohalocapsa marina, Thiophaeococcus mangrovi, Afifella pfennigii, Afifella marina, Rhodovulum euryhalinum, Rhodovulum imhoffii, Rhodovulum sulfidophilum, Rhodovulum tesquien, Rhodovulum tesquien.
  • PHA can be efficiently produced by stably cultivating red photosynthetic bacteria. Moreover, PHA can be obtained as a copolymer by using some red photosynthetic bacteria.
  • the present invention relates to a method for producing polyhydroxyalkanoic acid (PHA) using a red photosynthetic bacterium.
  • the “photosynthetic bacterium” is an eubacteria that performs non-oxygen-generating photosynthesis, and according to the growth mode under a pigment, electron donor, aerobic or anaerobic conditions, a red sulfur bacterium, a red non-sulfur bacterium, a green sulfur bacterium, It is classified into five families: green non-sulfur bacteria and aerobic photosynthetic bacteria.
  • Red photosynthetic bacteria is a general term for red sulfur bacteria and red non-sulfur bacteria in the above photosynthetic bacteria.
  • a red photosynthetic bacterium that is, a red sulfur bacterium or a red non-sulfur bacterium is used.
  • the red photosynthetic bacterium is more preferable in terms of PHA production than other photosynthetic bacteria because it is relatively easy to cultivate because it does not have a strong anaerobic requirement and has a strong carbon fixation activity.
  • red photosynthetic bacteria include the red sulfur bacteria shown in Table 1 and the bacteria of the red non-sulfur bacteria genus shown in Table 2.
  • Allochromatium genus bacteria, Ectothiorhodospira genus bacteria, Halochromatium genus bacteria, Halorhodospira genus bacteria, Marichromatium genus bacteria, Thiocapsa genus bacteria, Thiohalocapsa genus bacteria, and Thiophaeococcus genus bacteria belonging to red sulfur bacteria, and red non-sulfur bacteria include Rhodobaca genus bacteria, Rhodobacter genus bacteria, Rhodobium genus bacteria, Afifella (Rhodobium) genus bacteria, Rhodothalassium genus bacteria, Rhodovulum genus bacteria, and Roseospira genus bacteria.
  • red photosynthetic bacteria are RIKEN BioResource Center (Japan), NITE (Japan), ATCC (USA), DSMZ (Germany), NMLHC (Canada), ECACC (UK), NIBSC (UK), CNCM (France), CBS (Netherlands), BCCM (Belgium), ABC (Italy), NMI (Australia), CCTCC (China), CGMCC (China), etc.
  • PHA Polyhydroxyalkanoate
  • R may be the same or different, and is a linear or branched alkyl group having 1 to 14 carbon atoms, n is an integer of 2 or more, preferably an integer of 100 or more, preferably Is an integer less than 100,000]
  • PHA include, but are not limited to, polyhydroxybutanoic acid (PHB: P (3HB)) (Poly-3-hydroxybutyrate) represented by Chemical Formula 1 below, and polyhydroxyvalerin represented by Chemical Formula 2 below.
  • n is an integer of 2 or more, preferably an integer of 100 or more, preferably an integer of 100,000 or less]
  • n is an integer of 2 or more, preferably an integer of 100 or more, preferably an integer of 100,000 or less]
  • n and n are integers of 2 or more, preferably are integers of 100 or more, and are preferably integers of 100,000 or less]
  • n and n are integers of 2 or more, preferably are integers of 100 or more, and are preferably integers of 100,000 or less]
  • the above “specific conditions” are stirring of the liquid medium during culturing and irradiation of the cells with far red light.
  • stirring refers to flowing a liquid.
  • the stirring method is not particularly limited as long as the liquid can be flowed.
  • a method in which a liquid is swirled by stirring with a stirrer or a stirring bar a method in which a container containing liquid is shaken using a shaker (including a reversing method), a liquid in a flow path by a liquid feeding device The method of flowing through is mentioned.
  • Stirring aims to homogenize the components and cells in the medium. This makes it possible to uniformly apply nutrients and irradiated light to each microbial cell.
  • far red light means light having a peak wavelength range of 700 nm to 860 nm.
  • the “peak wavelength” is a wavelength at which the light emission intensity is maximum.
  • the far-red light irradiated to the red photosynthetic bacteria in the culturing step may be light in the above-mentioned wavelength range, and is not limited, but suitable far-red light is light having a peak wavelength of 720 nm to 860 nm.
  • irradiation means exposure of red photosynthetic bacteria with the far-red light. Irradiation may be continuous or bright and dark light with a bright and dark period.
  • the continuous irradiation here includes not only continuous irradiation but also irradiation of pulsed light that repeats the light and dark period in a very short time.
  • the light / dark cycle of the day is not particularly limited, but may be, for example, in the range of light period 8 hours: dark period 16 hours to light period 16 hours: dark period 8 hours.
  • irradiation is continuous irradiation.
  • the far-red light to be irradiated does not necessarily have to have a certain peak wavelength, and can be changed within the wavelength range during the irradiation period. For example, there is a case where light having a peak wavelength of 730 nm is irradiated at the start of irradiation, and the light is changed to light having a peak wavelength of 740 nm after the eighth day of irradiation.
  • the irradiance of far-red light may be in the range of 0.1 / m 2 to 15 W / m 2 . It is preferably 6 W / m 2 to 10 W / m 2 , more preferably 8 W / m 2 ⁇ 1 W / m 2 .
  • the irradiation method is not particularly limited as long as the method can sufficiently expose the red photosynthetic bacteria in the culture solution.
  • a method of irradiating light to the entire culture tank by installing a light source around the transparent culture tank, irradiating the culture tank with light from one or more directions, and stirring the culture solution in the culture tank And a method of passing light over the whole culture solution.
  • the light irradiation is preferably direct irradiation from a light source, but may be indirect irradiation via a reflector or the like for the purpose of reaching the entire culture solution.
  • indirect irradiation since the irradiated light may be attenuated, it is preferable to increase the light intensity of the light source as necessary so that the light intensity is in the above-described range.
  • Light irradiation is a period of growth culture of red photosynthetic bacteria (a “growth step” period described later) and / or a period of promoting biosynthesis and intracellular accumulation of PHA by the red photosynthetic bacteria (a “PHA accumulation step” period described later) You can go to Irradiation can be performed throughout the entire period of the PHA production method of the present invention.
  • Preferred irradiation periods are a growth step period and a PHA accumulation step period.
  • the light source used in this step is not particularly limited as long as it is a light source capable of emitting light in the wavelength range.
  • a white light emitting diode Light Emitting Diode: hereinafter referred to as “LED”)
  • HID High Intensity Discharge
  • a halogen which can emit white light including far-red light Light bulbs, incandescent light bulbs, sunlight, and the like can be mentioned.
  • an LED having a peak wavelength in the wavelength range of 700 nm to 860 nm, preferably in the wavelength range of 720 nm to 860 nm.
  • the culture conditions other than the above-mentioned “specific conditions” are not limited, and may be performed according to a method known in the bacterial culture field.
  • the medium used in this step is not particularly limited as long as it is a growth medium that can culture red photosynthetic bacteria.
  • a growth medium that can culture red photosynthetic bacteria.
  • 0.05% KH 2 PO 4 0.05% KH 2 PO 4 , 1.5 ⁇ 10 -3 % CaCl 2 ⁇ 2H 2 O, 0.2% MgSO 4 ⁇ 7H 2 O, 6.4 ⁇ 10 -3 % NH 4 is used as a growth medium.
  • the culture temperature may be in the temperature range where the red photosynthetic bacteria can grow and / or proliferate.
  • the culture temperature disclosed by each depository that has obtained red photosynthetic bacteria can be used.
  • the temperature may be in the range of 23 ° C to 32 ° C, and usually in the range of 28 ° C to 30 ° C.
  • the number of cells is not particularly limited, but the cells have an OD 660 value in the range of 0.05 to 0.3, preferably 0.05 to 0.15 after inoculation. Any number is acceptable.
  • the culture process can include a growth step, a cell recovery step, and a PHA accumulation step as necessary.
  • the culture process including this process is characterized in that different media are used in the growth step and the PHA accumulation step.
  • Other conditions relating to the culture may in principle be the same as those already described. Therefore, the description of the described culture conditions is omitted here, and the characteristic points of each step are specifically described below.
  • the “proliferation step” is a step of cultivating red photosynthetic bacteria in a growth medium, and mainly aims at increasing the number of bacteria in the culture solution.
  • the medium used in this step is a growth medium.
  • the growth medium any medium can be used as long as the red photosynthetic bacteria can be cultured, and the type and composition of the medium are not particularly limited.
  • a medium known for red photosynthetic bacteria can be used.
  • the above-mentioned growth medium A for red sulfur bacteria and growth medium B for red non-sulfur bacteria can be mentioned.
  • Commercially available media can also be used.
  • the culture period of this step is preferably until the inoculated red photosynthetic bacterium reaches the log-phase, preferably the mid-log phase to the late-log phase.
  • the OD 660 value of the culture solution is in the range of 0.5 to 4.0, 0.5 to 2.0, 0.5 to 1.5, or 0.6 to 1.2, preferably 0.8 to 1.1, more preferably 0.9 to 1.0. It is sufficient to culture until the range of (2) Cell recovery step
  • the “cell recovery step” is a step of recovering the red photosynthetic bacteria in the culture solution after the growth step, and the red photosynthetic bacteria cultured in the growth step are used as a PHA production medium in the PHA accumulation step. The purpose is to remove as much growth medium and coarse substances as possible from the culture medium.
  • this step is a selection step that may be performed as needed, unlike the other two steps. That is, a part of the culture solution after the growth step can be directly transplanted to the PHA production medium of the PHA accumulation step without collecting the red photosynthetic bacteria after the growth step.
  • a conventional method known in the art may be used.
  • a method of removing the culture medium by centrifuging or filtering the culture solution can be mentioned. Specifically, after centrifuging the culture solution with an appropriate gravitational acceleration (g) for an appropriate period of time using a centrifuge, the supernatant is removed and the cells are collected, or the pore size is smaller than the cell size of red photosynthetic bacteria.
  • the collected cells may be washed once or more with the medium used in the culturing step, or with a buffer or physiological saline having the same osmotic pressure as the medium as necessary.
  • PHA accumulation step is a step in which the red photosynthetic bacteria cultured in the growth step are transferred to the PHA production medium and cultured, and it promotes the biosynthesis and intracellular accumulation of PHA by the bacteria. Objective.
  • the medium used in this step is a PHA production medium.
  • This medium is a medium in which the carbonate source of the growth medium is replaced with an organic acid salt and / or carbonate.
  • a medium in which the carbonic acid source of the growth medium is replaced with an organic acid salt, or an organic acid salt and a carbonate is preferable. Hydrate may be sufficient as organic acid salt and carbonate.
  • Organic acid salts include, for example, alkanoates (including formate, acetate, propionate, butyrate, valerate, and caprate), citrate, malate, sulfonate , Tartrate, and lactate.
  • alkanoates including formate, acetate, propionate, butyrate, valerate, and caprate
  • citrate malate
  • sulfonate Tartrate
  • lactate lactate
  • Acetate is particularly preferred.
  • Examples of acetates include sodium acetate and calcium acetate.
  • Examples of carbonates include sodium bicarbonate, sodium carbonate, potassium carbonate, potassium bicarbonate and the like.
  • a PHA production medium in the growth medium A for red sulfur bacteria, a PHA production medium for red sulfur bacteria in which sodium pyruvate as a carbon source is replaced with 0.1% sodium bicarbonate and 0.5% sodium acetate,
  • the growth medium B for non-sulfur bacteria include a PHA production medium for red non-sulfur bacteria in which sodium malate and sodium pyruvate, which are carbon sources, are substituted with 0.1% sodium bicarbonate and 5 g / L sodium acetate.
  • the PHA production medium may be a deficient medium in which any one or more of a nitrogen source, a phosphate source, and vitamins are further removed from the growth medium in addition to the carbon source replacement.
  • a nitrogen-deficient medium a phosphate-deficient medium, a vitamin-deficient medium, a nitrogen / phosphate-deficient medium, a nitrogen / vitamin-deficient medium, a phosphoric acid / vitamin-deficient medium, and a nitrogen / phosphate / vitamin-deficient medium.
  • vitamin B1 thiamine
  • vitamin B5 pantothenic acid
  • vitamin B6 pyridoxine, pyridoxal, and pyridoxamine
  • vitamin B7 biotin
  • vitamin B12 cobalamin
  • the cells recovered after the growth step are appropriately diluted as necessary, inoculated into a PHA production medium, and cultured.
  • the number of cells in the medium at the start of this step is not limited, but the OD 660 value of the culture solution is in the range of 0.03-2.0, in the range of 0.03-1.5, in the range of 0.03-1.0, or in the range of 0.05-0.8, preferably Adjustment may be made so as to be in the range of 0.1 to 0.5, more preferably in the range of 0.1 to 0.3.
  • the inoculated red photosynthetic bacterium is in the late logarithmic growth phase or early stationary phase, specifically, the OD 660 value of the culture solution is in the range of 0.8 to 2.0, or in the range of 0.8 to 1.2,
  • the culture is preferably performed until the range is 0.8 to 1.0.
  • Recovery step is a step of recovering red photosynthetic bacteria from the culture solution in the culture step. The purpose of this step is to recover the red photosynthetic bacteria in which PHA is accumulated in the cells by removing the medium and coarse substances from the culture solution in the selection step.
  • the method for recovering the bacterial cells from the culture solution is in accordance with the method described in the aforementioned bacterial cell recovery step.
  • This step makes it possible to obtain red photosynthetic bacteria that accumulate PHA in the cells as a slurry. If necessary, the collected red photosynthetic bacteria may be dried by a known drying method.
  • the drying method is not particularly limited as long as moisture can be reduced.
  • a ventilation drying method in which hot or cold air is applied using a blower, a windless drying method in which moisture is evaporated by heating, a slurry is suspended in an appropriate buffer, and then the suspension is sprayed into a gas to rapidly Spray drying to dry, freeze drying (freeze drying) method, vacuum drying method to deaerate in a sealed container using a vacuum pump etc., natural drying method to leave exposed to the outside air (including sun drying), or a combination thereof Can be mentioned.
  • various drying apparatuses to which the above method is applied may be used.
  • a drum dryer, a far-red band dryer, a continuous vacuum dryer, a spray dryer, a freeze dryer, and the like can be given.
  • the dried algal body may be in a solid state, a granule state, or a powder state. 2-3. Extraction Step
  • the “extraction step” is a step of extracting PHA from the culture solution after the culturing step, or the red photosynthetic bacteria (including cell debris) in the culture solution or after the recovery step. This step is a selection step and aims to collect PHA accumulated in cells of red photosynthetic bacteria.
  • the cell extract here includes a solid extract and a liquid extract (including a cell extract mixed in a culture solution).
  • Examples of the physical method for crushing bacterial cells include a crushing / squeezing method, an ultrasonic method, an osmotic shock method, or a combination thereof.
  • Examples of the chemical method for crushing microbial cells include an alkali method and an enzyme method. Specific methods for lysing bacterial cells are described in, for example, Green, MR and Sambrook, J., 2012, Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York Please refer to the method.
  • the obtained cell extract may be subjected to treatment for denaturing and removing proteins such as cell disruption as necessary.
  • the method for separating and purifying PHA from the cell extract is not particularly limited.
  • an organic solvent in which PHA can be dissolved is added to the cell extract as an extraction solvent and mixed, and then another organic solvent having a lower solubility than that of the extraction solvent is added as a precipitation solvent.
  • There is a method to precipitate and purify PHA Specifically, for example, chloroform may be added to the cell extract as an extraction solvent to dissolve PHA, and then hexane may be added as a precipitation solvent to recover the precipitated PHA.
  • alcohols such as methanol and ethanol, and halogenated hydrocarbons such as hexane, acetone, chloroform, and 1,2-dichloroethane can be used.
  • separation and purification may be performed using a known purification method described in JP-A-2005-348640.
  • the extraction solvent is directly added to the culture solution, mixed, centrifuged, and the organic solvent layer is recovered. Thereafter, a precipitation solvent is added, and the precipitated PHA may be recovered in the same manner as described above.
  • red photosynthetic bacteria The red photosynthetic bacteria in this example were obtained from the depository institution, including 16 marine red sulfur bacteria shown in Table 1 below and 17 marine red non-sulfur bacteria shown in Table 2 in total. Used. Strains with “JCM” code in the “Resource number” in the table are from RIKEN BioResource Center (Japan), strains with “DSM” code are from DSMZ (Germany), and strains with “ATCC” code are Obtained from ATCC (USA).
  • the “growth temperature” in the table is the culture temperature disclosed by each depository organization.
  • KH 2 PO 4 for red non-sulfur bacterial growth
  • CaCl 2 ⁇ 2H 2 O 0.25g / L
  • MgSO 4 ⁇ 7H 2 O 3.0g / L
  • NH 4 Cl 0.68g / L
  • NaCl 20g / L
  • Apple sodium acid 3.0 g / L
  • sodium pyruvate 3.0 g / L
  • yeast-extract 0.4 g / L
  • ferric citrate 5 mg / L
  • vitamin B12 2mg / L
  • ZnCl 2 ⁇ 5H 2 O 70 mg / L
  • MnCl 2 ⁇ 4H 2 O 100 mg / L
  • H 3 BO 3 60 mg / L
  • CoCl 2 ⁇ 6H 2 O 200 mg / L
  • CuCl 2 ⁇ 2H 2 O 20 mg / L
  • NiCl 2 ⁇ 6H 2 O 20mg / L
  • PHA production medium A for red sulfur bacteria PHA production
  • composition NH 4 Cl and sodium pyruvate were removed from the growth medium A, and 1 g of sodium bicarbonate (NaHCO 3 ) and / or 5 g of sodium acetate (CH 3 COONa) were added as a carbon source per liter.
  • the pH of the medium was adjusted to 7.5 similarly to the growth medium A.
  • PHA production medium B for production of red non-sulfur bacteria PHA (composition) NH 4 Cl, sodium malate and sodium pyruvate were removed from the growth medium B, and 1 g of sodium bicarbonate (NaHCO 3 ) and / or 5 g of sodium acetate (CH 3 COONa) was added per liter as a carbon source. The pH of the medium was adjusted to 6.8 similarly to the growth medium B.
  • Cultivation method / Proliferation culture Each red photosynthetic bacterium is a multi-position stirrer (remote-light) at 30 ° C under far-red LED light conditions (peak wavelength 730nm, irradiance 8W / m 2 ).
  • Helium as a carrier gas was injected into 1 ⁇ L of the sample solution at 3.30 mL / min.
  • the ethyl ester was separated using a temperature program that increased to 117 ° C. with a temperature ramp of 7 ° C./min at 45 ° C. for 1 minute.
  • the interface temperature and ion source temperature were 250 ° C. and 230 ° C., respectively.
  • the amount of 3HB was determined from a calibration curve.
  • the relative amount of 3HV was estimated from the constituent polarity of 3HB.
  • the amount of PHA was calculated as% dry cell weight. 4). Extraction of PHA PHA was extracted from lyophilized cells in chloroform.
  • PHA Purified PHA was analyzed by proton nuclear magnetic resonance ( 1 H NMR) (JNM-Excalibur 270; JEOL, Ltd.) to determine the detailed chemical structure and composition.
  • the NMR sample was dissolved in CDCl 3 at a concentration of 4 mg / mL using 0.05 v / v% tetramethylsilane (TMS) (Wako Pure Chemical Industries, Ltd.).
  • TMS 0.05 v / v% tetramethylsilane
  • the molecular weight of PHA was determined by gel permeation chromatography (GPC) (RI-2031, PU-2086, AS-2055, CO-2056; JASCO) equipped with Shodex K-806M, K802 and KG columns at 40 ° C. .
  • Chloroform was used as the mobile phase with a flow rate of 0.8 mL / min.
  • concentration of purified PHA was about 1 mg / mL.
  • Its molecular weight is 1.32 ⁇ 10 3 , 3.25 ⁇ 10 3 , 1.01 ⁇ 10 4 , 2.85 ⁇ 10 4 , 6.60 ⁇ 10 4 , 1.56 ⁇ 10 5 , 4.60 ⁇ 10 5 , 1.07 ⁇ 10 6 , and 3.15 ⁇ 10
  • Table 3 shows that when 12 selected red photosynthetic bacteria were cultured in the growth medium only (Growth condition), and after culturing in the growth medium, NH 4 Cl as a nitrogen source was removed from the growth medium, and the carbon source was 0.1%.
  • Amount of PHA per dry cell weight when cultured in PHA production medium (w / o NH 4 Cl; 0.1% NaHCO 3 + 0.5% accetate) substituted with 5% sodium bicarbonate and 0.5% sodium acetate, and The composition of the polymer in PHA is shown.
  • Table 4 shows PHA production medium (w) in which 12 selected red photosynthetic bacteria were cultured in a growth medium, NH 4 Cl as a nitrogen source was removed from the growth medium, and the carbon source was replaced with only 0.1% sodium bicarbonate. / o NH 4 Cl; 0.1% NaHCO 3 ), and PHA production medium (w / o NH 4 Cl; 0.5% accetate) substituted only with 0.5% sodium acetate. The amount of PHA and the composition of the polymer in PHA are shown.
  • red sulfur photosynthetic bacterium verified in this example produced a monopolymer (monopolyester) composed only of 3-hydroxybutanoic acid (3HB) as PHA.
  • monopolymer monopolyester
  • HPA 3-hydroxybutanoic acid
  • HV 3-hydroxyvaleric acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention addresses the problem of developing and providing a method for producing a polyhydroxyalkanoic acid (PHA) at reduced cost, with high efficiency and in a large quantity using a microorganism. Provided is a method for producing a PHA, comprising culturing a purple photosynthetic bacterium while stirring a liquid culture medium and while irradiating the liquid culture medium with far infrared light to produce cells of the bacterium in each of which the PHA is accumulated.

Description

紅色光合成細菌を用いたポリヒドロキシアルカン酸の生産方法Production method of polyhydroxyalkanoic acid using red photosynthetic bacteria
 本発明は、紅色光合成細菌を用いて、バイオプラスチックであるポリヒドロキシアルカン酸を生産する方法に関する。 The present invention relates to a method for producing polyhydroxyalkanoic acid, which is a bioplastic, using red photosynthetic bacteria.
 合成樹脂、いわゆるプラスチックは、軽量かつ丈夫で成形や着色が容易であり、耐腐食性も高く、大量生産が可能等の優れた利点を有する素材である。利便性が高く、日常生活や産業分野において様々な形で利用され、現代生活において不可欠な素材となっているが、解決すべき大きな問題も抱えている。 Synthetic resins, so-called plastics, are lightweight and strong materials that are easy to mold and color, have high corrosion resistance, and have excellent advantages such as mass production. Although it is highly convenient and used in various ways in daily life and industrial fields, it is an indispensable material in modern life, but it also has major problems to be solved.
 例えば、現在使用されているプラスチックの多くは石油を原料としているが、石油は新興国の台頭に伴う国際的な消費量の増大により、将来の枯渇が懸念されている。また、非再生可能資源であるため、燃焼に伴い大気中に排出される二酸化炭素が地球温暖化の大きな原因になっている。 For example, many of the plastics currently used are made from petroleum, but there is a concern that oil will be depleted in the future due to the increase in international consumption accompanying the rise of emerging countries. Moreover, since it is a non-renewable resource, carbon dioxide discharged into the atmosphere upon combustion is a major cause of global warming.
 廃プラスチックの処理も問題となっている。例えば、プラスチックは、高い耐腐食性から微生物等により分解されることなく、自然界で残存し続ける。また、焼却処理した場合にも、多量の二酸化炭素が発生するだけでなく、ダイオキシン等の有害ガスも発生し得る。さらに、焼却時の発熱量が高いため焼却炉を破壊する原因になり得る。 Disposal of waste plastics is also a problem. For example, plastics remain in nature without being decomposed by microorganisms or the like due to their high corrosion resistance. Also, when incinerated, not only a large amount of carbon dioxide is generated, but also harmful gases such as dioxins can be generated. Furthermore, since the calorific value at the time of incineration is high, it may cause destruction of the incinerator.
 そこで、上記石油系プラスチックに替わる新たなプラスチック素材として、バイオマスを原料とするバイオプラスチック(バイオマスプラスチック)の研究開発が進められており、その一部は既に実用化されている。バイオマスは、再生可能資源であり、化石燃料のような枯渇問題が生じない。また、バイオマスの燃焼に伴い発生する二酸化炭素は、元来、光合成生物による光合成によって大気中の二酸化炭素が固定化されたものであるためカーボンニュートラルであり、大気中の二酸化炭素量を上昇させることもない。それ故に、地球温暖化防止にも寄与し得る(非特許文献1)。 Therefore, research and development of bioplastics (biomass plastics) using biomass as raw materials as new plastic materials to replace the petroleum-based plastics has been promoted, and some of them have already been put into practical use. Biomass is a renewable resource and does not cause the depletion problem of fossil fuels. In addition, carbon dioxide generated by the combustion of biomass is carbon neutral because carbon dioxide in the atmosphere is originally fixed by photosynthesis by photosynthetic organisms, and is therefore carbon neutral, increasing the amount of carbon dioxide in the atmosphere. Nor. Therefore, it can also contribute to prevention of global warming (Non-Patent Document 1).
 また、廃プラスチック処理の問題を解決するために、生分解性プラスチックが開発されている。生分解性プラスチックは、プラスチックとしての機能や物性を有しながら、自然界において微生物の酵素作用等により完全分解される性質を有するプラスチックで、例えば、石油から合成されたポリエステル等が挙げられる。生分解性プラスチックは、焼却しても発熱量が低いことから焼却炉を痛めることもなく、また有害物質も放出しない。 In addition, biodegradable plastics have been developed to solve the problem of waste plastic treatment. The biodegradable plastic is a plastic having properties and properties as a plastic and having a property of being completely decomposed in nature by an enzymatic action of microorganisms, and examples thereof include polyester synthesized from petroleum. Biodegradable plastic does not hurt the incinerator because it has a low calorific value even when incinerated, and does not release harmful substances.
 さらに、バイオプラスチックと生分解性プラスチックの双方の性質を有する生分解性バイオプラスチックも開発されている。生分解性バイオプラスチックには、例えば、ポリヒドロキシアルカン酸(PHA)、ポリ乳酸(PLA)、澱粉樹脂、及びポリブチレンサクシネート(PBS)等が知られている。 Furthermore, biodegradable bioplastics that have both the properties of bioplastics and biodegradable plastics have been developed. Known biodegradable bioplastics include polyhydroxyalkanoic acid (PHA), polylactic acid (PLA), starch resin, polybutylene succinate (PBS), and the like.
 PHAは、微生物が体内に蓄積するバイオポリエステルの一種であり、微生物が貧栄養時に備えて、グルコースを炭素源として細胞内で合成、蓄積している炭素及びエネルギー貯蔵物質である。PHAの特性は、硬質系バイオプラスチックであり、医薬類、農薬類、医療材料、工業材料等の多方面での応用が期待されている。 PHA is a kind of biopolyester in which microorganisms accumulate in the body, and is a carbon and energy storage substance that is synthesized and accumulated in cells using glucose as a carbon source in preparation for poor nutrition. PHA is a hard bioplastic and is expected to be applied in various fields such as pharmaceuticals, agricultural chemicals, medical materials, and industrial materials.
 PHAを微生物により生産させる方法は、これまでに種々開示されている。例えば、特許文献1には、アルカリゲネス属細菌を用いてPHAの一種であるポリヒドロキシブタン酸(PHB)を製造する方法が開示されている。しかし、特許文献1に開示の方法をはじめ、従来方法の多くは増殖用の資化性炭素源として有機炭素源を必要とする上に、生産性が低いため、製造コストが高くなるという問題があった。 Various methods for producing PHA with microorganisms have been disclosed so far. For example, Patent Document 1 discloses a method for producing polyhydroxybutanoic acid (PHB), which is a kind of PHA, using an alkaligenes bacterium. However, many of the conventional methods including the method disclosed in Patent Document 1 require an organic carbon source as an assimilating carbon source for propagation, and the productivity is low, resulting in an increase in manufacturing cost. there were.
 そこで、有機炭素源の還元物質を必要とすることなく微生物から効率的にPHAを生産させる方法が種々模索された。例えば、非特許文献2には、光合成を行うシアノバクテリアを用いたPHAの製造方法が開示されている。シアノバクテリアは、自ら光合成によって資化性炭素源を獲得できる。有機炭素源を必要としない点でPHA生産のホスト細菌としては優れているが、PHAとして、ホモポリマーであるPHBしか生産することができない。PHBはポリプロピレンと同程度の融点(180℃)や破壊強度を有するが、ポリプロピレンよりも破壊伸びが低く、また結晶性が高いことから、硬くて脆いという物性的欠点があった。 Therefore, various methods for efficiently producing PHA from microorganisms without requiring organic carbon source reducing substances were sought. For example, Non-Patent Document 2 discloses a method for producing PHA using cyanobacteria that perform photosynthesis. Cyanobacteria can acquire assimilable carbon sources by photosynthesis themselves. Although it is excellent as a host bacterium for PHA production in that it does not require an organic carbon source, it can only produce PHB, which is a homopolymer, as PHA. PHB has the same melting point (180 ° C.) and fracture strength as polypropylene, but has a physical defect of being hard and brittle because it has lower fracture elongation and higher crystallinity than polypropylene.
特公平7-143527-14352
 本発明は、微生物を用いて、製造コストを抑え、効率的かつ多量にPHAを生産する方法を開発し、提供することである。 The present invention is to develop and provide a method for producing PHA efficiently and in large quantities by using microorganisms while reducing the production cost.
 上記課題を解決するために、本発明者らはPHA生産のホスト細菌として光合成細菌に着目した。光合成細菌は、シアノバクテリアと同様に、自ら光合成によって資化性炭素源を獲得できることから有機炭素源を必要としない。さらに、海水域に生息する海洋性光合成細菌は、大量に存在する海水を培地として利用できるため、PHAの製造コストを削減することができる。また高塩濃度培地での培養となるため他の細菌のコンタミネーションが少ないという利点も有する。しかし、光合成細菌は、培養方法が十分に確立していないため、PHAを生産する上で効率的な培養が困難という問題があった。 In order to solve the above-mentioned problems, the present inventors paid attention to photosynthetic bacteria as host bacteria for PHA production. As in the case of cyanobacteria, photosynthetic bacteria do not need an organic carbon source because they can acquire an assimilating carbon source by photosynthesis themselves. Furthermore, marine photosynthetic bacteria that inhabit seawater can use a large amount of seawater as a medium, thereby reducing the production cost of PHA. In addition, since the culture is performed in a high salt concentration medium, there is an advantage that there is little contamination of other bacteria. However, the photosynthetic bacterium has a problem that it is difficult to cultivate efficiently for producing PHA because the culturing method is not well established.
 そこで、本発明者らは、鋭意研究を重ね、紅色光合成細菌を培養期間中、遠赤色光を照射しながら培地を撹拌し続けることによって、菌体の増殖とPHAの効率的な生産及び蓄積を達成できる培養方法を確立した。また、紅色光合成細菌を用いた場合、紅色非硫黄細菌ではPHAがコポリマー(共重合体)として得られることを見出した。本願発明は、当該研究結果に基づくもので、以下を提供する。
(1)紅色光合成細菌を用いたPHAの生産方法であって、液体培地を撹拌させながら遠赤色光を照射して該紅色光合成細菌を培養する培養工程を含む、前記生産方法。
(2)前記遠赤色光が720nm~860nmにピーク波長を有する光である、(1)に記載の生産方法。
(3)前記培養工程が、紅色光合成細菌を増殖培地中で培養する増殖ステップ、前記増殖ステップ後の培養液中の紅色光合成細菌を回収する菌体回収ステップ、及び回収した紅色光合成細菌を有機酸及び/又は炭酸を炭素源とするPHA生産培地で培養するPHA蓄積ステップを含む、(1)又は(2)に記載の生産方法。
(4)前記増殖ステップにおいて、紅色光合成細菌を対数増殖期まで培養する、(3)に記載の生産方法。
(5)前記PHA蓄積ステップにおいて、紅色光合成細菌を後期対数増殖期又は初期静止期まで培養する、(3)又は(4)に記載の生産方法。
(6)前記PHA生産培地が増殖培地の炭素源を有機酸塩及び/又は炭酸塩に置換した培地である、(3)~(5)のいずれかに記載の生産方法。
(7)前記PHA生産培地が窒素源、リン酸源、及びビタミンのいずれか一以上を欠乏している、(3)~(6)のいずれかに記載の生産方法。
(8)前記培養工程後の培養液に含まれる菌体を回収する回収工程を含む、(1)~(7)のいずれかに記載の生産方法。
(9)前記培養工程後の培養液、又は紅色光合成細菌からPHAを抽出する抽出工程をさらに含む、(1)~(8)のいずれかに記載の生産方法。
(10)紅色光合成細菌が海洋性光合成細菌である、(1)~(9)のいずれかに記載の方法。
(11)紅色光合成細菌がMarichromatium bheemlicum、Thiohalocapsa marina、Thiophaeococcus mangrovi、Afifella pfennigii、Afifella marina、Rhodovulum euryhalinum、Rhodovulum imhoffii、Rhodovulum sulfidophilum、Rhodovulum tesquicola、Rhodovulum visakhapatnamense、Roseospira goensis及びRoseospira marinaからなる群から選択される、(10)に記載の生産方法。
(12)紅色光合成細菌がMarichromatium bheemlicum JCM13911、Thiohalocapsa marina JCM14780、Thiophaeococcus mangrovi JCM14889、Afifella pfennigii ATCC BAA1145、Afifella marina DSM2698、Rhodovulum euryhalinum DSM4868、Rhodovulum imhoffii JCM13589、Rhodovulum sulfidophilum ATCC35886、Rhodovulum tesquicola ATCC BAA1573、Rhodovulum visakhapatnamense JCM13531、Roseospira goensis JCM14191及びRoseospira marina ATCC BAA447からなる群から選択される、(11)に記載の生産方法。
Therefore, the present inventors have conducted extensive research, and by continuing to stir the medium while irradiating far-red light during the culture period of the red photosynthetic bacteria, the growth of the cells and the efficient production and accumulation of PHA are achieved. An achievable culture method was established. In addition, when red photosynthetic bacteria were used, it was found that PHA was obtained as a copolymer (copolymer) in red non-sulfur bacteria. This invention is based on the said research result and provides the following.
(1) A method for producing PHA using a red photosynthetic bacterium, comprising a culture step of culturing the red photosynthetic bacterium by irradiating far red light while stirring a liquid medium.
(2) The production method according to (1), wherein the far red light is light having a peak wavelength at 720 nm to 860 nm.
(3) The culturing step includes a growth step of cultivating the red photosynthetic bacteria in a growth medium, a cell collection step for recovering the red photosynthetic bacteria in the culture solution after the growth step, and the recovered red photosynthetic bacteria as an organic acid. And / or the production method according to (1) or (2), comprising a PHA accumulation step of culturing in a PHA production medium containing carbon dioxide as a carbon source.
(4) The production method according to (3), wherein in the growth step, the red photosynthetic bacteria are cultured until the logarithmic growth phase.
(5) The production method according to (3) or (4), wherein in the PHA accumulation step, the red photosynthetic bacterium is cultured until the late logarithmic growth phase or the early stationary phase.
(6) The production method according to any one of (3) to (5), wherein the PHA production medium is a medium in which the carbon source of the growth medium is replaced with an organic acid salt and / or carbonate.
(7) The production method according to any one of (3) to (6), wherein the PHA production medium is deficient in any one or more of a nitrogen source, a phosphate source, and a vitamin.
(8) The production method according to any one of (1) to (7), further comprising a recovery step of recovering bacterial cells contained in the culture solution after the culture step.
(9) The production method according to any one of (1) to (8), further comprising an extraction step of extracting PHA from the culture solution after the culturing step or red photosynthetic bacteria.
(10) The method according to any one of (1) to (9), wherein the red photosynthetic bacterium is a marine photosynthetic bacterium.
(11) The red photosynthetic bacteria are selected from Marichromatium bheemlicum, Thiohalocapsa marina, Thiophaeococcus mangrovi, Afifella pfennigii, Afifella marina, Rhodovulum euryhalinum, Rhodovulum imhoffii, Rhodovulum sulfidophilum, Rhodovulum tesquien, Rhodovulum tesquien The production method according to (10).
(12) purple photosynthetic bacteria Marichromatium bheemlicum JCM13911, Thiohalocapsa marina JCM14780, Thiophaeococcus mangrovi JCM14889, Afifella pfennigii ATCC BAA1145, Afifella marina DSM2698, Rhodovulum euryhalinum DSM4868, Rhodovulum imhoffii JCM13589, Rhodovulum sulfidophilum ATCC35886, Rhodovulum tesquicola ATCC BAA1573, Rhodovulum visakhapatnamense JCM13531, Roseospira The production method according to (11), selected from the group consisting of goensis JCM14191 and Roseospira marina ATCC BAA447.
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015-128590号の開示内容を包含する。 This specification includes the disclosure of Japanese Patent Application No. 2015-128590, which is the basis of the priority of this application.
 本発明のPHA生産方法によれば、紅色光合成細菌を安定的に培養することでPHAを効率的に生産することができる。また、一部の紅色光合成細菌を用いることで、PHAをコポリマーとして得ることができる。 According to the PHA production method of the present invention, PHA can be efficiently produced by stably cultivating red photosynthetic bacteria. Moreover, PHA can be obtained as a copolymer by using some red photosynthetic bacteria.
選択した12種の紅色光合成細菌を各培地で培養した時の培養後の乾燥菌体重量を示す図である。It is a figure which shows the dry cell weight after culture | cultivation when the selected 12 kinds of red photosynthetic bacteria are culture | cultivated in each culture medium. 選択した12種の紅色光合成細菌を各培地で培養した後の細胞内に蓄積されたPHA量(乾燥菌体当たりの重量%)(A)と培地1L当たりのPHA量(mg)(B)を示す図である。The amount of PHA accumulated in the cells after culturing the selected 12 kinds of red photosynthetic bacteria in each medium (weight% per dry cell) (A) and the amount of PHA per liter of medium (mg) (B) FIG.
<ポリヒドロキシアルカン酸生産方法>
 本発明は、紅色光合成細菌を用いたポリヒドロキシアルカン酸(PHA)の生産方法に関する。
1.用語の定義
 本明細書で使用する以下の用語について定義する。
<Polyhydroxyalkanoic acid production method>
The present invention relates to a method for producing polyhydroxyalkanoic acid (PHA) using a red photosynthetic bacterium.
1. Definition of terms The following terms used in this specification are defined.
 「光合成細菌」とは、酸素非発生型光合成を行う真正細菌であって、色素、電子供与体、好気又は嫌気条件での生育様式に従い、紅色硫黄細菌、紅色非硫黄細菌、緑色硫黄細菌、緑色非硫黄細菌、及び好気性光合成細菌の5科に分類される。 The “photosynthetic bacterium” is an eubacteria that performs non-oxygen-generating photosynthesis, and according to the growth mode under a pigment, electron donor, aerobic or anaerobic conditions, a red sulfur bacterium, a red non-sulfur bacterium, a green sulfur bacterium, It is classified into five families: green non-sulfur bacteria and aerobic photosynthetic bacteria.
 「紅色光合成細菌」とは、上記光合成細菌における紅色硫黄細菌及び紅色非硫黄細菌の総称である。本発明のPHAの生産方法では、紅色光合成細菌、すなわち紅色硫黄細菌又は紅色非硫黄細菌を使用する。紅色光合成細菌は、嫌気性の要求性が強くないことから比較的培養しやすく、また炭酸固定活性が強いことから、他の光合成細菌よりもPHA産生上、好ましい。 “Red photosynthetic bacteria” is a general term for red sulfur bacteria and red non-sulfur bacteria in the above photosynthetic bacteria. In the method for producing PHA of the present invention, a red photosynthetic bacterium, that is, a red sulfur bacterium or a red non-sulfur bacterium is used. The red photosynthetic bacterium is more preferable in terms of PHA production than other photosynthetic bacteria because it is relatively easy to cultivate because it does not have a strong anaerobic requirement and has a strong carbon fixation activity.
 紅色光合成細菌は、生息環境により淡水性と海洋性に大別されるが、本発明で使用する紅色光合成細菌は、いずれでもよい。好ましくは、海洋性の紅色光合成細菌である。これは、前述のように、高塩濃度培地により他の細菌のコンタミネーションを抑制できる他、大量に存在する海水を培地として利用できるためバイオプラスチックの製造コストを抑えることができるからである。 The red photosynthetic bacteria are roughly classified into freshwater and marine depending on the habitat environment, and any of the red photosynthetic bacteria used in the present invention may be used. Preferably, it is a marine red photosynthetic bacterium. This is because, as described above, contamination of other bacteria can be suppressed by a high salt concentration medium, and a large amount of seawater can be used as a medium, so that the production cost of bioplastic can be suppressed.
 紅色光合成細菌の具体例としては、後述する表1に示す紅色硫黄細菌や表2に示す紅色非硫黄細菌属の細菌が挙げられる。具体的には、紅色硫黄細菌に属する、Allochromatium属細菌、Ectothiorhodospira属細菌、Halochromatium属細菌、Halorhodospira属細菌、Marichromatium属細菌、Thiocapsa属細菌、Thiohalocapsa属細菌、及びThiophaeococcus属細菌等、また紅色非硫黄細菌に属する、Rhodobaca属細菌、Rhodobacter属細菌、Rhodobium属細菌、Afifella(Rhodobium)属細菌、Rhodothalassium属細菌、Rhodovulum属細菌、及びRoseospira属細菌等である。中でも海洋性紅色硫黄細菌であるMarichromatium bheemlicum、Thiohalocapsa marina及びThiophaeococcus mangroviの3種、及び海洋性紅色非硫黄細菌であるAfifella pfennigii (Rhodobium pfennigii)、Afifella marina (Rhodobium marinum)、Rhodovulum euryhalinum、Rhodovulum imhoffii、Rhodovulum sulfidophilum、Rhodovulum tesquicola、Rhodovulum visakhapatnamense、Roseospira goensis及びRoseospira marinaの9種は、本発明の紅色光合成細菌として好適である。これらの紅色光合成細菌は、RIKENバイオリソースセンター(日本)、NITE(日本)、ATCC(USA)、DSMZ(ドイツ)、NMLHC(カナダ)、ECACC(英国)、NIBSC(英国)、CNCM(フランス)、CBS(オランダ)、BCCM(ベルギー)、ABC(イタリア)、NMI(オーストラリア)、CCTCC(中国)、CGMCC(中国)等の各寄託機関から所定の手続きを経て入手することができる。 Specific examples of the red photosynthetic bacteria include the red sulfur bacteria shown in Table 1 and the bacteria of the red non-sulfur bacteria genus shown in Table 2. Specifically, Allochromatium genus bacteria, Ectothiorhodospira genus bacteria, Halochromatium genus bacteria, Halorhodospira genus bacteria, Marichromatium genus bacteria, Thiocapsa genus bacteria, Thiohalocapsa genus bacteria, and Thiophaeococcus genus bacteria belonging to red sulfur bacteria, and red non-sulfur bacteria These include Rhodobaca genus bacteria, Rhodobacter genus bacteria, Rhodobium genus bacteria, Afifella (Rhodobium) genus bacteria, Rhodothalassium genus bacteria, Rhodovulum genus bacteria, and Roseospira genus bacteria. Among them, three marine red sulfur bacteria, Marichromatium bheemlicum, Thiohalocapsa marina and Thiophaeococcus mangrovi, and marine red non-sulfur bacteria Afifella pfennigii (Rhodobium pfennigii), Afifella marina rum (Rhodobium hodum Nine species of sulfidophilum, Rhodovulum tesquicola, Rhodovulum visakhapatnamense, Roseospira goensis and Roseospira marina are suitable as the red photosynthetic bacteria of the present invention. These red photosynthetic bacteria are RIKEN BioResource Center (Japan), NITE (Japan), ATCC (USA), DSMZ (Germany), NMLHC (Canada), ECACC (UK), NIBSC (UK), CNCM (France), CBS (Netherlands), BCCM (Belgium), ABC (Italy), NMI (Australia), CCTCC (China), CGMCC (China), etc.
 「ポリヒドロキシアルカン酸(polyhydroxyalkanoate)」(本明細書では、しばしば「PHA」と表記する)は、ある種の微生物が貯蔵エネルギーとして細胞内に蓄積することが知られているバイオポリエステルで、本発明の生産方法における対象生産物である。PHAは、以下の一般式1で表すことができる。 “Polyhydroxyalkanoate” (often referred to herein as “PHA”) is a biopolyester known to accumulate in the cells as a stored energy of certain microorganisms. This is the target product in the production method. PHA can be represented by the following general formula 1.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[式中、Rは同一でも異なっていてもよく、炭素数1~14の直鎖又は分岐鎖アルキル基であり、nは2以上の整数であり、好ましくは100以上の整数であり、好ましくは100,000以下の整数である]
 PHAの具体例として、例えば、限定はしないが、以下の化学式1で表されるポリヒドロキシブタン酸(PHB:P(3HB))(Poly-3-hydroxybutyrate)、化学式2で表されるポリヒドロキシバレリン酸(PHV:P(3HV))(Poly-3-hydroxyvalerate)、化学式3で表されるポリヒドロキシヘキサン酸(PHH:P(3HH))(Poly-3-hydroxyhexanoate)、化学式4で表されるポリヒドロキシブタン酸-ポリヒドロキシバレリン酸(PHBV:P(3HB-co-3HV))(Poly(3-hydroxybutyrate-co-3-hydroxyvalerate))、化学式5で表されるポリヒドロキシブタン酸-ポリヒドロキシヘキサン酸(PHBH:P(3HB-co-3HH))(Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate))、及び化学式6で表されるポリ3ヒドロキシブタン酸-ポリ4ヒドロキシブタン酸(PHBB:P(3HB-co-4HB))(Poly(3-hydroxybutyrate-co-4-hydroxybutyrate))等が挙げられる。
[In the formula, R may be the same or different, and is a linear or branched alkyl group having 1 to 14 carbon atoms, n is an integer of 2 or more, preferably an integer of 100 or more, preferably Is an integer less than 100,000]
Specific examples of PHA include, but are not limited to, polyhydroxybutanoic acid (PHB: P (3HB)) (Poly-3-hydroxybutyrate) represented by Chemical Formula 1 below, and polyhydroxyvalerin represented by Chemical Formula 2 below. Acid (PHV: P (3HV)) (Poly-3-hydroxyvalerate), polyhydroxyhexanoic acid represented by Chemical Formula 3 (PHH: P (3HH)) (Poly-3-hydroxyhexanoate), Poly represented by Chemical Formula 4 Hydroxybutanoic acid-polyhydroxyvaleric acid (PHBV: P (3HB-co-3HV)) (Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)), polyhydroxybutanoic acid-polyhydroxyhexanoic acid represented by Formula 5 (PHBH: P (3HB-co-3HH)) (Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)), and poly-3-hydroxybutanoic acid-poly-4hydroxybutanoic acid (PHBB: P ( 3HB-co-4HB)) (Poly (3-hydroxybutyrate-co-4-hydroxybutyrate))) and the like.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式中、nは2以上の整数であり、好ましくは100以上の整数であり、好ましくは100,000以下の整数である] [Wherein n is an integer of 2 or more, preferably an integer of 100 or more, preferably an integer of 100,000 or less]
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式中、nは2以上の整数であり、好ましくは100以上の整数であり、好ましくは100,000以下の整数である] [Wherein n is an integer of 2 or more, preferably an integer of 100 or more, preferably an integer of 100,000 or less]
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式中、nは2以上の整数であり、好ましくは100以上の整数であり、好ましくは100,000以下の整数である] [Wherein n is an integer of 2 or more, preferably an integer of 100 or more, preferably an integer of 100,000 or less]
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[式中、m及びnは2以上の整数であり、好ましくは100以上の整数であり、好ましくは100,000以下の整数である] [Wherein, m and n are integers of 2 or more, preferably are integers of 100 or more, and are preferably integers of 100,000 or less]
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式中、m及びnは2以上の整数であり、好ましくは100以上の整数であり、好ましくは100,000以下の整数である] [Wherein, m and n are integers of 2 or more, preferably are integers of 100 or more, and are preferably integers of 100,000 or less]
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式中、m及びnは2以上の整数であり、好ましくは100以上の整数であり、好ましくは100,000以下の整数である]
 本発明の生産方法で生産するPHAは、特に限定はしない。例えば、3HBの単一モノマーからなるP(3HB)のようなホモポリマーであってもよいし、2種以上のモノマーからなるP(3HB-co-3HV)やP(3HB-co-3HH)のようなコポリマーであってもよい。好ましくはコポリマーである。
2.方法
 本発明のPHA生産方法は、培養工程を必須工程として含み、選択工程として、回収工程、及び抽出工程を含む。以下、各工程について、具体的に説明をする。
2-1.培養工程
 本明細書において「培養工程」とは、紅色光合成細菌を特定条件下で培養することによって、菌体数を増やし、菌細胞内にPHAを蓄積させる工程である。
[Wherein, m and n are integers of 2 or more, preferably are integers of 100 or more, and are preferably integers of 100,000 or less]
The PHA produced by the production method of the present invention is not particularly limited. For example, it may be a homopolymer such as P (3HB) composed of a single monomer of 3HB, or P (3HB-co-3HV) or P (3HB-co-3HH) composed of two or more monomers. Such a copolymer may be used. A copolymer is preferred.
2. Method The PHA production method of the present invention includes a culture step as an essential step, and includes a recovery step and an extraction step as selection steps. Hereinafter, each step will be specifically described.
2-1. Culturing process In the present specification, the "culturing process" is a process for increasing the number of bacterial cells by cultivating red photosynthetic bacteria under specific conditions and accumulating PHA in the bacterial cells.
 前記「特定の条件」とは、培養時における液体培地の撹拌と菌体への遠赤色光照射である。 The above “specific conditions” are stirring of the liquid medium during culturing and irradiation of the cells with far red light.
 本明細書において「撹拌」とは、液体を流動させることをいう。撹拌の方法は、液体を流動させることができれば特に限定はしない。例えば、撹拌子や撹拌棒により液体に回転流動を起こしてかき混ぜる方法や、振盪器等を用いて液体を入れた容器を振盪させる方法(反転方法を含む)、送液装置等により流路に液体を通流する方法等が挙げられる。撹拌は、培地中の成分や菌体を均一化することを目的とする。これによって、各菌体に栄養素や照射される光を均一に付与することが可能となる。 In this specification, “stirring” refers to flowing a liquid. The stirring method is not particularly limited as long as the liquid can be flowed. For example, a method in which a liquid is swirled by stirring with a stirrer or a stirring bar, a method in which a container containing liquid is shaken using a shaker (including a reversing method), a liquid in a flow path by a liquid feeding device The method of flowing through is mentioned. Stirring aims to homogenize the components and cells in the medium. This makes it possible to uniformly apply nutrients and irradiated light to each microbial cell.
 本明細書において「遠赤色光」(Far Red)とは、ピーク波長の波長域が700nm~860nmの光をいう。「ピーク波長」とは、光の発光強度が最大となる波長である。培養工程で紅色光合成細菌に照射する遠赤光は前記波長域の光であればよく、限定はされないが、好適な遠赤色光は、ピーク波長が720nm~860nmの光である。 In this specification, “far red light” (Far Red) means light having a peak wavelength range of 700 nm to 860 nm. The “peak wavelength” is a wavelength at which the light emission intensity is maximum. The far-red light irradiated to the red photosynthetic bacteria in the culturing step may be light in the above-mentioned wavelength range, and is not limited, but suitable far-red light is light having a peak wavelength of 720 nm to 860 nm.
 本発明において「照射」とは、紅色光合成細菌を前記遠赤色光で曝光することをいう。照射は、連続照射であっても、また明暗期を有する明暗光であってもよい。ここでいう連続照射とは、連続的な照射だけでなく、極めて短時間に明暗期を繰り返すパルス光の照射も含む。明暗周期光の場合には、1日の明暗周期は特に限定はしないが、例えば、明期8時間:暗期16時間~明期16時間:暗期8時間の範囲でよい。あるいは、明期中に周期的に又は非周期的に、肉眼で認識できる暗期(例えば、1秒以上、好ましくは数秒以上の暗期)が挿入される明暗光であってもよい。好ましい照射は、連続照射である。なお、照射する遠赤色光は、必ずしも一定のピーク波長を有する光である必要はなく、照射期間中、前記波長域の範囲で変化させることもできる。例えば、照射開始時にピーク波長730nmの光を照射し、照射8日目以降にピーク波長740nmの光に変更して照射する場合が挙げられる。 In the present invention, “irradiation” means exposure of red photosynthetic bacteria with the far-red light. Irradiation may be continuous or bright and dark light with a bright and dark period. The continuous irradiation here includes not only continuous irradiation but also irradiation of pulsed light that repeats the light and dark period in a very short time. In the case of light / dark cycle light, the light / dark cycle of the day is not particularly limited, but may be, for example, in the range of light period 8 hours: dark period 16 hours to light period 16 hours: dark period 8 hours. Alternatively, it may be bright or dark light in which a dark period (for example, a dark period of 1 second or more, preferably several seconds or more) that can be recognized by the naked eye is inserted periodically or aperiodically during the light period. Preferred irradiation is continuous irradiation. Note that the far-red light to be irradiated does not necessarily have to have a certain peak wavelength, and can be changed within the wavelength range during the irradiation period. For example, there is a case where light having a peak wavelength of 730 nm is irradiated at the start of irradiation, and the light is changed to light having a peak wavelength of 740 nm after the eighth day of irradiation.
 遠赤色光の放射照度は、0.1/m2~15W/m2の範囲であればよい。好ましくは6W/m2~10W/m2、より好ましくは8W/m2±1W/m2である。 The irradiance of far-red light may be in the range of 0.1 / m 2 to 15 W / m 2 . It is preferably 6 W / m 2 to 10 W / m 2 , more preferably 8 W / m 2 ± 1 W / m 2 .
 照射方法は、培養液中の紅色光合成細菌を十分に曝光できる方法であれば特に限定はしない。例えば、透明な培養槽の周囲に光源を設置して培養槽全体に対して光を照射する方法、一方向又は複数方向から培養槽に光を照射し、培養槽内の培養液を撹拌することで培養液全体に光を行き渡す方法等が挙げられる。光の照射は、光源からの直接照射が好ましいが、培養液全体に光を行き届かせる目的等のために反射板等を介した間接照射であってもよい。間接照射の場合、照射した光が減衰する可能性があることから、光強度が前述の範囲となるように、必要に応じて光源の光強度を高めることが好ましい。 The irradiation method is not particularly limited as long as the method can sufficiently expose the red photosynthetic bacteria in the culture solution. For example, a method of irradiating light to the entire culture tank by installing a light source around the transparent culture tank, irradiating the culture tank with light from one or more directions, and stirring the culture solution in the culture tank And a method of passing light over the whole culture solution. The light irradiation is preferably direct irradiation from a light source, but may be indirect irradiation via a reflector or the like for the purpose of reaching the entire culture solution. In the case of indirect irradiation, since the irradiated light may be attenuated, it is preferable to increase the light intensity of the light source as necessary so that the light intensity is in the above-described range.
 光照射は、紅色光合成細菌の増殖培養期間(後述する「増殖ステップ」期間)、及び/又は紅色光合成細菌によるPHAの生合成と細胞内蓄積を促進させる期間(後述する「PHA蓄積ステップ」期間)に行えばよい。最大で本発明のPHA生産方法の全期間を通して照射することもできる。好ましい照射期間は、増殖ステップ期間及びPHA蓄積ステップ期間である。 Light irradiation is a period of growth culture of red photosynthetic bacteria (a “growth step” period described later) and / or a period of promoting biosynthesis and intracellular accumulation of PHA by the red photosynthetic bacteria (a “PHA accumulation step” period described later) You can go to Irradiation can be performed throughout the entire period of the PHA production method of the present invention. Preferred irradiation periods are a growth step period and a PHA accumulation step period.
 本工程で使用する光源は、前記波長域の光を放射可能な光源であれば特に限定はしない。例えば、遠赤色光を含む白色光を放射可能な白色発光ダイオード(Light Emitting Diode:以下、本明細書では、しばしば「LED」と表記する)、高輝度放電(HID:High Intensity Discharge)ランプ、ハロゲン電球、白熱電球及び太陽光等が挙げられる。連続照射や電力コストを考慮すれば、700nm~860nmの波長域内、好ましくは720nm~860nmの波長域内にピーク波長を有するLEDを利用するのが好ましく、また効果的である。 The light source used in this step is not particularly limited as long as it is a light source capable of emitting light in the wavelength range. For example, a white light emitting diode (Light Emitting Diode: hereinafter referred to as “LED”), a high intensity discharge (HID: High Intensity Discharge) lamp, a halogen, which can emit white light including far-red light Light bulbs, incandescent light bulbs, sunlight, and the like can be mentioned. In consideration of continuous irradiation and power costs, it is preferable and effective to use an LED having a peak wavelength in the wavelength range of 700 nm to 860 nm, preferably in the wavelength range of 720 nm to 860 nm.
 本工程では、前述の「特定の条件」以外の培養条件については、制限はなく、細菌培養分野で公知の方法に準じて行えばよい。 In this step, the culture conditions other than the above-mentioned “specific conditions” are not limited, and may be performed according to a method known in the bacterial culture field.
 例えば、本工程で使用する培地は、紅色光合成細菌を培養できる増殖培地であれば特に限定はしない。例えば、紅色硫黄細菌であれば、増殖用培地として0.05% KH2PO4, 1.5×10-3% CaCl2・2H2O, 0.2% MgSO4・7H2O, 6.4×10-3% NH4Cl, 2% NaCl, 0.3% ピルビン酸ナトリウム, 0.04% yeast extract, 2×10-4% ビタミンB12, 2.4×10-3% Na2S・9H2O, 0.15% Na2S2O3・5H2O, 0.15% FeCl2・6H2O, 7×10-3% ZnCl2・5H2O, 0.01% MnCl2・4H2O, 6.2×10-3% H3BO3, 1.9×10-3% CoCl2・6H2O, 1.7×10-3% CuCl2・2H2O, 2.4×10-3% NiCl2・6H2O, 3.6×10-3% Na2MoO4・H2O(培地pH7.5)の組成を有する増殖培地Aの他、市販の培地、例えばDifco社のMarine Agar 2216等を使用することができる。また、紅色非硫黄細菌増殖用であれば、0.05% KH2PO4, 2.5×10-3% CaCl2・2H2O, 0.3% MgSO4・7H2O, 6.8×10-3% NH4Cl, 2% NaCl, 0.3% リンゴ酸ナトリウム, 0.3% ピルビン酸ナトリウム, 0.04% イースト・エクストラクト, 5×10-4% クエン酸酸化鉄, 2×10-4% ビタミンB12, 7×10-3 % ZnCl2・5H2O, 0.01% MnCl2・4H2O, 6×10-3% H3BO3, 0.02% CoCl2・6H2O, 2×10-3% CuCl2・2H2O, 2×10-3% NiCl2・6H2O, 4×10-3% Na2MoO4・H2O(培地pH6.8)の組成を有する増殖培地Bを使用することができる。 For example, the medium used in this step is not particularly limited as long as it is a growth medium that can culture red photosynthetic bacteria. For example, in the case of a red sulfur bacterium, 0.05% KH 2 PO 4 , 1.5 × 10 -3 % CaCl 2 · 2H 2 O, 0.2% MgSO 4 · 7H 2 O, 6.4 × 10 -3 % NH 4 is used as a growth medium. Cl, 2% NaCl, 0.3% Sodium pyruvate, 0.04% yeast extract, 2 × 10 -4 % Vitamin B12, 2.4 × 10 -3 % Na 2 S ・ 9H 2 O, 0.15% Na 2 S 2 O 3・ 5H 2 O, 0.15% FeCl 2・ 6H 2 O, 7 × 10 -3 % ZnCl 2・ 5H 2 O, 0.01% MnCl 2・ 4H 2 O, 6.2 × 10 -3 % H 3 BO 3 , 1.9 × 10 -3 % CoCl 2 · 6H 2 O, 1.7 × 10 -3 % CuCl 2 · 2H 2 O, 2.4 × 10 -3 % NiCl 2 · 6H 2 O, 3.6 × 10 -3 % Na 2 MoO 4 · H 2 O (medium In addition to growth medium A having a composition of pH 7.5), a commercially available medium such as Marine Agar 2216 from Difco can be used. For red non-sulfur bacterial growth, 0.05% KH 2 PO 4 , 2.5 × 10 -3 % CaCl 2 · 2H 2 O, 0.3% MgSO 4 · 7H 2 O, 6.8 × 10 -3 % NH 4 Cl , 2% NaCl, 0.3% Sodium malate, 0.3% Sodium pyruvate, 0.04% East extract, 5 × 10 -4 % Iron citrate, 2 × 10 -4 % Vitamin B12, 7 × 10 -3 % ZnCl 2・ 5H 2 O, 0.01% MnCl 2・ 4H 2 O, 6 × 10 -3 % H 3 BO 3 , 0.02% CoCl 2・ 6H 2 O, 2 × 10 -3 % CuCl 2・ 2H 2 O, 2 Growth medium B having a composition of × 10 −3 % NiCl 2 .6H 2 O, 4 × 10 −3 % Na 2 MoO 4 .H 2 O (medium pH 6.8) can be used.
 培養温度は、紅色光合成細菌が生育及び/又は増殖可能な温度範囲であればよい。例えば、紅色光合成細菌を入手した各寄託機関で公開されている培養温度を用いることができる。23℃~32℃の範囲内の温度であれば良く、通常は28℃~30℃の範囲であれば足りる。 The culture temperature may be in the temperature range where the red photosynthetic bacteria can grow and / or proliferate. For example, the culture temperature disclosed by each depository that has obtained red photosynthetic bacteria can be used. The temperature may be in the range of 23 ° C to 32 ° C, and usually in the range of 28 ° C to 30 ° C.
 本工程の開始時に、培地に紅色光合成細菌を植菌する際、細胞数は特に限定はしないが、植菌後のOD660値が0.05~0.3の範囲、好ましくは0.05~0.15となるような細胞数であればよい。 When inoculating red photosynthetic bacteria in the medium at the start of this step, the number of cells is not particularly limited, but the cells have an OD 660 value in the range of 0.05 to 0.3, preferably 0.05 to 0.15 after inoculation. Any number is acceptable.
 前記培養工程は、必要に応じて増殖ステップ、菌体回収ステップ、及びPHA蓄積ステップを含むことができる。当該工程を含む培養工程では、増殖ステップ及びPHA蓄積ステップで異なる培地を使用することを特徴とする。培養に関する他の条件は、原則として既述の条件と同じでよい。したがって、ここでは記述の培養条件に関しては、その説明を省略し、各ステップの特徴的な点について、以下で具体的に説明をする。
(1)増殖ステップ
 「増殖ステップ」とは、紅色光合成細菌を増殖培地中で培養するステップであり、主に培養液中の細菌数の増加を目的とする。
The culture process can include a growth step, a cell recovery step, and a PHA accumulation step as necessary. The culture process including this process is characterized in that different media are used in the growth step and the PHA accumulation step. Other conditions relating to the culture may in principle be the same as those already described. Therefore, the description of the described culture conditions is omitted here, and the characteristic points of each step are specifically described below.
(1) Proliferation step The “proliferation step” is a step of cultivating red photosynthetic bacteria in a growth medium, and mainly aims at increasing the number of bacteria in the culture solution.
 本ステップで使用する培地は、増殖培地である。増殖培地は、紅色光合成細菌を培養可能であれば任意の培地を用いることが可能で、培地の種類や組成は特に限定しない。当該分野において、紅色光合成細菌用として公知の培地を用いることができる。例えば、前述の紅色硫黄細菌用の増殖培地Aや紅色非硫黄細菌用の増殖培地Bが挙げられる。市販の培地も利用可能である。 The medium used in this step is a growth medium. As the growth medium, any medium can be used as long as the red photosynthetic bacteria can be cultured, and the type and composition of the medium are not particularly limited. In this field, a medium known for red photosynthetic bacteria can be used. For example, the above-mentioned growth medium A for red sulfur bacteria and growth medium B for red non-sulfur bacteria can be mentioned. Commercially available media can also be used.
 本ステップの培養期間は、植菌した紅色光合成細菌が対数期(log-phase)、好ましくは中期対数期(mid-log phase)~後期対数期(late-log phase)に達するまでが好ましい。具体的には、培養液のOD660値が0.5~4.0の範囲、0.5~2.0の範囲、0.5~1.5の範囲又は0.6~1.2の範囲、好ましくは0.8~1.1の範囲、より好ましくは0.9~1.0の範囲になるまで培養すればよい。
(2)菌体回収ステップ
 「菌体回収ステップ」は、前記増殖ステップ後の培養液中の紅色光合成細菌を回収するステップであり、増殖ステップで培養した紅色光合成細菌をPHA蓄積ステップのPHA生産培地に移す際に培養液から増殖培地や粗雑物等をできる限り除去することを目的とする。
The culture period of this step is preferably until the inoculated red photosynthetic bacterium reaches the log-phase, preferably the mid-log phase to the late-log phase. Specifically, the OD 660 value of the culture solution is in the range of 0.5 to 4.0, 0.5 to 2.0, 0.5 to 1.5, or 0.6 to 1.2, preferably 0.8 to 1.1, more preferably 0.9 to 1.0. It is sufficient to culture until the range of
(2) Cell recovery step The “cell recovery step” is a step of recovering the red photosynthetic bacteria in the culture solution after the growth step, and the red photosynthetic bacteria cultured in the growth step are used as a PHA production medium in the PHA accumulation step. The purpose is to remove as much growth medium and coarse substances as possible from the culture medium.
 ただし、本ステップは、他の2つのステップと異なり、必要に応じて行えばよい選択ステップである。すなわち、増殖ステップ後の紅色光合成細菌を回収することなく、増殖ステップ後の培養液の一部をそのままPHA蓄積ステップのPHA生産培地に植え継ぐことも可能である。 However, this step is a selection step that may be performed as needed, unlike the other two steps. That is, a part of the culture solution after the growth step can be directly transplanted to the PHA production medium of the PHA accumulation step without collecting the red photosynthetic bacteria after the growth step.
 培養液から菌体を回収する方法は、当該分野で公知の常法を用いればよい。例えば、培養液を遠心又は濾過によって培地を除去する方法が挙げられる。具体的には、培養液を遠心機により適当な重力加速度(g)で適当な時間遠心した後に、上清を除去して菌体を回収する方法や、紅色光合成細菌の細胞サイズよりも小さい孔径を有するフィルターで濾過して培養液を除去し、フィルターに残った菌体を回収する方法が挙げられる。回収した菌体は、必要に応じて培養工程に用いた培地、又は当該培地と同程度の浸透圧を有するバッファ若しくは生理食塩水で1回以上洗浄してもよい。 As a method for recovering the bacterial cells from the culture solution, a conventional method known in the art may be used. For example, a method of removing the culture medium by centrifuging or filtering the culture solution can be mentioned. Specifically, after centrifuging the culture solution with an appropriate gravitational acceleration (g) for an appropriate period of time using a centrifuge, the supernatant is removed and the cells are collected, or the pore size is smaller than the cell size of red photosynthetic bacteria. There is a method of removing the culture solution by filtering through a filter having the above and recovering the cells remaining on the filter. The collected cells may be washed once or more with the medium used in the culturing step, or with a buffer or physiological saline having the same osmotic pressure as the medium as necessary.
 本ステップで回収した菌体は、次のPHA蓄積ステップで使用する。
(3)PHA蓄積ステップ
 「PHA蓄積ステップ」とは、増殖ステップで培養した紅色光合成細菌をPHA生産培地に移して培養するステップであり、細菌によるPHAの生合成と細胞内蓄積を促進させることを目的とする。
The cells collected in this step are used in the next PHA accumulation step.
(3) PHA accumulation step The “PHA accumulation step” is a step in which the red photosynthetic bacteria cultured in the growth step are transferred to the PHA production medium and cultured, and it promotes the biosynthesis and intracellular accumulation of PHA by the bacteria. Objective.
 本ステップで使用する培地は、PHA生産培地である。この培地は増殖培地の炭酸源を有機酸塩及び/又は炭酸塩に置換した培地である。増殖培地の炭酸源を有機酸塩、又は有機酸塩及び炭酸塩に置換した培地が好ましい。有機酸塩、及び炭酸塩は、水和物であってもよい。 The medium used in this step is a PHA production medium. This medium is a medium in which the carbonate source of the growth medium is replaced with an organic acid salt and / or carbonate. A medium in which the carbonic acid source of the growth medium is replaced with an organic acid salt, or an organic acid salt and a carbonate is preferable. Hydrate may be sufficient as organic acid salt and carbonate.
 有機酸塩には、例えば、アルカン酸塩(例えば、蟻酸塩、酢酸塩、プロピオン酸塩、酪酸塩、吉草酸塩、及びカプロン酸塩を含む)、クエン酸塩、リンゴ酸塩、スルホン酸塩、酒石酸塩、及び乳酸塩が挙げられる。酢酸塩は特に好適である。酢酸塩の例としては、酢酸ナトリウム、酢酸カルシウム等が挙げられる。また、炭酸塩の例としては、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素カリウム等が挙げられる。 Organic acid salts include, for example, alkanoates (including formate, acetate, propionate, butyrate, valerate, and caprate), citrate, malate, sulfonate , Tartrate, and lactate. Acetate is particularly preferred. Examples of acetates include sodium acetate and calcium acetate. Examples of carbonates include sodium bicarbonate, sodium carbonate, potassium carbonate, potassium bicarbonate and the like.
 PHA生産培地の例として、前記紅色硫黄細菌用の増殖培地Aにおいて、炭素源であるピルビン酸ナトリウムを0.1% 炭酸水素ナトリウム及び0.5% 酢酸ナトリウムに置換した紅色硫黄細菌用のPHA生産培地や、紅色非硫黄細菌用の増殖培地Bにおいて、炭素源であるリンゴ酸ナトリウムとピルビン酸ナトリウムを炭酸水素ナトリウム0.1% 及び酢酸ナトリウム5g/Lに置換した紅色非硫黄細菌用のPHA生産培地が挙げられる。 As an example of a PHA production medium, in the growth medium A for red sulfur bacteria, a PHA production medium for red sulfur bacteria in which sodium pyruvate as a carbon source is replaced with 0.1% sodium bicarbonate and 0.5% sodium acetate, Examples of the growth medium B for non-sulfur bacteria include a PHA production medium for red non-sulfur bacteria in which sodium malate and sodium pyruvate, which are carbon sources, are substituted with 0.1% sodium bicarbonate and 5 g / L sodium acetate.
 PHA生産培地は、炭素源の置換に加えて、さらに増殖培地から窒素源、リン酸源、及びビタミンのいずれか一以上を除いた欠乏培地にしてもよい。具体的には、窒素欠乏培地、リン酸欠乏培地、ビタミン欠乏培地、窒素・リン酸欠乏培地、窒素・ビタミン欠乏培地、リン酸・ビタミン欠乏培地、窒素・リン酸・ビタミン欠乏培地が挙げられる。ビタミンの種類は特に限定しないが、ビタミンB1(チアミン)、ビタミンB5(パントテン酸)、ビタミンB6(ピリドキシン、ピリドキサール、及びピリドキサミン)、ビタミンB7(ビオチン)、ビタミンB12(コバラミン)が好ましい。欠乏させるビタミンは複数種であってもよい。 The PHA production medium may be a deficient medium in which any one or more of a nitrogen source, a phosphate source, and vitamins are further removed from the growth medium in addition to the carbon source replacement. Specific examples include a nitrogen-deficient medium, a phosphate-deficient medium, a vitamin-deficient medium, a nitrogen / phosphate-deficient medium, a nitrogen / vitamin-deficient medium, a phosphoric acid / vitamin-deficient medium, and a nitrogen / phosphate / vitamin-deficient medium. The type of vitamin is not particularly limited, but vitamin B1 (thiamine), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine, pyridoxal, and pyridoxamine), vitamin B7 (biotin), and vitamin B12 (cobalamin) are preferable. Multiple vitamins may be depleted.
 これは、光合成細菌におけるPHA生産が窒素、リン酸、及び/又はビタミンの制限により促進されることが知られているためである(例:H. Brandl, et al., 1989, Int J Biol Macromol. 11, 49-55.)。 This is because PHA production in photosynthetic bacteria is known to be promoted by restriction of nitrogen, phosphate, and / or vitamins (eg, H. Brandl, et al., 1989, Int J Biol Macromol). . 11, 49-55.).
 本ステップでは、増殖ステップ後に回収した菌体を必要に応じて適宜希釈して、PHA生産培地に植菌し、培養する。本ステップ開始時の培地中の細胞数は、限定はしないが、培養液のOD660値が0.03~2.0の範囲、0.03~1.5の範囲、0.03~1.0の範囲又は0.05~0.8の範囲、好ましくは0.1~0.5の範囲、より好ましくは0.1~0.3の範囲になるように調節すればよい。 In this step, the cells recovered after the growth step are appropriately diluted as necessary, inoculated into a PHA production medium, and cultured. The number of cells in the medium at the start of this step is not limited, but the OD 660 value of the culture solution is in the range of 0.03-2.0, in the range of 0.03-1.5, in the range of 0.03-1.0, or in the range of 0.05-0.8, preferably Adjustment may be made so as to be in the range of 0.1 to 0.5, more preferably in the range of 0.1 to 0.3.
 培養期間は、植菌した紅色光合成細菌が後期対数増殖期又は初期静止期(early stationary phase)まで、具体的には、培養液のOD660値が0.8~2.0の範囲又は0.8~1.2の範囲、好ましくは0.8~1.0の範囲になるまで培養すればよい。
2-2.回収工程
 「回収工程」とは、前記培養工程の培養液から紅色光合成細菌を回収する工程である。本工程は、選択工程で、培養液から培地や粗雑物等を除去して、細胞内にPHAを蓄積した紅色光合成細菌を回収することを目的とする。
During the culture period, the inoculated red photosynthetic bacterium is in the late logarithmic growth phase or early stationary phase, specifically, the OD 660 value of the culture solution is in the range of 0.8 to 2.0, or in the range of 0.8 to 1.2, The culture is preferably performed until the range is 0.8 to 1.0.
2-2. Recovery step The “recovery step” is a step of recovering red photosynthetic bacteria from the culture solution in the culture step. The purpose of this step is to recover the red photosynthetic bacteria in which PHA is accumulated in the cells by removing the medium and coarse substances from the culture solution in the selection step.
 培養液から菌体を回収する方法は、前述の菌体回収工程に記載の方法に準ずる。 The method for recovering the bacterial cells from the culture solution is in accordance with the method described in the aforementioned bacterial cell recovery step.
 本工程により、細胞内にPHAを蓄積した紅色光合成細菌をスラリーとして得ることができる。必要であれば、回収した紅色光合成細菌を公知の乾燥方法により乾燥してもよい。 This step makes it possible to obtain red photosynthetic bacteria that accumulate PHA in the cells as a slurry. If necessary, the collected red photosynthetic bacteria may be dried by a known drying method.
 乾燥方法は、水分を減じることができれば特に限定はしない。例えば、送風装置等を用いて温風若しくは冷風を当てる通風乾燥法、加熱により水分蒸発させる無風乾燥法、スラリーを適当なバッファで懸濁した後、その懸濁液を気体中に噴霧して急速乾燥させる噴霧乾燥、凍結乾燥(フリーズドライ)法、密閉容器内で真空ポンプ等を用いて脱気する真空乾燥法、外気に晒して放置する自然乾燥法(天日干しを含む)、又はその組み合わせが挙げられる。実際に菌体を乾燥させる場合、上記方法を応用した各種乾燥装置を用いて行えばよい。例えば、ドラムドライヤー、遠赤バンド乾燥機、連続式真空乾燥装置、スプレードライヤー、フリーズドライヤー等が挙げられる。 The drying method is not particularly limited as long as moisture can be reduced. For example, a ventilation drying method in which hot or cold air is applied using a blower, a windless drying method in which moisture is evaporated by heating, a slurry is suspended in an appropriate buffer, and then the suspension is sprayed into a gas to rapidly Spray drying to dry, freeze drying (freeze drying) method, vacuum drying method to deaerate in a sealed container using a vacuum pump etc., natural drying method to leave exposed to the outside air (including sun drying), or a combination thereof Can be mentioned. When the cells are actually dried, various drying apparatuses to which the above method is applied may be used. For example, a drum dryer, a far-red band dryer, a continuous vacuum dryer, a spray dryer, a freeze dryer, and the like can be given.
 乾燥後の藻体は、固形状態、顆粒状態又は粉末状態のいずれであってもよい。
2-3.抽出工程
 「抽出工程」とは、前記培養工程後の培養液、又は培養液中若しくは回収工程後の紅色光合成細菌(細胞破砕物を含む)からPHAを抽出する工程である。本工程は、選択工程であって、紅色光合成細菌の細胞内に蓄積されたPHAを採取することを目的とする。
The dried algal body may be in a solid state, a granule state, or a powder state.
2-3. Extraction Step The “extraction step” is a step of extracting PHA from the culture solution after the culturing step, or the red photosynthetic bacteria (including cell debris) in the culture solution or after the recovery step. This step is a selection step and aims to collect PHA accumulated in cells of red photosynthetic bacteria.
 本工程で培養液や紅色光合成細菌の細胞からPHAを抽出する方法は、当該分野で公知のあらゆる方法を用いることができる。 Any method known in the art can be used as the method for extracting PHA from the culture solution or red photosynthetic bacteria cells in this step.
 例えば、紅色光合成細菌の細胞内に蓄積したPHAを抽出する場合であれば、物理的方法及び/又は化学的方法により細胞を破砕し、得られた細胞抽出物からPHAを単離する方法が挙げられる。ここでいう細胞抽出物は、固形抽出物、及び液体抽出物(培養液中に混在する細胞抽出物を含む)を包含する。 For example, when extracting PHA accumulated in cells of red photosynthetic bacteria, there is a method of disrupting cells by a physical method and / or chemical method and isolating PHA from the obtained cell extract. It is done. The cell extract here includes a solid extract and a liquid extract (including a cell extract mixed in a culture solution).
 菌体を破砕する物理的方法としては、例えば、圧潰・圧搾法、超音波法、浸透圧ショック法、又はそれらの組み合わせによる方法が挙げられる。 Examples of the physical method for crushing bacterial cells include a crushing / squeezing method, an ultrasonic method, an osmotic shock method, or a combination thereof.
 菌体を破砕する化学的方法としては、例えば、アルカリ法、酵素法が挙げられる。細菌菌体を溶解する具体的な方法については、例えば、Green, M.R. and Sambrook, J., 2012, Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New Yorkに記載の方法を参照すればよい。 Examples of the chemical method for crushing microbial cells include an alkali method and an enzyme method. Specific methods for lysing bacterial cells are described in, for example, Green, MR and Sambrook, J., 2012, Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York Please refer to the method.
 得られた細胞抽出物に対して、必要に応じて細胞破砕等のタンパク質を変性除去する処理を行ってもよい。 The obtained cell extract may be subjected to treatment for denaturing and removing proteins such as cell disruption as necessary.
 細胞抽出物からPHAを分離精製する方法は、特に制限しない。例えば、PHAが溶解可能な有機溶媒を抽出溶媒として細胞抽出物に加えて混合し、その後、その抽出溶媒よりも溶解度の低い他の有機溶媒を析出溶媒として加えることで、溶解度の低下により目的のPHAを沈殿させて精製する方法がある。具体的には、例えば、細胞抽出物に抽出溶媒としてクロロホルムを加えPHAを溶解し、続いて、析出溶媒としてヘキサンを加え、沈降したPHAを回収すればよい。抽出溶媒又は析出溶媒としての有機溶媒には、メタノール、エタノールなどのアルコール類、ヘキサン、アセトン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素を使用することができる。その他、特開2005-348640等に記載の公知の精製方法を用いて分離精製してもよい。 The method for separating and purifying PHA from the cell extract is not particularly limited. For example, an organic solvent in which PHA can be dissolved is added to the cell extract as an extraction solvent and mixed, and then another organic solvent having a lower solubility than that of the extraction solvent is added as a precipitation solvent. There is a method to precipitate and purify PHA. Specifically, for example, chloroform may be added to the cell extract as an extraction solvent to dissolve PHA, and then hexane may be added as a precipitation solvent to recover the precipitated PHA. As the extraction solvent or the organic solvent as the precipitation solvent, alcohols such as methanol and ethanol, and halogenated hydrocarbons such as hexane, acetone, chloroform, and 1,2-dichloroethane can be used. In addition, separation and purification may be performed using a known purification method described in JP-A-2005-348640.
 PHAが紅色光合成細菌の菌体外に漏出又は排出され、培養液中に含まれる場合であれば、培養液に前記抽出溶媒を直接加えて混合し、遠心した後、有機溶媒層を回収する。その後、析出溶媒を加え、上記と同様に沈殿したPHAを回収すればよい。 If the PHA is leaked or discharged out of the cells of the red photosynthetic bacteria and contained in the culture solution, the extraction solvent is directly added to the culture solution, mixed, centrifuged, and the organic solvent layer is recovered. Thereafter, a precipitation solvent is added, and the precipitated PHA may be recovered in the same manner as described above.
(目的)
 本発明のPHA生産方法を用いて、紅色光合成細菌を培養することで目的のPHAが細胞内に蓄積することを確認した。
(方法)
1.紅色光合成細菌
 本実施例における紅色光合成細菌は、以下の表1に示す海洋性の紅色硫黄細菌16株、及び表2に示す海洋性の紅色非硫黄細菌17株の計33株を寄託機関から入手して使用した。表中の「Resource number」で「JCM」のコードを有する株はRIKENバイオリソースセンター(日本)から、「DSM」のコードを有する株はDSMZ(ドイツ)から、そして「ATCC」のコードを有する株はATCC(USA)から、入手した。また、表中の「生育温度」は、各寄託機関で公開されている培養温度である。
(the purpose)
Using the PHA production method of the present invention, it was confirmed that the target PHA was accumulated in the cells by culturing red photosynthetic bacteria.
(Method)
1. Red photosynthetic bacteria The red photosynthetic bacteria in this example were obtained from the depository institution, including 16 marine red sulfur bacteria shown in Table 1 below and 17 marine red non-sulfur bacteria shown in Table 2 in total. Used. Strains with “JCM” code in the “Resource number” in the table are from RIKEN BioResource Center (Japan), strains with “DSM” code are from DSMZ (Germany), and strains with “ATCC” code are Obtained from ATCC (USA). The “growth temperature” in the table is the culture temperature disclosed by each depository organization.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記33株のうち、下記増殖培地を用いて、下記培養方法で培養を行った結果、液体培地と寒天培地の少なくとも一方で、3~7日の比較的短い期間内で良好な生育が見られた12株(紅色硫黄細菌3株、紅色非硫黄細菌9株:表1及び2で種名に星印を付した株)を選択し、PHA生産能に関する解析に使用した。
2.細菌培養
 本実施例における紅色光合成細菌は、以下の培地や培養方法で培養した。
(1)培地
・増殖培地A(紅色硫黄細菌増殖用)
 (組成)
 KH2PO4: 0.5g/L, CaCl2・2H2O: 0.15g/L, MgSO4・7H2O: 2.0g/L, NH4Cl: 0.64g/L, NaCl: 20g/L, ピルビン酸ナトリウム: 3.0g/L, yeast extract: 0.4g/L, ビタミンB12: 2mg/L, Na2S・9H2O: 240mg/L, Na2S2O3・5H2O: 1.5g/L, FeCl2・6H2O: 1.5g/L, ZnCl2・5H2O: 70mg/L, MnCl2・4H2O: 100mg/L, H3BO3: 62mg/L, CoCl2・6H2O: 190mg/L, CuCl2・2H2O: 17mg/L, NiCl2・6H2O: 24mg/L, Na2MoO4・H2O: 36mg/L
 培地のpHは7.5に調整した。
・増殖培地B(紅色非硫黄細菌増殖用)
 (組成)
 KH2PO4: 0.5g/L, CaCl2・2H2O: 0.25g/L, MgSO4・7H2O: 3.0g/L, NH4Cl: 0.68g/L, NaCl: 20g/L, リンゴ酸ナトリウム: 3.0g/L, ピルビン酸ナトリウム: 3.0g/L, イースト・エクストラクト: 0.4g/L, クエン酸酸化鉄: 5mg/L, ビタミンB12: 2mg/L, ZnCl2・5H2O: 70 mg/L, MnCl2・4H2O: 100mg/L, H3BO3: 60mg/L, CoCl2・6H2O: 200 mg/L, CuCl2・2H2O: 20mg/L, NiCl2・6H2O: 20mg/L, Na2MoO4・H2O: 40mg/L
 培地のpHは6.8に調整した。
・PHA生産培地A(紅色硫黄細菌PHA生産用)
 (組成)
 増殖培地AからNH4Cl及びピルビン酸ナトリウムを除き、炭素源として、1Lあたり1g 炭酸水素ナトリウム(NaHCO3)及び/又は5g 酢酸ナトリウム(CH3COONa)を添加した。培地のpHは増殖培地Aと同様に7.5に調整した。
・PHA生産培地B(紅色非硫黄細菌PHA生産用)
 (組成)
 増殖培地BからNH4Cl、リンゴ酸ナトリウム及びピルビン酸ナトリウムを除き、炭素源として、1Lあたり1g 炭酸水素ナトリウム(NaHCO3)及び/又は5g 酢酸ナトリウム(CH3COONa)を添加した。培地のpHは増殖培地Bと同様に6.8に調整した。
(2)培養方法
・増殖培養
 各紅色光合成細菌は、遠赤色(far-red)のLED光条件下(ピーク波長730nm、放射照度8W/m2)、30℃にて、multi position stirrer(リモート・マルチ60型 アイシス)を用いてスクリューキャップビン(IWAKI)中で連続振盪しながら培養した。
・PHA生産培養
 紅色硫黄細菌を増殖培地Aで、また紅色非硫黄細菌を増殖培地Bで、それぞれ増殖培養条件で培養し、対数期(OD660=約1.0)の時点で細菌細胞を回収した。回収した細胞は、PHA産生培地で洗浄した後、開始時のOD660が0.1となるようにPHA産生培地で希釈した後、30℃にて、multi position stirrerを用いてスクリューキャップビン中で連続振盪しながら1週間培養した。細胞を1週間後に回収し、20mM Tris-HCl (pH7.0)で洗浄した後、凍結乾燥した。
3.ポリマーの量及び組成の解析
 約0.5~2mgの凍結乾燥細胞を100%エタノール中で70℃にて1時間インキュベートして色素を除いた。これらの細胞を用いて、250μLのクロロホルム、100μLの塩酸、及び850μLのエタノール存在下で、100℃にて4時間、エタノリシス(エタノールを用いたエステル交換反応)を行った。冷却後、反応混合液にリン酸バッファ(pH 8.1)を加えて、0.65N NaOHで中和した。1,500rpmで5分間遠心した後、クロロホルム層を、無水硫酸ナトリウムを通して濾過し、分子篩で30分間インキュベートした。PHAの量と組成を30m × 0.25 mm DB-1キャピラリ―ガスクロマトグラフィーカラム(Agilent Technologies)を装備したGCMS-QP2010 Ultra(Shimadzu)を用いて決定した。
Among the above 33 strains, as a result of culturing by the following culture method using the following growth medium, good growth was observed within a relatively short period of 3 to 7 days on at least one of the liquid medium and the agar medium. 12 strains (3 strains of red sulfur bacteria, 9 strains of red non-sulfur bacteria: strains with a star in the species name in Tables 1 and 2) were selected and used for analysis on PHA production ability.
2. Bacterial culture The red photosynthetic bacteria in this example were cultured by the following medium and culture method.
(1) Medium / growth medium A (for red sulfur bacteria growth)
(composition)
KH 2 PO 4 : 0.5g / L, CaCl 2・ 2H 2 O: 0.15g / L, MgSO 4・ 7H 2 O: 2.0g / L, NH 4 Cl: 0.64g / L, NaCl: 20g / L, pyruvin sodium acid: 3.0g / L, yeast extract: 0.4g / L, vitamin B12: 2mg / L, Na 2 S · 9H 2 O: 240mg / L, Na 2 S 2 O 3 · 5H 2 O: 1.5g / L , FeCl 2・ 6H 2 O: 1.5g / L, ZnCl 2・ 5H 2 O: 70mg / L, MnCl 2・ 4H 2 O: 100mg / L, H 3 BO 3 : 62mg / L, CoCl 2・ 6H 2 O : 190mg / L, CuCl 2・ 2H 2 O: 17mg / L, NiCl 2・ 6H 2 O: 24mg / L, Na 2 MoO 4・ H 2 O: 36mg / L
The pH of the medium was adjusted to 7.5.
・ Growth medium B (for red non-sulfur bacterial growth)
(composition)
KH 2 PO 4 : 0.5g / L, CaCl 2・ 2H 2 O: 0.25g / L, MgSO 4・ 7H 2 O: 3.0g / L, NH 4 Cl: 0.68g / L, NaCl: 20g / L, Apple sodium acid: 3.0 g / L, sodium pyruvate: 3.0 g / L, yeast-extract: 0.4 g / L, ferric citrate: 5 mg / L, vitamin B12: 2mg / L, ZnCl 2 · 5H 2 O: 70 mg / L, MnCl 2・ 4H 2 O: 100 mg / L, H 3 BO 3 : 60 mg / L, CoCl 2・ 6H 2 O: 200 mg / L, CuCl 2・ 2H 2 O: 20 mg / L, NiCl 2・ 6H 2 O: 20mg / L, Na 2 MoO 4・ H 2 O: 40mg / L
The pH of the medium was adjusted to 6.8.
・ PHA production medium A (for red sulfur bacteria PHA production)
(composition)
NH 4 Cl and sodium pyruvate were removed from the growth medium A, and 1 g of sodium bicarbonate (NaHCO 3 ) and / or 5 g of sodium acetate (CH 3 COONa) were added as a carbon source per liter. The pH of the medium was adjusted to 7.5 similarly to the growth medium A.
・ PHA production medium B (for production of red non-sulfur bacteria PHA)
(composition)
NH 4 Cl, sodium malate and sodium pyruvate were removed from the growth medium B, and 1 g of sodium bicarbonate (NaHCO 3 ) and / or 5 g of sodium acetate (CH 3 COONa) was added per liter as a carbon source. The pH of the medium was adjusted to 6.8 similarly to the growth medium B.
(2) Cultivation method / Proliferation culture Each red photosynthetic bacterium is a multi-position stirrer (remote-light) at 30 ° C under far-red LED light conditions (peak wavelength 730nm, irradiance 8W / m 2 ). Incubation was performed in a screw cap bin (IWAKI) using Multi 60 type Isis) with continuous shaking.
PHA production culture Red sulfur bacteria were cultured in growth medium A and red non-sulfur bacteria were grown in growth medium B under growth culture conditions, and bacterial cells were collected at the time of logarithmic phase (OD 660 = about 1.0). The collected cells are washed with PHA production medium, diluted with PHA production medium so that the starting OD 660 is 0.1, and then continuously shaken in a screw cap bottle at 30 ° C using a multi position stirrer. The culture was continued for 1 week. Cells were collected after 1 week, washed with 20 mM Tris-HCl (pH 7.0), and lyophilized.
3. Analysis of Polymer Amount and Composition Approximately 0.5-2 mg of lyophilized cells was incubated for 1 hour at 70 ° C. in 100% ethanol to remove the dye. Using these cells, ethanolysis (ester exchange reaction using ethanol) was performed at 100 ° C. for 4 hours in the presence of 250 μL of chloroform, 100 μL of hydrochloric acid, and 850 μL of ethanol. After cooling, phosphate buffer (pH 8.1) was added to the reaction mixture and neutralized with 0.65N NaOH. After centrifugation at 1,500 rpm for 5 minutes, the chloroform layer was filtered through anhydrous sodium sulfate and incubated on a molecular sieve for 30 minutes. The amount and composition of PHA was determined using a GCMS-QP2010 Ultra (Shimadzu) equipped with a 30 m × 0.25 mm DB-1 capillary-gas chromatography column (Agilent Technologies).
 1μLのサンプル溶液にキャリアガスであるヘリウムを3.30mL/分で注入した。45℃で1分間、温度傾斜7℃/分で117℃まで上昇させる温度プログラムを用いて、エチルエステルを分離した。界面温度及びイオン源温度は、それぞれ250℃及び230℃とした。3HB量は、較正曲線から決定した。3HVの相対量は、3HBの構成極性から推定した。PHA量は、乾燥細胞重量%として算出した。
4.PHAの抽出
 PHAは、クロロホルム中で凍結乾燥細胞から抽出した。抽出物は、濾紙(5C ADVANTEC)を用いて濾過し、ロータリー・バキューム・エバポレーター(アズワン)を用いて濃縮した。その後、クロロホルム抽出したPHAをヘキサンで沈降させることによってPHA精製を行った。PHA沈降物は濾過した後、一晩風乾した。クロロホルム中に溶解したPHAを、ロータリー・バキューム・エバポレーター(アズワン)を用いて再度濃縮し、冷却メタノールで沈降させることによって精製した。PHA沈降物は濾過した後、一晩風乾した。精製したPHAをクロロホルムに溶解し、さらなる解析に用いた。
5.PHAの特徴付け
 精製したPHAをプロトン核磁気共鳴(1H NMR) (JNM-Excalibur 270; JEOL, Ltd.)により解析し、詳細な化学構造及び組成を決定した。NMR用サンプルは、CDCl3中に0.05 v/v %のテトラメチルシラン(TMS) (Wako Pure Chemical Industries, Ltd.)を用いて4 mg/mLの濃度で溶解した。PHAの分子量は、40℃で、Shodex K- 806M、K802及びK-Gカラムを備えたゲル浸透クロマトグラフィー(GPC) (RI-2031, PU-2086, AS-2055, CO-2056; JASCO)により決定した。クロロホルムを流速0.8 mL/分の移動相として用いた。精製したPHAの濃度は、約1 mg/mLであった。またその分子量は、分子量1.32 × 103、3.25 × 103、1.01 × 104、2.85 × 104、6.60 × 104、1.56 × 105、4.60 × 105、1.07 × 106、及び3.15 × 106のポリスチレン標準物との比較によって推定した。
(結果)
 結果を、表3及び4、図1及び2に示す。
Helium as a carrier gas was injected into 1 μL of the sample solution at 3.30 mL / min. The ethyl ester was separated using a temperature program that increased to 117 ° C. with a temperature ramp of 7 ° C./min at 45 ° C. for 1 minute. The interface temperature and ion source temperature were 250 ° C. and 230 ° C., respectively. The amount of 3HB was determined from a calibration curve. The relative amount of 3HV was estimated from the constituent polarity of 3HB. The amount of PHA was calculated as% dry cell weight.
4). Extraction of PHA PHA was extracted from lyophilized cells in chloroform. The extract was filtered using filter paper (5C ADVANTEC) and concentrated using a rotary vacuum evaporator (As One). Thereafter, PHA purification was performed by precipitating chloroform-extracted PHA with hexane. The PHA precipitate was filtered and then air dried overnight. PHA dissolved in chloroform was concentrated again using a rotary vacuum evaporator (As One) and purified by precipitation with chilled methanol. The PHA precipitate was filtered and then air dried overnight. Purified PHA was dissolved in chloroform and used for further analysis.
5. Characterization of PHA Purified PHA was analyzed by proton nuclear magnetic resonance ( 1 H NMR) (JNM-Excalibur 270; JEOL, Ltd.) to determine the detailed chemical structure and composition. The NMR sample was dissolved in CDCl 3 at a concentration of 4 mg / mL using 0.05 v / v% tetramethylsilane (TMS) (Wako Pure Chemical Industries, Ltd.). The molecular weight of PHA was determined by gel permeation chromatography (GPC) (RI-2031, PU-2086, AS-2055, CO-2056; JASCO) equipped with Shodex K-806M, K802 and KG columns at 40 ° C. . Chloroform was used as the mobile phase with a flow rate of 0.8 mL / min. The concentration of purified PHA was about 1 mg / mL. Its molecular weight is 1.32 × 10 3 , 3.25 × 10 3 , 1.01 × 10 4 , 2.85 × 10 4 , 6.60 × 10 4 , 1.56 × 10 5 , 4.60 × 10 5 , 1.07 × 10 6 , and 3.15 × 10 Estimated by comparison with 6 polystyrene standards.
(result)
The results are shown in Tables 3 and 4 and FIGS.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表3は、選択した12種の紅色光合成細菌を増殖培地のみで培養したとき(Growth condition)、及び増殖培地で培養後、増殖培地から窒素源であるNH4Clを除き、炭素源を0.1%の炭酸水素ナトリウム及び0.5%の酢酸ナトリウムに置換したPHA生産培地(w/o NH4Cl;0.1% NaHCO3+0.5% accetate)で培養したときの、乾燥菌体重量あたりのPHA量、及びPHAにおけるポリマーの組成を示している。 Table 3 shows that when 12 selected red photosynthetic bacteria were cultured in the growth medium only (Growth condition), and after culturing in the growth medium, NH 4 Cl as a nitrogen source was removed from the growth medium, and the carbon source was 0.1%. Amount of PHA per dry cell weight when cultured in PHA production medium (w / o NH 4 Cl; 0.1% NaHCO 3 + 0.5% accetate) substituted with 5% sodium bicarbonate and 0.5% sodium acetate, and The composition of the polymer in PHA is shown.
 表4は、選択した12種の紅色光合成細菌を増殖培地で培養後、増殖培地から窒素源であるNH4Clを除き、炭素源を0.1%の炭酸水素ナトリウムのみに置換したPHA生産培地(w/o NH4Cl;0.1% NaHCO3)、及び0.5%の酢酸ナトリウムのみに置換したPHA生産培地(w/o NH4Cl; 0.5% accetate)でそれぞれ培養したときの、乾燥菌体重量あたりのPHA量、及びPHAにおけるポリマーの組成を示している。 Table 4 shows PHA production medium (w) in which 12 selected red photosynthetic bacteria were cultured in a growth medium, NH 4 Cl as a nitrogen source was removed from the growth medium, and the carbon source was replaced with only 0.1% sodium bicarbonate. / o NH 4 Cl; 0.1% NaHCO 3 ), and PHA production medium (w / o NH 4 Cl; 0.5% accetate) substituted only with 0.5% sodium acetate. The amount of PHA and the composition of the polymer in PHA are shown.
 表で示すように検証した全ての紅色光合成細菌がPHAを蓄積できることが判明した。 It turned out that all the red photosynthetic bacteria examined as shown in the table can accumulate PHA.
 紅色硫黄細菌3種、及び紅色非硫黄細菌Afifella marina、Rhodovulum tesquicola及びRoseospira visakhapatnamensisの3種は、生育条件下と比較して窒素制限下で顕著なPHAの蓄積が確認できた。他の6種については、窒素制限によるPHA蓄積量の変化は見られなかった。 Three kinds of red sulfur bacteria and three kinds of red non-sulfur bacteria Afifella marina, Rhodovulum tesquicola and Roseospira visakhapatnamensis were able to confirm significant PHA accumulation under nitrogen restriction compared to growth conditions. For the other 6 species, no change in PHA accumulation due to nitrogen limitation was observed.
 また、本実施例で検証した紅色硫黄光合成細菌は、PHAとして3-ヒドロキシブタン酸(3HB)のみからなるモノポリマー(モノポリエステル)を産生した。一方、本実施例で検証した全ての紅色非硫黄光合成細菌は、3-ヒドロキシブタン酸(3HB)及び3-ヒドロキシバレリン酸(3HV)からなるコポリエステルを産生することが明らかとなった。 Moreover, the red sulfur photosynthetic bacterium verified in this example produced a monopolymer (monopolyester) composed only of 3-hydroxybutanoic acid (3HB) as PHA. On the other hand, it became clear that all the red non-sulfur photosynthetic bacteria verified in this example produced a copolyester composed of 3-hydroxybutanoic acid (3HB) and 3-hydroxyvaleric acid (3HV).
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents and patent applications cited in this specification are incorporated herein by reference in their entirety.

Claims (12)

  1.  紅色光合成細菌を用いたポリヒドロキシアルカン酸の生産方法であって、
     液体培地を撹拌させながら遠赤色光を照射して紅色光合成細菌を培養する培養工程を含む、前記生産方法。
    A method for producing polyhydroxyalkanoic acid using red photosynthetic bacteria,
    The said production method including the culture | cultivation process of irradiating far-red light, stirring a liquid culture medium, and culture | cultivating a red photosynthetic bacterium.
  2.  前記遠赤色光が720nm~860nmにピーク波長を有する光である、請求項1に記載の生産方法。 The production method according to claim 1, wherein the far-red light is light having a peak wavelength at 720 nm to 860 nm.
  3.  前記培養工程が、
     紅色光合成細菌を増殖培地中で培養する増殖ステップ、
     前記増殖ステップ後の培養液中の紅色光合成細菌を回収する菌体回収ステップ、及び
     回収した紅色光合成細菌を有機酸及び/又は炭酸を炭素源とするポリヒドロキシアルカン酸生産培地で培養するポリヒドロキシアルカン酸蓄積ステップ
    を含む、請求項1又は2に記載の生産方法。
    The culturing step comprises:
    A growth step of cultivating the red photosynthetic bacteria in a growth medium;
    A cell recovery step for recovering red photosynthetic bacteria in the culture solution after the growth step, and a polyhydroxyalkane in which the recovered red photosynthetic bacteria are cultured in a polyhydroxyalkanoic acid production medium using an organic acid and / or carbonic acid as a carbon source. The production method according to claim 1, comprising an acid accumulation step.
  4.  前記増殖ステップにおいて、紅色光合成細菌を対数増殖期まで培養する、請求項3に記載の生産方法。 The production method according to claim 3, wherein in the growth step, the red photosynthetic bacteria are cultured until the logarithmic growth phase.
  5.  前記ポリヒドロキシアルカン酸蓄積ステップにおいて、紅色光合成細菌を後期対数増殖期又は初期静止期まで培養する、請求項3又は4に記載の生産方法。 The production method according to claim 3 or 4, wherein in the polyhydroxyalkanoic acid accumulation step, the red photosynthetic bacteria are cultured until the late logarithmic growth phase or the early stationary phase.
  6.  前記ポリヒドロキシアルカン酸生産培地が増殖培地の炭素源を有機酸塩及び/又は炭酸塩に置換した培地である、請求項3~5のいずれか一項に記載の生産方法。 The production method according to any one of claims 3 to 5, wherein the polyhydroxyalkanoic acid production medium is a medium in which the carbon source of the growth medium is replaced with an organic acid salt and / or carbonate.
  7.  前記ポリヒドロキシアルカン酸生産培地が窒素源、リン酸源、及びビタミンのいずれか一以上を欠乏している、請求項3~6のいずれか一項に記載の生産方法。 The production method according to any one of claims 3 to 6, wherein the polyhydroxyalkanoic acid production medium is deficient in any one or more of a nitrogen source, a phosphate source, and a vitamin.
  8.  前記培養工程後の培養液に含まれる菌体を回収する回収工程を含む、請求項1~7のいずれか一項に記載の生産方法。 The production method according to any one of claims 1 to 7, further comprising a recovery step of recovering bacterial cells contained in the culture solution after the culture step.
  9.  前記培養工程後の培養液、又は紅色光合成細菌からポリヒドロキシアルカン酸を抽出する抽出工程をさらに含む、請求項1~8のいずれか一項に記載の生産方法。 The production method according to any one of claims 1 to 8, further comprising an extraction step of extracting polyhydroxyalkanoic acid from the culture solution after the culturing step or the red photosynthetic bacterium.
  10.  紅色光合成細菌が海洋性光合成細菌である、請求項1~9のいずれか一項に記載の生産方法。 The production method according to any one of claims 1 to 9, wherein the red photosynthetic bacterium is a marine photosynthetic bacterium.
  11.  紅色光合成細菌がMarichromatium bheemlicum、Thiohalocapsa marina、Thiophaeococcus mangrovi、Afifella pfennigii、Afifella marina、Rhodovulum euryhalinum、Rhodovulum imhoffii、Rhodovulum sulfidophilum、Rhodovulum tesquicola、Rhodovulum visakhapatnamense、Roseospira goensis及びRoseospira marinaからなる群から選択される、請求項10に記載の生産方法。 Red photosynthetic bacteria are selected from Marichromatium he bheemlicum, Thiohalocapsa marina, Thiophaeococcus mangrovi, Afifella pfennigii, Afifella marina, Rhodovulum euryhalinum, Rhodovulum imhoffii, Rhodovulum sulfidophilum, Rhodovum 項The production method described in.
  12.  紅色光合成細菌がMarichromatium bheemlicum JCM13911、Thiohalocapsa marina JCM14780、Thiophaeococcus mangrovi JCM14889、Afifella pfennigii ATCC BAA1145、Afifella marina DSM2698、Rhodovulum euryhalinum DSM4868、Rhodovulum imhoffii JCM13589、Rhodovulum sulfidophilum ATCC35886、Rhodovulum tesquicola ATCC BAA1573、Rhodovulum visakhapatnamense JCM13531、Roseospira goensis JCM14191及びRoseospira marina ATCC BAA447からなる群から選択される、請求項11に記載の生産方法。 Purple photosynthetic bacteria Marichromatium bheemlicum JCM13911, Thiohalocapsa marina JCM14780, Thiophaeococcus mangrovi JCM14889, Afifella pfennigii ATCC BAA1145, Afifella marina DSM2698, Rhodovulum euryhalinum DSM4868, Rhodovulum imhoffii JCM13589, Rhodovulum sulfidophilum ATCC35886, Rhodovulum tesquicola ATCC BAA1573, Rhodovulum visakhapatnamense JCM13531, Roseospira goensis JCM14191 and The production method according to claim 11, which is selected from the group consisting of Roseospiraomarina ATCC BAA447.
PCT/JP2016/068282 2015-06-26 2016-06-20 Method for producing polyhydroxyalkanoic acid using purple photosynthetic bacterium WO2016208542A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015128590A JP2018133997A (en) 2015-06-26 2015-06-26 Method for producing polyhydroxyalkanoic acid using purple photosynthetic bacteria
JP2015-128590 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016208542A1 true WO2016208542A1 (en) 2016-12-29

Family

ID=57585921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068282 WO2016208542A1 (en) 2015-06-26 2016-06-20 Method for producing polyhydroxyalkanoic acid using purple photosynthetic bacterium

Country Status (2)

Country Link
JP (1) JP2018133997A (en)
WO (1) WO2016208542A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108410702A (en) * 2018-03-13 2018-08-17 尹康康 A kind of photosynthetic bacteria culture instrument
CN108485941A (en) * 2018-03-13 2018-09-04 尹康康 A kind of photosynthetic bacteria cultural method
CN112430557A (en) * 2020-12-18 2021-03-02 河北大学 high-PHA-yield Kabayeri strain, screening method and PHA production method thereof
WO2022132053A1 (en) * 2020-12-17 2022-06-23 Nanyang Technological University A method for polyhydroxyalkanoate production
WO2023080204A1 (en) * 2021-11-04 2023-05-11 Symbiobe株式会社 Culture method for promoting proliferation and carbon fixation of purple photosynthetic bacteria

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021193847A1 (en) 2020-03-27 2021-09-30
WO2023214591A1 (en) * 2022-05-06 2023-11-09 Symbiobe株式会社 Aquaculture feed

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BRANDL, HELMUT ET AL.: "Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly(beta-hydroxyalkanoates): potential sources for biodegradable polyesters", INT. J. BIOL. MACROMOL., vol. 11, 1989, pages 49 - 55, XP001135164, DOI: doi:10.1016/0141-8130(89)90040-8 *
CHOWDHURY, WASIMUL Q. ET AL.: "Factors Affecting Polyhydroxybutyrate Biosynthesis in the Marine Photosynthetic Bacterium Rhodopseudomonas sp. Strain W-1S", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 57 / 58, 1996, pages 361 - 366 *
DO, YOUNG S. ET AL.: "Growth of Phodospirillum rubrum on Synthesis Gas: Conversion of CO to H2 and Poly-beta-hydroxyalkanoate", BIOTECHNOLOGY AND BIOENGINEERING, vol. 97, 2007, pages 279 - 286 *
GIRAUD, ERIC ET AL.: "Bacteriophytochrome and regulation of the synthesis of the photosynthetic apparatus in Rhodopseudomonas palustris: pitfalls of using laboratory strains", PHOTOCHEM. PHOTOBIOL. SCI., vol. 3, 2004, pages 587 - 591 *
HIGUCHI-TAKEUCHI, MIEKO ET AL.: "Polyhydroxyalkanoates production in marine photosynthetic purple bacteria", POLYMER PREPRINTS, JAPAN, vol. 64, no. 1, pages 1M12 *
HOLT, STANLEY C. ET AL.: "Fine Structure of Ectothiorhodospira mobilis Strain 8113 Thylakoids: Chemical Fixation and Freeze- etching Studies", ARCHIV FUER MIKROBIOLOGIE, vol. 62, 1968, pages 111 - 128 *
KOJADINOVIC, MILA ET AL.: "Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopsdeudomonas palustris: Enhancement of photosystem synthesis and limitaion of respiration", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1777, 2008, pages 163 - 172, XP022433969, DOI: doi:10.1016/j.bbabio.2007.09.003 *
LIEBERGESELL, MATTHIAS ET AL.: "Formation ot poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria", ARCH MICROBIOL, vol. 155, 1991, pages 415 - 421, XP001320312 *
MIEKO HIGUCHI ET AL.: "Kaiyosei Kogosei Saikin ni yoru Polyhydroxyalkanoates (PHA) no Seisan", THE 56 TH PROCEEDINGS OF THE ANNUAL MEETING OF THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS, vol. 1aC10, no. 0030, 9 March 2015 (2015-03-09), pages 130 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108410702A (en) * 2018-03-13 2018-08-17 尹康康 A kind of photosynthetic bacteria culture instrument
CN108485941A (en) * 2018-03-13 2018-09-04 尹康康 A kind of photosynthetic bacteria cultural method
CN108410702B (en) * 2018-03-13 2021-09-21 南京棠邑科创服务有限公司 Photosynthetic bacteria culture instrument
CN108485941B (en) * 2018-03-13 2021-09-21 山东安特博迪生物技术中心 Photosynthetic bacterium culture method
WO2022132053A1 (en) * 2020-12-17 2022-06-23 Nanyang Technological University A method for polyhydroxyalkanoate production
CN112430557A (en) * 2020-12-18 2021-03-02 河北大学 high-PHA-yield Kabayeri strain, screening method and PHA production method thereof
WO2023080204A1 (en) * 2021-11-04 2023-05-11 Symbiobe株式会社 Culture method for promoting proliferation and carbon fixation of purple photosynthetic bacteria

Also Published As

Publication number Publication date
JP2018133997A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2016208542A1 (en) Method for producing polyhydroxyalkanoic acid using purple photosynthetic bacterium
Elain et al. Valorisation of local agro-industrial processing waters as growth media for polyhydroxyalkanoates (PHA) production
US10961387B2 (en) Methods for producing biopolymer matrix composites
Rathi et al. Polyhydroxyalkanoate biosynthesis and simplified polymer recovery by a novel moderately halophilic bacterium isolated from hypersaline microbial mats
Carlozzi et al. Poly-3-hydroxybutyrate and H2 production by Rhodopseudomonas sp. S16-VOGS3 grown in a new generation photobioreactor under single or combined nutrient deficiency
Anis et al. Effect of different recovery strategies of P (3HB-co-3HHx) copolymer from Cupriavidus necator recombinant harboring the PHA synthase of Chromobacterium sp. USM2
JP2024091851A (en) Transformed microorganisms and methods for producing polyhydroxyalkanoate
JP6274494B2 (en) Production method of polyhydroxyalkanoic acid by microorganisms
Kavitha et al. Mass cultivation of UV-B adapted Arthrospira platensis RRGK under open raceway pond for the production of Poly-β-hydroxy butyrate
CN115651874B (en) Culture medium and culture method for culturing halophilic microorganisms
Rueda et al. Challenges, progress, and future perspectives for cyanobacterial polyhydroxyalkanoate production
WO2012166822A2 (en) Method to produce polyhydroxyalkanoates from water-based feedstock streams
Ataei et al. Isolation of PHA–producing bacteria from date syrup waste
Koller et al. Physiological, kinetic, and process engineering aspects of polyhydroxyalkanoate biosynthesis by extremophiles
Maity et al. Effect of vitamin on accumulation of PHB by Zobellella species under submerged fermentation process
Martínez-Burgos et al. Production of Bioplastics Through Microorganisms
KR20160083470A (en) A Method for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) comprising high amounts of 3-hydroxy hexanoate using butyrate
Đoàn et al. Isolation of halophilic bacterial strains from mangrove soil samples for polyhydroxyalkanoate production
Liew et al. Characterization of P (3HB) from untreated raw palm oil mill effluent using Azotobacter vinelandii Δ Avin_16040 lacking S-layer protein
Rueda Hernández et al. Challenges, progress, and future perspectives for cyanobacterial polyhydroxyalkanoate production
JP2007028987A (en) Method for separating and purifying polyhydroxyalkanoic acid
JP4688570B2 (en) Polyhydroxybutyrate-producing bacteria
Rueda et al. Challenges, Progress, and Future Perspectives for Cyanobacterial Polyhydroxybutyrate Production
LAKHAWAT et al. Mutagenesis of Azotobacter vinelandii Strain and Production of Polyβ-Hydroxybutyrate from Distillery Spent Wash.
JP2007125004A (en) Method for producing polyhydroxyalkanoic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP