WO2016208479A1 - Method for producing cured film, and cured film - Google Patents

Method for producing cured film, and cured film Download PDF

Info

Publication number
WO2016208479A1
WO2016208479A1 PCT/JP2016/067877 JP2016067877W WO2016208479A1 WO 2016208479 A1 WO2016208479 A1 WO 2016208479A1 JP 2016067877 W JP2016067877 W JP 2016067877W WO 2016208479 A1 WO2016208479 A1 WO 2016208479A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cured film
active energy
energy ray
curable composition
Prior art date
Application number
PCT/JP2016/067877
Other languages
French (fr)
Japanese (ja)
Inventor
光司 吉林
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017525283A priority Critical patent/JP6445156B2/en
Priority to KR1020177034994A priority patent/KR102028938B1/en
Publication of WO2016208479A1 publication Critical patent/WO2016208479A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to a method for producing a cured film using an electron beam, and a cured film.
  • the color filter is manufactured as follows. First, a curable composition (colored composition) containing a colorant is applied onto a substrate such as a glass substrate to form a colored composition layer. Next, the colored composition layer is exposed and developed to form a pattern. Next, the patterned colored composition layer is heat-treated (post-baked) to sufficiently cure the colored composition layer. In this way, the color filter is manufactured. Also known is a method for producing a cured film by irradiating a curable composition with an electron beam (see Patent Documents 1 to 5).
  • a cured film has been manufactured on a base material made of a material having excellent heat resistance such as silicon. In recent years, it has been required to produce a cured film on a substrate having poor heat resistance. In producing a cured film on a substrate having inferior heat resistance, it is desirable to produce a cured film by, for example, a low-temperature process of 100 ° C. or less to suppress thermal damage to the substrate.
  • a cured film is produced by a low-temperature process, problems such as abnormal appearance, large fluctuations in film thickness, large fluctuations in transmittance, etc. are likely to occur after performing a temperature cycle test or a constant temperature and humidity test. Compared with the cured film manufactured through the heat treatment at 1, the reliability of the cured film tended to be inferior.
  • an object of the present invention is to provide a method for producing a cured film and a cured film, which can produce a cured film having excellent reliability by a low temperature process.
  • a cured film having excellent reliability can be produced by a low-temperature process by irradiating an active energy ray-curable composition with an electron beam having an acceleration voltage of 10 kV or more and less than 100 kV.
  • the present invention has been completed.
  • the present invention provides the following. ⁇ 1> A method for producing a cured film, comprising a step of irradiating an electron beam having an acceleration voltage of 10 kV or more and less than 100 kV to a layer of an active energy ray-curable composition on a substrate, which is 100 ° C. throughout the entire process.
  • the manufacturing method of the cured film performed at the following temperature.
  • ⁇ 2> The method for producing a cured film according to ⁇ 1>, wherein the active energy ray-curable composition contains an alkali-soluble resin.
  • the base material is a thermoplastic resin base material composed of a thermoplastic resin having a glass transition temperature of 100 ° C. or lower.
  • the substrate is a glass substrate having a thickness of 0.5 mm or less.
  • the base material includes an organic semiconductor layer.
  • ⁇ 6> The method for producing a cured film according to ⁇ 1> or ⁇ 2>, wherein the substrate has an organic semiconductor layer on the surface.
  • an electron beam includes a step of exposing the layer of the active energy ray-curable composition, and a step of developing the layer of the active energy ray-curable composition after the step of exposing to form a pattern.
  • the active energy ray-curable composition comprises 0.01 to 5.0% by mass of a silane coupling agent in the solid content of the active energy ray-curable composition, according to ⁇ 1> to ⁇ 9> The manufacturing method of the cured film in any one.
  • ⁇ 12> The method for producing a cured film according to any one of ⁇ 1> to ⁇ 11>, wherein the active energy ray-curable composition contains at least one selected from a chromatic colorant and a black colorant.
  • ⁇ 13> The method for producing a cured film according to any one of ⁇ 1> to ⁇ 12>, wherein the cured film has an optical density of 1 or more with respect to any wavelength in a wavelength range of 260 to 440 nm.
  • ⁇ 14> The method for producing a cured film according to ⁇ 13>, wherein the cured film has a minimum optical density of 1 or more in a wavelength range of 260 to 440 nm.
  • ⁇ 15> The method for producing a cured film according to ⁇ 13>, wherein the cured film has an optical density of 1 or more with respect to a wavelength of 365 nm.
  • ⁇ 16> The method for producing a cured film according to any one of ⁇ 1> to ⁇ 15>, wherein the active energy ray-curable composition contains a photopolymerization initiator and a radical polymerizable compound.
  • the active energy ray-curable composition contains an acid generator and a cationically polymerizable compound.
  • ⁇ 18> The method for producing a cured film according to any one of ⁇ 1> to ⁇ 17>, wherein the cured film has a thickness of 0.1 to 45 ⁇ m.
  • ⁇ 19> The cured film according to any one of ⁇ 1> to ⁇ 18>, wherein the active energy ray-curable composition is applied onto a substrate and then dried to form a layer of the active energy ray-curable composition.
  • ⁇ 20> The method for producing a cured film according to any one of ⁇ 1> to ⁇ 19>, comprising a step of vacuum drying.
  • ⁇ 21> The method for producing a cured film according to any one of ⁇ 1> to ⁇ 20>, further comprising a step of heat-treating the layer irradiated with the electron beam at a temperature of 100 ° C. or lower.
  • the base material is a thermoplastic resin base material, and the heat treatment is performed at a temperature not higher than the glass transition temperature of the thermoplastic resin base material and not higher than 100 ° C.
  • ⁇ 23> A cured film obtained by the method for producing a cured film according to any one of ⁇ 1> to ⁇ 22>.
  • the present invention it is possible to provide a cured film manufacturing method and a cured film that can manufacture a cured film having excellent reliability by a low-temperature process.
  • group atomic group
  • substitution and non-substitution is meant to include not only those having no substituent but also those having a substituent.
  • alkyl group includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • light means actinic rays or radiation.
  • Actinic light or “radiation” means, for example, the emission line spectrum of a mercury lamp and far ultraviolet rays, extreme ultraviolet rays (EUV light) typified by excimer laser, X-rays, electron beams, and the like.
  • exposure means not only exposure using far-ultraviolet rays such as mercury lamps and excimer lasers, X-rays and EUV light, but also particle beams such as electron beams and ion beams, unless otherwise specified. Including drawing used.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the “total solid content” refers to the total mass of components excluding the solvent from the total composition.
  • “(meth) acrylate” represents both and / or acrylate and methacrylate
  • “(meth) acryl” represents both and / or acrylic and “(meth) acrylic”.
  • Allyl represents both and / or allyl and methallyl
  • “(meth) acryloyl” represents both and / or acryloyl and methacryloyl.
  • the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • a weight average molecular weight and a number average molecular weight are defined as a polystyrene conversion value in gel permeation chromatography (GPC) measurement.
  • an electron having an acceleration voltage of 10 kV or more and less than 100 kV is applied to a layer of an active energy ray curable composition (hereinafter also referred to as an active energy ray curable composition layer) on a substrate.
  • an active energy ray curable composition layer is a manufacturing method of a cured film including the process of irradiating a line, and the manufacturing method of a cured film is performed at the temperature of 100 degrees C or less through all the processes.
  • the active energy ray-curable composition layer is irradiated with an electron beam having an acceleration voltage of 10 kV or more and less than 100 kV at a low temperature of 100 ° C.
  • “performed at a temperature of 100 ° C. or lower throughout all steps” means that all steps of curing the active energy ray-curable composition layer to form a cured film are performed at a temperature of 100 ° C. or lower. This means that each step of the manufacturing process of the cured film is performed at a temperature of 100 ° C. or less. That is, when the manufacturing process of the cured film further includes other steps in addition to the step of irradiating the electron beam, the other steps are also performed at a temperature of 100 ° C. or lower.
  • the process of forming an active energy ray curable composition layer is also performed at 100 degrees C or less.
  • the process to expose is also performed at 100 degrees C or less.
  • the process of forming a pattern with respect to the active energy ray curable composition layer on a base material is also performed at the temperature of 100 degrees C or less.
  • post-processing is also performed at the temperature of 100 degrees C or less.
  • post-processing such as heat processing with respect to the active energy ray-curable composition layer after electron beam irradiation
  • post-processing is also performed at the temperature of 100 degrees C or less.
  • dicing dividing into chips
  • bonding or the like may be further performed.
  • the process after the cured film is formed is not included in the “all processes” in the present invention. That is, the process after forming the cured film may be performed at a temperature exceeding 100 ° C.
  • the process after forming the cured film may be performed at a temperature exceeding 100 ° C.
  • cracking and warping may occur in the substrate if it is performed at a temperature exceeding 100 ° C. during formation of the cured film, but the temperature exceeds 100 ° C. after dicing. This is because cracking and warping are less likely to occur even when heated.
  • each process is demonstrated in order about the manufacturing method of the cured film of this invention.
  • An active energy ray-curable composition layer is formed on a substrate using the active energy ray-curable composition.
  • the active energy ray-curable composition will be described later.
  • the base material comprised with glass, a silicon
  • glass Corning's non-alkali glass Eagle series, 1737, such as glass used for optical equipment and display equipment, glass with an organic layer formed by dispersing or kneading a dye having a UV cut or infrared cut function (Including a form sandwiched with glass).
  • the resin examples include polyethylene, polypropylene, vinyl chloride, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, polyethylene terephthalate, acrylic, polyvinyl alcohol, vinylidene chloride, polycarbonate, polyamide, polyacetal, polybutylene.
  • a terephthalate, a fluororesin, etc. are mentioned, Among these, it can be used combining 1 type (s) or 2 or more types.
  • An organic light emitting layer, an organic semiconductor layer such as an organic photoelectric conversion layer, or the like may be formed on these base materials.
  • organic semiconductor examples include organic electro-renaissance (OLED), organic field effect transistor (OFET), and organic solar cell (OPV).
  • organic-semiconductor layer can also be used as a base material.
  • film thickness of a base material changes with uses and materials, the thickness of a general base material is applicable.
  • a cured film can be formed without damaging the substrate even for a substrate with poor heat resistance, and thus is particularly effective for a substrate with low heat resistance.
  • the substrate having low heat resistance include a glass substrate having a thickness of 0.5 mm or less, a thermoplastic resin substrate, a substrate including an organic semiconductor layer (preferably a substrate having an organic semiconductor layer on the surface), and the like. Is mentioned.
  • the thermoplastic resin substrates for example, in the case of a substrate composed of a thermoplastic resin having a glass transition temperature of 95 ° C. or lower, the effect of the present invention is remarkable. Particularly in a flexible substrate, a thermoplastic resin having a glass transition temperature of 90 ° C. or lower is more used.
  • the lower limit of the glass transition temperature of the thermoplastic resin is not particularly limited.
  • it may be normal temperature (23 ° C.) or higher.
  • the temperature below normal temperature can also be made into a lower limit.
  • the temperature can be 0 ° C. or higher, ⁇ 50 ° C. or higher, ⁇ 100 ° C. or higher, or ⁇ 150 ° C. or higher.
  • the lower temperature is set as the value of the glass transition temperature in the present invention.
  • the upper limit of the film thickness of the glass substrate is preferably 0.5 mm or less, and more preferably 0.3 mm or less. Although a minimum is not specifically limited, It can also be 0.1 mm or more.
  • the active energy ray-curable composition As an application method of the active energy ray-curable composition to the substrate, various methods such as slit coating, ink jet method, spin coating, cast coating, roll coating, screen printing method, spray coating and the like can be used.
  • the application amount of the active energy ray-curable composition is preferably adjusted so that the film thickness after drying is 0.1 to 45 ⁇ m.
  • the upper limit is more preferably 44 ⁇ m or less, still more preferably 43 ⁇ m or less, and particularly preferably 40 m or less.
  • the lower limit is more preferably 0.2 ⁇ m or more.
  • the active energy ray-curable composition layer formed on the substrate may be dried. Drying includes room temperature drying, heat drying, vacuum drying, and the like, and vacuum drying is preferred because of drying speed and low temperature drying.
  • the vacuum drying is preferably performed under conditions of a degree of vacuum of 0.02 PaG or more and a temperature of 100 ° C. or less.
  • the degree of vacuum is more preferably 0.05 PaG or more, and further preferably 0.09 PaG or more. The higher the degree of vacuum, the faster the drying speed and the shorter the drying time.
  • the temperature condition is more preferably 70 ° C. or lower.
  • the lower limit can be, for example, 23 ° C. or higher, and can be 30 ° C. or higher.
  • the drying time is preferably 30 seconds to 1 hour, more preferably 1 minute to 30 minutes, and even more preferably 2 minutes to 20 minutes.
  • the heat drying is preferably performed at 100 ° C. or less, more preferably 80 ° C. or less, and further preferably 70 ° C. or less. A lower limit can be 23 degreeC or more, for example.
  • the heating time is preferably 30 seconds to 1 hour, more preferably 1 minute to 30 minutes, and even more preferably 2 minutes to 20 minutes.
  • drying may be performed immediately before the process of irradiating the electron beam mentioned later, and may be performed after the process of irradiating an electron beam. Further, it may be performed before or after the development processing described later.
  • the active energy ray-curable composition layer formed on the substrate may be exposed.
  • the exposure may be a whole surface exposure or a pattern exposure through a mask.
  • pattern exposure can be performed by exposing the active energy ray-curable composition layer formed on the base material through a mask having a predetermined mask pattern using an exposure apparatus such as a stepper. Thereby, an exposed part can be hardened.
  • the radiation (light) that can be used for exposure is preferably ultraviolet rays. Examples of ultraviolet rays include g-line, i-line, KrF, ArF and the like, and i-line is preferable.
  • Irradiation dose (exposure dose) for example, preferably 30 ⁇ 5000mJ / cm 2, more preferably 50 ⁇ 4000mJ / cm 2, more preferably 80 ⁇ 3000mJ / cm 2.
  • the active energy ray-curable composition layer When the active energy ray-curable composition layer is exposed in a pattern, it is preferable to develop and remove the unexposed portion to form a pattern.
  • the development removal of the unexposed portion can be performed using a developer. Thereby, the active energy ray-curable composition layer in the unexposed part is eluted in the developer, and only the photocured part remains.
  • the developer an alkali developer that does not damage the substrate is desirable.
  • the temperature of the developer is preferably 20 to 30 ° C., for example.
  • the development time is preferably 20 to 180 seconds.
  • alkaline agent used in the developer examples include ammonia water, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide.
  • organic alkaline compounds such as choline, pyrrole, piperidine and 1,8-diazabicyclo [5.4.0] -7-undecene.
  • the inorganic alkaline compound for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, sodium silicate, sodium metasilicate and the like are preferable.
  • a surfactant may be used for the developer. Examples of the surfactant include surfactants described in the later-described active energy ray-curable composition, and nonionic surfactants are preferable.
  • the content of the surfactant is preferably 0.001 to 2.0% by mass, and 0.01 to 1.0% by mass with respect to the total mass of the developer. More preferred.
  • a developer comprising such an alkaline aqueous solution
  • the active energy ray-curable composition layer on the substrate is irradiated with an electron beam.
  • the active energy ray-curable composition layer is subjected only to the exposure and not subjected to the development, it is preferable to irradiate an electron beam after the exposure.
  • Acceleration voltage of electron beam is 10 kV or more and less than 100 kV.
  • the lower limit is preferably 15 kV or more, more preferably 20 kV or more, and further preferably 30 kV or more.
  • the upper limit is preferably 99 kV or less, more preferably 98 kV or less, and even more preferably 97 kV or less.
  • the tube current of the electron beam is preferably 0.01 to 10 mA. If the tube current of the electron beam is in the above range, the electron beam density emitted from the filament is sufficiently maintained, and a cured film having excellent reliability can be produced. Furthermore, the appearance and spectral characteristics of the cured film obtained are also good.
  • the tube current of the electron beam is preferably 0.01 mA or more, more preferably 0.1 mA or more, and further preferably 1 mA or more.
  • the upper limit is preferably 10 mA or less, more preferably 9 mA or less, and even more preferably 8 mA or less. As long as the durability of the filament is maintained, the setting of the tube current is preferably large.
  • the electron beam is preferably irradiated in a range where the absorbed dose of the electron beam of the cured film is 10 kGy or more.
  • the absorbed dose of the electron beam is within the above range, a cured film having excellent reliability can be produced.
  • the absorbed dose of the electron beam is more preferably 15 kGy or more, and further preferably 20 kGy or more.
  • the treatment temperature (temperature in the apparatus) is 100 ° C. or lower, preferably 80 ° C. or lower, and more preferably 70 ° C. or lower.
  • the lower limit can be, for example, 10 ° C. or higher, 15 ° C. or higher, or 20 ° C. or higher.
  • the electron beam irradiation is performed in an atmosphere having an oxygen concentration of 3000 ppm by volume or less.
  • the oxygen concentration is more preferably 1000 ppm by volume or less.
  • the clearance between the base material and the electron irradiation source is preferably 1 to 30 mm, more preferably 5 to 10 mm.
  • the heat-process temperature is preferably, for example, a temperature exceeding 23 ° C. to 100 ° C. or less.
  • the upper limit is more preferably 80 ° C. or less, and further preferably 70 ° C. or less.
  • the upper limit of the heat treatment temperature is a temperature of 100 ° C. or lower, preferably a temperature not higher than the glass transition of the thermoplastic resin base material.
  • the upper limit of heat processing temperature is 100 degreeC.
  • the heat treatment is performed by continuously heating the active energy ray-curable composition layer after electron beam irradiation using a heating means such as a hot plate, a convection oven (hot air circulation dryer), a high-frequency heater, or the like so as to satisfy the above conditions. It can be performed in a batch or batch mode. Further, vacuum drying may be performed instead of the heat treatment. Further, heat treatment and vacuum drying may be used in combination.
  • any active energy ray-curable composition can be preferably used as long as it is a composition that cures upon irradiation with active energy rays.
  • active energy rays refer to those that can impart energy capable of generating starting species in the composition by irradiation, such as ⁇ rays, ⁇ rays, X rays, ultraviolet rays, visible rays, An electron beam etc. are mentioned.
  • the active energy ray-curable composition preferably contains a resin.
  • the resin is blended, for example, for the purpose of dispersing a pigment or the like in the composition and the purpose of a binder.
  • a resin used mainly for dispersing pigments is also called a dispersant.
  • the resin is merely an example, and the resin can be used for other purposes.
  • the weight average molecular weight (Mw) of the resin is preferably 2,000 to 2,000,000.
  • the upper limit is more preferably 1,000,000 or less, and further preferably 500,000 or less.
  • the lower limit is more preferably 3,000 or more, and even more preferably 5,000 or more.
  • Resins include (meth) acrylic resin, epoxy resin, ene thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin, polyimide Examples thereof include resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, polyester resins, and siloxane resins. One of these resins may be used alone, or two or more thereof may be mixed and used.
  • the content of the resin is preferably 10 to 80% by mass, more preferably 20 to 60% by mass, based on the total solid content of the active energy ray-curable composition.
  • the active energy ray-curable composition may contain only one type of resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the active energy ray-curable composition preferably contains an alkali-soluble resin as a resin. By containing an alkali-soluble resin, developability and pattern formability are improved.
  • the alkali-soluble resin can also be used as a dispersant or a binder.
  • the molecular weight of the alkali-soluble resin is not particularly defined, but the weight average molecular weight (Mw) is preferably 5000 to 100,000.
  • the number average molecular weight (Mn) is preferably 1000 to 20,000.
  • the alkali-soluble resin may be a linear organic polymer, and at least one alkali solution is dissolved in a molecule (preferably a molecule having an acrylic copolymer or a styrene copolymer as a main chain). It can select suitably from resin which has group which accelerates
  • the alkali-soluble resin is preferably a polyhydroxystyrene resin, a polysiloxane resin, an acrylic resin, an acrylamide resin, or an acrylic / acrylamide copolymer resin from the viewpoint of heat resistance.
  • Acrylic resins, acrylamide resins, and acrylic / acrylamide copolymer resins are preferred.
  • Examples of the group that promotes alkali dissolution include a carboxyl group, a phosphoric acid group, a sulfonic acid group, and a phenolic hydroxyl group. What can be developed is preferable, and (meth) acrylic acid is particularly preferable. These acid groups may be used alone or in combination of two or more.
  • a known radical polymerization method can be applied.
  • Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by radical polymerization can be easily set by those skilled in the art. It can also be determined.
  • alkali-soluble resin a polymer having a carboxylic acid in the side chain is preferable, and a methacrylic acid copolymer, an acrylic acid copolymer, an itaconic acid copolymer, a crotonic acid copolymer, a maleic acid copolymer, and a partial esterification are used.
  • alkali-soluble phenol resins such as maleic acid copolymers and novolac resins, acidic cellulose derivatives having a carboxyl group in the side chain, and resins obtained by adding an acid anhydride to a polymer having a hydroxyl group.
  • a copolymer of (meth) acrylic acid and another monomer copolymerizable therewith is suitable as the alkali-soluble resin.
  • examples of other monomers copolymerizable with (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds.
  • alkyl (meth) acrylate and aryl (meth) acrylate methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate
  • vinyl compound examples include hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like.
  • Styrene ⁇ -methylstyrene, vinyl toluene, glycidyl methacrylate, acrylonitrile, vinyl acetate, N-vinyl pyrrolidone, tetrahydrofurfuryl methacrylate, poly Styrene macromonomer, polymethylmethacrylate macromonomer, and the like.
  • examples of other monomers include N-substituted maleimide monomers described in JP-A-10-300922, such as N-phenylmaleimide and N-cyclohexylmaleimide.
  • only 1 type may be sufficient as the other monomer copolymerizable with these (meth) acrylic acids, and 2 or more types may be sufficient as it.
  • an alkali-soluble resin having a polymerizable group may be used.
  • the polymerizable group include a (meth) allyl group and a (meth) acryloyl group.
  • an alkali-soluble resin having a polymerizable group an alkali-soluble resin containing a polymerizable group in a side chain is useful.
  • the alkali-soluble resin having a polymerizable group may be a thermosetting resin or a photocurable resin.
  • alkali-soluble resin containing a polymerizable group examples include Dianal NR series (manufactured by Mitsubishi Rayon Co., Ltd.), Photomer 6173 (COOH-containing polyurethane acrylic acid oligomer, manufactured by Diamond Shamrock Co., Ltd.), Biscote R-264, and KS resist. 106 (all manufactured by Osaka Organic Chemical Industry Co., Ltd.), Cyclomer P series (for example, ACA230AA, thermosetting resin), Plaxel CF200 series (all manufactured by Daicel Corporation), Ebecryl 3800 (manufactured by Daicel UCB Corporation) ), Acrycure-RD-F8 (manufactured by Nippon Shokubai Co., Ltd.)
  • alkali-soluble resins benzyl (meth) acrylate / (meth) acrylic acid copolymer, benzyl (meth) acrylate / (meth) acrylic acid / 2-hydroxyethyl (meth) acrylate copolymer, benzyl (meth) acrylate /
  • a multi-component copolymer composed of (meth) acrylic acid / other monomers can be preferably used.
  • the alkali-soluble resin includes a monomer component including a compound represented by the following formula (ED1) and / or a compound represented by the following formula (ED2) (hereinafter, these compounds may be referred to as “ether dimers”). It is also preferable to include a polymer obtained by polymerization.
  • R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
  • R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms.
  • the description of JP 2010-168539 A can be referred to.
  • the hydrocarbon group having 1 to 25 carbon atoms which may have a substituent represented by R 1 and R 2 is not particularly limited, and examples thereof include methyl, ethyl, n- Linear or branched alkyl groups such as propyl, isopropyl, n-butyl, isobutyl, tert-butyl, tert-amyl, stearyl, lauryl, 2-ethylhexyl; aryl groups such as phenyl; cyclohexyl, tert-butylcyclohexyl, dicyclo Alicyclic groups such as pentadienyl, tricyclodecanyl, isobornyl, adamantyl, 2-methyl-2-adamantyl; alkyl groups substituted with alkoxy such as 1-methoxyethyl, 1-ethoxyethyl; aryls such as benzyl And an alkyl group substituted with
  • ether dimer for example, paragraph number 0317 of JP2013-29760A can be referred to, and the contents thereof are incorporated in the present specification. Only one type of ether dimer may be used, or two or more types may be used.
  • the alkali-soluble resin may contain a structural unit derived from a compound represented by the following formula (X).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 2 to 10 carbon atoms
  • R 3 represents a hydrogen atom or a carbon atom having 1 to 1 carbon atoms that may contain a benzene ring.
  • 20 alkyl groups are represented.
  • n represents an integer of 1 to 15.
  • the alkylene group of R 2 preferably has 2 to 3 carbon atoms.
  • the alkyl group of R 3 has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and the alkyl group of R 3 may contain a benzene ring.
  • Examples of the alkyl group containing a benzene ring represented by R 3 include a benzyl group and a 2-phenyl (iso) propyl group.
  • alkali-soluble resin examples include the following.
  • the alkali-soluble resin can be referred to the description in paragraph Nos. 0558 to 0571 in JP 2012-208494 A (corresponding to paragraph numbers 0685 to 0700 in US 2012/0235099). Incorporated in the description. Further, the copolymer (B) described in paragraph Nos. 0029 to 0063 of JP 2012-32767 A and the alkali-soluble resin used in Examples, paragraphs 0088 to 0098 of JP 2012-208474 A The binder resin described in the description and the binder resin used in the examples, the binder resin described in paragraphs 0022 to 0032 of JP2012-137531A and the binder resin used in the examples, JP2013-024934A Binder resin described in paragraph Nos.
  • the acid value of the alkali-soluble resin is preferably 30 to 500 mgKOH / g.
  • the lower limit is more preferably 50 mgKOH / g or more, and further preferably 70 mgKOH / g or more.
  • the upper limit is more preferably 400 mgKOH / g or less, further preferably 200 mgKOH / g or less, more preferably 150 mgKOH / g or less, and still more preferably 120 mgKOH / g or less.
  • the content of the alkali-soluble resin is preferably 0.1 to 20% by mass with respect to the total solid content of the active energy ray-curable composition.
  • the lower limit is more preferably 0.5% by mass or more, further preferably 1% by mass or more, further preferably 2% by mass or more, and particularly preferably 3% by mass or more.
  • the upper limit is more preferably 12% by mass or less, and further preferably 10% by mass or less.
  • the active energy ray-curable composition may contain only one type of alkali-soluble resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the active energy ray-curable composition can contain a dispersant as a resin.
  • the resin used as the dispersant preferably contains a repeating unit having an acid group.
  • the residue generated on the base can be further reduced when a pattern is formed by photolithography.
  • the repeating unit having an acid group can be constituted using a monomer having an acid group. Examples of the monomer having an acid group include a vinyl monomer having a carboxyl group, a vinyl monomer having a sulfonic acid group, and a vinyl monomer having a phosphoric acid group.
  • vinyl monomer having a carboxyl group examples include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, and acrylic acid dimer.
  • an addition reaction product of a monomer having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate and a cyclic anhydride such as maleic anhydride, phthalic anhydride, succinic anhydride, cyclohexanedicarboxylic anhydride, ⁇ -carboxy- Polycaprolactone mono (meth) acrylate can also be used.
  • anhydride containing monomers such as maleic anhydride, itaconic anhydride, and citraconic anhydride, as a precursor of a carboxyl group.
  • a monomer having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate and a cyclic such as maleic anhydride, phthalic anhydride, succinic anhydride, cyclohexanedicarboxylic anhydride, etc.
  • An addition reaction product with an anhydride is preferred.
  • the vinyl monomer having a sulfonic acid group include 2-acrylamido-2-methylpropanesulfonic acid.
  • Examples of the vinyl monomer having a phosphoric acid group include phosphoric acid mono (2-acryloyloxyethyl ester), phosphoric acid mono (1-methyl-2-acryloyloxyethyl ester), and the like.
  • the repeating unit having an acid group the description in paragraph numbers 0067 to 0069 of JP-A-2008-165059 can be referred to, and the contents thereof are incorporated in the present specification.
  • the resin used as the dispersant is also preferably a graft copolymer. Since the graft copolymer has an affinity for the solvent by the graft chain, it is excellent in pigment dispersibility and dispersion stability after aging. In addition, the composition has an affinity with a polymerizable compound or an alkali-soluble resin due to the presence of the graft chain, so that a residue can be hardly formed by alkali development.
  • the graft copolymer means a resin having a graft chain.
  • the graft chain means from the base of the main chain of the polymer to the end of the group branched from the main chain.
  • the graft copolymer is preferably a resin having a graft chain in which the number of atoms excluding hydrogen atoms is in the range of 40 to 10,000. Further, the number of atoms excluding hydrogen atoms per graft chain is preferably 40 to 10,000, more preferably 50 to 2,000, and still more preferably 60 to 500.
  • Examples of the main chain structure of the graft copolymer include (meth) acrylic resin, polyester resin, polyurethane resin, polyurea resin, polyamide resin, and polyether resin. Of these, a (meth) acrylic resin is preferable.
  • the graft chain of the graft copolymer must be a graft chain having poly (meth) acryl, polyester, or polyether in order to improve the interaction between the graft site and the solvent and thereby increase dispersibility. Is preferable, and a graft chain having polyester or polyether is more preferable.
  • the graft copolymer preferably contains a repeating unit having a graft chain in a range of 2 to 90% by mass, and in a range of 5 to 30% by mass, based on the total mass of the graft copolymer. Is more preferable. When the content of the repeating unit having a graft chain is within this range, the dispersibility of the colorant is good.
  • a known macromonomer can be used, which is a macromonomer AA-6 (polymethacrylic group whose terminal group is a methacryloyl group) manufactured by Toagosei Co., Ltd.
  • Acid-6 AS-6 (polystyrene whose terminal group is a methacryloyl group), AN-6S (a copolymer of styrene and acrylonitrile whose terminal group is a methacryloyl group), AB-6 (polyester whose terminal group is a methacryloyl group) Butyl acrylate), PLACEL FM5 manufactured by Daicel Corporation (2-hydroxyethyl methacrylate with 5 molar equivalents of ⁇ -caprolactone), FA10L (2-hydroxyethyl acrylate with 10 molar equivalents of ⁇ -caprolactone), And polyester-based mac described in JP-A-2-272009 And monomers.
  • a graft copolymer containing a repeating unit represented by any of the following formulas (1) to (4) can also be used as the resin.
  • These graft copolymers can be particularly preferably used as a dispersant for a black pigment.
  • W 1 , W 2 , W 3 , and W 4 each independently represent an oxygen atom or NH.
  • W 1 , W 2 , W 3 , and W 4 are preferably oxygen atoms.
  • X 1 , X 2 , X 3 , X 4 , and X 5 each independently represent a hydrogen atom or a monovalent organic group.
  • X 1 , X 2 , X 3 , X 4 , and X 5 are each independently preferably a hydrogen atom or an alkyl group having 1 to 12 carbon atoms from the viewpoint of synthesis constraints. Further, a hydrogen atom or a methyl group is more preferable, and a methyl group is particularly preferable.
  • Y 1 , Y 2 , Y 3 , and Y 4 each independently represent a divalent linking group, and the linking group is not particularly limited in structure.
  • Specific examples of the divalent linking group represented by Y 1 , Y 2 , Y 3 , and Y 4 include the following (Y-1) to (Y-21) linking groups. .
  • a and B represent binding sites with the left end group and the right end group in Formulas (1) to (4), respectively.
  • Z 1 , Z 2 , Z 3 , and Z 4 each independently represent a monovalent organic group.
  • the structure of the organic group is not particularly limited. Specifically, an alkyl group, a hydroxyl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthioether group, an arylthioether group, a heteroarylthioether group, an amino group, etc. Is mentioned.
  • the organic group represented by Z 1 , Z 2 , Z 3 , and Z 4 those having a steric repulsion effect are particularly preferable from the viewpoint of improving dispersibility, and each independently has 5 to 5 carbon atoms.
  • alkyl groups or alkoxy groups are preferable, and among them, a branched alkyl group having 5 to 24 carbon atoms, a cyclic alkyl group having 5 to 24 carbon atoms, or an alkoxy group having 5 to 24 carbon atoms is particularly preferable.
  • the alkyl group contained in the alkoxy group may be linear, branched or cyclic.
  • n, m, p, and q are each independently an integer of 1 to 500.
  • j and k each independently represent an integer of 2 to 8.
  • J and k in the formulas (1) and (2) are preferably integers of 4 to 6 and most preferably 5 from the viewpoints of dispersion stability and developability.
  • R 3 represents a branched or straight chain alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, and more preferably an alkylene group having 2 or 3 carbon atoms. When p is 2 to 500, a plurality of R 3 may be the same or different.
  • R 4 represents a hydrogen atom or a monovalent organic group, and the monovalent organic group is not particularly limited in terms of structure.
  • R 4 preferably includes a hydrogen atom, an alkyl group, an aryl group, and a heteroaryl group, and more preferably a hydrogen atom or an alkyl group.
  • the alkyl group is preferably a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, or a cyclic alkyl group having 5 to 20 carbon atoms.
  • a linear alkyl group having 1 to 20 carbon atoms is more preferable, and a linear alkyl group having 1 to 6 carbon atoms is more preferable.
  • q is 2 to 500
  • a plurality of X 5 and R 4 present in the graft copolymer may be the same or different from each other.
  • the repeating unit represented by the formula (1) is more preferably a repeating unit represented by the following formula (1A) from the viewpoint of dispersion stability and developability.
  • the repeating unit represented by the formula (2) is more preferably a repeating unit represented by the following formula (2A) from the viewpoint of dispersion stability and developability.
  • the repeating unit represented by formula (3) is more preferably a repeating unit represented by the following formula (3A) or formula (3B) from the viewpoint of dispersion stability and developability.
  • X 1, Y 1, Z 1 and n are the same as X 1, Y 1, Z 1 and n in Formula (1), and preferred ranges are also the same.
  • (2A) X 2, Y 2, Z 2 and m are as defined X 2, Y 2, Z 2 and m in the formula (2), and preferred ranges are also the same.
  • (3A) or (3B) X 3, Y 3, Z 3 and p are as defined X 3, Y 3, Z 3 and p in formula (3), and preferred ranges are also the same.
  • the graft copolymer described above preferably has a hydrophobic repeating unit in addition to the repeating units represented by the above formulas (1) to (4).
  • the hydrophobic repeating unit is a repeating unit having no acid group (for example, carboxylic acid group, sulfonic acid group, phosphoric acid group, phenolic hydroxyl group, etc.).
  • the hydrophobic repeating unit is preferably a repeating unit derived from (corresponding to) a compound (monomer) having a ClogP value of 1.2 or more, more preferably derived from a compound having a ClogP value of 1.2 to 8 It is a repeating unit.
  • ClogP values can be obtained from Daylight Chemical Information System, Inc. It is a value calculated by the program “CLOGP” available from This program provides the value of “computation logP” calculated by Hansch, Leo's fragment approach (see below). The fragment approach is based on the chemical structure of a compound, which divides the chemical structure into substructures (fragments) and estimates the logP value of the compound by summing the logP contributions assigned to that fragment. Details thereof are described in the following documents. In the present invention, the ClogP value calculated by the program CLOGP v4.82 is used. A. J. et al. Leo, Comprehensive Medicinal Chemistry, Vol. 4, C.I. Hansch, P.A. G. Sammunens, J. et al. B.
  • logP is the common logarithm of the partition coefficient P (Partition Coefficient), and quantifies how an organic compound is distributed in the equilibrium of a two-phase system of oil (generally 1-octanol) and water. It is a physical property value expressed as a typical numerical value, and is represented by the following formula.
  • logP log (Coil / Cwater)
  • Coil represents the molar concentration of the compound in the oil phase
  • Cwater represents the molar concentration of the compound in the aqueous phase.
  • the graft copolymer preferably has one or more repeating units selected from repeating units derived from monomers represented by the following formulas (i) to (iii) as hydrophobic repeating units.
  • R 1 , R 2 , and R 3 are each independently a hydrogen atom, a halogen atom (eg, fluorine, chlorine, bromine, etc.), or 1 to 6 carbon atoms.
  • An alkyl group (for example, methyl group, ethyl group, propyl group, etc.).
  • R 1 , R 2 and R 3 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or a methyl group.
  • R 2 and R 3 are particularly preferably a hydrogen atom.
  • X represents an oxygen atom (—O—) or an imino group (—NH—), and is preferably an oxygen atom.
  • L is a single bond or a divalent linking group.
  • a divalent aliphatic group for example, alkylene group, substituted alkylene group, alkenylene group, substituted alkenylene group, alkynylene group, substituted alkynylene group
  • divalent aromatic group for example, arylene group
  • Substituted arylene group divalent heterocyclic group, oxygen atom (—O—), sulfur atom (—S—), imino group (—NH—), substituted imino group (—NR 31 —, where R 31 Are aliphatic groups, aromatic groups or heterocyclic groups), carbonyl groups (—CO—), or combinations thereof.
  • L is preferably a single bond, an alkylene group or a divalent linking group containing an oxyalkylene structure.
  • the oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure.
  • L may contain a polyoxyalkylene structure containing two or more oxyalkylene structures.
  • the polyoxyalkylene structure is preferably a polyoxyethylene structure or a polyoxypropylene structure.
  • the polyoxyethylene structure is represented by — (OCH 2 CH 2 ) n —, and n is preferably an integer of 2 or more, and more preferably an integer of 2 to 10.
  • Z is an aliphatic group (eg, alkyl group, substituted alkyl group, unsaturated alkyl group, substituted unsaturated alkyl group), aromatic group (eg, arylene group, substituted arylene group), heterocyclic group, oxygen atom (—O—), sulfur atom (—S—), imino group (—NH—), substituted imino group (—NR 31 —, wherein R 31 is an aliphatic group, aromatic group or heterocyclic group), carbonyl And a group (—CO—) or a combination thereof.
  • aliphatic group eg, alkyl group, substituted alkyl group, unsaturated alkyl group, substituted unsaturated alkyl group
  • aromatic group eg, arylene group, substituted arylene group
  • heterocyclic group oxygen atom (—O—), sulfur atom (—S—), imino group (—NH—), substituted imino group (—NR 31 —, wherein R 31 is an aliphatic
  • the aliphatic group may have a cyclic structure or a branched structure.
  • the number of carbon atoms in the aliphatic group is preferably 1-20, more preferably 1-15, and even more preferably 1-10.
  • the aliphatic group further includes a ring assembly hydrocarbon group and a bridged cyclic hydrocarbon group. Examples of the ring assembly hydrocarbon group include a bicyclohexyl group, a perhydronaphthalenyl group, a biphenyl group, and 4-cyclohexyl. A phenyl group and the like are included.
  • bridged cyclic hydrocarbon ring for example, bicyclic such as pinane, bornane, norpinane, norbornane, bicyclooctane ring (bicyclo [2.2.2] octane ring, bicyclo [3.2.1] octane ring, etc.) Hydrocarbon ring, homobredan, adamantane, tricyclo [5.2.1.0 2,6 ] decane, tricyclo [4.3.1.1 2,5 ] undecane ring and other tricyclic hydrocarbon rings, tetracyclo [4 4.0.1, 2,5 .
  • bicyclic such as pinane, bornane, norpinane, norbornane, bicyclooctane ring (bicyclo [2.2.2] octane ring, bicyclo [3.2.1] octane ring, etc.)
  • Hydrocarbon ring homobredan, adamantane, tricyclo [5.2.1.0 2,6 ] decane
  • the bridged cyclic hydrocarbon ring includes a condensed cyclic hydrocarbon ring such as perhydronaphthalene (decalin), perhydroanthracene, perhydrophenanthrene, perhydroacenaphthene, perhydrofluorene, perhydroindene, perhydroindene.
  • a condensed ring formed by condensing a plurality of 5- to 8-membered cycloalkane rings such as a phenalene ring is also included.
  • the aliphatic group is preferably a saturated aliphatic group rather than an unsaturated aliphatic group. Further, the aliphatic group may have a substituent. Examples of the substituent include a halogen atom, an aromatic group, and a heterocyclic group. However, the aliphatic group does not have an acid group as a substituent.
  • the number of carbon atoms in the aromatic group is preferably 6 to 20, more preferably 6 to 15, and still more preferably 6 to 10.
  • the aromatic group may have a substituent. Examples of the substituent include a halogen atom, an aliphatic group, an aromatic group, and a heterocyclic group. However, the aromatic group does not have an acid group as a substituent.
  • the heterocyclic group preferably has a 5-membered or 6-membered ring as the heterocycle.
  • the heterocycle may be condensed with another heterocycle, aliphatic ring or aromatic ring.
  • the heterocyclic group may have a substituent. Examples of substituents include halogen atoms, hydroxy groups, oxo groups ( ⁇ O), thioxo groups ( ⁇ S), imino groups ( ⁇ NH), substituted imino groups ( ⁇ N—R 32 , where R 32 represents a fatty acid Aromatic group, aromatic group or heterocyclic group), aliphatic group, aromatic group and heterocyclic group.
  • the heterocyclic group does not have an acid group as a substituent.
  • R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom (eg, fluorine, chlorine, bromine, etc.), or an alkyl group having 1 to 6 carbon atoms ( For example, it represents a methyl group, an ethyl group, a propyl group, etc.), Z, or -LZ.
  • L and Z are synonymous with the above description.
  • R 4 , R 5 , and R 6 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom.
  • the monomer represented by the general formula (i) is a divalent linking group in which R 1 , R 2 , and R 3 are a hydrogen atom or a methyl group, and L is a single bond or an alkylene group or an oxyalkylene structure.
  • a compound in which X is an oxygen atom or imino group and Z is an aliphatic group, a heterocyclic group or an aromatic group is preferred.
  • the monomer represented by the formula (ii) is preferably a compound in which R 1 is a hydrogen atom or a methyl group, L is an alkylene group, and Z is an aliphatic group, a heterocyclic group or an aromatic group. .
  • the monomer represented by the above formula (iii) is preferably a compound in which R 4 , R 5 , and R 6 are a hydrogen atom or a methyl group, and Z is an aliphatic group, a heterocyclic group, or an aromatic group.
  • Examples of typical compounds represented by formulas (i) to (iii) include radically polymerizable compounds selected from acrylic acid esters, methacrylic acid esters, styrenes, and the like.
  • the compounds represented by formulas (i) to (iii) the compounds described in paragraph numbers 0089 to 0093 of JP2013-249417A can be referred to, and the contents thereof are incorporated in the present specification. .
  • the hydrophobic repeating unit is preferably contained in the range of 10 to 90% by mass, and in the range of 20 to 80% by mass, based on the total mass of the graft copolymer. It is more preferable. When the content is within the above range, sufficient pattern formation can be obtained.
  • the graft copolymer described above has a functional group (for example, an acid group, a basic group, a coordination group, etc.) that can form an interaction with a pigment. It is preferable to include a repeating unit having a coordinate group, a reactive group, and the like.
  • the acid group examples include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, and a phenolic hydroxyl group.
  • a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group is used.
  • Particularly preferred are carboxylic acid groups that have good adsorption power to colorants such as black pigments and that are highly dispersible.
  • the graft copolymer may have one or more repeating units having an acid group.
  • the graft copolymer may or may not contain a repeating unit having an acid group.
  • the content of the repeating unit having an acid group is expressed in terms of mass in the total mass of the graft copolymer. On the other hand, the content is preferably 5 to 80% by mass, more preferably 10 to 60% by mass.
  • the basic group examples include a primary amino group, a secondary amino group, a tertiary amino group, a heterocyclic ring containing an N atom, an amide group, and the like, and particularly preferable is adsorption to a colorant. It is a tertiary amino group having good strength and high dispersibility.
  • the graft copolymer can have one or more of these basic groups.
  • the graft copolymer may or may not contain a repeating unit having a basic group. However, when it is contained, the content of the repeating unit having a basic group is the total amount of the graft copolymer in terms of mass. Preferably, the content is 0.01 to 50% by mass, more preferably 0.01 to 30% by mass from the viewpoint of inhibiting developability inhibition.
  • Examples of the coordinating group and reactive functional group include acetylacetoxy group, trialkoxysilyl group, isocyanate group, acid anhydride, acid chloride and the like. Particularly preferred is an acetylacetoxy group that has a good adsorptive power to the colorant and a high dispersibility.
  • the graft copolymer may have one or more of these groups.
  • the graft copolymer may or may not contain a repeating unit having a coordinating group or a repeating unit having a reactive functional group, but when it is contained, the content of these repeating units is In terms of mass, it is preferably 10 to 80% by mass, and more preferably 20 to 60% by mass, from the viewpoint of inhibiting developability inhibition, with respect to the total mass of the graft copolymer.
  • the graft copolymer has a functional group capable of forming an interaction with the pigment other than the graft chain
  • how these functional groups are introduced is not particularly limited. It preferably has one or more types of repeating units selected from repeating units derived from monomers represented by the following formulas (iv) to (vi).
  • R 11 , R 12 , and R 13 each independently represent a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, etc.), or a carbon atom number 1 to 6 alkyl groups (for example, methyl group, ethyl group, propyl group, etc.) are represented.
  • R 11 , R 12 and R 13 are preferably each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably Each independently represents a hydrogen atom or a methyl group.
  • R 12 and R 13 are each particularly preferably a hydrogen atom.
  • X 1 in the formula (iv) represents an oxygen atom (—O—) or an imino group (—NH—), and is preferably an oxygen atom.
  • Y in the formula (v) represents a methine group or a nitrogen atom.
  • L 1 in the formulas (iv) to (v) represents a single bond or a divalent linking group.
  • the divalent linking group include a divalent aliphatic group (for example, an alkylene group, a substituted alkylene group, an alkenylene group, a substituted alkenylene group, an alkynylene group, and a substituted alkynylene group), a divalent aromatic group (for example, , Arylene groups, and substituted arylene groups), divalent heterocyclic groups, oxygen atoms (—O—), sulfur atoms (—S—), imino groups (—NH—), substituted imino bonds (—NR 31 ′ —
  • R 31 ′ includes an aliphatic group, an aromatic group or a heterocyclic group), a carbonyl bond (—CO—), or a combination thereof.
  • L 1 is preferably a single bond, an alkylene group or a divalent linking group containing an oxyalkylene structure.
  • the oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure.
  • L 1 may include a polyoxyalkylene structure containing two or more oxyalkylene structures.
  • the polyoxyalkylene structure is preferably a polyoxyethylene structure or a polyoxypropylene structure.
  • the polyoxyethylene structure is represented by — (OCH 2 CH 2 ) n —, and n is preferably an integer of 2 or more, and more preferably an integer of 2 to 10.
  • Z 1 represents a functional group capable of forming an interaction with the pigment other than the graft chain, and is preferably a carboxylic acid group or a tertiary amino group. It is more preferable that
  • R 14 , R 15 , and R 16 are each independently a hydrogen atom, a halogen atom (eg, fluorine, chlorine, bromine, etc.), or an alkyl group having 1 to 6 carbon atoms (eg, methyl group, ethyl group, propyl group, etc.), - represents a Z 1 or -L 1 -Z 1,.
  • L 1 and Z 1 has the same meaning as L 1 and Z 1 in the above, are the preferable examples.
  • R 14 , R 15 and R 16 are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
  • R 11 , R 12 , and R 13 are each independently a hydrogen atom or a methyl group, and L 1 is a divalent linking group containing an alkylene group or an oxyalkylene structure.
  • a compound in which X is an oxygen atom or imino group and Z is a carboxylic acid group is preferable.
  • the monomer represented by the formula (v) is a compound in which R 11 is a hydrogen atom or a methyl group, L 1 is an alkylene group, Z 1 is a carboxylic acid group, and Y is a methine group. preferable.
  • the monomer represented by the formula (vi) is preferably a compound in which R 14 , R 15 , and R 16 are each independently a hydrogen atom or a methyl group, and Z 1 is a carboxylic acid group.
  • graft copolymer examples include the following. Reference can also be made to the polymer compounds described in JP-A-2013-249417, paragraphs 0127 to 0129, the contents of which are incorporated herein.
  • the dispersant is also available as a commercial product. Specific examples of such a dispersant include “DA-7301” manufactured by Enomoto Kasei Co., Ltd., “DISPERBYK-101 (polyamideamine phosphate)” manufactured by BYK Chemie, and 107 (carvone).
  • Acid ester 110 (copolymer containing an acid group), 111 (phosphate dispersing agent), 130 (polyamide), 140, 142, 145, 161, 162, 163, 164, 165, 166, 170, 180 , 187, 190, 191, 2001, 2001, 2010, 2012, 2025 (polymer copolymer) ”,“ BYK-P104, P105 (high molecular weight unsaturated polycarboxylic acid), 9076 ”,“ EFKA4047, manufactured by EFKA Corporation ” 4050-4165 (polyurethane), EFKA4330-4340 (block copolymer) 4400-4402 (modified polyacrylate), 5010 (polyesteramide), 5765 (high molecular weight polycarboxylate), 6220 (fatty acid polyester), 6745 (phthalocyanine derivative), 6750 (azo pigment derivative) ", manufactured by Ajinomoto Fine Techno Co., Ltd.
  • KS-860, 873SN, 874, # 2150 (aliphatic polycarboxylic acid), # 7004 (polyetherester), DA-703-50, DA-705, DA-725, “Demol RN, N” manufactured by Kao Corporation (Naphthalenesulfonic acid formalin Condensate), MS, C, SN-B (aromatic sulfonic acid formalin polycondensate) ”,“ homogenol L-18 (polymer polycarboxylic acid) ”,“ Emulgen 920, 930, 935, 985 (polyoxyethylene) Nonylphenyl ether) ”,“ Acetamine 86 (stearylamine acetate) ”,“ Solsperse 5000 (phthalocyanine derivative), 22000 (azo pigment derivative), 13240 (polyesteramine), 3000, 12000, 17000, manufactured by Nippon Lubrizol Co., Ltd.
  • EFKA-47EA EFKA polymer 100, EFKA polymer 400, EFKA polymer 401, EFKA polymer 450 "," Disperse Aid 6, Disperse Aid 8, Disperse Aid 15, Disperse Aid 9100 “(Sannopco) "ADEKA Pluronic L31, F38, L42, L44, L61, L64, F68, L72, P95, F77, P84, F87, P94, L101, P103, F108, L121, P-123” manufactured by ADEKA Corporation, and Sanyo Chemical ( “Ionet” manufactured by And the like (trade name) S-20 ", and the like.
  • Acrybase FFS-6752, Acrybase FFS-187, Acrycure-RD-F8, and Cyclomer P can be used.
  • the active energy ray-curable composition can contain a radically polymerizable compound.
  • the radical polymerizable compound is preferably a polymerizable compound having an ethylenically unsaturated bond.
  • the radical polymerizable compound is preferably a compound having one or more groups having an ethylenically unsaturated bond, more preferably a compound having two or more, and still more preferably three or more.
  • the upper limit is preferably 15 or less, and more preferably 6 or less.
  • Examples of the group having an ethylenically unsaturated bond include a vinyl group, a (meth) allyl group, and a (meth) acryloyl group.
  • the radical polymerizable compound may be in any chemical form such as a monomer, a prepolymer, that is, a dimer, a trimer and an oligomer, or a mixture thereof and a multimer thereof. Monomers are preferred.
  • the molecular weight of the radical polymerizable compound is preferably 100 to 3,000, more preferably 250 to 1,500.
  • the radical polymerizable compound is preferably a 3 to 15 functional (meth) acrylate compound, more preferably a 3 to 6 functional (meth) acrylate compound.
  • Examples of monomers and prepolymers include unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.) and esters, amides, and multimers thereof.
  • unsaturated carboxylic acids eg, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters of unsaturated carboxylic acids and aliphatic polyhydric alcohol compounds amides of unsaturated carboxylic acids and aliphatic polyvalent amine compounds, and multimers thereof.
  • a dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
  • Reaction products of unsaturated carboxylic acid esters or amides having electrophilic substituents such as isocyanate groups and epoxy groups with monofunctional or polyfunctional alcohols, amines and thiols, halogen groups and tosyloxy groups A reaction product of an unsaturated carboxylic acid ester or amide having a leaving substituent such as monofunctional or polyfunctional alcohols, amines or thiols is also suitable.
  • radical polymerizable compound a compound having one or more groups having an ethylenically unsaturated bond and having a boiling point of 100 ° C. or higher under normal pressure is also preferable.
  • paragraph number 0227 of JP 2013-29760 A and paragraph numbers 0254 to 0257 of JP 2008-292970 A can be referred to, and the contents thereof are incorporated in the present specification.
  • Radical polymerizable compounds include dipentaerythritol triacrylate (KAYARAD D-330 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (KAYARAD D-320 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.) ), Dipentaerythritol penta (meth) acrylate (as a commercial product, KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (as a commercially available product, KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd.) , A-DPH-12E; manufactured by Shin-Nakamura Chemical Co., Ltd.), and structures in which these (meth) acryloyl groups are bonded via ethylene glycol and propylene glycol residues (for example, commercially available from Sartomer
  • oligomer types can also be used.
  • NK ester A-TMMT penentaerythritol tetraacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • KAYARAD RP-1040 manufactured by Nippon Kayaku Co., Ltd.
  • Preferred embodiments of the radical polymerizable compound are shown below.
  • the radical polymerizable compound may have an acid group such as a carboxyl group, a sulfonic acid group, or a phosphoric acid group.
  • an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid is preferable, and a non-aromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound.
  • a radically polymerizable compound having an acid group is more preferable, and in this ester, the aliphatic polyhydroxy compound is pentaerythritol and / or dipentaerythritol. Examples of commercially available products include Aronix TO-2349, M-305, M-510, and M-520 manufactured by Toagosei Co., Ltd.
  • the preferable acid value of the radical polymerizable compound is 0.1 to 40 mgKOH / g, and particularly preferably 5 to 30 mgKOH / g.
  • the acid value of the radically polymerizable compound is 0.1 mgKOH / g or more, the development and dissolution characteristics are good, and when it is 40 mgKOH / g or less, it is advantageous in production and handling. Furthermore, the photopolymerization performance is good and the curability is excellent.
  • a compound having a caprolactone structure is also a preferred embodiment.
  • the compound having a caprolactone structure is not particularly limited as long as it has a caprolactone structure in the molecule.
  • a compound having a caprolactone structure represented by the following formula (Z-1) is preferable.
  • R 1 represents a hydrogen atom or a methyl group
  • m represents a number of 1 or 2
  • “*” represents a bond.
  • R 1 represents a hydrogen atom or a methyl group
  • “*” represents a bond
  • radical polymerizable compound a compound represented by the following formula (Z-4) or (Z-5) can also be used.
  • each E independently represents — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) —.
  • Each represents independently an integer of 0 to 10
  • each X independently represents a (meth) acryloyl group, a hydrogen atom, or a carboxyl group.
  • the total number of (meth) acryloyl groups is 3 or 4
  • each m independently represents an integer of 0 to 10
  • the total of each m is an integer of 0 to 40.
  • the total number of (meth) acryloyl groups is 5 or 6
  • each n independently represents an integer of 0 to 10, and the total of each n is an integer of 0 to 60.
  • m is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4.
  • the total of each m is preferably an integer of 2 to 40, more preferably an integer of 2 to 16, and particularly preferably an integer of 4 to 8.
  • n is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4.
  • the total of each n is preferably an integer of 3 to 60, more preferably an integer of 3 to 24, and even more preferably an integer of 6 to 12.
  • — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) — represents an oxygen atom side.
  • a form in which the terminal of X is bonded to X is preferred.
  • the compounds represented by formula (Z-4) or formula (Z-5) may be used singly or in combination of two or more.
  • all six X are acryloyl groups
  • Formula (Z-5) a compound in which all six X are acryloyl groups
  • an embodiment in which at least one of the compounds is a mixture with a hydrogen atom is preferable. According to this aspect, developability can be further improved.
  • the content of the compound represented by the formula (Z-4) or the formula (Z-5) is preferably 20% by mass or more, and more preferably 50% by mass or more.
  • the compound represented by the formula (Z-4) or (Z-5) is a conventionally known process, which is a ring-opening addition reaction of ethylene oxide or propylene oxide with pentaerythritol or dipentaerythritol.
  • Each step is a well-known step, and those skilled in the art can easily synthesize the compounds represented by the formulas (Z-4) and (Z-5).
  • a pentaerythritol derivative and / or a dipentaerythritol derivative are more preferable.
  • Specific examples include compounds represented by the following formulas (a) to (f) (hereinafter also referred to as “exemplary compounds (a) to (f)”).
  • exemplary compounds (a), (f) b), (e) and (f) are preferred.
  • Examples of commercially available radical polymerizable compounds represented by formulas (Z-4) and (Z-5) include SR-494, a tetrafunctional acrylate having four ethyleneoxy chains, manufactured by Sartomer, Nippon Kayaku Examples thereof include DPCA-60, which is a hexafunctional acrylate having six pentyleneoxy chains, and TPA-330, which is a trifunctional acrylate having three isobutyleneoxy chains.
  • the content of the radical polymerizable compound is preferably 0.1 to 40% by mass with respect to the total solid content of the active energy ray-curable composition.
  • the lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
  • the upper limit is more preferably 30% by mass or less, and further preferably 20% by mass or less.
  • One radically polymerizable compound may be used alone, or two or more kinds thereof may be used in combination. When using 2 or more types together, it is preferable that a total amount exists in said range.
  • the active energy ray-curable composition can contain a cationically polymerizable compound.
  • the cationic polymerizable compound include compounds having a cyclic ether group.
  • the cyclic ether group include an epoxy group and an oxetanyl group, and an epoxy group is preferable.
  • the cationically polymerizable compound is preferably a compound having two or more cyclic ether groups in one molecule.
  • the cationically polymerizable compound may be a low molecular compound (for example, a molecular weight of less than 2,000, or even a molecular weight of less than 1,000), or a macromolecule (for example, a molecular weight of 2,000 or more, in the case of a polymer). And a weight average molecular weight of 2,000 or more).
  • the weight average molecular weight of the cationic polymerizable compound is preferably 200 to 100,000, and more preferably 500 to 50,000.
  • Aron Oxetane OXT-121, OXT-221, OX-SQ, and PNOX above, manufactured by Toagosei Co., Ltd.
  • the compound containing an oxetanyl group is preferably used alone or mixed with a compound containing an epoxy group.
  • the content of the cationic polymerizable compound is preferably 0.1 to 40% by mass with respect to the total solid content of the active energy ray-curable composition.
  • the lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
  • the upper limit is more preferably 30% by mass or less, and further preferably 20% by mass or less.
  • One cationic polymerizable compound may be used alone, or two or more cationic polymerizable compounds may be used in combination. When using 2 or more types together, it is preferable that a total amount exists in said range.
  • the active energy ray-curable composition can contain a photopolymerization initiator.
  • the active energy ray-curable composition contains a radical polymerizable compound, it is preferable to contain a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of a radical polymerizable compound, and can be appropriately selected from known photopolymerization initiators. For example, those having photosensitivity to visible light from the ultraviolet region are preferable. Further, it may be an activator that generates some action with a photoexcited sensitizer and generates an active radical, or may be an initiator that initiates cationic polymerization according to the type of monomer.
  • the photopolymerization initiator preferably contains at least one compound having a molar extinction coefficient of at least about 50 within a range of about 300 nm to 800 nm (more preferably 330 nm to 500 nm).
  • the photopolymerization initiator examples include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton), acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazoles, oxime derivatives, etc. Oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, aminoacetophenone compounds, hydroxyacetophenones, and the like.
  • halogenated hydrocarbon compound having a triazine skeleton examples include those described in Wakabayashi et al., Bull. Chem. Soc.
  • trihalomethyltriazine compounds trihalomethyltriazine compounds, benzyldimethylketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triallylimidazole dimers, onium compounds
  • a compound selected from the group consisting of benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl-substituted coumarin compounds is preferred.
  • trihalomethyltriazine compounds More preferred are trihalomethyltriazine compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, oxime compounds, triallylimidazole dimers, onium compounds, benzophenone compounds, acetophenone compounds, trihalomethyltriazine compounds, ⁇ -aminoketone compounds More preferred is at least one compound selected from the group consisting of oxime compounds, triallylimidazole dimers, and benzophenone compounds.
  • paragraph numbers 0265 to 0268 of JP 2013-29760 A can be referred to, and the contents thereof are incorporated in the present specification.
  • hydroxyacetophenone compounds As the photopolymerization initiator, hydroxyacetophenone compounds, aminoacetophenone compounds, and acylphosphine compounds can also be suitably used. More specifically, for example, an aminoacetophenone initiator described in JP-A-10-291969 and an acylphosphine initiator described in Japanese Patent No. 4225898 can also be used.
  • hydroxyacetophenone-based initiator IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379EG (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator a compound described in JP-A-2009-191179 in which an absorption wavelength is matched with a long wave light source such as 365 nm or 405 nm can also be used.
  • acylphosphine-based initiator commercially available products such as IRGACURE-819 and Lucirin-TPO (trade names: all manufactured by BASF) can be used.
  • More preferred examples of the photopolymerization initiator include oxime compounds.
  • Specific examples of the oxime compound include compounds described in JP-A No. 2001-233842, compounds described in JP-A No. 2000-80068, and compounds described in JP-A No. 2006-342166.
  • J.H. C. S. Perkin II (1979) pp. 1653-1660
  • oxime compounds other than those described above compounds described in JP-T 2009-519904, in which an oxime is linked to the N-position of the carbazole ring, and those described in US Pat.
  • a compound described in JP 2009-221114 A having an absorption maximum at 405 nm and good sensitivity to a g-ray light source, and the like. Also good.
  • the oxime compound is preferably a compound represented by the following formula (OX-1).
  • the oxime N—O bond may be an (E) oxime compound, a (Z) oxime compound, or a mixture of (E) and (Z) isomers. .
  • R and B each independently represent a monovalent substituent
  • A represents a divalent organic group
  • Ar represents an aryl group.
  • the monovalent substituent represented by R is preferably a monovalent nonmetallic atomic group.
  • the monovalent nonmetallic atomic group include an alkyl group, an aryl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic group, an alkylthiocarbonyl group, and an arylthiocarbonyl group.
  • these groups may have one or more substituents.
  • the substituent mentioned above may be further substituted by another substituent.
  • the substituent examples include a halogen atom, an aryloxy group, an alkoxycarbonyl group or an aryloxycarbonyl group, an acyloxy group, an acyl group, an alkyl group, and an aryl group.
  • the monovalent substituent represented by B is preferably an aryl group, a heterocyclic group, an arylcarbonyl group, or a heterocyclic carbonyl group. These groups may have one or more substituents. Examples of the substituent include the substituents described above.
  • the divalent organic group represented by A is preferably an alkylene group having 1 to 12 carbon atoms, a cycloalkylene group, or an alkynylene group. These groups may have one or more substituents. Examples of the substituent include the substituents described above.
  • an oxime compound having a fluorine atom can also be used as a photopolymerization initiator.
  • Specific examples of the oxime compound having a fluorine atom include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in JP-T-2014-500852, and JP 2013-164471 A. (C-3) described in the above. These contents are incorporated herein.
  • a compound represented by the following formula (1) or formula (2) can also be used as a photopolymerization initiator.
  • R 1 and R 2 are each independently a chain alkyl group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, Alternatively, it represents an arylalkyl group having 7 to 30 carbon atoms, and when R 1 and R 2 are phenyl groups, the phenyl groups may be bonded to each other to form a fluorene group, and R 3 and R 4 are each independently Represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms, and X is a direct bond Or a carbonyl group.
  • R 1, R 2, R 3 and R 4 have the same meanings as R 1, R 2, R 3 and R 4 in the formula (1)
  • R 5 is -R 6, -OR 6 , —SR 6 , —COR 6 , —CONR 6 R 6 , —NR 6 COR 6 , —OCOR 6 , —COOR 6 , —SCOR 6 , —OCSR 6 , —COSR 6 , —CSOR 6 , —CN
  • halogen R 6 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms
  • X represents a direct bond or a carbonyl group, and a represents an integer of 0 to 4.
  • R 1 and R 2 are preferably each independently a methyl group, ethyl group, n-propyl group, i-propyl group, cyclohexyl group or phenyl group.
  • R 3 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a xylyl group.
  • R 4 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • R 5 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a naphthyl group.
  • X is preferably a direct bond.
  • Specific examples of the compounds represented by formula (1) and formula (2) include, for example, compounds described in paragraph numbers 0076 to 0079 of JP-A No. 2014-137466. This content is incorporated herein.
  • the oxime compound preferably has a maximum absorption wavelength in the wavelength region of 350 nm to 500 nm, more preferably has an absorption wavelength in the wavelength region of 360 nm to 480 nm, and particularly preferably has high absorbance at 365 nm and 405 nm.
  • the oxime compound preferably has a molar extinction coefficient at 365 nm or 405 nm of 1,000 to 300,000, more preferably 2,000 to 300,000, more preferably 5,000 to 200, from the viewpoint of sensitivity. More preferably, it is 1,000.
  • the molar extinction coefficient of the compound can be measured using a known method.
  • an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using an ethyl acetate solvent at a concentration of 0.01 g / L. You may use the photoinitiator used for this invention in combination of 2 or more type as needed.
  • the content of the photopolymerization initiator is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 1 to 20% by mass.
  • the active energy ray-curable composition may contain only one type of photopolymerization initiator, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the active energy ray-curable composition can contain an acid generator.
  • the active energy ray-curable composition contains a cationic polymerizable compound, it is preferable to contain an acid generator.
  • the acid generator is preferably a compound that generates an acid upon irradiation with active energy rays (radiation). Examples of the acid generator include a photocationic polymerization initiator, a photodecoloring agent for dyes, a photochromic agent, or light (400 to 200 nm ultraviolet rays, far ultraviolet rays, particularly preferably g-rays) used in a microresist.
  • Acid generators that generate acids upon decomposition upon irradiation with radiation, onium salt compounds such as diazonium salts, phosphonium salts, sulfonium salts, iodonium salts, imide sulfonates, oxime sulfonates, diazodisulfones, disulfones, ortho-nitrobenzyl
  • onium salt compounds such as diazonium salts, phosphonium salts, sulfonium salts, iodonium salts, imide sulfonates, oxime sulfonates, diazodisulfones, disulfones, ortho-nitrobenzyl
  • sulfonate compounds such as sulfonate.
  • Examples of the acid generator, specific compounds, and preferred examples include compounds described in paragraph numbers 0066 to 0122 of JP-A-2008-13646, and these can be applied to the present invention. it can.
  • Preferred examples of the acid generator that can be used in the present invention include compounds represented by the following formulas (b1), (b2), and (b3).
  • R 201 , R 202 , and R 203 each independently represents an organic group.
  • X ⁇ represents a non-nucleophilic anion, preferably a sulfonate anion, a carboxylate anion, a bis (alkylsulfonyl) amide anion, a tris (alkylsulfonyl) methide anion, BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ or the following And the like, and BF 4 ⁇ , PF 6 ⁇ and SbF 6 ⁇ are preferable.
  • Examples of commercially available acid generators include WPAG-469 (manufactured by Wako Pure Chemical Industries, Ltd.).
  • the content of the acid generator is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 1 to 20%, based on the total solid content of the active energy ray-curable composition. % By mass.
  • the active energy ray-curable composition may contain only one type of acid generator, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the active energy ray-curable composition may contain a silane coupling agent for the purpose of improving the adhesion to the substrate.
  • a silane coupling agent for the purpose of improving the adhesion to the substrate.
  • the silane coupling agent is a compound having a hydrolyzable group and other functional groups in the molecule.
  • a hydrolyzable group such as an alkoxy group is preferably bonded to a silicon atom.
  • the hydrolyzable group refers to a substituent that is directly bonded to a silicon atom and can form a siloxane bond by a hydrolysis reaction and / or a condensation reaction.
  • Examples of the hydrolyzable group include a halogen atom, an alkoxy group, an acyloxy group, and an alkenyloxy group.
  • the hydrolyzable group has a carbon atom, the number of carbon atoms is preferably 6 or less, and more preferably 4 or less.
  • the silane coupling agent preferably contains no fluorine atom or silicon atom (except for a silicon atom to which a hydrolyzable group is bonded) in order to improve the adhesion of the cured film. Does not include atoms (excluding silicon atoms to which hydrolyzable groups are bonded), alkylene groups substituted with silicon atoms, straight-chain alkyl groups having 8 or more carbon atoms, and branched alkyl groups having 3 or more carbon atoms. Is desirable.
  • the silane coupling agent preferably has a group represented by the following formula (Z). * Represents a bonding position.
  • R z1 represents an alkyl group
  • R z2 represents a hydrolyzable group
  • m represents an integer of 1 to 3.
  • the number of carbon atoms of the alkyl group represented by R z1 is preferably 1 to 5, and more preferably 1 to 3.
  • the definition of the hydrolyzable group represented by R z2 is as described above.
  • the silane coupling agent preferably has a curable functional group.
  • the curable functional group includes (meth) acryloyloxy group, epoxy group, oxetanyl group, isocyanate group, hydroxyl group, amino group, carboxyl group, thiol group, alkoxysilyl group, methylol group, vinyl group, (meth) acrylamide. It is preferably at least one selected from the group consisting of a group, a styryl group, and a maleimide group, and is at least one selected from the group consisting of a (meth) acryloyloxy group, an epoxy group, and an oxetanyl group It is more preferable.
  • the curable functional group may be directly bonded to the silicon atom, or may be bonded to the silicon atom via a linking group.
  • the molecular weight of the silane coupling agent is not particularly limited, and is preferably from 100 to 1,000 from the viewpoint of handleability, preferably from 270 or more, and more preferably from 270 to 1,000, from the viewpoint of more excellent effects of the present invention.
  • silane coupling agent is a silane coupling agent X represented by the formula (W).
  • R z1 represents an alkyl group
  • R z2 represents a hydrolyzable group
  • R z3 represents a curable functional group
  • Lz represents a single bond or a divalent linking group
  • m is an integer of 1 to 3.
  • the definition of the alkyl group represented by R z1 is as described above.
  • the definition of the hydrolyzable group represented by R z2 is as described above.
  • the definition of the curable functional group represented by R z3 is as described above, and the preferred range is also as described above.
  • Lz represents a single bond or a divalent linking group.
  • the divalent linking group include an alkylene group, an arylene group, —NR 12 —, —CONR 12 —, —CO—, —CO 2 —, —SO 2 NR 12 —, —O—, —S—, —SO. 2- or a combination thereof.
  • the alkylene group preferably has 1 to 20 carbon atoms.
  • the alkylene group may be linear or branched.
  • the alkylene group and the arylene group may be unsubstituted or may have a substituent. Examples of the substituent include a halogen atom and a hydroxyl group.
  • Lz is at least one selected from the group consisting of an alkylene group having 2 to 10 carbon atoms and an arylene group having 6 to 12 carbon atoms, or these groups and —NR 12 —, —CONR 12 —, —CO—. , —CO 2 —, —SO 2 NR 12 —, —O—, —S—, and a group consisting of a combination with at least one group selected from the group consisting of —SO 2 — are preferred.
  • a group consisting of ⁇ 10 alkylene groups, —CO 2 —, —O—, —CO—, —CONR 12 —, or a combination of these groups is more preferred.
  • R 12 represents a hydrogen atom or a methyl group.
  • m represents 1 to 3, preferably 2 to 3, and more preferably 3.
  • silane coupling agent X N- ⁇ -aminoethyl- ⁇ -aminopropylmethyldimethoxysilane (trade name KBM-602 manufactured by Shin-Etsu Chemical Co., Ltd.), N- ⁇ -aminoethyl- ⁇ -aminopropyltrimethoxysilane ( Shin-Etsu Chemical Co., Ltd. trade name KBM-603), N- ⁇ -aminoethyl- ⁇ -aminopropyl-triethoxysilane (Shin-Etsu Chemical Co., Ltd.
  • the silane coupling agent Y having at least a silicon atom, a nitrogen atom, and a curable functional group in the molecule and a hydrolyzable group bonded to the silicon atom is also preferable.
  • the silane coupling agent Y only needs to have at least one silicon atom in the molecule, and the silicon atom can be bonded to the following atoms and substituents. They may be the same atom, substituent or different.
  • Atoms and substituents that can be bonded are a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, an alkyl group and / or an aryl group that can be substituted with an aryl group, silyl Group, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group, and the like.
  • substituents further include an amino group, a halogen atom, a sulfonamide group, a silyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, a thioalkoxy group, an alkyl group and / or an aryl group. It may be substituted with an alkoxycarbonyl group, an amide group, a urea group, an ammonium group, an alkylammonium group, a carboxyl group or a salt thereof, a sulfo group or a salt thereof, and the like. Note that at least one hydrolyzable group is bonded to the silicon atom. The definition of the hydrolyzable group is as described above.
  • the silane coupling agent Y may contain a group represented by the formula (Z).
  • the silane coupling agent Y has at least one nitrogen atom in the molecule, and the nitrogen atom is preferably present in the form of a secondary amino group or a tertiary amino group, that is, the nitrogen atom is used as a substituent. It preferably has at least one organic group.
  • the amino group structure may exist in the molecule in the form of a partial structure of a nitrogen-containing heterocycle, or may exist as a substituted amino group such as aniline.
  • examples of the organic group include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof.
  • substituents may further have a substituent
  • substituents that can be introduced include a silyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, a thioalkoxy group, an amino group, a halogen atom, and a sulfonamide.
  • the nitrogen atom is couple
  • Preferred examples of the organic linking group include the above-described nitrogen atom and a substituent that can be introduced into the organic group bonded thereto.
  • the definition of the curable functional group contained in the silane coupling agent Y is as described above, and the preferred range is also as described above.
  • the silane coupling agent Y only needs to have at least one curable functional group in one molecule, but it is also possible to have two or more curable functional groups in one molecule. From the viewpoints of sensitivity and stability, the molecule preferably has 2 to 20 curable functional groups, more preferably 4 to 15 and even more preferably 6 to 10.
  • Examples of the silane coupling agent Y include compounds represented by the following formula (Y).
  • R y1 represents an alkyl group
  • R y2 represents a hydrolyzable group
  • R y3 represents a curable functional group
  • LN represents a (n + 1) -valent linking group having a nitrogen atom
  • m represents an integer of 1 to 3
  • n represents an integer of 1 or more.
  • R y1 , R y2 , R y3 and m in the formula (Y) have the same meanings as R z1 , R z2 , R z3 and m in the formula (W), respectively, and preferred ranges are also the same.
  • N in the formula (Y) represents an integer of 1 or more.
  • the upper limit is preferably 20 or less, more preferably 15 or less, and still more preferably 10 or less.
  • the lower limit is preferably 2 or more, more preferably 4 or more, and still more preferably 6 or more.
  • n can be 1.
  • LN in the formula (Y) represents a group having a nitrogen atom.
  • the group having a nitrogen atom is at least one selected from the following formulas (LN-1) to (LN-4), or the following formulas (LN-1) to (LN-4), and —CO—, —CO 2 -, - O -, - S- and -SO 2 - groups, which consist of a combination of at least one selected from the like.
  • the alkylene group may be linear or branched.
  • the alkylene group and the arylene group may be unsubstituted or may have a substituent. Examples of the substituent include a halogen atom and a hydroxyl group.
  • * represents a connecting hand.
  • silane coupling agent Y examples include the following compounds.
  • Et represents an ethyl group.
  • compounds described in paragraphs 0018 to 0036 of JP-A-2009-288703 can be mentioned, the contents of which are incorporated herein.
  • the content of the silane coupling agent is preferably 0.01 to 10% by mass and more preferably 0.01 to 5% by mass with respect to the total solid content of the active energy ray-curable composition.
  • the lower limit is more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and further preferably 0.5% by mass or more.
  • a silane coupling agent may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, it is preferable that a total amount exists in said range.
  • the active energy ray-curable composition can contain a chromatic colorant.
  • the chromatic colorant means a colorant other than the white colorant and the black colorant.
  • the chromatic colorant is preferably a colorant having an absorption maximum in a wavelength range of 400 nm or more and less than 650 nm.
  • the chromatic colorant may be a pigment or a dye.
  • a pigment is preferable.
  • the average particle size (r) of the pigment preferably satisfies 20 nm ⁇ r ⁇ 300 nm, more preferably 25 nm ⁇ r ⁇ 250 nm, and further preferably 30 nm ⁇ r ⁇ 200 nm.
  • the “average particle size” here means the average particle size of secondary particles in which primary particles of the pigment are aggregated.
  • the particle size distribution of the secondary particles of the pigment that can be used is such that the secondary particles falling into (average particle size ⁇ 100) nm are 70% by mass or more of the total.
  • the particle size distribution of the secondary particles can be measured using the scattering intensity distribution.
  • the average particle diameter of primary particles is observed with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and 100 particle sizes are measured at a portion where the particles are not aggregated, and an average value is calculated.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the pigment is preferably an organic pigment, and examples thereof include the following. However, the present invention is not limited to these. Color Index (CI) Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168, 169, 170 171,172,173,174,175,176,177
  • C. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 17, 22, 23, 31, 38, 41, 48: 1, 48: 2, 48: 3, 48: 4 49, 49: 1, 49: 2, 52: 1, 52: 2, 53: 1, 57: 1, 60: 1, 63: 1, 66, 67, 81: 1, 81: 2, 81: 3 83, 88, 90, 105, 112, 119, 122, 123, 144, 146, 149, 150, 155, 166, 168, 169, 170, 171, 172, 175, 176, 177, 178, 179, 184 185, 187, 188, 190, 200, 202, 206, 207, 208, 209, 210, 216, 220, 224, 22
  • the dye is not particularly limited, and a known dye can be used.
  • Chemical structures include pyrazole azo, anilino azo, triaryl methane, anthraquinone, azomethine, anthrapyridone, benzylidene, oxonol, pyrazolotriazole azo, pyridone azo, cyanine, phenothiazine, pyrrolopyrazole Azomethine, xanthene, phthalocyanine, benzopyran, indigo, and pyromethene dyes can be used. Moreover, you may use the multimer of these dyes. Further, the dyes described in JP-A-2015-028144 and JP-A-2015-34966 can also be used.
  • an acid dye and / or a derivative thereof may be preferably used.
  • a direct dye, a basic dye, a mordant dye, an acid mordant dye, an azoic dye, a disperse dye, an oil-soluble dye, a food dye, and / or a derivative thereof can be usefully used.
  • Acid alizarin violet N Acid blue 1,7,9,15,18,23,25,27,29,40-45,62,70,74,80,83,86,87,90,92,103,112,113,120, 129, 138, 147, 158, 171, 182, 192, 243, 324: 1, Acid Chrome violet K, Acid Fuchsin; Acid green 1,3,5,9,16,25,27,50, Acid orange 6, 7, 8, 10, 12, 50, 51, 52, 56, 63, 74, 95, Acid red 1,4,8,14,17,18,26,27,29,31,34,35,37,42,44,50,51,52,57,66,73,80,87,88, 91, 92, 94, 97, 103, 111, 114, 129, 133, 134, 138, 143, 145, 150, 151,
  • azo, xanthene and phthalocyanine acid dyes are also preferred.
  • I. Solvent Blue 44, 38; C.I. I. Solvent orange 45; Rhodamine B, Rhodamine 110 and other acid dyes and derivatives of these dyes are also preferably used.
  • the dye triarylmethane, anthraquinone, azomethine, benzylidene, oxonol, cyanine, phenothiazine, pyrrolopyrazole azomethine, xanthene, phthalocyanine, benzopyran, indigo, pyrazoleazo
  • a colorant selected from anilinoazo, pyrazolotriazole azo, pyridoneazo, anthrapyridone, and pyromethene is preferred. Further, pigments and dyes may be used in combination.
  • the content of the chromatic colorant is preferably 1 to 80% by mass with respect to the total solid content of the active energy ray curable composition.
  • the lower limit is more preferably 5% by mass or more, further preferably 10% by mass or more, and further preferably 20% by mass or more.
  • the upper limit is more preferably 75% by mass or less, and still more preferably 70% by mass or less.
  • the active energy ray-curable composition can contain a black colorant.
  • a black colorant either an organic black colorant or an inorganic black colorant may be used. Moreover, both can also be used together.
  • a composition containing a black colorant has low curability upon exposure and has been conventionally heat-treated at a high temperature. However, a cured film having excellent reliability can be produced by a low-temperature process, and the effect of the present invention is particularly remarkable.
  • organic black colorant examples include bisbenzofuranone compounds, azomethine compounds, perylene compounds, and azo compounds.
  • examples of the bisbenzofuranone compounds include those described in JP-T 2010-534726, JP-A 2012-515233, JP-A 2012-515234, etc., for example, “IRGAPHOR Black” manufactured by BASF Is available as Examples of perylene compounds include C.I. I. Pigment Black 31, 32 and the like.
  • Examples of the azomethine compound include those described in JP-A-1-170601, JP-A-2-34664, and the like, and can be obtained, for example, as “Chromofine Black A1103” manufactured by Dainichi Seika Co., Ltd.
  • the azo compound is not particularly limited, and preferred examples include a compound represented by the following formula (A-1).
  • inorganic black colorant examples include carbon black, titanium black, titanium oxide, iron oxide, manganese oxide, and graphite. These can realize a high optical density in a small amount. Especially, it is preferable to contain at least 1 sort (s) of carbon black and titanium black, and titanium black is especially preferable.
  • Titanium black is black particles containing titanium atoms. Preferred are low-order titanium oxide and titanium oxynitride.
  • the surface of titanium black particles can be modified as necessary for the purpose of improving dispersibility and suppressing aggregation. It can be coated with silicon oxide, titanium oxide, germanium oxide, aluminum oxide, magnesium oxide, or zirconium oxide, and treatment with a water-repellent substance as disclosed in JP-A-2007-302836 is also possible. Is possible.
  • the titanium black is typically titanium black particles, and it is preferable that both the primary particle size and the average primary particle size of each particle are small. Specifically, the average primary particle size is preferably in the range of 10 nm to 45 nm.
  • the particle diameter that is, the particle diameter is a diameter of a circle having an area equal to the projected area of the outer surface of the particle.
  • the projected area of the particles can be obtained by measuring the area obtained by photographing with an electron micrograph and correcting the photographing magnification.
  • the specific surface area of titanium black is not particularly limited, but the value measured by the BET (Brunauer, Emmett, Teller) method is used in order that the water repellency after the surface treatment of titanium black with a water repellent becomes a predetermined performance. It is preferably 5 to 150 m 2 / g, more preferably 20 to 120 m 2 / g.
  • Examples of commercially available titanium black include titanium black 10S, 12S, 13R, 13M, 13M-C, 13R, 13R-N, 13M-T (trade name: manufactured by Mitsubishi Materials Corporation), Tilack D (trade name: manufactured by Ako Kasei Co., Ltd.) and the like.
  • titanium black is contained as a dispersion in the composition, and the content ratio (Si / Ti) of Si atoms and Ti atoms in the dispersion is 0.05 or more in terms of mass. Is preferable, 0.05 to 0.5 is more preferable, and 0.07 to 0.4 is still more preferable.
  • the to-be-dispersed bodies include both those in which titanium black is in the state of primary particles and those in the state of aggregates (secondary particles).
  • a dispersion is obtained by dispersing titanium oxide and silica particles using a disperser, and the dispersion is subjected to reduction treatment at a high temperature (for example, 850 to 1000 ° C.), whereby titanium black particles are mainly formed.
  • a dispersed material containing Si and Ti as components can be obtained.
  • the reduction treatment can also be performed in an atmosphere of a reducing gas such as ammonia.
  • titanium oxide include TTO-51N (trade name: manufactured by Ishihara Sangyo).
  • silica particles examples include AEROSIL (registered trademark) 90, 130, 150, 200, 255, 300, 380 (trade name: manufactured by Evonik).
  • a dispersant may be used for the dispersion of titanium oxide and silica particles. Examples of the dispersant include those described in the above-mentioned column of the dispersant.
  • the dispersion may be performed in a solvent. Examples of the solvent include water and organic solvents. Specific examples include those described in the column of organic solvent described later. Titanium black in which Si / Ti is adjusted to, for example, 0.05 or more can be produced, for example, by the method described in paragraph No. 0005 and paragraph Nos. 0016 to 0021 of Japanese Patent Application Laid-Open No. 2008-266045. .
  • the above-described titanium black can be used.
  • complex oxides such as Cu, Fe, Mn, V, Ni, cobalt oxide, iron oxide, carbon black, aniline A black pigment composed of black or the like may be used alone or in combination of two or more. In this case, it is preferable that 50% by mass or more of the total dispersion is occupied by the dispersion made of titanium black.
  • a Si-containing material such as silica may be used.
  • silica examples include precipitated silica, fumed silica, colloidal silica, and synthetic silica. These may be appropriately selected and used. Furthermore, if the particle size of the silica particles is smaller than the film thickness when the light shielding film is formed, the light shielding property is more excellent.
  • fine particle type silica as the silica particles.
  • the fine particle type silica include, for example, the silica described in paragraph No. 0039 of JP2013-249417A, the contents of which are incorporated herein.
  • the content of the black colorant is preferably 1 to 80% by mass with respect to the total solid content of the active energy ray-curable composition.
  • the lower limit is more preferably 5% by mass or more, further preferably 10% by mass or more, and further preferably 20% by mass or more.
  • the upper limit is more preferably 75% by mass or less, and still more preferably 70% by mass or less.
  • the total content of the black colorant and the chromatic colorant is preferably 1 to 80% by mass with respect to the total solid content of the active energy ray-curable composition.
  • the lower limit is more preferably 5% by mass or more, further preferably 10% by mass or more, and further preferably 20% by mass or more.
  • the upper limit is more preferably 75% by mass or less, and still more preferably 70% by mass or less.
  • the active energy ray curable composition may contain an infrared absorber.
  • the infrared absorber means a compound having maximum absorption in the infrared region (preferably, a wavelength region of 800 to 1300 nm).
  • infrared absorbers examples include pyrrolopyrrole compounds, copper compounds, cyanine compounds, phthalocyanine compounds, iminium compounds, thiol complex compounds, transition metal oxide compounds, squarylium compounds, naphthalocyanine compounds, quaterylene compounds, dithiol metal complex systems. Compounds, croconium compounds and the like.
  • pyrrolopyrrole compound compounds described in JP-A-2009-263614, paragraphs 0049 to 0058 may be used, the contents of which are incorporated herein.
  • phthalocyanine compound naphthalocyanine compound, iminium compound, cyanine compound, squarylium compound, and croconium compound
  • the compounds disclosed in paragraph numbers 0010 to 0081 of JP 2010-1111750 A may be used. Embedded in the book.
  • the cyanine compound for example, “functional pigment, Nobu Okawara / Ken Matsuoka / Kojiro Kitao / Kensuke Hirashima, Kodansha Scientific”, the contents of which are incorporated herein. .
  • infrared absorbers compounds disclosed in paragraphs 0004 to 0016 of JP 07-164729 A, compounds disclosed in paragraphs 0027 to 0062 of JP 2002-146254 A, JP Near infrared absorbing particles composed of crystallites of oxides containing Cu and / or P disclosed in paragraph Nos. 0034 to 0067 of Japanese Patent No. 164583 and having a number average aggregate particle diameter of 5 to 200 nm may be used. Is incorporated herein by reference. Further, FD-25 (manufactured by Yamada Chemical Co., Ltd.), IRA842 (manufactured by Exiton), etc. can be used.
  • the content of the infrared absorber is preferably 1 to 80% by mass with respect to the total solid content of the active energy ray-curable composition.
  • the lower limit is more preferably 5% by mass or more, further preferably 10% by mass or more, and further preferably 20% by mass or more.
  • the upper limit is more preferably 75% by mass or less, and still more preferably 70% by mass or less.
  • the total content of the infrared absorber, the black colorant, and the chromatic colorant is preferably 1 to 80% by mass with respect to the total solid content of the active energy ray-curable composition.
  • the lower limit is more preferably 5% by mass or more, further preferably 10% by mass or more, and further preferably 20% by mass or more.
  • the upper limit is more preferably 75% by mass or less, and still more preferably 70% by mass or less.
  • the active energy ray-curable composition may contain a pigment derivative.
  • the pigment derivative is preferably a compound having a structure in which a part of an organic pigment is substituted with an acidic group, a basic group or a phthalimidomethyl group.
  • a pigment derivative having an acidic group or a basic group is preferable.
  • the active energy ray curable composition may contain an organic solvent.
  • the organic solvent is basically not particularly limited as long as the solubility of each component and the coating property of the composition are satisfied.
  • organic solvents examples include esters such as ethyl acetate, n-butyl acetate, isobutyl acetate, cyclohexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, Alkyl oxyacetates (eg, methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate etc.
  • esters such as ethyl acetate, n-butyl acetate, isobutyl acetate, cyclohexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, Alkyl
  • alkyl 3-oxypropionate Esters eg, methyl 3-oxypropionate, ethyl 3-oxypropionate, etc. (eg, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.)
  • 2-oxypropionic acid alkyl esters eg, methyl 2-oxypropionate, ethyl 2-oxypropionate, propyl 2-oxypropionate, etc.
  • organic solvents are also preferably used as a mixture of two or more kinds from the viewpoints of solubility of polymerizable compounds, alkali-soluble resins and the like, and improvement of the coated surface.
  • the organic solvent preferably has a peroxide content of 0.8 mmol / L or less, and more preferably contains substantially no peroxide.
  • the content of the organic solvent in the active energy ray-curable composition is preferably such that the total solid concentration of the composition is 5 to 80% by mass from the viewpoint of coating properties, and is 5 to 60% by mass. More preferred is 10 to 50% by mass.
  • the active energy ray-curable composition may contain only one type of organic solvent or two or more types of organic solvents. When two or more types are included, the total amount is preferably within the above range.
  • the active energy ray-curable composition is desirably added with a small amount of a polymerization inhibitor in order to prevent unnecessary thermal polymerization of the polymerizable compound during the production or storage of the composition.
  • Polymerization inhibitors include hydroquinone, para-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt and the like.
  • the content of the polymerization inhibitor is preferably 0.01 to 5% by mass with respect to the total solid content of the active energy ray-curable composition.
  • the active energy ray-curable composition may contain only one type of polymerization inhibitor, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • surfactant Various surfactants may be added to the active energy ray-curable composition from the viewpoint of further improving applicability.
  • various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • the liquid properties (particularly fluidity) when prepared as a coating liquid are further improved. That is, when forming a cured film using a colored composition containing a fluorosurfactant, the wettability to the coated surface is improved by reducing the interfacial tension between the coated surface and the coating liquid. As a result, the coating property to the coated surface is improved. For this reason, even when a thin film of about several ⁇ m is formed with a small amount of liquid, it is effective in that it is possible to more suitably form a film having a uniform thickness with small thickness unevenness.
  • the fluorine content in the fluorosurfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and still more preferably 7 to 25% by mass.
  • a fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity of coating film thickness and liquid-saving properties, and has good solubility in a colored composition.
  • fluorosurfactant examples include Megafac F171, F172, F173, F176, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780, F780, F781 (above DIC Corporation), Florard FC430, FC431, FC171 (above, Sumitomo 3M Limited), Surflon S-382, SC-101, Same SC-103, Same SC-104, Same SC-105, Same SC1068, Same SC-381, Same SC-383, Same S-393, Same KH-40 (above, manufactured by Asahi Glass Co., Ltd.), PF636, PF656 PF6320, PF6520, PF7002 (manufactured by OMNOVA) and the like.
  • a block polymer can also be used as the fluorosurfactant, and specific examples thereof include compounds described in JP-A-2011-89090.
  • the following compounds are also exemplified as the fluorosurfactant used in the present invention.
  • the weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example, 14,000.
  • the fluoropolymer which has an ethylenically unsaturated group in a side chain can also be used as a fluorine-type surfactant.
  • Specific examples include compounds described in JP-A 2010-164965, paragraph numbers 0050 to 0090 and 0289 to 0295, such as MegaFac RS-101, RS-102 and RS-718K manufactured by DIC. .
  • the fluorine-containing polymer having an ethylenically unsaturated group in the side chain is a compound different from the above-described radical polymerizable compound.
  • nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane and ethoxylates and propoxylates thereof (for example, glycerol propoxylate, glycerin ethoxylate, etc.), polyoxyethylene lauryl ether, poly Oxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester (Pluronic L10, L31, L61 from BASF, L62, 10R5, 17R2, 25R2, Tetronic 304, 701, 704, 901, 904, 150R ), Solsperse 20000 (Lubrizol Japan Co., Ltd.), and the like.
  • Pionein D-6112-W manufactured by Takemoto Yushi Co., Ltd., NCW-101
  • cationic surfactant examples include phthalocyanine derivatives (trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid.
  • phthalocyanine derivatives trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.
  • organosiloxane polymer KP341 manufactured by Shin-Etsu Chemical Co., Ltd.
  • (meth) acrylic acid (Co) polymer polyflow No. 75, no. 90, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.) and the like.
  • anionic surfactant examples include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like.
  • silicone surfactant examples include “Toray Silicone DC3PA”, “Toray Silicone SH7PA”, “Tore Silicone DC11PA”, “Tore Silicone SH21PA”, “Tore Silicone SH28PA”, “Toray Silicone” manufactured by Toray Dow Corning Co., Ltd.
  • the content of the surfactant is 0.001 to 2.0% by mass with respect to the total solid content of the active energy ray-curable composition. It is preferably 0.005 to 1.0% by mass.
  • the active energy ray-curable composition may contain only one type of surfactant or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the active energy ray-curable composition can contain various additives such as fillers, adhesion promoters, antioxidants, ultraviolet absorbers, anti-aggregation agents, and the like, if necessary. Examples of these additives include those described in JP-A No. 2004-295116, paragraphs 0155 to 0156, the contents of which are incorporated herein.
  • the active energy ray-curable composition contains a sensitizer and a light stabilizer described in paragraph No. 0078 of JP-A No. 2004-295116 and a thermal polymerization inhibitor described in paragraph No. 0081 of the publication. be able to.
  • the active energy ray-curable composition has an optical density of 1 or more with respect to any wavelength in the wavelength range of 260 to 440 nm when a cured film having a thickness of 0.5 ⁇ m is formed. In the case of a composition that is preferably 2 or more, more preferably 3 or more, it is effective.
  • the minimum value of the optical density in the wavelength range of 260 to 440 nm is preferably 1 or more, and 2 or more. More preferred is 3 or more.
  • the active energy ray-curable composition preferably has an optical density of 1 or more at a wavelength of 365 nm, more preferably 2 or more, and further preferably 3 or more when a cured film having a thickness of 0.5 ⁇ m is formed. preferable.
  • the optical density is a value expressed by the logarithm of the degree of absorption and is defined by the following formula.
  • the optical density of the cured film is a value obtained by entering light having a wavelength of 365 nm and measuring the transmittance with a spectroscope (UV4100 (trade name)) manufactured by Hitachi High-Technologies Corporation.
  • OD ( ⁇ ) Log 10 [T ( ⁇ ) / I ( ⁇ )] ⁇ represents a wavelength
  • OD ( ⁇ ) represents an optical density at the wavelength ⁇
  • T ( ⁇ ) represents a transmitted light amount at the wavelength ⁇
  • I ( ⁇ ) represents an incident light amount at the wavelength ⁇ .
  • a colorant that absorbs light in the wavelength region of 260 to 440 nm is contained, or the content of the colorant in the total solid content is appropriately set. This can be achieved by adjusting.
  • Examples of the active energy ray-curable composition having the optical density include an active energy ray-curable composition containing a black colorant (preferably an inorganic black colorant).
  • a minimum absorbance A in a wavelength range of 400 nm or more and less than 580 nm and a minimum absorbance B in a wavelength range of 580 nm or more and 750 nm or less The ratio A / B is 0.3 to 3, and the ratio C / D between the minimum absorbance C in the wavelength range from 400 nm to 750 nm and the maximum absorbance D in the wavelength range from 1000 nm to 1300 nm is 5 or more.
  • An active energy ray-curable composition that becomes: By using the composition having the spectral characteristics, the maximum value of the transmittance in the wavelength range of 400 to 700 nm is 20% or less, and the minimum value in a specific range of the wavelength 850 to 1300 nm is 80% or more. A cured film having can be suitably formed.
  • the absorbance A ⁇ at a certain wavelength ⁇ is defined by the following equation (1).
  • a ⁇ ⁇ log (T ⁇ ) (1)
  • a ⁇ is the absorbance at the wavelength ⁇
  • T ⁇ is the transmittance at the wavelength ⁇ .
  • the absorbance value may be a value measured in a solution state, or may be a value in a film state formed using the composition.
  • the composition is applied on a glass substrate by a method such as spin coating so that the film thickness after drying becomes a predetermined film thickness, and is used at 100 ° C. using a hot plate. It is preferable to use a membrane prepared by drying for 120 seconds.
  • the film thickness is measured using a stylus type surface shape measuring instrument (DEKTAK150 manufactured by ULVAC) on the substrate having the film.
  • the absorbance can be measured using a conventionally known spectrophotometer.
  • Absorbance measurement conditions are not particularly limited, but in a condition where the minimum absorbance A in the wavelength range of 400 nm to less than 580 nm is adjusted to 0.1 to 3.0, in the wavelength range of 580 nm to 750 nm. It is preferable to measure the minimum absorbance B, the minimum absorbance C in the wavelength range from 400 nm to 750 nm, and the maximum absorbance D in the wavelength range from 1000 nm to 1300 nm. By measuring the absorbance under such conditions, the measurement error can be further reduced.
  • the method for adjusting the minimum absorbance A in the wavelength range of 400 nm or more and less than 580 nm to be 0.1 to 3.0 For example, when measuring absorbance in the state of a composition (solution), a method of adjusting the optical path length of the sample cell can be mentioned. Moreover, when measuring a light absorbency in the state of a film
  • the composition was applied onto a glass substrate by a method such as spin coating so that the film thickness after drying was the predetermined film thickness described above, and dried at 100 ° C. for 120 seconds using a hot plate.
  • the film thickness of the film was measured using a stylus type surface shape measuring instrument (DEKTAK150 manufactured by ULVAC) for the dried substrate having the film.
  • the substrate having this film after drying was measured for transmittance in the wavelength range of 300 to 1300 nm using an ultraviolet-visible near-infrared spectrophotometer (U-4100 manufactured by Hitachi High-Technologies Corporation).
  • Examples of the active energy ray-curable composition having the spectral characteristics include a composition containing a colorant that blocks visible light.
  • the colorant that blocks visible light is preferably a material that absorbs light in the wavelength range from purple to red. It is preferable that the color material that blocks visible light satisfies at least one of the following requirements (A) and (B).
  • the chromatic colorant and the organic black colorant include those described above.
  • the colorant that blocks visible light has, for example, an A / B that is a ratio of the minimum absorbance A in the wavelength range of 450 to 650 nm and the minimum absorbance B in the wavelength range of 900 to 1300 nm. It is preferable that it is 4.5 or more.
  • the above characteristics may be satisfied by one kind of material, or may be satisfied by a combination of a plurality of materials.
  • any of the following embodiments (1) to (3) is preferable.
  • the mass ratio of the red colorant is 0.1 in the mass ratio to the total amount of the chromatic colorant.
  • the mass ratio of yellow colorant is 0.1 to 0.4
  • the mass ratio of blue colorant is 0.1 to 0.6
  • the mass ratio of purple colorant is 0.00. It is preferably 01 to 0.3. More preferably, the mass ratio of the red colorant is 0.2 to 0.5, the mass ratio of the yellow colorant is 0.1 to 0.3, and the mass ratio of the blue colorant is 0.2 to 0.
  • the mass ratio of the purple colorant is 0.05 to 0.25.
  • the mass ratio of the red colorant is 0.2 to 0.00 in the mass ratio with respect to the total amount of the chromatic colorant.
  • the mass ratio of the yellow colorant is 0.1 to 0.4
  • the mass ratio of the blue colorant is 0.1 to 0.6.
  • the mass ratio of the red colorant is 0.3 to 0.6
  • the mass ratio of the yellow colorant is 0.1 to 0.3
  • the mass ratio of the blue colorant is 0.2 to 0. .5.
  • the mass ratio of the yellow colorant is 0.1 to 0.00 in the mass ratio with respect to the total amount of the chromatic colorant.
  • the mass ratio of the blue colorant is 0.1 to 0.6
  • the mass ratio of the purple colorant is 0.2 to 0.7.
  • the mass ratio of the yellow colorant is 0.1 to 0.3
  • the mass ratio of the blue colorant is 0.2 to 0.5
  • the mass ratio of the purple colorant is 0.3 to 0. .6.
  • the active energy ray-curable composition having the above spectral characteristics may further contain an infrared absorber (preferably an infrared absorber having an absorption maximum in the wavelength range of 800 to 900 nm).
  • an infrared absorber preferably an infrared absorber having an absorption maximum in the wavelength range of 800 to 900 nm.
  • the infrared absorber is preferably contained in an amount of 10 to 200 parts by mass with respect to 100 parts by mass of the colorant that blocks visible light.
  • the content of the infrared absorber is preferably 1 to 60% by mass, more preferably 10 to 40% by mass, based on the total solid content of the composition.
  • the content of the colorant that blocks visible light is preferably 10 to 60% by mass, more preferably 30 to 50% by mass, based on the total solid content of the composition.
  • the total amount of the infrared absorber and the colorant that blocks visible light is preferably 1 to 80% by mass, more preferably 20 to 70% by mass, based on the total solid content of the composition. More preferably, it is 30 to 70% by mass.
  • the active energy ray-curable composition can be prepared by mixing the aforementioned components.
  • each component may be blended at once, or may be blended sequentially after each component is dissolved and dispersed in a solvent.
  • the composition may be prepared by dissolving and dispersing all components in a solvent at the same time. If necessary, each component may be suitably used as two or more solutions / dispersions at the time of use (at the time of application). ) May be mixed to prepare a composition.
  • any filter can be used without particular limitation as long as it has been conventionally used for filtration.
  • fluororesin such as polytetrafluoroethylene (PTFE), polyamide resin such as nylon (eg nylon-6, nylon-6,6), polyolefin resin such as polyethylene and polypropylene (PP) (high density and / or ultrahigh)
  • PP polypropylene
  • a filter using a material such as a molecular weight polyolefin resin.
  • polypropylene including high density polypropylene
  • nylon are preferable.
  • the pore size of the filter is suitably about 0.01 to 7.0 ⁇ m, preferably about 0.01 to 3.0 ⁇ m, more preferably about 0.05 to 0.5 ⁇ m. By setting it as this range, it becomes possible to remove reliably the fine foreign material which inhibits preparation of a uniform and smooth composition in a subsequent process. Further, it is also preferable to use a fiber-like filter medium, and examples of the filter medium include polypropylene fiber, nylon fiber, glass fiber, and the like, specifically, SBP type series (SBP008 etc.) and TPR type series manufactured by Loki Techno Co., Ltd. (Such as TPR002 and TPR005) and SHPX type series (such as SHPX003) filter cartridges can be used.
  • SBP type series SBP008 etc.
  • TPR type series manufactured by Loki Techno Co., Ltd.
  • SHPX type series such as SHPX003
  • the filtering by the first filter may be performed only once or may be performed twice or more.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • select from various filters provided by Nippon Pole Co., Ltd. (DFA4201NXEY, etc.), Advantech Toyo Co., Ltd., Japan Integris Co., Ltd. (formerly Nihon Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. can do.
  • the second filter a filter formed of the same material as the first filter described above can be used.
  • the filtering by the first filter may be performed only with the dispersion, and the second filtering may be performed after mixing other components.
  • the cured film of the present invention is obtained by the above-described method for producing a cured film of the present invention.
  • the cured film of the present invention preferably has an optical density of 1 or more, more preferably 2 or more, and further preferably 3 or more with respect to any wavelength in the wavelength range of 260 to 440 nm.
  • the minimum value of the optical density in the wavelength range of 260 to 440 nm is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more.
  • the optical density at a wavelength of 365 nm is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more.
  • the optical density is preferably a value when the thickness of the cured film is 0.5 ⁇ m or more.
  • the thickness of the cured film of the present invention is preferably 0.1 to 45 ⁇ m.
  • the upper limit is more preferably 44 ⁇ m or less, still more preferably 43 ⁇ m or less, and even more preferably 40 m or less.
  • the lower limit is more preferably 0.2 ⁇ m or more.
  • the cured film of the present invention can be preferably used for a color filter, an infrared transmission filter, an infrared cut filter, a light shielding film, a transparent film, a band-pass filter, and the like.
  • a printed matter can also be formed using an active energy ray curable composition as printing ink.
  • the color filter means a filter that transmits light having a specific wavelength among light having a wavelength in the visible light range and shields light having a specific wavelength.
  • the infrared transmission filter means a filter that blocks light having a wavelength in the visible light range and transmits light (infrared light) having a specific infrared wavelength.
  • the infrared cut filter refers to a filter that transmits light having a wavelength in the visible light range (visible light) and shields at least a part of light having a wavelength in the infrared region (infrared light).
  • the light shielding film means a film that shields at least light having a wavelength in the visible range.
  • a transparent film means a film that transmits at least light having a wavelength in the visible light range.
  • Color filters, infrared transmission filters, and infrared cut filters are solid-state imaging devices such as CCD (charge coupled device) and CMOS (complementary metal oxide semiconductor), image display devices such as liquid crystal display devices, and organic electroluminescence (organic).
  • EL organic electroluminescence
  • the light shielding film can be formed and used on various members in an image display device or a sensor module (for example, an infrared cut filter, an outer peripheral portion of a solid-state imaging device, an outer peripheral portion of a wafer level lens, a rear surface of a solid-state imaging device, etc.). Moreover, it is good also as an infrared cut filter with a light shielding film by forming a light shielding film in at least one part on the surface of an infrared cut filter.
  • the transparent film can be used, for example, as a protective film such as an image display device, a solid-state image sensor, or an organic EL element. It can also be used for optical devices.
  • the solid-state imaging device is not particularly limited as long as it has the cured film of the present invention and functions as a solid-state imaging device, and examples thereof include the following configurations.
  • the support has a transfer electrode made of a plurality of photodiodes and polysilicon constituting a light receiving area of a solid-state imaging device (CCD image sensor, CMOS image sensor, etc.).
  • a light collecting means for example, a micro lens, etc., the same applies hereinafter
  • Examples of the image display device include a liquid crystal display device and an organic electroluminescence display device.
  • display devices and details of each display device refer to, for example, “Electronic Display Device (Akio Sasaki, Kogyo Kenkyukai, 1990)”, “Display Device (Junsho Ibuki, Industrial Books Co., Ltd.) Issued in the first year).
  • the liquid crystal display device is described, for example, in “Next-generation liquid crystal display technology (edited by Tatsuo Uchida, Industrial Research Co., Ltd., published in 1994)”.
  • the liquid crystal display device to which the present invention can be applied is not particularly limited, and can be applied to, for example, various types of liquid crystal display devices described in the “next generation liquid crystal display technology”.
  • the image display device may have a white organic EL element.
  • the white organic EL element preferably has a tandem structure.
  • JP 2003-45676 A supervised by Akiyoshi Mikami, “Frontier of Organic EL Technology Development-High Brightness, High Precision, Long Life, Know-how Collection”, Technical Information Association, 326-328 pages, 2008, etc.
  • the spectrum of white light emitted from the organic EL device preferably has a strong maximum emission peak in the blue region (430 nm to 485 nm), the green region (530 nm to 580 nm) and the yellow region (580 nm to 620 nm). In addition to these emission peaks, those having a maximum emission peak in the red region (650 nm to 700 nm) are more preferable.
  • Titanium Black A-1 120 g of titanium oxide having a BET specific surface area of 110 m 2 / g (“TTO-51N”, trade name: manufactured by Ishihara Sangyo) and 25 g of silica particles having a BET surface area of 300 m 2 / g (“AEROSIL (registered trademark) 300”, manufactured by Evonik) , And 100 g of a dispersant (“DISPERBYK-190”, manufactured by BYKChemie), weighed 71 g of ion-exchanged water and used MURASTAR KK-400W manufactured by KURABO to achieve a revolution speed of 1360 rpm and a rotation speed of 1047 rpm.
  • TB Dispersion 1 Preparation of Titanium Black Dispersion (TB Dispersion 1)
  • the component shown in the following composition 1 was mixed for 15 minutes using a stirrer (EUROSTAR manufactured by IKA) to obtain dispersion a.
  • the obtained dispersion a was subjected to a dispersion treatment using the Ultra Apex Mill UAM015 manufactured by Kotobuki Industry Co., Ltd. under the following conditions, and a nylon filter having a pore diameter of 0.45 ⁇ m (manufactured by Nippon Pole Co., Ltd., DFA4201NXEY). )
  • TB dispersion 1 a titanium black dispersion (hereinafter referred to as TB dispersion 1).
  • composition 1 -Titanium black (A-1) obtained as described above-25 parts by mass-30% by mass solution of propylene glycol monomethyl ether acetate in resin 1-25 parts by mass-Propylene glycol monomethyl ether acetate (PGMEA) ... 50 parts by mass / resin 1:
  • the following structure The synthesis was performed with reference to the description in JP2013-249417A.
  • x was 43% by mass
  • y was 49% by mass
  • z was 8% by mass.
  • the weight average molecular weight of Resin 1 was 30,000, the acid value was 60 mgKOH / g, and the number of graft chain atoms (excluding hydrogen atoms) was 117.
  • Solvent cyclohexanone: 4.66 parts by mass Fluorosurfactant (Megafac RS-72-K, fluorinated polymer having ethylenically unsaturated groups in the side chain (manufactured by DIC Corporation, solid content 30) %, Solvent: propylene glycol monomethyl ether acetate)): 10.65 parts by mass Silane coupling agent (KBM-4803 (manufactured by Shin-Etsu Chemical Co., Ltd.)) : 0.36 parts by weight
  • Alkali-soluble resin 1 the following structure. The compound was synthesized according to the production methods described in JP-A 2010-106268, paragraph numbers 0338 to 0340. In the following formula, x was 90% by mass and z was 10% by mass. The alkali-soluble resin 1 had a weight average molecular weight of 40,000, an acid value of 100 mgKOH / g, and the number of graft chain atoms (excluding hydrogen atoms) was 117.
  • a glass substrate (diameter 200 mm (8 inches), thickness 0.7 mm, 1737 (trade name, manufactured by Corning)) treated with hexamethyldisilazane (HMDS) was used as the substrate.
  • the HMDS treatment was performed at 100 ° C. for 60 seconds using ACT8 (trade name) manufactured by Tokyo Electron Limited.
  • the active energy ray-curable composition prepared above was applied by spin coating to a glass substrate that had been subjected to HMDS treatment, and then heat-treated (prebaked) for 100 seconds using a 65 ° C. hot plate.
  • the coating thickness of the active energy ray-curable composition was adjusted so that the thickness after pre-baking was 4.0 ⁇ m.
  • Electron beam irradiation conditions Device manufactured by Hamamatsu Photonics, Inc. Electron beam irradiation device Acceleration voltage: 5.0 kV to 200 kV, tube current value: 4.0 mA Absorbed dose 145kGy Clearance between substrate and electron irradiation source: 10mm Oxygen concentration ⁇ 1000 ppm by volume Conveying speed (scanning speed during processing) 100mm / sec (2mm / sec for 200mm diameter substrate) Processing temperature: 23 ° C or 50 ° C
  • the temperature cycle test of the cured film was done on condition of the following.
  • Device LTS-150-A / W (manufactured by Hutech) Test conditions: Each sample was left in an atmosphere of ⁇ 45 ° C. and 85 ° C. for 15 minutes, and this was regarded as one cycle for 50 cycles.
  • the resistance to temperature cycle test was evaluated according to the following criteria. A: No pattern peeling B: White turbidity occurred on the surface, but there was no problem, and there was no pattern peeling. C: Many white turbidity occurred on the surface, which was not practical.
  • the obtained cured film also had good adhesion and appearance.
  • C11 test No. whose acceleration voltage is 100 kV or more.
  • C12 and 13 were inferior in the reliability of the obtained cured film.
  • composition Thermosetting resin (Cyclomer P (ACA) 230AA, (manufactured by Daicel Corporation)) 10.96% by mass Propylene glycol monomethyl ether acetate: 89.03 mass% Surfactant 1 ...
  • the active energy ray-curable composition prepared above was applied by spin coating to a glass substrate that had been subjected to HMDS treatment, and then heat-treated (prebaked) for 100 seconds using a 65 ° C. hot plate.
  • the coating thickness of the active energy ray-curable composition was adjusted so that the thickness after pre-baking was 0.3 ⁇ m.
  • electron beam irradiation was performed under the following conditions to produce a cured film.
  • Electron beam irradiation conditions Device manufactured by Hamamatsu Photonics, Inc.
  • Electron beam irradiation device Acceleration voltage 70 kV, tube current value: 4.0 mA Absorbed dose 145kGy Clearance between substrate and electron irradiation source: 10mm Oxygen concentration ⁇ 1000 ppm by volume Conveying speed (scanning speed during processing) 100mm / sec (2mm / sec for 200mm diameter substrate) Processing temperature: 23 ° C
  • Nos. 201 to 206 were able to produce cured films having excellent reliability.
  • composition Preparation of active energy ray-curable composition
  • the nylon filter Nihon Pole Co., Ltd. product, DFA4201NXEY
  • the hole diameter of 0.45 micrometer After mixing the following composition, it filtered using the nylon filter (Nihon Pole Co., Ltd. product, DFA4201NXEY) with the hole diameter of 0.45 micrometer, and prepared the active energy ray hardening composition.
  • composition Resin (Acrycure RD-F8, manufactured by Nippon Shokubai Co., Ltd.) ... 19.08 parts by mass Radical polymerizable compound (Aronix TO-2349, manufactured by Toagosei Co., Ltd.) ... 47.7 parts by mass Photopolymerization started Agent (IRGACURE-184, manufactured by BASF) ...
  • AD-1200 manufactured by Mikasa Co., Ltd.
  • AD-1200 development was performed with an alkaline developer (tetramethylammonium hydroxide (TMAH) 0.3 mass% aqueous solution) in a paddle for 60 seconds.
  • TMAH tetramethylammonium hydroxide
  • a rinsing process was performed using pure water, and then drying was performed at a high speed of 200 rpm for 30 seconds.
  • electron beam irradiation was performed under the following conditions to produce a cured film.
  • Electron beam irradiation conditions Device manufactured by Hamamatsu Photonics Co., Ltd.
  • Electron beam irradiation device Acceleration voltage 95 kV, tube current value: 4.0 mA
  • Clearance between substrate and electron irradiation source 10mm Oxygen concentration ⁇ 1000 ppm by volume
  • Conveying speed scanning speed during processing
  • 100mm / sec 2mm / sec for 200mm diameter substrate
  • Processing temperature 23 ° C
  • Nos. 201 to 206 were able to produce cured films having excellent reliability.
  • FPA-3000i5 + manufactured by Canon Inc.
  • NA / ⁇ 0.63 / 0.65
  • Focus offset 0 ⁇ m
  • Acceleration voltage 70 kV, tube current value: 4.0 mA Absorbed dose: 145 kGy Clearance between substrate and electron irradiation source: 10mm Oxygen concentration ⁇ 1000 ppm by volume Conveying speed (scanning speed during processing) 100mm / sec (2mm / sec for 200mm diameter substrate) Processing temperature: 23 ° C (EB curing 2) Apparatus: Electron beam irradiation apparatus manufactured by Hamamatsu Photonics Inc.
  • AD-1200 manufactured by Mikasa Co., Ltd.
  • development was performed with an alkaline developer (tetramethylammonium hydroxide (TMAH) 0.3 mass% aqueous solution) in a paddle for 60 seconds.
  • TMAH tetramethylammonium hydroxide
  • FIG. 1 shows the spectrum of the red coloring pattern curing process, the EB curing 1 and the spectrum after color mixing of the red coloring pattern after the curing process under the UV curing conditions.
  • test No. 1 was cured under the conditions of EB curing 1. 401 was able to effectively suppress color mixing of other colors.
  • Electron beam irradiation was performed under the following conditions. Electron beam irradiation conditions Device: manufactured by Hamamatsu Photonics Co., Ltd.
  • a mixed solution having the following composition was mixed and dispersed for 3 hours using a zirconia bead having a diameter of 0.3 mm in a bead mill (high pressure disperser NANO-3000-10 with a pressure reducing mechanism (manufactured by Nippon BEE Co., Ltd.)).
  • a pigment dispersion B-2 was prepared.
  • Resin 1 (dispersant) BYPER Chemie, DISPERBYK-111) ... 2.0 parts by mass resin 2 (dispersant) ... 3 3 parts by mass, cyclohexanone 31.2 parts by mass, propylene glycol methyl ether acetate 50 parts by mass
  • composition Preparation of active energy ray-curable composition
  • composition After mixing the following composition, it filtered using the nylon filter (Nihon Pole Co., Ltd. product, DFA4201NXEY) with the hole diameter of 0.45 micrometer, and prepared the active energy ray hardening composition.
  • composition composition-Pigment dispersion B-1 ... 46.5 parts by mass-Pigment dispersion B-2 ... 37.1 parts by mass-Alkali-soluble resin 1 ...
  • Electron beam irradiation apparatus manufactured by Hamamatsu Photonics Co., Ltd. Acceleration voltage: 70 kV, tube current value: 4.0 mA Absorbed dose: 145 kGy Clearance between substrate and electron irradiation source: 10mm Oxygen concentration ⁇ 1000 ppm by volume Conveying speed (scanning speed during processing) 100mm / sec (2mm / sec for 200mm diameter substrate) Processing temperature: 23 ° C (UV curing) Exposure amount (ultraviolet light): 3,000 mJ / cm 2 Temperature: 35 ° C (Heat curing) 1 hour at 220 ° C in oven
  • No. 601 is a No. 601 after heat curing. A cured film equivalent to 603 and excellent in reliability could be produced. Further, the film after additional baking was free from wrinkles and had a good appearance. On the other hand, UV curing was performed, test No. 602 was inferior in reliability. Furthermore, wrinkles occurred in the film after the additional baking. This is presumed that wrinkles were generated on the surface due to the difference in film shrinkage between the surface and the inner surface due to the treatment at a high temperature because the curing of only the surface of the exposure pattern was promoted and the polymerization inside the pattern was insufficient. .
  • Nos. 701 to 703 were able to produce cured films with excellent reliability.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials For Photolithography (AREA)
  • Optical Filters (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

Provided are: a method for producing a cured film, whereby it becomes possible to produce a cured film having excellent reliability by a low-temperature process; and a cured film. A method for producing a cured film, comprising a step of irradiating a layer that is provided on a base material and is made from an active energy ray-curable composition with an electron beam having an accelerating voltage of 10 kV or more and less than 100 kV, wherein the operations throughout the process are carried out at a temperature of 100°C or lower.

Description

硬化膜の製造方法、および、硬化膜Method for producing cured film and cured film
 本発明は、電子線を用いた硬化膜の製造方法、および、硬化膜に関する。 The present invention relates to a method for producing a cured film using an electron beam, and a cured film.
 硬化膜の製造方法においては、硬化性組成物を十分に硬化するため、熱処理を行っている。例えば、カラーフィルタは、以下のようにして製造している。まず、着色剤を含む硬化性組成物(着色組成物)をガラス基材などの基材上に適用して着色組成物層を形成する。次いで、着色組成物層を露光および現像してパターンを形成する。次いで、パターン形成した着色組成物層を加熱処理(ポストベーク)して着色組成物層を十分に硬化している。このようにしてカラーフィルタを製造している。
 また、硬化性組成物に電子線を照射して、硬化膜を製造する方法が知られている(特許文献1~5参照)。
In the method for producing a cured film, heat treatment is performed to sufficiently cure the curable composition. For example, the color filter is manufactured as follows. First, a curable composition (colored composition) containing a colorant is applied onto a substrate such as a glass substrate to form a colored composition layer. Next, the colored composition layer is exposed and developed to form a pattern. Next, the patterned colored composition layer is heat-treated (post-baked) to sufficiently cure the colored composition layer. In this way, the color filter is manufactured.
Also known is a method for producing a cured film by irradiating a curable composition with an electron beam (see Patent Documents 1 to 5).
特開平10-268515号公報Japanese Patent Laid-Open No. 10-268515 特開2004-12843号公報Japanese Patent Laid-Open No. 2004-12443 特開2010-107928号公報JP 2010-107928 A 特開2009-244689号公報Japanese Unexamined Patent Publication No. 2009-244689 特開2004-123802号公報JP 2004-123802 A
 従来は、硬化膜は、シリコンなどの耐熱性に優れた材料などで構成された基材上に製造していた。
 近年においては、耐熱性が劣る基材上に硬化膜を製造することが求められている。耐熱性が劣る基材上に硬化膜を製造するにあたり、例えば100℃以下の低温プロセスで硬化膜を製造して、基材への熱的ダメージを抑制することが望ましい。しかしながら、低温プロセスで硬化膜を製造した場合、温度サイクル試験や恒温恒湿試験を実施後に、外観異常が生じ易い、膜厚変動が大きい、透過率の変動が大きい等の問題が生じ易く、高温での加熱処理を経て製造した硬化膜に比べて、硬化膜の信頼性が劣る傾向にあった。
Conventionally, a cured film has been manufactured on a base material made of a material having excellent heat resistance such as silicon.
In recent years, it has been required to produce a cured film on a substrate having poor heat resistance. In producing a cured film on a substrate having inferior heat resistance, it is desirable to produce a cured film by, for example, a low-temperature process of 100 ° C. or less to suppress thermal damage to the substrate. However, when a cured film is produced by a low-temperature process, problems such as abnormal appearance, large fluctuations in film thickness, large fluctuations in transmittance, etc. are likely to occur after performing a temperature cycle test or a constant temperature and humidity test. Compared with the cured film manufactured through the heat treatment at 1, the reliability of the cured film tended to be inferior.
 よって、本発明の目的は、信頼性に優れた硬化膜を、低温プロセスで製造できる、硬化膜の製造方法、および、硬化膜を提供することにある。 Therefore, an object of the present invention is to provide a method for producing a cured film and a cured film, which can produce a cured film having excellent reliability by a low temperature process.
 本発明者が種々検討した結果、活性エネルギー線硬化性組成物に、10kV以上100kV未満の加速電圧の電子線を照射することで、信頼性に優れた硬化膜を、低温プロセスで製造できることを見出し、本発明を完成するに至った。本発明は以下を提供する。
<1> 基材上に有する活性エネルギー線硬化性組成物の層に、10kV以上100kV未満の加速電圧の電子線を照射する工程を含む、硬化膜の製造方法であって、全工程を通じて100℃以下の温度で行う、硬化膜の製造方法。
<2> 活性エネルギー線硬化性組成物が、アルカリ可溶性樹脂を含む、<1>に記載の硬化膜の製造方法。
<3> 基材は、ガラス転移温度が100℃以下の熱可塑性樹脂で構成された熱可塑性樹脂基材である、<1>または<2>に記載の硬化膜の製造方法。
<4> 基材は、厚さ0.5mm以下のガラス基材である、<1>または<2>に記載の硬化膜の製造方法。
<5> 基材は、有機半導体層を含む、<1>または<2>に記載の硬化膜の製造方法。
<6> 基材は、有機半導体層を表面に有する、<1>または<2>に記載の硬化膜の製造方法。
<7> 更に、活性エネルギー線硬化性組成物の層を露光する工程を含み、電子線を照射する工程を、露光する工程の後に行う、<1>~<6>のいずれかに記載の硬化膜の製造方法。
<8> 更に、活性エネルギー線硬化性組成物の層を露光する工程と、露光する工程の後、活性エネルギー線硬化性組成物の層を現像してパターンを形成する工程とを含み、電子線を照射する工程を、パターンを形成する工程の後に行う、<1>~<6>のいずれかに記載の硬化膜の製造方法。
<9> 露光する工程を、紫外線を用いて行う、<7>または<8>に記載の硬化膜の製造方法。
<10> 活性エネルギー線硬化性組成物は、活性エネルギー線硬化性組成物の固形分中に、シランカップリング剤を0.01~5.0質量%含有する、<1>~<9>のいずれかに記載の硬化膜の製造方法。
<11> 活性エネルギー線硬化性組成物は、熱硬化性樹脂を含有する、<10>に記載の硬化膜の製造方法。
<12> 活性エネルギー線硬化性組成物は、有彩色着色剤および黒色着色剤から選ばれる少なくとも1種を含有する、<1>~<11>のいずれかに記載の硬化膜の製造方法。
<13> 硬化膜は、波長260~440nmの範囲のいずれかの波長に対する光学濃度が1以上である、<1>~<12>のいずれかに記載の硬化膜の製造方法。
<14> 硬化膜は、波長260~440nmの範囲における光学濃度の最小値が1以上である、<13>に記載の硬化膜の製造方法。
<15> 硬化膜は、波長365nmに対する光学濃度が1以上である、<13>に記載の硬化膜の製造方法。
<16> 活性エネルギー線硬化性組成物は、光重合開始剤と、ラジカル重合性化合物とを含有する、<1>~<15>のいずれかに記載の硬化膜の製造方法。
<17> 活性エネルギー線硬化性組成物は、酸発生剤と、カチオン重合性化合物と、を含有する、<1>~<15>のいずれかに記載の硬化膜の製造方法。
<18> 硬化膜の膜厚が、0.1~45μmである、<1>~<17>のいずれかに記載の硬化膜の製造方法。
<19> 基材上に活性エネルギー線硬化性組成物を適用した後、乾燥して活性エネルギー線硬化性組成物の層を形成する、<1>~<18>のいずれかに記載の硬化膜の製造方法。
<20> 真空乾燥を行う工程を有する、<1>~<19>のいずれかに記載の硬化膜の製造方法。
<21> 電子線を照射した層に対し、更に、100℃以下の温度で熱処理する工程を有する、<1>~<20>のいずれかに記載の硬化膜の製造方法。
<22> 基材が熱可塑性樹脂基材であり、熱処理する工程を、熱可塑性樹脂基材のガラス転移温度以下の温度であって、かつ、100℃以下の温度で行う、<21>に記載の硬化膜の製造方法。
<23> <1>~<22>のいずれかに記載の硬化膜の製造方法で得られた硬化膜。
As a result of various studies by the present inventors, it has been found that a cured film having excellent reliability can be produced by a low-temperature process by irradiating an active energy ray-curable composition with an electron beam having an acceleration voltage of 10 kV or more and less than 100 kV. The present invention has been completed. The present invention provides the following.
<1> A method for producing a cured film, comprising a step of irradiating an electron beam having an acceleration voltage of 10 kV or more and less than 100 kV to a layer of an active energy ray-curable composition on a substrate, which is 100 ° C. throughout the entire process. The manufacturing method of the cured film performed at the following temperature.
<2> The method for producing a cured film according to <1>, wherein the active energy ray-curable composition contains an alkali-soluble resin.
<3> The method for producing a cured film according to <1> or <2>, wherein the base material is a thermoplastic resin base material composed of a thermoplastic resin having a glass transition temperature of 100 ° C. or lower.
<4> The method for producing a cured film according to <1> or <2>, wherein the substrate is a glass substrate having a thickness of 0.5 mm or less.
<5> The method for producing a cured film according to <1> or <2>, wherein the base material includes an organic semiconductor layer.
<6> The method for producing a cured film according to <1> or <2>, wherein the substrate has an organic semiconductor layer on the surface.
<7> The curing according to any one of <1> to <6>, further including a step of exposing the layer of the active energy ray-curable composition, wherein the step of irradiating the electron beam is performed after the step of exposing. A method for producing a membrane.
<8> Further, an electron beam includes a step of exposing the layer of the active energy ray-curable composition, and a step of developing the layer of the active energy ray-curable composition after the step of exposing to form a pattern. The method for producing a cured film according to any one of <1> to <6>, wherein the step of irradiating is performed after the step of forming the pattern.
<9> The method for producing a cured film according to <7> or <8>, wherein the exposing step is performed using ultraviolet rays.
<10> The active energy ray-curable composition comprises 0.01 to 5.0% by mass of a silane coupling agent in the solid content of the active energy ray-curable composition, according to <1> to <9> The manufacturing method of the cured film in any one.
<11> The method for producing a cured film according to <10>, wherein the active energy ray-curable composition contains a thermosetting resin.
<12> The method for producing a cured film according to any one of <1> to <11>, wherein the active energy ray-curable composition contains at least one selected from a chromatic colorant and a black colorant.
<13> The method for producing a cured film according to any one of <1> to <12>, wherein the cured film has an optical density of 1 or more with respect to any wavelength in a wavelength range of 260 to 440 nm.
<14> The method for producing a cured film according to <13>, wherein the cured film has a minimum optical density of 1 or more in a wavelength range of 260 to 440 nm.
<15> The method for producing a cured film according to <13>, wherein the cured film has an optical density of 1 or more with respect to a wavelength of 365 nm.
<16> The method for producing a cured film according to any one of <1> to <15>, wherein the active energy ray-curable composition contains a photopolymerization initiator and a radical polymerizable compound.
<17> The method for producing a cured film according to any one of <1> to <15>, wherein the active energy ray-curable composition contains an acid generator and a cationically polymerizable compound.
<18> The method for producing a cured film according to any one of <1> to <17>, wherein the cured film has a thickness of 0.1 to 45 μm.
<19> The cured film according to any one of <1> to <18>, wherein the active energy ray-curable composition is applied onto a substrate and then dried to form a layer of the active energy ray-curable composition. Manufacturing method.
<20> The method for producing a cured film according to any one of <1> to <19>, comprising a step of vacuum drying.
<21> The method for producing a cured film according to any one of <1> to <20>, further comprising a step of heat-treating the layer irradiated with the electron beam at a temperature of 100 ° C. or lower.
<22> The base material is a thermoplastic resin base material, and the heat treatment is performed at a temperature not higher than the glass transition temperature of the thermoplastic resin base material and not higher than 100 ° C. A method for producing a cured film.
<23> A cured film obtained by the method for producing a cured film according to any one of <1> to <22>.
 本発明によれば、信頼性に優れた硬化膜を、低温プロセスで製造できる硬化膜の製造方法、および、硬化膜を提供することが可能になった。 According to the present invention, it is possible to provide a cured film manufacturing method and a cured film that can manufacture a cured film having excellent reliability by a low-temperature process.
混色評価前後の硬化膜のスペクトルを示す図である。It is a figure which shows the spectrum of the cured film before and after color mixing evaluation.
 以下において、本発明の内容について詳細に説明する。
 本明細書における「基(原子団)」の表記において、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含することを意味する。例えば、「アルキル基」は、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「光」とは、活性光線または放射線を意味する。また、「活性光線」または「放射線」とは、例えば、水銀灯の輝線スペクトルおよびエキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等を意味する。
 本明細書において「露光」とは、特に断らない限り、水銀灯およびエキシマレーザーに代表される遠紫外線、X線、EUV光などを用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も含む。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「全固形分」とは、組成物の全組成から溶剤を除いた成分の総質量をいう。
 本明細書において、「(メタ)アクリレート」は、アクリレートおよびメタクリレートの双方、または、いずれかを表し、「(メタ)アクリル」は、アクリルおよびメタクリルの双方、または、いずれかを表し、「(メタ)アリル」は、アリルおよびメタリルの双方、または、いずれかを表し、「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルの双方、または、いずれかを表す。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)測定でのポリスチレン換算値として定義される。
Hereinafter, the contents of the present invention will be described in detail.
In the notation of “group (atomic group)” in this specification, the notation that does not indicate substitution and non-substitution is meant to include not only those having no substituent but also those having a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
As used herein, “light” means actinic rays or radiation. “Actinic light” or “radiation” means, for example, the emission line spectrum of a mercury lamp and far ultraviolet rays, extreme ultraviolet rays (EUV light) typified by excimer laser, X-rays, electron beams, and the like.
In this specification, “exposure” means not only exposure using far-ultraviolet rays such as mercury lamps and excimer lasers, X-rays and EUV light, but also particle beams such as electron beams and ion beams, unless otherwise specified. Including drawing used.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present specification, the “total solid content” refers to the total mass of components excluding the solvent from the total composition.
In this specification, “(meth) acrylate” represents both and / or acrylate and methacrylate, and “(meth) acryl” represents both and / or acrylic and “(meth) acrylic”. ") Allyl" represents both and / or allyl and methallyl, and "(meth) acryloyl" represents both and / or acryloyl and methacryloyl.
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
In this specification, a weight average molecular weight and a number average molecular weight are defined as a polystyrene conversion value in gel permeation chromatography (GPC) measurement.
<硬化膜の製造方法>
 本発明の硬化膜の製造方法は、基材上に有する、活性エネルギー線硬化性組成物の層(以下、活性エネルギー線硬化性組成物層ともいう)に、10kV以上100kV未満の加速電圧の電子線を照射する工程を含む、硬化膜の製造方法であり、かつ、硬化膜の製造方法は、全工程を通じて100℃以下の温度で行う。
 本発明によれば、活性エネルギー線硬化性組成物層に、10kV以上100kV未満の加速電圧の電子線を照射することで、全工程を通じて、100℃以下の低温(以下、低温プロセスともいう)で行っても、信頼性に優れた硬化膜を製造することができる。
 なお、本発明において、「全工程を通じて100℃以下の温度で行う」とは、活性エネルギー線硬化性組成物層を硬化して硬化膜を形成する工程の全てを、100℃以下の温度で行うことを意味し、硬化膜の製造工程の各工程を、それぞれ100℃以下の温度で行う。すなわち、硬化膜の製造工程が、上記電子線を照射する工程の他に、他の工程をさらに含む場合は、他の工程も100℃以下の温度で行う。例えば、基材上に活性エネルギー線硬化性組成物層を形成する工程を更に有する場合は、活性エネルギー線硬化性組成物層を形成する工程も、100℃以下で行う。また、基材上の活性エネルギー線硬化性組成物層に対し、露光する工程を更に有する場合は、露光する工程も、100℃以下で行う。また、基材上の活性エネルギー線硬化性組成物層に対し、パターンを形成する工程を有する場合は、パターンを形成する工程も100℃以下の温度で行う。また、電子線照射後の活性エネルギー線硬化性組成物層に対し、更に熱処理などの後処理を行う工程を有する場合は、後処理も100℃以下の温度で行う。
 なお、硬化膜を形成した後、ダイシング(チップに分割)やボンディング等をさらに行う場合があるが、硬化膜形成後の工程については、本発明における「全工程」には含まれない。すなわち、硬化膜を形成した後の工程は、100℃を超える温度で行ってもよい。例えば、基材として、薄膜ガラス基材を用いた場合、硬化膜の形成時に100℃を超える温度で行うと、基材に割れや反りが生じることがあるが、ダイシング後に100℃を超える温度に加熱しても、割れや反りなどが生じにくいためである。
 以下、本発明の硬化膜の製造方法について、各工程を順を追って説明する。
<Method for producing cured film>
In the method for producing a cured film of the present invention, an electron having an acceleration voltage of 10 kV or more and less than 100 kV is applied to a layer of an active energy ray curable composition (hereinafter also referred to as an active energy ray curable composition layer) on a substrate. It is a manufacturing method of a cured film including the process of irradiating a line, and the manufacturing method of a cured film is performed at the temperature of 100 degrees C or less through all the processes.
According to the present invention, the active energy ray-curable composition layer is irradiated with an electron beam having an acceleration voltage of 10 kV or more and less than 100 kV at a low temperature of 100 ° C. or lower (hereinafter also referred to as a low-temperature process) throughout the entire process. Even if it goes, the cured film excellent in reliability can be manufactured.
In the present invention, “performed at a temperature of 100 ° C. or lower throughout all steps” means that all steps of curing the active energy ray-curable composition layer to form a cured film are performed at a temperature of 100 ° C. or lower. This means that each step of the manufacturing process of the cured film is performed at a temperature of 100 ° C. or less. That is, when the manufacturing process of the cured film further includes other steps in addition to the step of irradiating the electron beam, the other steps are also performed at a temperature of 100 ° C. or lower. For example, when it further has the process of forming an active energy ray curable composition layer on a base material, the process of forming an active energy ray curable composition layer is also performed at 100 degrees C or less. Moreover, when it has further the process to expose with respect to the active energy ray curable composition layer on a base material, the process to expose is also performed at 100 degrees C or less. Moreover, when it has the process of forming a pattern with respect to the active energy ray curable composition layer on a base material, the process of forming a pattern is also performed at the temperature of 100 degrees C or less. Moreover, when it has the process of performing post-processing, such as heat processing with respect to the active energy ray-curable composition layer after electron beam irradiation, post-processing is also performed at the temperature of 100 degrees C or less.
In addition, after forming the cured film, dicing (dividing into chips), bonding, or the like may be further performed. However, the process after the cured film is formed is not included in the “all processes” in the present invention. That is, the process after forming the cured film may be performed at a temperature exceeding 100 ° C. For example, when a thin film glass substrate is used as the substrate, cracking and warping may occur in the substrate if it is performed at a temperature exceeding 100 ° C. during formation of the cured film, but the temperature exceeds 100 ° C. after dicing. This is because cracking and warping are less likely to occur even when heated.
Hereinafter, each process is demonstrated in order about the manufacturing method of the cured film of this invention.
 活性エネルギー線硬化性組成物を用いて、基材上に活性エネルギー線硬化性組成物層を形成する。なお、活性エネルギー線硬化性組成物については、後述する。 An active energy ray-curable composition layer is formed on a substrate using the active energy ray-curable composition. The active energy ray-curable composition will be described later.
 基材としては、例えば、ガラス、シリコン、樹脂等で構成された基材を挙げることができる。ガラスとしては、コーニング社製無アルカリガラスのイーグルシリーズ、1737など、光学機器や表示機器に使用されるガラス、UVカットや赤外線カット機能を有する色素を分散もしくは練りこんだ有機層が形成されたガラス(ガラスでサンドイッチされた形態も含む)が挙げられる。樹脂としては、例えば、ポリエチレン、ポリプロピレン、塩化ビニル、ポリスチレン、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ポリエチレンテレフタレート、アクリル、ポリビニルアルコール、塩化ビニリデン、ポリカーボネート、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、フッ素樹脂などが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの基材上には、有機発光層や、有機光電変換層などの有機半導体層などが形成されていてもよい。有機半導体としては、有機エレクトロルネッサンス(OLED)、有機電界効果トランジスタ(OFET)、有機太陽電池(OPV)などが挙げられる。また、本発明では、有機半導体層を、基材として用いることもできる。
 基材の膜厚は、用途および材料により異なるが、一般的な基材の厚さを適用することができる。
As a base material, the base material comprised with glass, a silicon | silicone, resin etc. can be mentioned, for example. As glass, Corning's non-alkali glass Eagle series, 1737, such as glass used for optical equipment and display equipment, glass with an organic layer formed by dispersing or kneading a dye having a UV cut or infrared cut function (Including a form sandwiched with glass). Examples of the resin include polyethylene, polypropylene, vinyl chloride, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, polyethylene terephthalate, acrylic, polyvinyl alcohol, vinylidene chloride, polycarbonate, polyamide, polyacetal, polybutylene. A terephthalate, a fluororesin, etc. are mentioned, Among these, it can be used combining 1 type (s) or 2 or more types. An organic light emitting layer, an organic semiconductor layer such as an organic photoelectric conversion layer, or the like may be formed on these base materials. Examples of the organic semiconductor include organic electro-renaissance (OLED), organic field effect transistor (OFET), and organic solar cell (OPV). Moreover, in this invention, an organic-semiconductor layer can also be used as a base material.
Although the film thickness of a base material changes with uses and materials, the thickness of a general base material is applicable.
 本発明によれば、耐熱性が劣る基材に対しても、基材を損傷することなく硬化膜を形成できるので、耐熱性の低い基材に対して特に効果的である。耐熱性が低い基材としては、例えば、厚さ0.5mm以下のガラス基材、熱可塑性樹脂基材、有機半導体層を含む基材(好ましくは、有機半導体層を表面に有する基材)などが挙げられる。
 上記熱可塑性樹脂基材の中でも、例えば、ガラス転移温度が95℃以下の熱可塑性樹脂で構成された基材の場合、本発明の効果が顕著である。特にフレキシブル基板においては、ガラス転移温度が90℃以下の熱可塑性樹脂がより多く用いられる。特に近年では、ガラス転移温度がより低い、70℃以下のものが特に好ましく使用される。熱可塑性樹脂のガラス転移温度の下限は、特に限定されない。例えば、常温(23℃)以上とすることもできる。また、常温以下の温度を下限値とすることもできる。例えば、0℃以上とすることもでき、-50℃以上とすることもでき、-100℃以上とすることもでき、-150℃以上とすることもできる。
 なお、本発明において、熱可塑性樹脂がガラス転移温度を2以上有する場合は、低い方の温度を、本発明におけるガラス転移温度の値とする。
 上記ガラス基材の膜厚は、上限は0.5mm以下が好ましく、0.3mm以下がより好ましい。下限は、特に限定されないが、0.1mm以上とすることもできる。
According to the present invention, a cured film can be formed without damaging the substrate even for a substrate with poor heat resistance, and thus is particularly effective for a substrate with low heat resistance. Examples of the substrate having low heat resistance include a glass substrate having a thickness of 0.5 mm or less, a thermoplastic resin substrate, a substrate including an organic semiconductor layer (preferably a substrate having an organic semiconductor layer on the surface), and the like. Is mentioned.
Among the thermoplastic resin substrates, for example, in the case of a substrate composed of a thermoplastic resin having a glass transition temperature of 95 ° C. or lower, the effect of the present invention is remarkable. Particularly in a flexible substrate, a thermoplastic resin having a glass transition temperature of 90 ° C. or lower is more used. Particularly in recent years, those having a glass transition temperature of 70 ° C. or lower are particularly preferably used. The lower limit of the glass transition temperature of the thermoplastic resin is not particularly limited. For example, it may be normal temperature (23 ° C.) or higher. Moreover, the temperature below normal temperature can also be made into a lower limit. For example, the temperature can be 0 ° C. or higher, −50 ° C. or higher, −100 ° C. or higher, or −150 ° C. or higher.
In the present invention, when the thermoplastic resin has two or more glass transition temperatures, the lower temperature is set as the value of the glass transition temperature in the present invention.
The upper limit of the film thickness of the glass substrate is preferably 0.5 mm or less, and more preferably 0.3 mm or less. Although a minimum is not specifically limited, It can also be 0.1 mm or more.
 基材への活性エネルギー線硬化性組成物の適用方法としては、スリット塗布、インクジェット法、回転塗布、流延塗布、ロール塗布、スクリーン印刷法、スプレー塗布等の各種の方法を用いることができる。活性エネルギー線硬化性組成物の適用量は、乾燥後の膜厚が、0.1~45μmとなるように調整することが好ましい。上限は、例えば、44μm以下がより好ましく、43μm以下がさらに好ましく、40m以下が特に好ましい。下限は、例えば、0.2μm以上がより好ましい。 As an application method of the active energy ray-curable composition to the substrate, various methods such as slit coating, ink jet method, spin coating, cast coating, roll coating, screen printing method, spray coating and the like can be used. The application amount of the active energy ray-curable composition is preferably adjusted so that the film thickness after drying is 0.1 to 45 μm. For example, the upper limit is more preferably 44 μm or less, still more preferably 43 μm or less, and particularly preferably 40 m or less. For example, the lower limit is more preferably 0.2 μm or more.
 本発明において、基材上に形成した活性エネルギー線硬化性組成物層に対し、乾燥を行ってもよい。乾燥は、常温乾燥、加熱乾燥、真空乾燥などが挙げられ、乾燥速度、および低温での乾燥という理由から真空乾燥が好ましい。
 上記真空乾燥は、真空度0.02PaG以上、温度100℃以下の条件で行うことが好ましい。真空度は、0.05PaG以上がより好ましく、0.09PaG以上がさらに好ましい。真空度が高いほど乾燥速度が速く、乾燥時間を短くすることが出来る。温度条件は、70℃以下がさらに好ましい。下限は、例えば23℃以上とすることができ、30℃以上とすることもできる。乾燥時間は、30秒~1時間が好ましく、1分~30分がより好ましく、2分~20分がさらに好ましい。
 上記加熱乾燥は、100℃以下で行うことが好ましく、80℃以下がより好ましく、70℃以下がさらに好ましい。下限は、例えば23℃以上とすることができる。加熱時間は、30秒~1時間が好ましく、1分~30分がより好ましく、2分~20分がさらに好ましい。
 なお、乾燥は、後述する電子線を照射する工程の直前に行ってもよく、電子線を照射する工程の後に行ってもよい。また、後述する現像処理前に行ってもよく、現像処理後に行ってもよい。
In the present invention, the active energy ray-curable composition layer formed on the substrate may be dried. Drying includes room temperature drying, heat drying, vacuum drying, and the like, and vacuum drying is preferred because of drying speed and low temperature drying.
The vacuum drying is preferably performed under conditions of a degree of vacuum of 0.02 PaG or more and a temperature of 100 ° C. or less. The degree of vacuum is more preferably 0.05 PaG or more, and further preferably 0.09 PaG or more. The higher the degree of vacuum, the faster the drying speed and the shorter the drying time. The temperature condition is more preferably 70 ° C. or lower. The lower limit can be, for example, 23 ° C. or higher, and can be 30 ° C. or higher. The drying time is preferably 30 seconds to 1 hour, more preferably 1 minute to 30 minutes, and even more preferably 2 minutes to 20 minutes.
The heat drying is preferably performed at 100 ° C. or less, more preferably 80 ° C. or less, and further preferably 70 ° C. or less. A lower limit can be 23 degreeC or more, for example. The heating time is preferably 30 seconds to 1 hour, more preferably 1 minute to 30 minutes, and even more preferably 2 minutes to 20 minutes.
In addition, drying may be performed immediately before the process of irradiating the electron beam mentioned later, and may be performed after the process of irradiating an electron beam. Further, it may be performed before or after the development processing described later.
 本発明において、基材上に形成した活性エネルギー線硬化性組成物層に対し、露光を行ってもよい。露光は、全面露光であってもよいし、マスクを介してパターン状に露光してもよい。
 例えば、基材上に形成した活性エネルギー線硬化性組成物層に対し、ステッパー等の露光装置を用いて、所定のマスクパターンを有するマスクを介して露光することで、パターン露光することができる。これにより、露光部分を硬化することができる。
 露光に用いることができる放射線(光)としては、紫外線が好ましい。紫外線としては、g線、i線、KrF、ArFなどが挙げられ、i線が好ましい。照射量(露光量)は、例えば、30~5000mJ/cm2が好ましく、50~4000mJ/cm2がより好ましく、80~3000mJ/cm2がさらに好ましい。
In the present invention, the active energy ray-curable composition layer formed on the substrate may be exposed. The exposure may be a whole surface exposure or a pattern exposure through a mask.
For example, pattern exposure can be performed by exposing the active energy ray-curable composition layer formed on the base material through a mask having a predetermined mask pattern using an exposure apparatus such as a stepper. Thereby, an exposed part can be hardened.
The radiation (light) that can be used for exposure is preferably ultraviolet rays. Examples of ultraviolet rays include g-line, i-line, KrF, ArF and the like, and i-line is preferable. Irradiation dose (exposure dose), for example, preferably 30 ~ 5000mJ / cm 2, more preferably 50 ~ 4000mJ / cm 2, more preferably 80 ~ 3000mJ / cm 2.
 活性エネルギー線硬化性組成物層をパターン状に露光した場合は、未露光部を現像除去してパターンを形成することが好ましい。未露光部の現像除去は、現像液を用いて行うことができる。これにより、未露光部の活性エネルギー線硬化性組成物層が現像液に溶出し、光硬化した部分だけが残る。
 現像液としては、基材にダメージを与えない、アルカリ現像液が望ましい。
 現像液の温度は、例えば、20~30℃が好ましい。現像時間は、20~180秒が好ましい。
When the active energy ray-curable composition layer is exposed in a pattern, it is preferable to develop and remove the unexposed portion to form a pattern. The development removal of the unexposed portion can be performed using a developer. Thereby, the active energy ray-curable composition layer in the unexposed part is eluted in the developer, and only the photocured part remains.
As the developer, an alkali developer that does not damage the substrate is desirable.
The temperature of the developer is preferably 20 to 30 ° C., for example. The development time is preferably 20 to 180 seconds.
 現像液に用いるアルカリ剤としては、例えば、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンなどの有機アルカリ性化合物が挙げられる。
 また、現像液に用いるアルカリ剤として、無機アルカリ性化合物を用いてもよい。無機アルカリ性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウムなどが好ましい。
 これらのアルカリ剤を、濃度が0.001~10質量%、好ましくは0.01~1質量%となるように純水で希釈したアルカリ性水溶液が、現像液として好ましく使用される。
 また、現像液には、界面活性剤を用いてもよい。界面活性剤の例としては、後述の活性エネルギー線硬化性組成物で説明する界面活性剤が挙げられ、ノニオン系界面活性剤が好ましい。現像液が界面活性剤を含有する場合、界面活性剤の含有量は、現像液の全質量に対して、0.001~2.0質量%が好ましく、0.01~1.0質量%がより好ましい。
 このようなアルカリ性水溶液からなる現像液を使用した場合には、一般に現像後、純水で洗浄(リンス)することが好ましい。
 洗浄後に例えばスピン乾燥を実施した後、上記した乾燥を行うことが好ましい。
Examples of the alkaline agent used in the developer include ammonia water, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide. And organic alkaline compounds such as choline, pyrrole, piperidine and 1,8-diazabicyclo [5.4.0] -7-undecene.
Moreover, you may use an inorganic alkaline compound as an alkali agent used for a developing solution. As the inorganic alkaline compound, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, sodium silicate, sodium metasilicate and the like are preferable.
An alkaline aqueous solution obtained by diluting these alkali agents with pure water so as to have a concentration of 0.001 to 10% by mass, preferably 0.01 to 1% by mass, is preferably used as the developer.
Further, a surfactant may be used for the developer. Examples of the surfactant include surfactants described in the later-described active energy ray-curable composition, and nonionic surfactants are preferable. When the developer contains a surfactant, the content of the surfactant is preferably 0.001 to 2.0% by mass, and 0.01 to 1.0% by mass with respect to the total mass of the developer. More preferred.
When using a developer comprising such an alkaline aqueous solution, it is generally preferable to rinse (rinse) with pure water after development.
It is preferable to perform the drying described above after, for example, spin drying after washing.
 次に、基材上の活性エネルギー線硬化性組成物層に対し、電子線を照射する。活性エネルギー線硬化性組成物層に対し、上記露光のみを行い、上記現像を行わない場合は、露光後に電子線を照射することが好ましい。また、活性エネルギー線硬化性組成物層に対し、パターン形成を行う場合(露光と現像とを行う場合)は、活性エネルギー線硬化性組成物層のパターン形成後に電子線を照射することが好ましい。 Next, the active energy ray-curable composition layer on the substrate is irradiated with an electron beam. In the case where the active energy ray-curable composition layer is subjected only to the exposure and not subjected to the development, it is preferable to irradiate an electron beam after the exposure. Moreover, when patterning is performed on the active energy ray-curable composition layer (when exposure and development are performed), it is preferable to irradiate an electron beam after forming the pattern of the active energy ray-curable composition layer.
 電子線の加速電圧は、10kV以上100kV未満である。下限は、15kV以上が好ましく、20kV以上がより好ましく、30kV以上がさらに好ましい。上限は、99kV以下が好ましく、98kV以下がより好ましく、97kV以下がさらに好ましい。電子線の加速電圧が上記範囲であれば、信頼性に優れた硬化膜を製造することができる。さらには、得られる硬化膜の外観や、分光特性も良好である。 Acceleration voltage of electron beam is 10 kV or more and less than 100 kV. The lower limit is preferably 15 kV or more, more preferably 20 kV or more, and further preferably 30 kV or more. The upper limit is preferably 99 kV or less, more preferably 98 kV or less, and even more preferably 97 kV or less. When the acceleration voltage of the electron beam is in the above range, a cured film having excellent reliability can be produced. Furthermore, the appearance and spectral characteristics of the cured film obtained are also good.
 電子線の管電流は、0.01~10mAが好ましい。電子線の管電流が、上記範囲であれば、フィラメントから発する電子線密度が十分に保たれ、信頼性に優れた硬化膜を製造することできる。さらには、得られる硬化膜の外観や、分光特性も良好である。電子線の管電流は、0.01mA以上であることが好ましく、0.1mA以上がより好ましく、1mA以上がさらに好ましい。上限は、10mA以下であることが好ましく、9mA以下がより好ましく、8mA以下がさらに好ましい。フィラメントの耐久性が保たれる範囲であれば、管電流の設定は大きい方が好ましい。 The tube current of the electron beam is preferably 0.01 to 10 mA. If the tube current of the electron beam is in the above range, the electron beam density emitted from the filament is sufficiently maintained, and a cured film having excellent reliability can be produced. Furthermore, the appearance and spectral characteristics of the cured film obtained are also good. The tube current of the electron beam is preferably 0.01 mA or more, more preferably 0.1 mA or more, and further preferably 1 mA or more. The upper limit is preferably 10 mA or less, more preferably 9 mA or less, and even more preferably 8 mA or less. As long as the durability of the filament is maintained, the setting of the tube current is preferably large.
 電子線は、硬化膜の電子線の吸収線量が、10kGy以上となる範囲で照射することが好ましい。電子線の吸収線量が、上記範囲であれば、信頼性に優れた硬化膜を製造することができる。電子線の吸収線量は、15kGy以上がより好ましく、20kGy以上がさらに好ましい。 The electron beam is preferably irradiated in a range where the absorbed dose of the electron beam of the cured film is 10 kGy or more. When the absorbed dose of the electron beam is within the above range, a cured film having excellent reliability can be produced. The absorbed dose of the electron beam is more preferably 15 kGy or more, and further preferably 20 kGy or more.
 電子線を照射する工程において、処理温度(装置内の温度)は、100℃以下であり、80℃以下が好ましく、70℃以下がより好ましい。下限は、例えば10℃以上とすることができ、15℃以上とすることもでき、20℃以上とすることもできる。
 また、電子線の照射は、酸素濃度が3000体積ppm以下の雰囲気下で行うことが好ましい。酸素濃度は、1000体積ppm以下がより好ましい。
 また、基材と電子照射源とのクリアランスは、1~30mmが好ましく、5~10mmがより好ましい。
In the step of irradiating with an electron beam, the treatment temperature (temperature in the apparatus) is 100 ° C. or lower, preferably 80 ° C. or lower, and more preferably 70 ° C. or lower. The lower limit can be, for example, 10 ° C. or higher, 15 ° C. or higher, or 20 ° C. or higher.
Moreover, it is preferable that the electron beam irradiation is performed in an atmosphere having an oxygen concentration of 3000 ppm by volume or less. The oxygen concentration is more preferably 1000 ppm by volume or less.
The clearance between the base material and the electron irradiation source is preferably 1 to 30 mm, more preferably 5 to 10 mm.
 本発明の硬化膜の製造方法では、電子線を照射した活性エネルギー線硬化性組成物層に対し、100℃以下の温度で熱処理を行ってもよい。熱処理によって、硬化膜の乾燥を促進し、硬化膜の硬化性を安定化することができる。
 熱処理温度は、例えば23℃を超える温度~100℃以下が好ましい。上限は、80℃以下がより好ましく、70℃以下がさらに好ましい。また、基材として、熱可塑性樹脂基材を用いた場合、熱処理温度の上限は、100℃以下の温度であって、熱可塑性樹脂基材のガラス転移以下の温度が好ましい。なお、熱可塑性樹脂基材のガラス転移温度が100℃を超える場合は、熱処理温度の上限は100℃である。
 上記熱処理は、電子線照射後の活性エネルギー線硬化性組成物層を、上記条件になるようにホットプレート、コンベクションオーブン(熱風循環式乾燥機)、高周波加熱機等の加熱手段を用いて、連続式あるいはバッチ式で行うことができる。
 また、熱処理に代えて、真空乾燥を行ってもよい。また、熱処理と真空乾燥とを併用してもよい。
In the manufacturing method of the cured film of this invention, you may heat-process at the temperature of 100 degrees C or less with respect to the active energy ray curable composition layer which irradiated the electron beam. By heat treatment, drying of the cured film can be promoted, and the curability of the cured film can be stabilized.
The heat treatment temperature is preferably, for example, a temperature exceeding 23 ° C. to 100 ° C. or less. The upper limit is more preferably 80 ° C. or less, and further preferably 70 ° C. or less. Moreover, when a thermoplastic resin base material is used as the base material, the upper limit of the heat treatment temperature is a temperature of 100 ° C. or lower, preferably a temperature not higher than the glass transition of the thermoplastic resin base material. In addition, when the glass transition temperature of a thermoplastic resin base material exceeds 100 degreeC, the upper limit of heat processing temperature is 100 degreeC.
The heat treatment is performed by continuously heating the active energy ray-curable composition layer after electron beam irradiation using a heating means such as a hot plate, a convection oven (hot air circulation dryer), a high-frequency heater, or the like so as to satisfy the above conditions. It can be performed in a batch or batch mode.
Further, vacuum drying may be performed instead of the heat treatment. Further, heat treatment and vacuum drying may be used in combination.
<活性エネルギー線硬化性組成物>
 次に、本発明の硬化膜の製造方法で使用する活性エネルギー線硬化性組成物について説明する。
 本発明において、活性エネルギー線硬化性組成物は、活性エネルギー線の照射により硬化する組成物であればいずれも好ましく用いることができる。ここで、活性エネルギー線とは、その照射により、組成物中において開始種を発生させ得るエネルギーを付与することができるものをいい、例えば、α線、γ線、X線、紫外線、可視光線、電子線等が挙げられる。
<Active energy ray-curable composition>
Next, the active energy ray-curable composition used in the method for producing a cured film of the present invention will be described.
In the present invention, any active energy ray-curable composition can be preferably used as long as it is a composition that cures upon irradiation with active energy rays. Here, active energy rays refer to those that can impart energy capable of generating starting species in the composition by irradiation, such as α rays, γ rays, X rays, ultraviolet rays, visible rays, An electron beam etc. are mentioned.
<<樹脂>>
 活性エネルギー線硬化性組成物は、樹脂を含むことが好ましい。樹脂は、例えば、顔料などを組成物中で分散させる用途、バインダーの用途で配合される。なお、主に顔料などを分散させるために用いられる樹脂を分散剤ともいう。ただし、樹脂のこのような用途は一例であって、このような用途以外を目的で使用することもできる。
<< Resin >>
The active energy ray-curable composition preferably contains a resin. The resin is blended, for example, for the purpose of dispersing a pigment or the like in the composition and the purpose of a binder. A resin used mainly for dispersing pigments is also called a dispersant. However, such use of the resin is merely an example, and the resin can be used for other purposes.
 樹脂の重量平均分子量(Mw)は、2,000~2,000,000が好ましい。上限は、1,000,000以下がより好ましく、500,000以下がさらに好ましい。下限は、3,000以上がより好ましく、5,000以上がさらに好ましい。
 樹脂としては、(メタ)アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルホスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂、シロキサン樹脂が挙げられる。これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。
The weight average molecular weight (Mw) of the resin is preferably 2,000 to 2,000,000. The upper limit is more preferably 1,000,000 or less, and further preferably 500,000 or less. The lower limit is more preferably 3,000 or more, and even more preferably 5,000 or more.
Resins include (meth) acrylic resin, epoxy resin, ene thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin, polyimide Examples thereof include resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, polyester resins, and siloxane resins. One of these resins may be used alone, or two or more thereof may be mixed and used.
 活性エネルギー線硬化性組成物において、樹脂の含有量は、活性エネルギー線硬化性組成物の全固形分の10~80質量%であることが好ましく、20~60質量%であることがより好ましい。活性エネルギー線硬化性組成物は、樹脂を、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記の範囲内であることが好ましい。 In the active energy ray-curable composition, the content of the resin is preferably 10 to 80% by mass, more preferably 20 to 60% by mass, based on the total solid content of the active energy ray-curable composition. The active energy ray-curable composition may contain only one type of resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
<<<アルカリ可溶性樹脂>>>
 活性エネルギー線硬化性組成物は、樹脂としてアルカリ可溶性樹脂を含有することが好ましい。アルカリ可溶性樹脂を含有することにより、現像性およびパターン形成性が向上する。なお、アルカリ可溶性樹脂は、分散剤やバインダーとして用いることもできる。
<<< Alkali-soluble resin >>>
The active energy ray-curable composition preferably contains an alkali-soluble resin as a resin. By containing an alkali-soluble resin, developability and pattern formability are improved. The alkali-soluble resin can also be used as a dispersant or a binder.
 アルカリ可溶性樹脂の分子量としては、特に定めるものではないが、重量平均分子量(Mw)が5000~100,000であることが好ましい。また、数平均分子量(Mn)は、1000~20,000であることが好ましい。
 アルカリ可溶性樹脂としては、線状有機高分子重合体であってもよく、分子(好ましくは、アクリル系共重合体、スチレン系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ溶解を促進する基を有する樹脂の中から適宜選択することができる。
The molecular weight of the alkali-soluble resin is not particularly defined, but the weight average molecular weight (Mw) is preferably 5000 to 100,000. The number average molecular weight (Mn) is preferably 1000 to 20,000.
The alkali-soluble resin may be a linear organic polymer, and at least one alkali solution is dissolved in a molecule (preferably a molecule having an acrylic copolymer or a styrene copolymer as a main chain). It can select suitably from resin which has group which accelerates | stimulates.
 アルカリ可溶性樹脂としては、耐熱性の観点からは、ポリヒドロキシスチレン系樹脂、ポリシロキサン系樹脂、アクリル系樹脂、アクリルアミド系樹脂、アクリル/アクリルアミド共重合体樹脂が好ましく、現像性制御の観点からは、アクリル系樹脂、アクリルアミド系樹脂、アクリル/アクリルアミド共重合体樹脂が好ましい。
 アルカリ溶解を促進する基(以下、酸基ともいう)としては、例えば、カルボキシル基、リン酸基、スルホン酸基、フェノール性ヒドロキシル基などが挙げられるが、有機溶剤に可溶で弱アルカリ水溶液により現像可能なものが好ましく、(メタ)アクリル酸が特に好ましいものとして挙げられる。これら酸基は、1種のみであってもよいし、2種以上であってもよい。
The alkali-soluble resin is preferably a polyhydroxystyrene resin, a polysiloxane resin, an acrylic resin, an acrylamide resin, or an acrylic / acrylamide copolymer resin from the viewpoint of heat resistance. Acrylic resins, acrylamide resins, and acrylic / acrylamide copolymer resins are preferred.
Examples of the group that promotes alkali dissolution (hereinafter, also referred to as an acid group) include a carboxyl group, a phosphoric acid group, a sulfonic acid group, and a phenolic hydroxyl group. What can be developed is preferable, and (meth) acrylic acid is particularly preferable. These acid groups may be used alone or in combination of two or more.
 アルカリ可溶性樹脂の製造には、例えば、公知のラジカル重合法を適用することができる。ラジカル重合法でアルカリ可溶性樹脂を製造する際の、温度、圧力、ラジカル開始剤の種類およびその量、溶媒の種類等々の重合条件は、当業者において容易に設定可能であり、実験的に条件を定めることもできる。 For the production of the alkali-soluble resin, for example, a known radical polymerization method can be applied. Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by radical polymerization can be easily set by those skilled in the art. It can also be determined.
 アルカリ可溶性樹脂としては、側鎖にカルボン酸を有するポリマーが好ましく、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体、ノボラック型樹脂などのアルカリ可溶性フェノール樹脂等、並びに側鎖にカルボキシル基を有する酸性セルロース誘導体、ヒドロキシル基を有するポリマーに酸無水物を付加させた樹脂などが挙げられる。特に、(メタ)アクリル酸と、これと共重合可能な他のモノマーとの共重合体が、アルカリ可溶性樹脂として好適である。(メタ)アクリル酸と共重合可能な他のモノマーとしては、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。アルキル(メタ)アクリレートおよびアリール(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等が挙げられ、ビニル化合物としては、スチレン、α-メチルスチレン、ビニルトルエン、グリシジルメタクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリルメタクリレート、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー等が挙げられる。また、他のモノマーとして、特開平10-300922号公報に記載のN位置換マレイミドモノマー、例えば、N-フェニルマレイミド、N-シクロヘキシルマレイミド等を挙げることができる。なお、これらの(メタ)アクリル酸と共重合可能な他のモノマーは1種のみであってもよいし、2種以上であってもよい。 As the alkali-soluble resin, a polymer having a carboxylic acid in the side chain is preferable, and a methacrylic acid copolymer, an acrylic acid copolymer, an itaconic acid copolymer, a crotonic acid copolymer, a maleic acid copolymer, and a partial esterification are used. Examples thereof include alkali-soluble phenol resins such as maleic acid copolymers and novolac resins, acidic cellulose derivatives having a carboxyl group in the side chain, and resins obtained by adding an acid anhydride to a polymer having a hydroxyl group. In particular, a copolymer of (meth) acrylic acid and another monomer copolymerizable therewith is suitable as the alkali-soluble resin. Examples of other monomers copolymerizable with (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds. As alkyl (meth) acrylate and aryl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate, Examples of the vinyl compound include hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like. , Styrene, α-methylstyrene, vinyl toluene, glycidyl methacrylate, acrylonitrile, vinyl acetate, N-vinyl pyrrolidone, tetrahydrofurfuryl methacrylate, poly Styrene macromonomer, polymethylmethacrylate macromonomer, and the like. Examples of other monomers include N-substituted maleimide monomers described in JP-A-10-300922, such as N-phenylmaleimide and N-cyclohexylmaleimide. In addition, only 1 type may be sufficient as the other monomer copolymerizable with these (meth) acrylic acids, and 2 or more types may be sufficient as it.
 また、活性エネルギー線硬化性組成物層の架橋効率を向上させるために、重合性基を有したアルカリ可溶性樹脂を使用してもよい。重合性基としては、(メタ)アリル基、(メタ)アクリロイル基等が挙げられる。重合性基を有したアルカリ可溶性樹脂は、重合性基を側鎖に含有したアルカリ可溶性樹脂等が有用である。重合性基を有したアルカリ可溶性樹脂は、熱硬化性樹脂であってもよく、光硬化性樹脂であってもよい。
 重合性基を含有するアルカリ可溶性樹脂としては、ダイヤナールNRシリーズ(三菱レイヨン株式会社製)、Photomer6173(COOH含有ポリウレタンアクリル酸オリゴマー、Diamond Shamrock Co.,Ltd.製)、ビスコートR-264、KSレジスト106(いずれも大阪有機化学工業株式会社製)、サイクロマーPシリーズ(例えば、ACA230AA、熱硬化性樹脂)、プラクセルCF200シリーズ(いずれも(株)ダイセル製)、Ebecryl3800(ダイセルユーシービー(株)製)、アクリキュア-RD-F8((株)日本触媒製)などが挙げられる。
Moreover, in order to improve the crosslinking efficiency of the active energy ray-curable composition layer, an alkali-soluble resin having a polymerizable group may be used. Examples of the polymerizable group include a (meth) allyl group and a (meth) acryloyl group. As the alkali-soluble resin having a polymerizable group, an alkali-soluble resin containing a polymerizable group in a side chain is useful. The alkali-soluble resin having a polymerizable group may be a thermosetting resin or a photocurable resin.
Examples of the alkali-soluble resin containing a polymerizable group include Dianal NR series (manufactured by Mitsubishi Rayon Co., Ltd.), Photomer 6173 (COOH-containing polyurethane acrylic acid oligomer, manufactured by Diamond Shamrock Co., Ltd.), Biscote R-264, and KS resist. 106 (all manufactured by Osaka Organic Chemical Industry Co., Ltd.), Cyclomer P series (for example, ACA230AA, thermosetting resin), Plaxel CF200 series (all manufactured by Daicel Corporation), Ebecryl 3800 (manufactured by Daicel UCB Corporation) ), Acrycure-RD-F8 (manufactured by Nippon Shokubai Co., Ltd.)
 アルカリ可溶性樹脂として、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/2-ヒドロキシエチル(メタ)アクリレート共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体を好ましく用いることができる。また、2-ヒドロキシエチル(メタ)アクリレートを共重合したもの、特開平7-140654号公報に記載された、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体なども好ましく用いることができる。
 また、市販品としては、例えばFF-426(藤倉化成社製)などを用いることもできる。
As alkali-soluble resins, benzyl (meth) acrylate / (meth) acrylic acid copolymer, benzyl (meth) acrylate / (meth) acrylic acid / 2-hydroxyethyl (meth) acrylate copolymer, benzyl (meth) acrylate / A multi-component copolymer composed of (meth) acrylic acid / other monomers can be preferably used. Further, a copolymer of 2-hydroxyethyl (meth) acrylate, a 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer described in JP-A-7-140654, 2-hydroxy-3-phenoxypropyl acrylate / polymethyl methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / A polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer can also be preferably used.
Further, as a commercially available product, for example, FF-426 (manufactured by Fujikura Kasei Co., Ltd.) can be used.
 アルカリ可溶性樹脂は、下記式(ED1)で示される化合物および/または下記式(ED2)で表される化合物(以下、これらの化合物を「エーテルダイマー」と称することもある。)を含むモノマー成分を重合してなるポリマーを含むことも好ましい。 The alkali-soluble resin includes a monomer component including a compound represented by the following formula (ED1) and / or a compound represented by the following formula (ED2) (hereinafter, these compounds may be referred to as “ether dimers”). It is also preferable to include a polymer obtained by polymerization.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(ED1)中、R1およびR2は、それぞれ独立して、水素原子、または置換基を有していてもよい炭素数1~25の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000002
 式(ED2)中、Rは、水素原子または炭素数1~30の有機基を表す。式(ED2)の具体例としては、特開2010-168539号公報の記載を参酌することができる。
In formula (ED1), R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
Figure JPOXMLDOC01-appb-C000002
In the formula (ED2), R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms. As a specific example of the formula (ED2), the description of JP 2010-168539 A can be referred to.
 式(ED1)中、R1およびR2で表される置換基を有していてもよい炭素数1~25の炭化水素基としては、特に制限はないが、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、tert-アミル、ステアリル、ラウリル、2-エチルヘキシル等の直鎖または分岐のアルキル基;フェニル等のアリール基;シクロヘキシル、tert-ブチルシクロヘキシル、ジシクロペンタジエニル、トリシクロデカニル、イソボルニル、アダマンチル、2-メチル-2-アダマンチル等の脂環式基;1-メトキシエチル、1-エトキシエチル等のアルコキシで置換されたアルキル基;ベンジル等のアリール基で置換されたアルキル基等が挙げられる。これらの中でも特に、メチル、エチル、シクロヘキシル、ベンジル等のような、酸や熱で脱離しにくい1級または2級炭素の置換基が、耐熱性の点で好ましい。 In the formula (ED1), the hydrocarbon group having 1 to 25 carbon atoms which may have a substituent represented by R 1 and R 2 is not particularly limited, and examples thereof include methyl, ethyl, n- Linear or branched alkyl groups such as propyl, isopropyl, n-butyl, isobutyl, tert-butyl, tert-amyl, stearyl, lauryl, 2-ethylhexyl; aryl groups such as phenyl; cyclohexyl, tert-butylcyclohexyl, dicyclo Alicyclic groups such as pentadienyl, tricyclodecanyl, isobornyl, adamantyl, 2-methyl-2-adamantyl; alkyl groups substituted with alkoxy such as 1-methoxyethyl, 1-ethoxyethyl; aryls such as benzyl And an alkyl group substituted with a group. Among these, primary or secondary carbon substituents that are difficult to be removed by acid or heat, such as methyl, ethyl, cyclohexyl, benzyl, etc., are particularly preferred in terms of heat resistance.
 エーテルダイマーの具体例としては、例えば、特開2013-29760号公報の段落番号0317を参酌することができ、この内容は本明細書に組み込まれる。エーテルダイマーは、1種のみであってもよいし、2種以上であってもよい。 As a specific example of the ether dimer, for example, paragraph number 0317 of JP2013-29760A can be referred to, and the contents thereof are incorporated in the present specification. Only one type of ether dimer may be used, or two or more types may be used.
 アルカリ可溶性樹脂は、下記式(X)で示される化合物に由来する構造単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000003
 式(X)において、R1は、水素原子またはメチル基を表し、R2は炭素数2~10のアルキレン基を表し、R3は、水素原子、またはベンゼン環を含んでもよい炭素数1~20のアルキル基を表す。nは1~15の整数を表す。
The alkali-soluble resin may contain a structural unit derived from a compound represented by the following formula (X).
Figure JPOXMLDOC01-appb-C000003
In the formula (X), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 to 10 carbon atoms, and R 3 represents a hydrogen atom or a carbon atom having 1 to 1 carbon atoms that may contain a benzene ring. 20 alkyl groups are represented. n represents an integer of 1 to 15.
 上記式(X)において、R2のアルキレン基の炭素数は、2~3が好ましい。また、R3のアルキル基の炭素数は1~20であるが、好ましくは1~10であり、R3のアルキル基はベンゼン環を含んでもよい。R3で表されるベンゼン環を含むアルキル基としては、ベンジル基、2-フェニル(イソ)プロピル基等を挙げることができる。 In the above formula (X), the alkylene group of R 2 preferably has 2 to 3 carbon atoms. The alkyl group of R 3 has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and the alkyl group of R 3 may contain a benzene ring. Examples of the alkyl group containing a benzene ring represented by R 3 include a benzyl group and a 2-phenyl (iso) propyl group.
 アルカリ可溶性樹脂の具体例としては、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000004
Specific examples of the alkali-soluble resin include the following.
Figure JPOXMLDOC01-appb-C000004
 アルカリ可溶性樹脂は、特開2012-208494号公報の段落番号0558~0571(対応する米国特許出願公開第2012/0235099号明細書の段落番号0685~0700)の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 さらに、特開2012-32767号公報の段落番号0029~0063に記載の共重合体(B)および実施例で用いられているアルカリ可溶性樹脂、特開2012-208474号公報の段落番号0088~0098に記載のバインダー樹脂および実施例で用いられているバインダー樹脂、特開2012-137531号公報の段落番号0022~0032に記載のバインダー樹脂および実施例で用いられているバインダー樹脂、特開2013-024934号公報の段落番号0132~0143に記載のバインダー樹脂および実施例で用いられているバインダー樹脂、特開2011-242752号公報の段落番号0092~0098および実施例で用いられているバインダー樹脂、特開2012-032770号公報の段落番号0030~0072に記載のバインダー樹脂を用いることもできる。これらの内容は本明細書に組み込まれる。
The alkali-soluble resin can be referred to the description in paragraph Nos. 0558 to 0571 in JP 2012-208494 A (corresponding to paragraph numbers 0685 to 0700 in US 2012/0235099). Incorporated in the description.
Further, the copolymer (B) described in paragraph Nos. 0029 to 0063 of JP 2012-32767 A and the alkali-soluble resin used in Examples, paragraphs 0088 to 0098 of JP 2012-208474 A The binder resin described in the description and the binder resin used in the examples, the binder resin described in paragraphs 0022 to 0032 of JP2012-137531A and the binder resin used in the examples, JP2013-024934A Binder resin described in paragraph Nos. 0132 to 0143 of the gazette and the binder resin used in the examples, paragraph numbers 0092 to 0098 of the gazette of JP2011-242752 and the binder resin used in the examples, and JP2012 No. -032770, paragraph number 003 It is also possible to use a binder resin according to ~ 0072. These contents are incorporated herein.
 アルカリ可溶性樹脂の酸価は、30~500mgKOH/gが好ましい。下限は、50mgKOH/g以上がより好ましく、70mgKOH/g以上がさらに好ましい。上限は、400mgKOH/g以下がより好ましく、200mgKOH/g以下がさらに好ましく、150mgKOH/g以下が一層好ましく、120mgKOH/g以下がより一層好ましい。 The acid value of the alkali-soluble resin is preferably 30 to 500 mgKOH / g. The lower limit is more preferably 50 mgKOH / g or more, and further preferably 70 mgKOH / g or more. The upper limit is more preferably 400 mgKOH / g or less, further preferably 200 mgKOH / g or less, more preferably 150 mgKOH / g or less, and still more preferably 120 mgKOH / g or less.
 アルカリ可溶性樹脂の含有量は、活性エネルギー線硬化性組成物の全固形分に対して、0.1~20質量%が好ましい。下限は、0.5質量%以上がより好ましく、1質量%以上がさらに好ましく、2質量%以上が一層好ましく、3質量%以上が特に好ましい。上限は、12質量%以下がより好ましく、10質量%以下がさらに好ましい。活性エネルギー線硬化性組成物は、アルカリ可溶性樹脂を、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記の範囲内であることが好ましい。 The content of the alkali-soluble resin is preferably 0.1 to 20% by mass with respect to the total solid content of the active energy ray-curable composition. The lower limit is more preferably 0.5% by mass or more, further preferably 1% by mass or more, further preferably 2% by mass or more, and particularly preferably 3% by mass or more. The upper limit is more preferably 12% by mass or less, and further preferably 10% by mass or less. The active energy ray-curable composition may contain only one type of alkali-soluble resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
<<<分散剤>>>
 活性エネルギー線硬化性組成物は、樹脂として分散剤を含有することができる。
 分散剤として用いる樹脂は、酸基を有する繰り返し単位を含むことが好ましい。樹脂が酸基を有する繰り返し単位を含むことにより、フォトリソグラフィによりパターンを形成する際、下地に発生する残渣をより低減することができる。
 酸基を有する繰り返し単位は、酸基を有するモノマーを用いて構成できる。酸基を有するモノマーとしては、カルボキシル基を有するビニルモノマー、スルホン酸基を有するビニルモノマー、リン酸基を有するビニルモノマーなどが挙げられる。
 カルボキシル基を有するビニルモノマーとしては、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマーなどが挙げられる。また、2-ヒドロキシエチル(メタ)アクリレートなどの水酸基を有するモノマーと、無水マレイン酸、無水フタル酸、無水コハク酸、シクロヘキサンジカルボン酸無水物等の環状無水物との付加反応物、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレートなども利用できる。また、カルボキシル基の前駆体として、無水マレイン酸、無水イタコン酸、無水シトラコン酸などの無水物含有モノマーを用いてもよい。なかでも、未露光部の現像除去性の観点から、2-ヒドロキシエチル(メタ)アクリレートなどの水酸基を有するモノマーと、無水マレイン酸、無水フタル酸、無水コハク酸、シクロヘキサンジカルボン酸無水物等の環状無水物との付加反応物が好ましい。
 スルホン酸基を有するビニルモノマーとしては、2-アクリルアミド-2-メチルプロパンスルホン酸などが挙げられる。
 リン酸基を有するビニルモノマーとしては、リン酸モノ(2-アクリロイルオキシエチルエステル)、リン酸モノ(1-メチル-2-アクリロイルオキシエチルエステル)などが挙げられる。
 また、酸基を有する繰り返し単位としては、特開2008-165059号公報の段落番号0067~0069の記載を参酌でき、この内容は本明細書に組み込まれる。
<<< Dispersant >>>
The active energy ray-curable composition can contain a dispersant as a resin.
The resin used as the dispersant preferably contains a repeating unit having an acid group. When the resin contains a repeating unit having an acid group, the residue generated on the base can be further reduced when a pattern is formed by photolithography.
The repeating unit having an acid group can be constituted using a monomer having an acid group. Examples of the monomer having an acid group include a vinyl monomer having a carboxyl group, a vinyl monomer having a sulfonic acid group, and a vinyl monomer having a phosphoric acid group.
Examples of the vinyl monomer having a carboxyl group include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, and acrylic acid dimer. Further, an addition reaction product of a monomer having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate and a cyclic anhydride such as maleic anhydride, phthalic anhydride, succinic anhydride, cyclohexanedicarboxylic anhydride, ω-carboxy- Polycaprolactone mono (meth) acrylate can also be used. Moreover, you may use anhydride containing monomers, such as maleic anhydride, itaconic anhydride, and citraconic anhydride, as a precursor of a carboxyl group. Among them, from the viewpoint of developing removability of the unexposed area, a monomer having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate and a cyclic such as maleic anhydride, phthalic anhydride, succinic anhydride, cyclohexanedicarboxylic anhydride, etc. An addition reaction product with an anhydride is preferred.
Examples of the vinyl monomer having a sulfonic acid group include 2-acrylamido-2-methylpropanesulfonic acid.
Examples of the vinyl monomer having a phosphoric acid group include phosphoric acid mono (2-acryloyloxyethyl ester), phosphoric acid mono (1-methyl-2-acryloyloxyethyl ester), and the like.
As the repeating unit having an acid group, the description in paragraph numbers 0067 to 0069 of JP-A-2008-165059 can be referred to, and the contents thereof are incorporated in the present specification.
 また、分散剤として用いる樹脂は、グラフト共重合体であることも好ましい。グラフト共重合体は、グラフト鎖によって溶剤との親和性を有するために、顔料の分散性、及び、経時後の分散安定性に優れる。また、組成物においては、グラフト鎖の存在により、重合性化合物やアルカリ可溶性樹脂などとの親和性を有するので、アルカリ現像で残渣を生じにくくできる。
 なお、本発明において、グラフト共重合体とは、グラフト鎖を有する樹脂を意味する。また、グラフト鎖とは、ポリマーの主鎖の根元から、主鎖から枝分かれしている基の末端までを示す。
The resin used as the dispersant is also preferably a graft copolymer. Since the graft copolymer has an affinity for the solvent by the graft chain, it is excellent in pigment dispersibility and dispersion stability after aging. In addition, the composition has an affinity with a polymerizable compound or an alkali-soluble resin due to the presence of the graft chain, so that a residue can be hardly formed by alkali development.
In the present invention, the graft copolymer means a resin having a graft chain. The graft chain means from the base of the main chain of the polymer to the end of the group branched from the main chain.
 本発明において、グラフト共重合体としては、水素原子を除いた原子数が40~10,000の範囲であるグラフト鎖を有する樹脂が好ましい。
 また、グラフト鎖1本あたりの水素原子を除いた原子数は、40~10,000であることが好ましく、50~2,000がより好ましく、60~500がさらに好ましい。
In the present invention, the graft copolymer is preferably a resin having a graft chain in which the number of atoms excluding hydrogen atoms is in the range of 40 to 10,000.
Further, the number of atoms excluding hydrogen atoms per graft chain is preferably 40 to 10,000, more preferably 50 to 2,000, and still more preferably 60 to 500.
 グラフト共重合体の主鎖構造としては、(メタ)アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂などが挙げられる。なかでも、(メタ)アクリル樹脂が好ましい。
 グラフト共重合体のグラフト鎖としては、グラフト部位と溶剤との相互作用性を向上させ、それにより分散性を高めるために、ポリ(メタ)アクリル、ポリエステル、またはポリエーテルを有するグラフト鎖であることが好ましく、ポリエステルまたはポリエーテルを有するグラフト鎖であることがより好ましい。
 グラフト共重合体は、グラフト鎖を有する繰り返し単位を、質量換算で、グラフト共重合体の総質量に対し2~90質量%の範囲で含むことが好ましく、5~30質量%の範囲で含むことがより好ましい。グラフト鎖を有する繰り返し単位の含有量が、この範囲内であると、着色剤の分散性が良好である。
Examples of the main chain structure of the graft copolymer include (meth) acrylic resin, polyester resin, polyurethane resin, polyurea resin, polyamide resin, and polyether resin. Of these, a (meth) acrylic resin is preferable.
The graft chain of the graft copolymer must be a graft chain having poly (meth) acryl, polyester, or polyether in order to improve the interaction between the graft site and the solvent and thereby increase dispersibility. Is preferable, and a graft chain having polyester or polyether is more preferable.
The graft copolymer preferably contains a repeating unit having a graft chain in a range of 2 to 90% by mass, and in a range of 5 to 30% by mass, based on the total mass of the graft copolymer. Is more preferable. When the content of the repeating unit having a graft chain is within this range, the dispersibility of the colorant is good.
 グラフト共重合体をラジカル重合で製造する際に用いるマクロモノマーとしては、公知のマクロモノマーを用いることができ、東亞合成(株)製のマクロモノマーAA-6(末端基がメタクリロイル基であるポリメタクリル酸メチル)、AS-6(末端基がメタクリロイル基であるポリスチレン)、AN-6S(末端基がメタクリロイル基であるスチレンとアクリロニトリルの共重合体)、AB-6(末端基がメタクリロイル基であるポリアクリル酸ブチル)、(株)ダイセル製のプラクセルFM5(メタクリル酸2-ヒドロキシエチルのε-カプロラクトン5モル当量付加品)、FA10L(アクリル酸2-ヒドロキシエチルのε-カプロラクトン10モル当量付加品)、および特開平2-272009号公報に記載のポリエステル系マクロモノマー等が挙げられる。 As the macromonomer used when the graft copolymer is produced by radical polymerization, a known macromonomer can be used, which is a macromonomer AA-6 (polymethacrylic group whose terminal group is a methacryloyl group) manufactured by Toagosei Co., Ltd. Acid-6), AS-6 (polystyrene whose terminal group is a methacryloyl group), AN-6S (a copolymer of styrene and acrylonitrile whose terminal group is a methacryloyl group), AB-6 (polyester whose terminal group is a methacryloyl group) Butyl acrylate), PLACEL FM5 manufactured by Daicel Corporation (2-hydroxyethyl methacrylate with 5 molar equivalents of ε-caprolactone), FA10L (2-hydroxyethyl acrylate with 10 molar equivalents of ε-caprolactone), And polyester-based mac described in JP-A-2-272009 And monomers.
 本発明では、樹脂として、下記式(1)~式(4)のいずれかで表される繰り返し単位を含むグラフト共重合体を用いることもできる。これらのグラフト共重合体は、黒色顔料の分散剤として特に好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000005
In the present invention, a graft copolymer containing a repeating unit represented by any of the following formulas (1) to (4) can also be used as the resin. These graft copolymers can be particularly preferably used as a dispersant for a black pigment.
Figure JPOXMLDOC01-appb-C000005
 式(1)~式(4)において、W1、W2、W3、およびW4は、それぞれ独立に、酸素原子またはNHを表す。W1、W2、W3、およびW4は酸素原子であることが好ましい。
 式(1)~式(4)において、X1、X2、X3、X4、およびX5は、それぞれ独立に、水素原子または1価の有機基を表す。X1、X2、X3、X4、およびX5としては、合成上の制約の観点からは、それぞれ独立に、水素原子または炭素数1~12のアルキル基であることが好ましく、それぞれ独立に、水素原子またはメチル基であることがより好ましく、メチル基が特に好ましい。
In the formulas (1) to (4), W 1 , W 2 , W 3 , and W 4 each independently represent an oxygen atom or NH. W 1 , W 2 , W 3 , and W 4 are preferably oxygen atoms.
In the formulas (1) to (4), X 1 , X 2 , X 3 , X 4 , and X 5 each independently represent a hydrogen atom or a monovalent organic group. X 1 , X 2 , X 3 , X 4 , and X 5 are each independently preferably a hydrogen atom or an alkyl group having 1 to 12 carbon atoms from the viewpoint of synthesis constraints. Further, a hydrogen atom or a methyl group is more preferable, and a methyl group is particularly preferable.
 式(1)~式(4)において、Y1、Y2、Y3、およびY4は、それぞれ独立に、2価の連結基を表し、連結基は特に構造上制約されない。Y1、Y2、Y3、およびY4で表される2価の連結基として、具体的には、下記の(Y-1)~(Y-21)の連結基などが例として挙げられる。下記に示した構造において、A、Bはそれぞれ、式(1)~式(4)における左末端基、右末端基との結合部位を意味する。 In the formulas (1) to (4), Y 1 , Y 2 , Y 3 , and Y 4 each independently represent a divalent linking group, and the linking group is not particularly limited in structure. Specific examples of the divalent linking group represented by Y 1 , Y 2 , Y 3 , and Y 4 include the following (Y-1) to (Y-21) linking groups. . In the structures shown below, A and B represent binding sites with the left end group and the right end group in Formulas (1) to (4), respectively.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)~式(4)において、Z1、Z2、Z3、およびZ4は、それぞれ独立に、1価の有機基を表す。有機基の構造は、特に限定されないが、具体的には、アルキル基、水酸基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、ヘテロアリールチオエーテル基、およびアミノ基などが挙げられる。これらの中でも、Z1、Z2、Z3、およびZ4で表される有機基としては、特に分散性向上の観点から、立体反発効果を有するものが好ましく、各々独立に、炭素数5~24のアルキル基またはアルコキシ基が好ましく、その中でも特に、各々独立に、炭素数5~24の分岐アルキル基、炭素数5~24の環状アルキル基、または、炭素数5~24のアルコキシ基が好ましい。なお、アルコキシ基中に含まれるアルキル基は、直鎖、分岐、環状のいずれでもよい。 In the formulas (1) to (4), Z 1 , Z 2 , Z 3 , and Z 4 each independently represent a monovalent organic group. The structure of the organic group is not particularly limited. Specifically, an alkyl group, a hydroxyl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthioether group, an arylthioether group, a heteroarylthioether group, an amino group, etc. Is mentioned. Among these, as the organic group represented by Z 1 , Z 2 , Z 3 , and Z 4 , those having a steric repulsion effect are particularly preferable from the viewpoint of improving dispersibility, and each independently has 5 to 5 carbon atoms. 24 alkyl groups or alkoxy groups are preferable, and among them, a branched alkyl group having 5 to 24 carbon atoms, a cyclic alkyl group having 5 to 24 carbon atoms, or an alkoxy group having 5 to 24 carbon atoms is particularly preferable. . The alkyl group contained in the alkoxy group may be linear, branched or cyclic.
 式(1)~式(4)において、n、m、p、およびqは、それぞれ独立に、1~500の整数である。
 また、式(1)および式(2)において、jおよびkは、それぞれ独立に、2~8の整数を表す。式(1)および式(2)におけるjおよびkは、分散安定性、現像性の観点から、4~6の整数が好ましく、5が最も好ましい。
In the formulas (1) to (4), n, m, p, and q are each independently an integer of 1 to 500.
In the formulas (1) and (2), j and k each independently represent an integer of 2 to 8. J and k in the formulas (1) and (2) are preferably integers of 4 to 6 and most preferably 5 from the viewpoints of dispersion stability and developability.
 式(3)中、R3は分岐若しくは直鎖のアルキレン基を表し、炭素数1~10のアルキレン基が好ましく、炭素数2または3のアルキレン基がより好ましい。pが2~500のとき、複数存在するR3は互いに同じであっても異なっていてもよい。
 式(4)中、R4は水素原子または1価の有機基を表し、この1価の有機基としては、特に構造上限定はされない。R4として好ましくは、水素原子、アルキル基、アリール基、およびヘテロアリール基が挙げられ、さらに好ましくは、水素原子、またはアルキル基である。R4がアルキル基である場合、アルキル基としては、炭素数1~20の直鎖アルキル基、炭素数3~20の分岐アルキル基、または炭素数5~20の環状アルキル基が好ましく、炭素数1~20の直鎖アルキル基がより好ましく、炭素数1~6の直鎖アルキル基がさらに好ましい。式(4)において、qが2~500のとき、グラフト共重合体中に複数存在するX5及びR4は互いに同じであっても異なっていてもよい。
In the formula (3), R 3 represents a branched or straight chain alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, and more preferably an alkylene group having 2 or 3 carbon atoms. When p is 2 to 500, a plurality of R 3 may be the same or different.
In the formula (4), R 4 represents a hydrogen atom or a monovalent organic group, and the monovalent organic group is not particularly limited in terms of structure. R 4 preferably includes a hydrogen atom, an alkyl group, an aryl group, and a heteroaryl group, and more preferably a hydrogen atom or an alkyl group. When R 4 is an alkyl group, the alkyl group is preferably a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, or a cyclic alkyl group having 5 to 20 carbon atoms. A linear alkyl group having 1 to 20 carbon atoms is more preferable, and a linear alkyl group having 1 to 6 carbon atoms is more preferable. In the formula (4), when q is 2 to 500, a plurality of X 5 and R 4 present in the graft copolymer may be the same or different from each other.
 式(1)で表される繰り返し単位としては、分散安定性および現像性の観点から、下記式(1A)で表される繰り返し単位であることがより好ましい。
 また、式(2)で表される繰り返し単位としては、分散安定性および現像性の観点から、下記式(2A)で表される繰り返し単位であることがより好ましい。
The repeating unit represented by the formula (1) is more preferably a repeating unit represented by the following formula (1A) from the viewpoint of dispersion stability and developability.
The repeating unit represented by the formula (2) is more preferably a repeating unit represented by the following formula (2A) from the viewpoint of dispersion stability and developability.
 また、式(3)で表される繰り返し単位としては、分散安定性および現像性の観点から、下記式(3A)または式(3B)で表される繰り返し単位であることがより好ましい。
Figure JPOXMLDOC01-appb-C000007
The repeating unit represented by formula (3) is more preferably a repeating unit represented by the following formula (3A) or formula (3B) from the viewpoint of dispersion stability and developability.
Figure JPOXMLDOC01-appb-C000007
 式(1A)中、X1、Y1、Z1およびnは、式(1)におけるX1、Y1、Z1およびnと同義であり、好ましい範囲も同様である。
 式(2A)中、X2、Y2、Z2およびmは、式(2)におけるX2、Y2、Z2およびmと同義であり、好ましい範囲も同様である。
 式(3A)または(3B)中、X3、Y3、Z3およびpは、式(3)におけるX3、Y3、Z3およびpと同義であり、好ましい範囲も同様である。
Wherein (1A), X 1, Y 1, Z 1 and n are the same as X 1, Y 1, Z 1 and n in Formula (1), and preferred ranges are also the same.
Wherein (2A), X 2, Y 2, Z 2 and m are as defined X 2, Y 2, Z 2 and m in the formula (2), and preferred ranges are also the same.
Wherein (3A) or (3B), X 3, Y 3, Z 3 and p are as defined X 3, Y 3, Z 3 and p in formula (3), and preferred ranges are also the same.
 また、上述したグラフト共重合体は、上述した式(1)~(4)で表される繰り返し単位の他に、疎水性の繰り返し単位を有することも好ましい。ただし、本発明において、疎水性の繰り返し単位は、酸基(例えば、カルボン酸基、スルホン酸基、リン酸基、フェノール性水酸基等)を有さない繰り返し単位である。 In addition, the graft copolymer described above preferably has a hydrophobic repeating unit in addition to the repeating units represented by the above formulas (1) to (4). However, in the present invention, the hydrophobic repeating unit is a repeating unit having no acid group (for example, carboxylic acid group, sulfonic acid group, phosphoric acid group, phenolic hydroxyl group, etc.).
 疎水性の繰り返し単位は、好ましくは、ClogP値が1.2以上の化合物(モノマー)に由来する(対応する)繰り返し単位であり、より好ましくは、ClogP値が1.2~8の化合物に由来する繰り返し単位である。 The hydrophobic repeating unit is preferably a repeating unit derived from (corresponding to) a compound (monomer) having a ClogP value of 1.2 or more, more preferably derived from a compound having a ClogP value of 1.2 to 8 It is a repeating unit.
 ClogP値は、Daylight Chemical Information System, Inc.から入手できるプログラム“CLOGP”で計算された値である。このプログラムは、Hansch, Leoのフラグメントアプローチ(下記文献参照)により算出される“計算logP”の値を提供する。フラグメントアプローチは化合物の化学構造に基づいており、化学構造を部分構造(フラグメント)に分割し、そのフラグメントに対して割り当てられたlogP寄与分を合計することにより化合物のlogP値を推算している。その詳細は以下の文献に記載されている。本発明では、プログラムCLOGP v4.82により計算したClogP値を用いる。
 A. J. Leo, Comprehensive Medicinal Chemistry, Vol.4, C. Hansch, P. G. Sammnens, J. B. Taylor and C. A. Ramsden, Eds., p.295, Pergamon Press, 1990 C. Hansch & A. J. Leo. SUbstituent Constants For Correlation Analysis in Chemistry and Biology. John Wiley & Sons. A.J. Leo. Calculating logPoct from structure. Chem. Rev., 93, 1281-1306, 1993.
ClogP values can be obtained from Daylight Chemical Information System, Inc. It is a value calculated by the program “CLOGP” available from This program provides the value of “computation logP” calculated by Hansch, Leo's fragment approach (see below). The fragment approach is based on the chemical structure of a compound, which divides the chemical structure into substructures (fragments) and estimates the logP value of the compound by summing the logP contributions assigned to that fragment. Details thereof are described in the following documents. In the present invention, the ClogP value calculated by the program CLOGP v4.82 is used.
A. J. et al. Leo, Comprehensive Medicinal Chemistry, Vol. 4, C.I. Hansch, P.A. G. Sammunens, J. et al. B. Taylor and C.M. A. Ramsden, Eds. , P. 295, Pergamon Press, 1990 C.I. Hansch & A. J. et al. Leo. Substituent Constants For Correlation Analysis in Chemistry and Biology. John Wiley & Sons. A. J. et al. Leo. Calculating logPoch from structure. Chem. Rev. , 93, 1281-1306, 1993.
 logPは、分配係数P(Partition Coefficient)の常用対数を意味し、ある有機化合物が油(一般的には1-オクタノール)と水との2相系の平衡でどのように分配されるかを定量的な数値として表す物性値であり、以下の式で示される。
logP=log(Coil/Cwater)
 式中、Coilは油相中の化合物のモル濃度を、Cwaterは水相中の化合物のモル濃度を表す。
 logPの値が0をはさんでプラスに大きくなると油溶性が増し、マイナスで絶対値が大きくなると水溶性が増すことを意味し、有機化合物の水溶性と負の相関があり、有機化合物の親疎水性を見積るパラメータとして広く利用されている。
logP is the common logarithm of the partition coefficient P (Partition Coefficient), and quantifies how an organic compound is distributed in the equilibrium of a two-phase system of oil (generally 1-octanol) and water. It is a physical property value expressed as a typical numerical value, and is represented by the following formula.
logP = log (Coil / Cwater)
In the formula, Coil represents the molar concentration of the compound in the oil phase, and Cwater represents the molar concentration of the compound in the aqueous phase.
When the logP value increases to a positive value across 0, the oil solubility increases. When the logP value increases to a negative value, the water solubility increases. There is a negative correlation with the water solubility of the organic compound. It is widely used as a parameter for estimating aqueous properties.
 グラフト共重合体は、疎水性の繰り返し単位として、下記式(i)~(iii)で表されるモノマーに由来する繰り返し単位から選択された1種以上の繰り返し単位を有することが好ましい。 The graft copolymer preferably has one or more repeating units selected from repeating units derived from monomers represented by the following formulas (i) to (iii) as hydrophobic repeating units.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(i)~(iii)中、R1、R2、およびR3は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素、塩素、臭素等)、または炭素原子数が1~6のアルキル基(例えば、メチル基、エチル基、プロピル基等)を表す。
 R1、R2、およびR3は、好ましくは水素原子、または炭素原子数が1~3のアルキル基であり、好ましくは、水素原子またはメチル基である。R2およびR3は、水素原子であることが特に好ましい。
In the above formulas (i) to (iii), R 1 , R 2 , and R 3 are each independently a hydrogen atom, a halogen atom (eg, fluorine, chlorine, bromine, etc.), or 1 to 6 carbon atoms. An alkyl group (for example, methyl group, ethyl group, propyl group, etc.).
R 1 , R 2 and R 3 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or a methyl group. R 2 and R 3 are particularly preferably a hydrogen atom.
 Xは、酸素原子(-O-)またはイミノ基(-NH-)を表し、酸素原子であることが好ましい。 X represents an oxygen atom (—O—) or an imino group (—NH—), and is preferably an oxygen atom.
 Lは、単結合または2価の連結基である。2価の連結基としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、置換アリーレン基)、2価の複素環基、酸素原子(-O-)、硫黄原子(-S-)、イミノ基(-NH-)、置換イミノ基(-NR31-、ここでR31は脂肪族基、芳香族基または複素環基)、カルボニル基(-CO-)、または、これらの組合せ等が挙げられる。
 Lは、単結合、アルキレン基またはオキシアルキレン構造を含む2価の連結基であることが好ましい。オキシアルキレン構造は、オキシエチレン構造またはオキシプロピレン構造であることがより好ましい。また、Lは、オキシアルキレン構造を2以上繰り返して含むポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造またはポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、-(OCH2CH2n-で表され、nは、2以上の整数が好ましく、2~10の整数であることがより好ましい。
L is a single bond or a divalent linking group. As the divalent linking group, a divalent aliphatic group (for example, alkylene group, substituted alkylene group, alkenylene group, substituted alkenylene group, alkynylene group, substituted alkynylene group), divalent aromatic group (for example, arylene group) , Substituted arylene group), divalent heterocyclic group, oxygen atom (—O—), sulfur atom (—S—), imino group (—NH—), substituted imino group (—NR 31 —, where R 31 Are aliphatic groups, aromatic groups or heterocyclic groups), carbonyl groups (—CO—), or combinations thereof.
L is preferably a single bond, an alkylene group or a divalent linking group containing an oxyalkylene structure. The oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure. L may contain a polyoxyalkylene structure containing two or more oxyalkylene structures. The polyoxyalkylene structure is preferably a polyoxyethylene structure or a polyoxypropylene structure. The polyoxyethylene structure is represented by — (OCH 2 CH 2 ) n —, and n is preferably an integer of 2 or more, and more preferably an integer of 2 to 10.
 Zとしては、脂肪族基(例えば、アルキル基、置換アルキル基、不飽和アルキル基、置換不飽和アルキル基、)、芳香族基(例えば、アリーレン基、置換アリーレン基)、複素環基、酸素原子(-O-)、硫黄原子(-S-)、イミノ基(-NH-)、置換イミノ基(-NR31-、ここでR31は脂肪族基、芳香族基または複素環基)、カルボニル基(-CO-)、または、これらの組合せ等が挙げられる。 Z is an aliphatic group (eg, alkyl group, substituted alkyl group, unsaturated alkyl group, substituted unsaturated alkyl group), aromatic group (eg, arylene group, substituted arylene group), heterocyclic group, oxygen atom (—O—), sulfur atom (—S—), imino group (—NH—), substituted imino group (—NR 31 —, wherein R 31 is an aliphatic group, aromatic group or heterocyclic group), carbonyl And a group (—CO—) or a combination thereof.
 脂肪族基は、環状構造または分岐構造を有していてもよい。脂肪族基の炭素原子数は、1~20が好ましく、1~15がより好ましく、1~10がさらに好ましい。脂肪族基には、さらに環集合炭化水素基、架橋環式炭化水素基が含まれ、環集合炭化水素基の例としては、ビシクロヘキシル基、パーヒドロナフタレニル基、ビフェニル基、4-シクロヘキシルフェニル基などが含まれる。架橋環式炭化水素環として、例えば、ピナン、ボルナン、ノルピナン、ノルボルナン、ビシクロオクタン環(ビシクロ[2.2.2]オクタン環、ビシクロ[3.2.1]オクタン環等)などの2環式炭化水素環、ホモブレダン、アダマンタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[4.3.1.12,5]ウンデカン環などの3環式炭化水素環、テトラシクロ[4.4.0.12,5.17,10]ドデカン、パーヒドロ-1,4-メタノ-5,8-メタノナフタレン環などの4環式炭化水素環などが挙げられる。また、架橋環式炭化水素環には、縮合環式炭化水素環、例えば、パーヒドロナフタレン(デカリン)、パーヒドロアントラセン、パーヒドロフェナントレン、パーヒドロアセナフテン、パーヒドロフルオレン、パーヒドロインデン、パーヒドロフェナレン環などの5~8員シクロアルカン環が複数個縮合した縮合環も含まれる。脂肪族基は不飽和脂肪族基よりも飽和脂肪族基の方が好ましい。また、脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、芳香族基および複素環基が挙げられる。ただし、脂肪族基は、置換基として酸基を有さない。 The aliphatic group may have a cyclic structure or a branched structure. The number of carbon atoms in the aliphatic group is preferably 1-20, more preferably 1-15, and even more preferably 1-10. The aliphatic group further includes a ring assembly hydrocarbon group and a bridged cyclic hydrocarbon group. Examples of the ring assembly hydrocarbon group include a bicyclohexyl group, a perhydronaphthalenyl group, a biphenyl group, and 4-cyclohexyl. A phenyl group and the like are included. As the bridged cyclic hydrocarbon ring, for example, bicyclic such as pinane, bornane, norpinane, norbornane, bicyclooctane ring (bicyclo [2.2.2] octane ring, bicyclo [3.2.1] octane ring, etc.) Hydrocarbon ring, homobredan, adamantane, tricyclo [5.2.1.0 2,6 ] decane, tricyclo [4.3.1.1 2,5 ] undecane ring and other tricyclic hydrocarbon rings, tetracyclo [4 4.0.1, 2,5 . 1 7,10 ] dodecane, and tetracyclic hydrocarbon rings such as perhydro-1,4-methano-5,8-methanonaphthalene ring. The bridged cyclic hydrocarbon ring includes a condensed cyclic hydrocarbon ring such as perhydronaphthalene (decalin), perhydroanthracene, perhydrophenanthrene, perhydroacenaphthene, perhydrofluorene, perhydroindene, perhydroindene. A condensed ring formed by condensing a plurality of 5- to 8-membered cycloalkane rings such as a phenalene ring is also included. The aliphatic group is preferably a saturated aliphatic group rather than an unsaturated aliphatic group. Further, the aliphatic group may have a substituent. Examples of the substituent include a halogen atom, an aromatic group, and a heterocyclic group. However, the aliphatic group does not have an acid group as a substituent.
 芳香族基の炭素原子数は、6~20が好ましく、6~15がより好ましく、6~10がさらに好ましい。また、芳香族基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、脂肪族基、芳香族基および複素環基が挙げられる。ただし、芳香族基は、置換基として酸基を有さない。 The number of carbon atoms in the aromatic group is preferably 6 to 20, more preferably 6 to 15, and still more preferably 6 to 10. The aromatic group may have a substituent. Examples of the substituent include a halogen atom, an aliphatic group, an aromatic group, and a heterocyclic group. However, the aromatic group does not have an acid group as a substituent.
 複素環基は、複素環として5員環または6員環を有することが好ましい。複素環に他の複素環、脂肪族環または芳香族環が縮合していてもよい。また、複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N-R32、ここでR32は脂肪族基、芳香族基または複素環基)、脂肪族基、芳香族基および複素環基が挙げられる。ただし、複素環基は、置換基として酸基を有さない。 The heterocyclic group preferably has a 5-membered or 6-membered ring as the heterocycle. The heterocycle may be condensed with another heterocycle, aliphatic ring or aromatic ring. Moreover, the heterocyclic group may have a substituent. Examples of substituents include halogen atoms, hydroxy groups, oxo groups (═O), thioxo groups (═S), imino groups (═NH), substituted imino groups (═N—R 32 , where R 32 represents a fatty acid Aromatic group, aromatic group or heterocyclic group), aliphatic group, aromatic group and heterocyclic group. However, the heterocyclic group does not have an acid group as a substituent.
 上記式(iii)中、R4、R5、およびR6は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素、塩素、臭素等)、または炭素原子数が1~6のアルキル基(例えば、メチル基、エチル基、プロピル基等)、Z、または-L-Zを表す。ここでLおよびZは、上記の説明と同義である。R4、R5、およびR6としては、水素原子、または炭素数が1~3のアルキル基が好ましく、水素原子がより好ましい。 In the above formula (iii), R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom (eg, fluorine, chlorine, bromine, etc.), or an alkyl group having 1 to 6 carbon atoms ( For example, it represents a methyl group, an ethyl group, a propyl group, etc.), Z, or -LZ. Here, L and Z are synonymous with the above description. R 4 , R 5 , and R 6 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom.
 上記一般式(i)で表されるモノマーは、R1、R2、およびR3が水素原子またはメチル基であって、Lが単結合またはアルキレン基若しくはオキシアルキレン構造を含む2価の連結基であって、Xが酸素原子またはイミノ基であって、Zが脂肪族基、複素環基または芳香族基である化合物が好ましい。上記式(ii)で表されるモノマーは、R1が水素原子またはメチル基であって、Lがアルキレン基であって、Zが脂肪族基、複素環基または芳香族基である化合物が好ましい。上記式(iii)で表されるモノマーは、R4、R5、およびR6が水素原子またはメチル基であって、Zが脂肪族基、複素環基または芳香族基である化合物が好ましい。 The monomer represented by the general formula (i) is a divalent linking group in which R 1 , R 2 , and R 3 are a hydrogen atom or a methyl group, and L is a single bond or an alkylene group or an oxyalkylene structure. A compound in which X is an oxygen atom or imino group and Z is an aliphatic group, a heterocyclic group or an aromatic group is preferred. The monomer represented by the formula (ii) is preferably a compound in which R 1 is a hydrogen atom or a methyl group, L is an alkylene group, and Z is an aliphatic group, a heterocyclic group or an aromatic group. . The monomer represented by the above formula (iii) is preferably a compound in which R 4 , R 5 , and R 6 are a hydrogen atom or a methyl group, and Z is an aliphatic group, a heterocyclic group, or an aromatic group.
 式(i)~(iii)で表される代表的な化合物の例としては、アクリル酸エステル類、メタクリル酸エステル類、スチレン類などから選ばれるラジカル重合性化合物が挙げられる。なお、式(i)~(iii)で表される化合物の例としては、特開2013-249417号公報の段落番号0089~0093に記載の化合物を参照でき、この内容は本明細書に組み込まれる。 Examples of typical compounds represented by formulas (i) to (iii) include radically polymerizable compounds selected from acrylic acid esters, methacrylic acid esters, styrenes, and the like. As examples of the compounds represented by formulas (i) to (iii), the compounds described in paragraph numbers 0089 to 0093 of JP2013-249417A can be referred to, and the contents thereof are incorporated in the present specification. .
 グラフト共重合体において、疎水性の繰り返し単位は、質量換算で、グラフト共重合体の総質量に対し10~90質量%の範囲で含まれることが好ましく、20~80質量%の範囲で含まれることがより好ましい。含有量が上記範囲である場合に、十分なパターン形成が得られる。 In the graft copolymer, the hydrophobic repeating unit is preferably contained in the range of 10 to 90% by mass, and in the range of 20 to 80% by mass, based on the total mass of the graft copolymer. It is more preferable. When the content is within the above range, sufficient pattern formation can be obtained.
 上述したグラフト共重合体は、上述した式(1)~(4)で表される繰り返し単位の他に、顔料などと相互作用を形成しうる官能基(例えば、酸基、塩基性基、配位性基、反応性を有する基など)を有する繰り返し単位を含むことが好ましい。 In addition to the repeating units represented by the above formulas (1) to (4), the graft copolymer described above has a functional group (for example, an acid group, a basic group, a coordination group, etc.) that can form an interaction with a pigment. It is preferable to include a repeating unit having a coordinate group, a reactive group, and the like.
 上記酸基としては、例えば、カルボン酸基、スルホン酸基、リン酸基、または、フェノール性水酸基などがあり、好ましくは、カルボン酸基、スルホン酸基、および、リン酸基のうち少なくとも1種であり、特に好ましいものは、黒色顔料などの着色剤への吸着力が良好で、かつ、その分散性が高いカルボン酸基である。 Examples of the acid group include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, and a phenolic hydroxyl group. Preferably, at least one of a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group is used. Particularly preferred are carboxylic acid groups that have good adsorption power to colorants such as black pigments and that are highly dispersible.
 グラフト共重合体は、酸基を有する繰り返し単位を1種または2種以上有してもよい。
 グラフト共重合体は、酸基を有する繰り返し単位を含有してもしなくてもよいが、含有する場合、酸基を有する繰り返し単位の含有量は、質量換算で、グラフト共重合体の総質量に対して、5~80質量%であることが好ましく、より好ましくは10~60質量%である。
The graft copolymer may have one or more repeating units having an acid group.
The graft copolymer may or may not contain a repeating unit having an acid group. However, when it is contained, the content of the repeating unit having an acid group is expressed in terms of mass in the total mass of the graft copolymer. On the other hand, the content is preferably 5 to 80% by mass, more preferably 10 to 60% by mass.
 上記塩基性基としては、例えば、第1級アミノ基、第2級アミノ基、第3級アミノ基、N原子を含むヘテロ環、アミド基などがあり、特に好ましいものは、着色剤への吸着力が良好で、かつ、その分散性が高い第3級アミノ基である。グラフト共重合体は、これらの塩基性基を1種または2種以上、有することができる。
 グラフト共重合体は、塩基性基を有する繰り返し単位を含有してもしなくてもよいが、含有する場合、塩基性基を有する繰り返し単位の含有量は、質量換算で、グラフト共重合体の総質量に対して、好ましくは0.01~50質量%であり、より好ましくは、現像性阻害抑制という観点から、0.01~30質量%である。
Examples of the basic group include a primary amino group, a secondary amino group, a tertiary amino group, a heterocyclic ring containing an N atom, an amide group, and the like, and particularly preferable is adsorption to a colorant. It is a tertiary amino group having good strength and high dispersibility. The graft copolymer can have one or more of these basic groups.
The graft copolymer may or may not contain a repeating unit having a basic group. However, when it is contained, the content of the repeating unit having a basic group is the total amount of the graft copolymer in terms of mass. Preferably, the content is 0.01 to 50% by mass, more preferably 0.01 to 30% by mass from the viewpoint of inhibiting developability inhibition.
 上記配位性基、および反応性を有する官能基としては、例えば、アセチルアセトキシ基、トリアルコキシシリル基、イソシアネート基、酸無水物、酸塩化物などが挙げられる。特に好ましいものは、着色剤への吸着力が良好で分散性が高いアセチルアセトキシ基である。グラフト共重合体は、これらの基を1種または2種以上有してもよい。
 グラフト共重合体は、配位性基を有する繰り返し単位、または、反応性を有する官能基を有する繰り返し単位を含有してもしなくてもよいが、含有する場合、これらの繰り返し単位の含有量は、質量換算で、グラフト共重合体の総質量に対して、好ましくは10~80質量%であり、より好ましくは、現像性阻害抑制という観点から、20~60質量%である。
Examples of the coordinating group and reactive functional group include acetylacetoxy group, trialkoxysilyl group, isocyanate group, acid anhydride, acid chloride and the like. Particularly preferred is an acetylacetoxy group that has a good adsorptive power to the colorant and a high dispersibility. The graft copolymer may have one or more of these groups.
The graft copolymer may or may not contain a repeating unit having a coordinating group or a repeating unit having a reactive functional group, but when it is contained, the content of these repeating units is In terms of mass, it is preferably 10 to 80% by mass, and more preferably 20 to 60% by mass, from the viewpoint of inhibiting developability inhibition, with respect to the total mass of the graft copolymer.
 グラフト共重合体が、グラフト鎖以外に、顔料と相互作用を形成しうる官能基を有する場合、これらの官能基がどのように導入されているかは特に限定はされないが、グラフト共重合体は、下記式(iv)~(vi)で表されるモノマーに由来の繰り返し単位から選択された1種以上の繰り返し単位を有することが好ましい。 When the graft copolymer has a functional group capable of forming an interaction with the pigment other than the graft chain, how these functional groups are introduced is not particularly limited. It preferably has one or more types of repeating units selected from repeating units derived from monomers represented by the following formulas (iv) to (vi).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(iv)~式(vi)中、R11、R12、およびR13は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、または炭素原子数が1~6のアルキル基(例えば、メチル基、エチル基、プロピル基等)を表す。
 式(iv)~式(vi)中、R11、R12、およびR13は、好ましくは、それぞれ独立に、水素原子、または炭素原子数が1~3のアルキル基であり、より好ましくは、それぞれ独立に、水素原子またはメチル基である。一般式(iv)中、R12およびR13は、それぞれ水素原子であることが特に好ましい。
In formulas (iv) to (vi), R 11 , R 12 , and R 13 each independently represent a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, etc.), or a carbon atom number 1 to 6 alkyl groups (for example, methyl group, ethyl group, propyl group, etc.) are represented.
In formulas (iv) to (vi), R 11 , R 12 and R 13 are preferably each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably Each independently represents a hydrogen atom or a methyl group. In general formula (iv), R 12 and R 13 are each particularly preferably a hydrogen atom.
 式(iv)中のX1は、酸素原子(-O-)またはイミノ基(-NH-)を表し、酸素原子であることが好ましい。
 式(v)中のYは、メチン基または窒素原子を表す。
X 1 in the formula (iv) represents an oxygen atom (—O—) or an imino group (—NH—), and is preferably an oxygen atom.
Y in the formula (v) represents a methine group or a nitrogen atom.
 式(iv)~式(v)中のL1は、単結合または2価の連結基を表す。2価の連結基の例としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、および置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、および置換アリーレン基)、2価の複素環基、酸素原子(-O-)、硫黄原子(-S-)、イミノ基(-NH-)、置換イミノ結合(-NR31’-、ここでR31’は脂肪族基、芳香族基または複素環基)、カルボニル結合(-CO-)、または、これらの組合せ等が挙げられる。 L 1 in the formulas (iv) to (v) represents a single bond or a divalent linking group. Examples of the divalent linking group include a divalent aliphatic group (for example, an alkylene group, a substituted alkylene group, an alkenylene group, a substituted alkenylene group, an alkynylene group, and a substituted alkynylene group), a divalent aromatic group (for example, , Arylene groups, and substituted arylene groups), divalent heterocyclic groups, oxygen atoms (—O—), sulfur atoms (—S—), imino groups (—NH—), substituted imino bonds (—NR 31 ′ — Here, R 31 ′ includes an aliphatic group, an aromatic group or a heterocyclic group), a carbonyl bond (—CO—), or a combination thereof.
 L1は、単結合、アルキレン基またはオキシアルキレン構造を含む2価の連結基であることが好ましい。オキシアルキレン構造は、オキシエチレン構造またはオキシプロピレン構造であることがより好ましい。また、L1は、オキシアルキレン構造を2以上繰り返して含むポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造またはポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、-(OCH2CH2n-で表され、nは、2以上の整数が好ましく、2~10の整数であることがより好ましい。 L 1 is preferably a single bond, an alkylene group or a divalent linking group containing an oxyalkylene structure. The oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure. L 1 may include a polyoxyalkylene structure containing two or more oxyalkylene structures. The polyoxyalkylene structure is preferably a polyoxyethylene structure or a polyoxypropylene structure. The polyoxyethylene structure is represented by — (OCH 2 CH 2 ) n —, and n is preferably an integer of 2 or more, and more preferably an integer of 2 to 10.
 式(iv)~式(vi)中、Z1は、グラフト鎖以外に顔料と相互作用を形成しうる官能基を表し、カルボン酸基、第三級アミノ基であることが好ましく、カルボン酸基であることがより好ましい。 In the formulas (iv) to (vi), Z 1 represents a functional group capable of forming an interaction with the pigment other than the graft chain, and is preferably a carboxylic acid group or a tertiary amino group. It is more preferable that
 式(vi)中、R14、R15、およびR16は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素、塩素、臭素等)、炭素原子数が1~6のアルキル基(例えば、メチル基、エチル基、プロピル基等)、-Z1、または-L1-Z1を表す。ここでL1およびZ1は、上記におけるL1およびZ1と同義であり、好ましい例も同様である。R14、R15、およびR16としては、それぞれ独立に水素原子、または炭素数が1~3のアルキル基が好ましく、水素原子がより好ましい。 In the formula (vi), R 14 , R 15 , and R 16 are each independently a hydrogen atom, a halogen atom (eg, fluorine, chlorine, bromine, etc.), or an alkyl group having 1 to 6 carbon atoms (eg, methyl group, ethyl group, propyl group, etc.), - represents a Z 1 or -L 1 -Z 1,. Wherein L 1 and Z 1 has the same meaning as L 1 and Z 1 in the above, are the preferable examples. R 14 , R 15 and R 16 are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
 式(iv)で表されるモノマーは、R11、R12、およびR13がそれぞれ独立に水素原子またはメチル基であって、L1がアルキレン基またはオキシアルキレン構造を含む2価の連結基であって、Xが酸素原子またはイミノ基であって、Zがカルボン酸基である化合物が好ましい。式(v)で表されるモノマーは、R11が水素原子またはメチル基であって、L1がアルキレン基であって、Z1がカルボン酸基であって、Yがメチン基である化合物が好ましい。式(vi)で表されるモノマーは、R14、R15、およびR16がそれぞれ独立に水素原子またはメチル基であって、Z1がカルボン酸基である化合物が好ましい。 In the monomer represented by the formula (iv), R 11 , R 12 , and R 13 are each independently a hydrogen atom or a methyl group, and L 1 is a divalent linking group containing an alkylene group or an oxyalkylene structure. A compound in which X is an oxygen atom or imino group and Z is a carboxylic acid group is preferable. The monomer represented by the formula (v) is a compound in which R 11 is a hydrogen atom or a methyl group, L 1 is an alkylene group, Z 1 is a carboxylic acid group, and Y is a methine group. preferable. The monomer represented by the formula (vi) is preferably a compound in which R 14 , R 15 , and R 16 are each independently a hydrogen atom or a methyl group, and Z 1 is a carboxylic acid group.
 上記グラフト共重合体の具体例の例としては、以下が挙げられる。また、特開2013-249417号公報の段落番号0127~0129に記載の高分子化合物を参照することができ、この内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000010
Specific examples of the graft copolymer include the following. Reference can also be made to the polymer compounds described in JP-A-2013-249417, paragraphs 0127 to 0129, the contents of which are incorporated herein.
Figure JPOXMLDOC01-appb-C000010
 分散剤は、市販品としても入手可能であり、そのような具体例としては、楠本化成株式会社製「DA-7301」、BYKChemie社製「DISPERBYK-101(ポリアミドアミンリン酸塩)、107(カルボン酸エステル)、110(酸基を含む共重合物)、111(リン酸系分散剤)、130(ポリアミド)、140、142、145、161、162、163、164、165、166、170、180、187、190、191、2001、2001、2010、2012、2025(高分子共重合物)」、「BYK-P104、P105(高分子量不飽和ポリカルボン酸)、9076」、EFKA社製「EFKA4047、4050~4165(ポリウレタン系)、EFKA4330~4340(ブロック共重合体)、4400~4402(変性ポリアクリレート)、5010(ポリエステルアミド)、5765(高分子量ポリカルボン酸塩)、6220(脂肪酸ポリエステル)、6745(フタロシアニン誘導体)、6750(アゾ顔料誘導体)」、味の素ファインテクノ社製「アジスパーPB821、PB822、PB880、PB881」、共栄社化学社製「フローレンTG-710(ウレタンオリゴマー)」、「ポリフローNo.50E、No.300(アクリル系共重合体)」、楠本化成社製「ディスパロンKS-860、873SN、874、#2150(脂肪族多価カルボン酸)、#7004(ポリエーテルエステル)、DA-703-50、DA-705、DA-725」、花王社製「デモールRN、N(ナフタレンスルホン酸ホルマリン重縮合物)、MS、C、SN-B(芳香族スルホン酸ホルマリン重縮合物)」、「ホモゲノールL-18(高分子ポリカルボン酸)」、「エマルゲン920、930、935、985(ポリオキシエチレンノニルフェニルエーテル)」、「アセタミン86(ステアリルアミンアセテート)」、日本ルーブリゾール(株)製「ソルスパース5000(フタロシアニン誘導体)、22000(アゾ顔料誘導体)、13240(ポリエステルアミン)、3000、12000、17000、20000、27000(末端部に機能部を有する高分子)、24000、28000、32000、38500(グラフト共重合体)」、日光ケミカルズ社製「ニッコールT106(ポリオキシエチレンソルビタンモノオレート)、MYS-IEX(ポリオキシエチレンモノステアレート)」、川研ファインケミカル(株)製「ヒノアクトT-8000E」、信越化学工業(株)製「オルガノシロキサンポリマーKP341」、森下産業(株)製「EFKA-46、EFKA-47、EFKA-47EA、EFKAポリマー100、EFKAポリマー400、EFKAポリマー401、EFKAポリマー450」、サンノプコ(株)製「ディスパースエイド6、ディスパースエイド8、ディスパースエイド15、ディスパースエイド9100」、(株)ADEKA製「アデカプルロニックL31、F38、L42、L44、L61、L64、F68、L72、P95、F77、P84、F87、P94、L101、P103、F108、L121、P-123」、および三洋化成(株)製「イオネット(商品名)S-20」等が挙げられる。また、アクリベースFFS-6752、アクリベースFFS-187、アクリキュア-RD-F8、サイクロマーPを用いることもできる。 The dispersant is also available as a commercial product. Specific examples of such a dispersant include “DA-7301” manufactured by Enomoto Kasei Co., Ltd., “DISPERBYK-101 (polyamideamine phosphate)” manufactured by BYK Chemie, and 107 (carvone). Acid ester), 110 (copolymer containing an acid group), 111 (phosphate dispersing agent), 130 (polyamide), 140, 142, 145, 161, 162, 163, 164, 165, 166, 170, 180 , 187, 190, 191, 2001, 2001, 2010, 2012, 2025 (polymer copolymer) ”,“ BYK-P104, P105 (high molecular weight unsaturated polycarboxylic acid), 9076 ”,“ EFKA4047, manufactured by EFKA Corporation ” 4050-4165 (polyurethane), EFKA4330-4340 (block copolymer) 4400-4402 (modified polyacrylate), 5010 (polyesteramide), 5765 (high molecular weight polycarboxylate), 6220 (fatty acid polyester), 6745 (phthalocyanine derivative), 6750 (azo pigment derivative) ", manufactured by Ajinomoto Fine Techno Co., Ltd. “Azisper PB821, PB822, PB880, PB881”, “Floren TG-710 (urethane oligomer)” manufactured by Kyoeisha Chemical Co., “Polyflow No. 50E, No. 300 (acrylic copolymer)”, “Disparon” manufactured by Enomoto Kasei Co., Ltd. KS-860, 873SN, 874, # 2150 (aliphatic polycarboxylic acid), # 7004 (polyetherester), DA-703-50, DA-705, DA-725, “Demol RN, N” manufactured by Kao Corporation (Naphthalenesulfonic acid formalin Condensate), MS, C, SN-B (aromatic sulfonic acid formalin polycondensate) ”,“ homogenol L-18 (polymer polycarboxylic acid) ”,“ Emulgen 920, 930, 935, 985 (polyoxyethylene) Nonylphenyl ether) ”,“ Acetamine 86 (stearylamine acetate) ”,“ Solsperse 5000 (phthalocyanine derivative), 22000 (azo pigment derivative), 13240 (polyesteramine), 3000, 12000, 17000, manufactured by Nippon Lubrizol Co., Ltd. 20000, 27000 (polymer having a functional part at the end), 24000, 28000, 32000, 38500 (graft copolymer) ”,“ Nikkor T106 (polyoxyethylene sorbitan monooleate), MYS-IEX (manufactured by Nikko Chemicals) Polio Siethylene monostearate), “Hinoact T-8000E” manufactured by Kawaken Fine Chemical Co., Ltd., “Organosiloxane Polymer KP341” manufactured by Shin-Etsu Chemical Co., Ltd., “EFKA-46, EFKA-47” manufactured by Morishita Sangyo Co., Ltd. , EFKA-47EA, EFKA polymer 100, EFKA polymer 400, EFKA polymer 401, EFKA polymer 450 "," Disperse Aid 6, Disperse Aid 8, Disperse Aid 15, Disperse Aid 9100 "(Sannopco) "ADEKA Pluronic L31, F38, L42, L44, L61, L64, F68, L72, P95, F77, P84, F87, P94, L101, P103, F108, L121, P-123" manufactured by ADEKA Corporation, and Sanyo Chemical ( "Ionet" manufactured by And the like (trade name) S-20 ", and the like. Also, Acrybase FFS-6752, Acrybase FFS-187, Acrycure-RD-F8, and Cyclomer P can be used.
<<ラジカル重合性化合物>>
 活性エネルギー線硬化性組成物は、ラジカル重合性化合物を含有することができる。ラジカル重合性化合物は、エチレン性不飽和結合を有する重合性化合物が好ましい。ラジカル重合性化合物は、エチレン性不飽和結合を有する基を1個以上有する化合物が好ましく、2個以上有する化合物がより好ましく、3個以上有することがさらに好ましい。上限は、例えば、15個以下が好ましく、6個以下がより好ましい。エチレン性不飽和結合を有する基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基などが挙げられる。
<< Radically polymerizable compound >>
The active energy ray-curable composition can contain a radically polymerizable compound. The radical polymerizable compound is preferably a polymerizable compound having an ethylenically unsaturated bond. The radical polymerizable compound is preferably a compound having one or more groups having an ethylenically unsaturated bond, more preferably a compound having two or more, and still more preferably three or more. For example, the upper limit is preferably 15 or less, and more preferably 6 or less. Examples of the group having an ethylenically unsaturated bond include a vinyl group, a (meth) allyl group, and a (meth) acryloyl group.
 ラジカル重合性化合物は、例えば、モノマー、プレポリマー、すなわち2量体、3量体およびオリゴマー、またはそれらの混合物並びにそれらの多量体などの化学的形態のいずれであってもよい。モノマーが好ましい。
 ラジカル重合性化合物の分子量は、100~3,000であることが好ましく、250~1,500がより好ましい。
 ラジカル重合性化合物は、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。
 モノマー、プレポリマーの例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)およびそのエステル類、アミド類、並びにこれらの多量体が挙げられ、好ましくは、不飽和カルボン酸と脂肪族多価アルコール化合物とのエステル、および不飽和カルボン酸と脂肪族多価アミン化合物とのアミド類、並びにこれらの多量体である。また、ヒドロキシル基、アミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能イソシアネート類或いはエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基、エポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との反応物、ハロゲン基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との反応物も好適である。また、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。
 これらの具体的な化合物としては、特開2009-288705号公報の段落番号0095~0108に記載されている化合物を本発明においても好適に用いることができる。
The radical polymerizable compound may be in any chemical form such as a monomer, a prepolymer, that is, a dimer, a trimer and an oligomer, or a mixture thereof and a multimer thereof. Monomers are preferred.
The molecular weight of the radical polymerizable compound is preferably 100 to 3,000, more preferably 250 to 1,500.
The radical polymerizable compound is preferably a 3 to 15 functional (meth) acrylate compound, more preferably a 3 to 6 functional (meth) acrylate compound.
Examples of monomers and prepolymers include unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.) and esters, amides, and multimers thereof. Preferred are esters of unsaturated carboxylic acids and aliphatic polyhydric alcohol compounds, amides of unsaturated carboxylic acids and aliphatic polyvalent amine compounds, and multimers thereof. In addition, addition reaction products of monofunctional or polyfunctional isocyanates or epoxies with unsaturated carboxylic acid esters or amides having a nucleophilic substituent such as hydroxyl group, amino group, mercapto group, monofunctional or polyfunctional. A dehydration condensation reaction product with a functional carboxylic acid is also preferably used. Reaction products of unsaturated carboxylic acid esters or amides having electrophilic substituents such as isocyanate groups and epoxy groups with monofunctional or polyfunctional alcohols, amines and thiols, halogen groups and tosyloxy groups A reaction product of an unsaturated carboxylic acid ester or amide having a leaving substituent such as monofunctional or polyfunctional alcohols, amines or thiols is also suitable. Moreover, it is also possible to use a compound group in which the unsaturated carboxylic acid is replaced with an unsaturated phosphonic acid, a vinylbenzene derivative such as styrene, vinyl ether, allyl ether or the like.
As these specific compounds, the compounds described in paragraph numbers 0095 to 0108 of JP-A-2009-288705 can also be suitably used in the present invention.
 ラジカル重合性化合物としては、エチレン性不飽和結合を有する基を1個以上有する、常圧下で100℃以上の沸点を持つ化合物も好ましい。その例としては、例えば、特開2013-29760号公報の段落番号0227、特開2008-292970号公報の段落番号0254~0257を参酌することができ、これらの内容は本明細書に組み込まれる。 As the radical polymerizable compound, a compound having one or more groups having an ethylenically unsaturated bond and having a boiling point of 100 ° C. or higher under normal pressure is also preferable. As examples thereof, for example, paragraph number 0227 of JP 2013-29760 A and paragraph numbers 0254 to 0257 of JP 2008-292970 A can be referred to, and the contents thereof are incorporated in the present specification.
 ラジカル重合性化合物は、ジペンタエリスリトールトリアクリレート(市販品としてはKAYARAD D-330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(市販品としてはKAYARAD D-320;日本化薬株式会社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D-310;日本化薬株式会社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬株式会社製、A-DPH-12E;新中村化学工業(株)製)、およびこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介して結合している構造(例えば、サートマー社から市販されている、SR454、SR499)が好ましい。これらのオリゴマータイプも使用することができる。また、NKエステルA-TMMT(ペンタエリスリトールテトラアクリレート、新中村化学工業(株)製)、KAYARAD RP-1040(日本化薬株式会社製)などを使用することもできる。
 以下に好ましいラジカル重合性化合物の態様を示す。
Radical polymerizable compounds include dipentaerythritol triacrylate (KAYARAD D-330 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (KAYARAD D-320 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.) ), Dipentaerythritol penta (meth) acrylate (as a commercial product, KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (as a commercially available product, KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd.) , A-DPH-12E; manufactured by Shin-Nakamura Chemical Co., Ltd.), and structures in which these (meth) acryloyl groups are bonded via ethylene glycol and propylene glycol residues (for example, commercially available from Sartomer) SR454, SR49 9) is preferred. These oligomer types can also be used. NK ester A-TMMT (pentaerythritol tetraacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.), KAYARAD RP-1040 (manufactured by Nippon Kayaku Co., Ltd.), and the like can also be used.
Preferred embodiments of the radical polymerizable compound are shown below.
 ラジカル重合性化合物は、カルボキシル基、スルホン酸基、リン酸基等の酸基を有していてもよい。酸基を有するラジカル重合性化合物としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸基を持たせたラジカル重合性化合物がより好ましく、特に好ましくは、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトールおよび/またはジペンタエリスリトールであるものである。市販品としては、例えば、東亞合成(株)製の、アロニックスTO-2349、M-305、M-510、M-520などが挙げられる。 The radical polymerizable compound may have an acid group such as a carboxyl group, a sulfonic acid group, or a phosphoric acid group. As the radically polymerizable compound having an acid group, an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid is preferable, and a non-aromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound. A radically polymerizable compound having an acid group is more preferable, and in this ester, the aliphatic polyhydroxy compound is pentaerythritol and / or dipentaerythritol. Examples of commercially available products include Aronix TO-2349, M-305, M-510, and M-520 manufactured by Toagosei Co., Ltd.
 ラジカル重合性化合物の好ましい酸価は、0.1~40mgKOH/gであり、特に好ましくは5~30mgKOH/gである。ラジカル重合性化合物の酸価が0.1mgKOH/g以上であれば、現像溶解特性が良好であり、40mgKOH/g以下であれば、製造や取扱い上、有利である。さらには、光重合性能が良好で、硬化性に優れる。 The preferable acid value of the radical polymerizable compound is 0.1 to 40 mgKOH / g, and particularly preferably 5 to 30 mgKOH / g. When the acid value of the radically polymerizable compound is 0.1 mgKOH / g or more, the development and dissolution characteristics are good, and when it is 40 mgKOH / g or less, it is advantageous in production and handling. Furthermore, the photopolymerization performance is good and the curability is excellent.
 ラジカル重合性化合物としては、カプロラクトン構造を有する化合物も好ましい態様である。
 カプロラクトン構造を有する化合物としては、分子内にカプロラクトン構造を有する限り特に限定されるものではないが、例えば、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、トリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸およびε-カプロラクトンとをエステル化することにより得られる、ε-カプロラクトン変性多官能(メタ)アクリレートを挙げることができる。なかでも下記式(Z-1)で表されるカプロラクトン構造を有する化合物が好ましい。
As a radically polymerizable compound, a compound having a caprolactone structure is also a preferred embodiment.
The compound having a caprolactone structure is not particularly limited as long as it has a caprolactone structure in the molecule.For example, trimethylolethane, ditrimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, Ε-caprolactone-modified polyfunctional (meth) acrylate obtained by esterifying polyhydric alcohol such as tripentaerythritol, glycerin, diglycerol, trimethylolmelamine, (meth) acrylic acid and ε-caprolactone be able to. Among these, a compound having a caprolactone structure represented by the following formula (Z-1) is preferable.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(Z-1)中、6個のRは全てが下記式(Z-2)で表される基であるか、または6個のRのうち1~5個が下記式(Z-2)で表される基であり、残余が下記式(Z-3)で表される基である。 In the formula (Z-1), all six Rs are groups represented by the following formula (Z-2), or 1 to 5 of the six Rs are represented by the following formula (Z-2) And the remainder is a group represented by the following formula (Z-3).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(Z-2)中、R1は水素原子またはメチル基を示し、mは1または2の数を示し、「*」は結合手であることを示す。 In formula (Z-2), R 1 represents a hydrogen atom or a methyl group, m represents a number of 1 or 2, and “*” represents a bond.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(Z-3)中、R1は水素原子またはメチル基を示し、「*」は結合手であることを示す。 In formula (Z-3), R 1 represents a hydrogen atom or a methyl group, and “*” represents a bond.
 カプロラクトン構造を有するラジカル重合性化合物は、例えば、日本化薬(株)からKAYARAD DPCAシリーズとして市販されており、DPCA-20(上記式(Z-1)~(Z-3)においてm=1、式(Z-2)で表される基の数=2、R1が全て水素原子である化合物)、DPCA-30(同式、m=1、式(Z-2)で表される基の数=3、R1が全て水素原子である化合物)、DPCA-60(同式、m=1、式(Z-2)で表される基の数=6、R1が全て水素原子である化合物)、DPCA-120(同式においてm=2、式(Z-2)で表される基の数=6、R1が全て水素原子である化合物)等が挙げられる。 Radical polymerizable compounds having a caprolactone structure are commercially available from, for example, Nippon Kayaku Co., Ltd. as KAYARAD DPCA series, and DPCA-20 (m = 1 in the above formulas (Z-1) to (Z-3)), Number of groups represented by formula (Z-2) = 2, a compound in which R 1 is all hydrogen atoms), DPCA-30 (formula, m = 1, group represented by formula (Z-2)) Number = 3, compound in which R 1 is all hydrogen atoms), DPCA-60 (same formula, m = 1, number of groups represented by formula (Z-2) = 6, R 1 is all hydrogen atoms) Compound), DPCA-120 (a compound in which m = 2 in the formula, the number of groups represented by formula (Z-2) = 6, and all R 1 are hydrogen atoms).
 ラジカル重合性化合物は、下記式(Z-4)または(Z-5)で表される化合物を用いることもできる。 As the radical polymerizable compound, a compound represented by the following formula (Z-4) or (Z-5) can also be used.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(Z-4)および(Z-5)中、Eは、各々独立に、-((CH2yCH2O)-、または-((CH2yCH(CH3)O)-を表し、yは、各々独立に、0~10の整数を表し、Xは、各々独立に、(メタ)アクリロイル基、水素原子、またはカルボキシル基を表す。
 式(Z-4)中、(メタ)アクリロイル基の合計は3個または4個であり、mは各々独立に0~10の整数を表し、各mの合計は0~40の整数である。
 式(Z-5)中、(メタ)アクリロイル基の合計は5個または6個であり、nは各々独立に0~10の整数を表し、各nの合計は0~60の整数である。
In formulas (Z-4) and (Z-5), each E independently represents — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) —. Each represents independently an integer of 0 to 10, and each X independently represents a (meth) acryloyl group, a hydrogen atom, or a carboxyl group.
In the formula (Z-4), the total number of (meth) acryloyl groups is 3 or 4, each m independently represents an integer of 0 to 10, and the total of each m is an integer of 0 to 40.
In formula (Z-5), the total number of (meth) acryloyl groups is 5 or 6, each n independently represents an integer of 0 to 10, and the total of each n is an integer of 0 to 60.
 式(Z-4)中、mは、0~6の整数が好ましく、0~4の整数がより好ましい。
 また、各mの合計は、2~40の整数が好ましく、2~16の整数がより好ましく、4~8の整数が特に好ましい。
 式(Z-5)中、nは、0~6の整数が好ましく、0~4の整数がより好ましい。
 また、各nの合計は、3~60の整数が好ましく、3~24の整数がより好ましく、6~12の整数がさらに好ましい。
 また、式(Z-4)または式(Z-5)中の-((CH2yCH2O)-または-((CH2yCH(CH3)O)-は、酸素原子側の末端がXに結合する形態が好ましい。
In the formula (Z-4), m is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4.
The total of each m is preferably an integer of 2 to 40, more preferably an integer of 2 to 16, and particularly preferably an integer of 4 to 8.
In the formula (Z-5), n is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4.
The total of each n is preferably an integer of 3 to 60, more preferably an integer of 3 to 24, and even more preferably an integer of 6 to 12.
In the formula (Z-4) or the formula (Z-5), — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) — represents an oxygen atom side. A form in which the terminal of X is bonded to X is preferred.
 式(Z-4)又は式(Z-5)で表される化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。特に、式(Z-5)において、6個のX全てがアクリロイル基である態様、および、式(Z-5)において、6個のX全てがアクリロイル基である化合物と、6個のXのうち、少なくとも1個が水素原子である化合物との混合物である態様が好ましい。この態様によれば、現像性をより向上させることができる。 The compounds represented by formula (Z-4) or formula (Z-5) may be used singly or in combination of two or more. In particular, in Formula (Z-5), all six X are acryloyl groups, and in Formula (Z-5), a compound in which all six X are acryloyl groups, Among these, an embodiment in which at least one of the compounds is a mixture with a hydrogen atom is preferable. According to this aspect, developability can be further improved.
 また、ラジカル重合性化合物中、式(Z-4)または式(Z-5)で表される化合物の含有量は、20質量%以上が好ましく、50質量%以上がより好ましい。 In the radical polymerizable compound, the content of the compound represented by the formula (Z-4) or the formula (Z-5) is preferably 20% by mass or more, and more preferably 50% by mass or more.
 式(Z-4)または式(Z-5)で表される化合物は、従来公知の工程である、ペンタエリスリト-ルまたはジペンタエリスリト-ルに、エチレンオキシドまたはプロピレンオキシドを開環付加反応させることにより開環骨格を結合する工程と、開環骨格の末端ヒドロキシル基に、例えば(メタ)アクリロイルクロライドを反応させて(メタ)アクリロイル基を導入する工程とによって合成することができる。各工程は良く知られた工程であり、当業者は容易に式(Z-4)および(Z-5)で表される化合物を合成することができる。 The compound represented by the formula (Z-4) or (Z-5) is a conventionally known process, which is a ring-opening addition reaction of ethylene oxide or propylene oxide with pentaerythritol or dipentaerythritol. Can be synthesized by a step of bonding a ring-opened skeleton and a step of introducing a (meth) acryloyl group by reacting, for example, (meth) acryloyl chloride with a terminal hydroxyl group of the ring-opened skeleton. Each step is a well-known step, and those skilled in the art can easily synthesize the compounds represented by the formulas (Z-4) and (Z-5).
 式(Z-4)または式(Z-5)で表される化合物の中でも、ペンタエリスリトール誘導体および/またはジペンタエリスリトール誘導体がより好ましい。
 具体的には、下記式(a)~(f)で表される化合物(以下、「例示化合物(a)~(f)」とも称する。)が挙げられ、中でも、例示化合物(a)、(b)、(e)、(f)が好ましい。
Among the compounds represented by the formula (Z-4) or the formula (Z-5), a pentaerythritol derivative and / or a dipentaerythritol derivative are more preferable.
Specific examples include compounds represented by the following formulas (a) to (f) (hereinafter also referred to as “exemplary compounds (a) to (f)”). Among them, exemplary compounds (a), (f) b), (e) and (f) are preferred.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(Z-4)、(Z-5)で表されるラジカル重合性化合物の市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、日本化薬株式会社製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330などが挙げられる。 Examples of commercially available radical polymerizable compounds represented by formulas (Z-4) and (Z-5) include SR-494, a tetrafunctional acrylate having four ethyleneoxy chains, manufactured by Sartomer, Nippon Kayaku Examples thereof include DPCA-60, which is a hexafunctional acrylate having six pentyleneoxy chains, and TPA-330, which is a trifunctional acrylate having three isobutyleneoxy chains.
 ラジカル重合性化合物の含有量は、活性エネルギー線硬化性組成物の全固形分に対し、0.1~40質量%が好ましい。下限は、例えば0.5質量%以上がより好ましく、1質量%以上がさらに好ましい。上限は、例えば、30質量%以下がより好ましく、20質量%以下がさらに好ましい。ラジカル重合性化合物は、1種単独であってもよいし、2種以上を併用してもよい。2種以上を併用する場合は、合計量が上記の範囲内であることが好ましい。 The content of the radical polymerizable compound is preferably 0.1 to 40% by mass with respect to the total solid content of the active energy ray-curable composition. For example, the lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more. For example, the upper limit is more preferably 30% by mass or less, and further preferably 20% by mass or less. One radically polymerizable compound may be used alone, or two or more kinds thereof may be used in combination. When using 2 or more types together, it is preferable that a total amount exists in said range.
<<カチオン重合性化合物>>
 活性エネルギー線硬化性組成物は、カチオン重合性化合物を含有することができる。カチオン重合性化合物としては、環状エーテル基を有する化合物が挙げられる。環状エーテル基としては、エポキシ基、オキセタニル基が挙げられ、エポキシ基が好ましい。
 カチオン重合性化合物は、1分子内に、環状エーテル基を2個以上有する化合物が好ましい。
 カチオン重合性化合物は、低分子化合物(例えば、分子量2,000未満、さらには、分子量1,000未満)でもよいし、高分子化合物(macromolecule)(例えば、分子量2,000以上、ポリマーの場合は、重量平均分子量が2,000以上)のいずれでもよい。カチオン重合性化合物の重量平均分子量は、200~100,000であることが好ましく、500~50,000がより好ましい。
<< Cationically polymerizable compound >>
The active energy ray-curable composition can contain a cationically polymerizable compound. Examples of the cationic polymerizable compound include compounds having a cyclic ether group. Examples of the cyclic ether group include an epoxy group and an oxetanyl group, and an epoxy group is preferable.
The cationically polymerizable compound is preferably a compound having two or more cyclic ether groups in one molecule.
The cationically polymerizable compound may be a low molecular compound (for example, a molecular weight of less than 2,000, or even a molecular weight of less than 1,000), or a macromolecule (for example, a molecular weight of 2,000 or more, in the case of a polymer). And a weight average molecular weight of 2,000 or more). The weight average molecular weight of the cationic polymerizable compound is preferably 200 to 100,000, and more preferably 500 to 50,000.
 分子内に2個以上のエポキシ基を有する化合物の具体例としては、脂肪族エポキシ化合物等を挙げることができる。また、WO2012/093591号公報の段落番号0021~0031の記載を参酌することができ、この内容は本明細書に組み込まれる。
 これらは市販品として入手できる。例えば、デナコールEX-611、EX-612、EX-614、EX-614B、EX-622、EX-512、EX-521、EX-411、EX-421、EX-313、EX-314、EX-321、EX-211、EX-212、EX-810、EX-811、EX-850、EX-851、EX-821、EX-830、EX-832、EX-841、EX-911、EX-941、EX-920、EX-931、EX-212L、EX-214L、EX-216L、EX-321L、EX-850L、DLC-201、DLC-203、DLC-204、DLC-205、DLC-206、DLC-301、DLC-402(以上ナガセケムテックス製)、セロキサイド2021P、2081、3000、EHPE3150、エポリードGT400、セルビナースB0134、B0177((株)ダイセル製)などが挙げられる。
 これらは1種単独または2種以上を組み合わせて使用することができる。
Specific examples of the compound having two or more epoxy groups in the molecule include aliphatic epoxy compounds. In addition, the description of paragraph numbers 0021 to 0031 of WO2012 / 093591 can be referred to, and the contents thereof are incorporated in the present specification.
These are available as commercial products. For example, Denacol EX-611, EX-612, EX-614, EX-614B, EX-622, EX-512, EX-521, EX-411, EX-421, EX-313, EX-314, EX-321 , EX-211, EX-212, EX-810, EX-811, EX-850, EX-851, EX-821, EX-830, EX-832, EX-841, EX-911, EX-941, EX -920, EX-931, EX-212L, EX-214L, EX-216L, EX-321L, EX-850L, DLC-201, DLC-203, DLC-204, DLC-205, DLC-206, DLC-301 DLC-402 (manufactured by Nagase ChemteX), Celoxide 2021P, 2081, 3000, EHPE3150, Porido GT400, Serubinasu B0134, B0177 ((Ltd.) Daicel), and the like.
These can be used alone or in combination of two or more.
 分子内に2個以上のオキセタニル基を有する化合物の具体例としては、アロンオキセタンOXT-121、OXT-221、OX-SQ、PNOX(以上、東亞合成(株)製)を用いることができる。 As specific examples of the compound having two or more oxetanyl groups in the molecule, Aron Oxetane OXT-121, OXT-221, OX-SQ, and PNOX (above, manufactured by Toagosei Co., Ltd.) can be used.
 また、オキセタニル基を含む化合物は、単独で、または、エポキシ基を含む化合物と混合して使用することが好ましい。 In addition, the compound containing an oxetanyl group is preferably used alone or mixed with a compound containing an epoxy group.
 カチオン重合性化合物の含有量は、活性エネルギー線硬化性組成物の全固形分に対し、0.1~40質量%が好ましい。下限は、例えば0.5質量%以上がより好ましく、1質量%以上がさらに好ましい。上限は、例えば、30質量%以下がより好ましく、20質量%以下がさらに好ましい。カチオン重合性化合物は、1種単独であってもよいし、2種以上を併用してもよい。2種以上を併用する場合は、合計量が上記の範囲内であることが好ましい。 The content of the cationic polymerizable compound is preferably 0.1 to 40% by mass with respect to the total solid content of the active energy ray-curable composition. For example, the lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more. For example, the upper limit is more preferably 30% by mass or less, and further preferably 20% by mass or less. One cationic polymerizable compound may be used alone, or two or more cationic polymerizable compounds may be used in combination. When using 2 or more types together, it is preferable that a total amount exists in said range.
<<光重合開始剤>>
 活性エネルギー線硬化性組成物は、光重合開始剤を含有することができる。活性エネルギー線硬化性組成物が、ラジカル重合性化合物を含有する場合、光重合開始剤を含有することが好ましい。
 光重合開始剤としては、ラジカル重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
 また、光重合開始剤は、約300nm~800nm(330nm~500nmがより好ましい。)の範囲内に少なくとも約50のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。
<< photopolymerization initiator >>
The active energy ray-curable composition can contain a photopolymerization initiator. When the active energy ray-curable composition contains a radical polymerizable compound, it is preferable to contain a photopolymerization initiator.
The photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of a radical polymerizable compound, and can be appropriately selected from known photopolymerization initiators. For example, those having photosensitivity to visible light from the ultraviolet region are preferable. Further, it may be an activator that generates some action with a photoexcited sensitizer and generates an active radical, or may be an initiator that initiates cationic polymerization according to the type of monomer.
The photopolymerization initiator preferably contains at least one compound having a molar extinction coefficient of at least about 50 within a range of about 300 nm to 800 nm (more preferably 330 nm to 500 nm).
 光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するものなど)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノンなどが挙げられる。トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書に記載の化合物、特開昭53-133428号公報に記載の化合物、独国特許3337024号明細書に記載の化合物、F.C.SchaeferらによるJ.Org.Chem.;29、1527(1964)に記載の化合物、特開昭62-58241号公報に記載の化合物、特開平5-281728号公報に記載の化合物、特開平5-34920号公報に記載の化合物、米国特許第4212976号明細書に記載の化合物などが挙げられる。 Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton), acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazoles, oxime derivatives, etc. Oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, aminoacetophenone compounds, hydroxyacetophenones, and the like. Examples of the halogenated hydrocarbon compound having a triazine skeleton include those described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), a compound described in British Patent No. 1388492, a compound described in JP-A-53-133428, a compound described in German Patent No. 3333724, F.I. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964), compounds described in JP-A-62-258241, compounds described in JP-A-5-281728, compounds described in JP-A-5-34920, Examples include the compounds described in Japanese Patent No. 4221976.
 また、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物およびその誘導体、シクロペンタジエン-ベンゼン-鉄錯体およびその塩、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物からなる群より選択される化合物が好ましい。 From the viewpoint of exposure sensitivity, trihalomethyltriazine compounds, benzyldimethylketal compounds, α-hydroxyketone compounds, α-aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triallylimidazole dimers, onium compounds A compound selected from the group consisting of benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl-substituted coumarin compounds is preferred.
 さらに好ましくは、トリハロメチルトリアジン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、オキシム化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾフェノン化合物、アセトフェノン化合物であり、トリハロメチルトリアジン化合物、α-アミノケトン化合物、オキシム化合物、トリアリルイミダゾールダイマー、ベンゾフェノン化合物からなる群より選ばれる少なくとも一種の化合物がより好ましい。
 光重合開始剤の具体例としては、例えば、特開2013-29760号公報の段落番号0265~0268を参酌することができ、この内容は本明細書に組み込まれる。
More preferred are trihalomethyltriazine compounds, α-aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, oxime compounds, triallylimidazole dimers, onium compounds, benzophenone compounds, acetophenone compounds, trihalomethyltriazine compounds, α-aminoketone compounds More preferred is at least one compound selected from the group consisting of oxime compounds, triallylimidazole dimers, and benzophenone compounds.
As specific examples of the photopolymerization initiator, for example, paragraph numbers 0265 to 0268 of JP 2013-29760 A can be referred to, and the contents thereof are incorporated in the present specification.
 光重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、および、アシルホスフィン化合物も好適に用いることができる。より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号公報に記載のアシルホスフィン系開始剤も用いることができる。
 ヒドロキシアセトフェノン系開始剤としては、IRGACURE-184、DAROCUR-1173、IRGACURE-500、IRGACURE-2959,IRGACURE-127(商品名:いずれもBASF社製)を用いることができる。
 アミノアセトフェノン系開始剤としては、市販品であるIRGACURE-907、IRGACURE-369、および、IRGACURE-379EG(商品名:いずれもBASF社製)を用いることができる。アミノアセトフェノン系開始剤は、365nmまたは405nm等の長波光源に吸収波長がマッチングされた特開2009-191179号公報に記載の化合物も用いることができる。
 アシルホスフィン系開始剤としては、市販品であるIRGACURE-819や、Lucirin-TPO(商品名:いずれもBASF社製)を用いることができる。
As the photopolymerization initiator, hydroxyacetophenone compounds, aminoacetophenone compounds, and acylphosphine compounds can also be suitably used. More specifically, for example, an aminoacetophenone initiator described in JP-A-10-291969 and an acylphosphine initiator described in Japanese Patent No. 4225898 can also be used.
As the hydroxyacetophenone-based initiator, IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (trade names: all manufactured by BASF) can be used.
As the aminoacetophenone-based initiator, commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379EG (trade names: all manufactured by BASF) can be used. As the aminoacetophenone-based initiator, a compound described in JP-A-2009-191179 in which an absorption wavelength is matched with a long wave light source such as 365 nm or 405 nm can also be used.
As the acylphosphine-based initiator, commercially available products such as IRGACURE-819 and Lucirin-TPO (trade names: all manufactured by BASF) can be used.
 光重合開始剤として、より好ましくはオキシム化合物が挙げられる。
 オキシム化合物の具体例としては、特開2001-233842号公報に記載の化合物、特開2000-80068号公報に記載の化合物、特開2006-342166号公報に記載の化合物を用いることができる。
 本発明において、好適に用いることのできるオキシム化合物としては、例えば、3-ベンゾイルオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、および2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オンなどが挙げられる。
 また、J.C.S.Perkin II(1979年)pp.1653-1660、J.C.S.Perkin II(1979年)pp.156-162、Journal of Photopolymer Science and Technology(1995年)pp.202-232、特開2000-66385号公報、特開2000-80068号公報、特表2004-534797号公報、特開2006-342166号公報の各公報に記載の化合物等も挙げられる。
 市販品ではIRGACURE-OXE01(BASF社製)、IRGACURE-OXE02(BASF社製)も好適に用いられる。また、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831およびアデカアークルズNCI-930(ADEKA社製)も用いることができる。
More preferred examples of the photopolymerization initiator include oxime compounds.
Specific examples of the oxime compound include compounds described in JP-A No. 2001-233842, compounds described in JP-A No. 2000-80068, and compounds described in JP-A No. 2006-342166.
Examples of oxime compounds that can be preferably used in the present invention include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, -Acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutane-2 -One, and 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one.
In addition, J.H. C. S. Perkin II (1979) pp. 1653-1660, J.A. C. S. Perkin II (1979) pp. 156-162, Journal of Photopolymer Science and Technology (1995) pp. Examples also include compounds described in 202-232, JP-A 2000-66385, JP-A 2000-80068, JP-T 2004-534797, and JP-A 2006-342166.
As commercially available products, IRGACURE-OXE01 (manufactured by BASF) and IRGACURE-OXE02 (manufactured by BASF) are also preferably used. Also, TR-PBG-304 (manufactured by Changzhou Powerful Electronic New Materials Co., Ltd.), Adeka Arkles NCI-831 and Adeka Arkles NCI-930 (made by ADEKA) can be used.
 また上記記載以外のオキシム化合物として、カルバゾール環のN位にオキシムが連結した特表2009-519904号公報に記載の化合物、ベンゾフェノン部位にヘテロ置換基が導入された米国特許第7626957号公報に記載の化合物、色素部位にニトロ基が導入された特開2010-15025号公報および米国特許公開2009-292039号公報に記載の化合物、国際公開WO2009/131189号公報に記載のケトオキシム化合物、トリアジン骨格とオキシム骨格を同一分子内に含有する米国特許7556910号公報に記載の化合物、405nmに吸収極大を有しg線光源に対して良好な感度を有する特開2009-221114号公報に記載の化合物などを用いてもよい。
 好ましくは、例えば、特開2013-29760号公報の段落番号0274~0275を参酌することができ、この内容は本明細書に組み込まれる。
 具体的には、オキシム化合物としては、下記式(OX-1)で表される化合物が好ましい。なお、オキシムのN-O結合が(E)体のオキシム化合物であっても、(Z)体のオキシム化合物であっても、(E)体と(Z)体との混合物であってもよい。
Further, as oxime compounds other than those described above, compounds described in JP-T 2009-519904, in which an oxime is linked to the N-position of the carbazole ring, and those described in US Pat. Compounds, compounds described in Japanese Patent Application Laid-Open No. 2010-15025 and US Patent Publication No. 2009-292039 in which a nitro group is introduced into the dye moiety, ketoxime compounds described in International Publication WO2009 / 131189, triazine skeleton and oxime skeleton In the same molecule, a compound described in JP 2009-221114 A having an absorption maximum at 405 nm and good sensitivity to a g-ray light source, and the like. Also good.
Preferably, for example, paragraph numbers 0274 to 0275 of JP2013-29760A can be referred to, and the contents thereof are incorporated in the present specification.
Specifically, the oxime compound is preferably a compound represented by the following formula (OX-1). The oxime N—O bond may be an (E) oxime compound, a (Z) oxime compound, or a mixture of (E) and (Z) isomers. .
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(OX-1)中、RおよびBは各々独立に一価の置換基を表し、Aは二価の有機基を表し、Arはアリール基を表す。
 式(OX-1)中、Rで表される一価の置換基としては、一価の非金属原子団であることが好ましい。
 一価の非金属原子団としては、アルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環基、アルキルチオカルボニル基、アリールチオカルボニル基等が挙げられる。また、これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、さらに他の置換基で置換されていてもよい。
 置換基としては、ハロゲン原子、アリールオキシ基、アルコキシカルボニル基またはアリールオキシカルボニル基、アシルオキシ基、アシル基、アルキル基、アリール基等が挙げられる。
 式(OX-1)中、Bで表される一価の置換基としては、アリール基、複素環基、アリールカルボニル基、または、複素環カルボニル基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が挙げられる。
 式(OX-1)中、Aで表される二価の有機基としては、炭素数1~12のアルキレン基、シクロアルキレン基、アルキニレン基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が挙げられる。
In formula (OX-1), R and B each independently represent a monovalent substituent, A represents a divalent organic group, and Ar represents an aryl group.
In the formula (OX-1), the monovalent substituent represented by R is preferably a monovalent nonmetallic atomic group.
Examples of the monovalent nonmetallic atomic group include an alkyl group, an aryl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic group, an alkylthiocarbonyl group, and an arylthiocarbonyl group. Moreover, these groups may have one or more substituents. Moreover, the substituent mentioned above may be further substituted by another substituent.
Examples of the substituent include a halogen atom, an aryloxy group, an alkoxycarbonyl group or an aryloxycarbonyl group, an acyloxy group, an acyl group, an alkyl group, and an aryl group.
In the formula (OX-1), the monovalent substituent represented by B is preferably an aryl group, a heterocyclic group, an arylcarbonyl group, or a heterocyclic carbonyl group. These groups may have one or more substituents. Examples of the substituent include the substituents described above.
In the formula (OX-1), the divalent organic group represented by A is preferably an alkylene group having 1 to 12 carbon atoms, a cycloalkylene group, or an alkynylene group. These groups may have one or more substituents. Examples of the substituent include the substituents described above.
 本発明は、光重合開始剤として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報に記載された化合物、特表2014-500852号公報に記載された化合物24、36~40、特開2013-164471号公報に記載された化合物(C-3)などが挙げられる。これらの内容は本明細書に組み込まれる。 In the present invention, an oxime compound having a fluorine atom can also be used as a photopolymerization initiator. Specific examples of the oxime compound having a fluorine atom include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in JP-T-2014-500852, and JP 2013-164471 A. (C-3) described in the above. These contents are incorporated herein.
 本発明は、光重合開始剤として、下記式(1)または式(2)で表される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000018
In the present invention, a compound represented by the following formula (1) or formula (2) can also be used as a photopolymerization initiator.
Figure JPOXMLDOC01-appb-C000018
 式(1)において、R1およびR2は、それぞれ独立に、炭素数1~20の鎖状アルキル基、炭素数4~20の脂環式炭化水素基、炭素数6~30のアリール基、または、炭素数7~30のアリールアルキル基を表し、R1およびR2がフェニル基の場合、フェニル基同士が結合してフルオレン基を形成してもよく、R3およびR4は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基または炭素数4~20の複素環基を表し、Xは、直接結合またはカルボニル基を示す。 In the formula (1), R 1 and R 2 are each independently a chain alkyl group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, Alternatively, it represents an arylalkyl group having 7 to 30 carbon atoms, and when R 1 and R 2 are phenyl groups, the phenyl groups may be bonded to each other to form a fluorene group, and R 3 and R 4 are each independently Represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms, and X is a direct bond Or a carbonyl group.
 式(2)において、R1、R2、R3およびR4は、式(1)におけるR1、R2、R3およびR4と同義であり、R5は、-R6、-OR6、-SR6、-COR6、-CONR66、-NR6COR6、-OCOR6、-COOR6、-SCOR6、-OCSR6、-COSR6、-CSOR6、-CN、ハロゲン原子または水酸基を表し、R6は、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基または炭素数4~20の複素環基を表し、Xは、直接結合またはカルボニル基を表し、aは0~4の整数を表す。 In the formula (2), R 1, R 2, R 3 and R 4 have the same meanings as R 1, R 2, R 3 and R 4 in the formula (1), R 5 is -R 6, -OR 6 , —SR 6 , —COR 6 , —CONR 6 R 6 , —NR 6 COR 6 , —OCOR 6 , —COOR 6 , —SCOR 6 , —OCSR 6 , —COSR 6 , —CSOR 6 , —CN, halogen R 6 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms; X represents a direct bond or a carbonyl group, and a represents an integer of 0 to 4.
 上記式(1)及び式(2)において、R1およびR2は、それぞれ独立に、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロヘキシル基またはフェニル基が好ましい。R3は、メチル基、エチル基、フェニル基、トリル基またはキシリル基が好ましい。R4は、炭素数1~6のアルキル基またはフェニル基が好ましい。R5は、メチル基、エチル基、フェニル基、トリル基またはナフチル基が好ましい。Xは直接結合が好ましい。
 式(1)および式(2)で表される化合物の具体例としては、例えば、特開2014-137466号公報の段落番号0076~0079に記載された化合物が挙げられる。この内容は本明細書に組み込まれる。
In the above formulas (1) and (2), R 1 and R 2 are preferably each independently a methyl group, ethyl group, n-propyl group, i-propyl group, cyclohexyl group or phenyl group. R 3 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a xylyl group. R 4 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group. R 5 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a naphthyl group. X is preferably a direct bond.
Specific examples of the compounds represented by formula (1) and formula (2) include, for example, compounds described in paragraph numbers 0076 to 0079 of JP-A No. 2014-137466. This content is incorporated herein.
 本発明において好ましく使用されるオキシム化合物の具体例を以下に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000019
Specific examples of the oxime compound preferably used in the present invention are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000019
 オキシム化合物は、350nm~500nmの波長領域に極大吸収波長を有するものが好ましく、360nm~480nmの波長領域に吸収波長を有するものがより好ましく、365nmおよび405nmの吸光度が高いものが特に好ましい。
 オキシム化合物は、365nmまたは405nmにおけるモル吸光係数が、感度の観点から、1,000~300,000であることが好ましく、2,000~300,000であることがより好ましく、5,000~200,000であることがさらに好ましい。
 化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、紫外可視分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶媒を用い、0.01g/Lの濃度で測定することが好ましい。
 本発明に用いられる光重合開始剤は、必要に応じて2種以上を組み合わせて使用してもよい。
The oxime compound preferably has a maximum absorption wavelength in the wavelength region of 350 nm to 500 nm, more preferably has an absorption wavelength in the wavelength region of 360 nm to 480 nm, and particularly preferably has high absorbance at 365 nm and 405 nm.
The oxime compound preferably has a molar extinction coefficient at 365 nm or 405 nm of 1,000 to 300,000, more preferably 2,000 to 300,000, more preferably 5,000 to 200, from the viewpoint of sensitivity. More preferably, it is 1,000.
The molar extinction coefficient of the compound can be measured using a known method. For example, it is preferable to measure with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using an ethyl acetate solvent at a concentration of 0.01 g / L.
You may use the photoinitiator used for this invention in combination of 2 or more type as needed.
 光重合開始剤の含有量は、活性エネルギー線硬化性組成物の全固形分に対し0.1~50質量%が好ましく、より好ましくは0.5~30質量%であり、さらに好ましくは1~20質量%である。活性エネルギー線硬化性組成物は、光重合開始剤を、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記の範囲内であることが好ましい。 The content of the photopolymerization initiator is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 1 to 20% by mass. The active energy ray-curable composition may contain only one type of photopolymerization initiator, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
<<酸発生剤>>
 活性エネルギー線硬化性組成物は、酸発生剤を含有することができる。特に、活性エネルギー線硬化性組成物がカチオン重合性化合物を含有する場合、酸発生剤を含有することが好ましい。
 酸発生剤は、活性エネルギー線(放射線)の照射により酸を発生する化合物が好ましい。酸発生剤としては、光カチオン重合開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている光(400~200nmの紫外線、遠紫外線、特に好ましくは、g線、h線、i線、KrFエキシマレーザー光)、ArFエキシマレーザー光、電子線、X線、分子線またはイオンビームなどの照射により酸を発生する化合物を適宜選択して使用することができ、紫外線に感応性を有する酸発生剤を選択することが好ましい。
<< Acid generator >>
The active energy ray-curable composition can contain an acid generator. In particular, when the active energy ray-curable composition contains a cationic polymerizable compound, it is preferable to contain an acid generator.
The acid generator is preferably a compound that generates an acid upon irradiation with active energy rays (radiation). Examples of the acid generator include a photocationic polymerization initiator, a photodecoloring agent for dyes, a photochromic agent, or light (400 to 200 nm ultraviolet rays, far ultraviolet rays, particularly preferably g-rays) used in a microresist. , H-line, i-line, KrF excimer laser beam), ArF excimer laser beam, electron beam, X-ray, molecular beam, ion beam, etc. It is preferable to select an acid generator having a high sensitivity.
 酸発生剤としては、放射線の照射により分解して酸を発生する、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩などのオニウム塩化合物、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、オルト-ニトロベンジルスルホネート等のスルホネート化合物などを挙げることができる。酸発生剤の種類、具体的化合物、および好ましい例としては、特開2008-13646号公報の段落番号0066~0122に記載の化合物などを挙げることができ、これらを本発明にも適用することができる。 Acid generators that generate acids upon decomposition upon irradiation with radiation, onium salt compounds such as diazonium salts, phosphonium salts, sulfonium salts, iodonium salts, imide sulfonates, oxime sulfonates, diazodisulfones, disulfones, ortho-nitrobenzyl Examples thereof include sulfonate compounds such as sulfonate. Examples of the acid generator, specific compounds, and preferred examples include compounds described in paragraph numbers 0066 to 0122 of JP-A-2008-13646, and these can be applied to the present invention. it can.
 本発明に使用し得る酸発生剤として好ましい化合物は、下記式(b1)、(b2)、(b3)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000020
Preferred examples of the acid generator that can be used in the present invention include compounds represented by the following formulas (b1), (b2), and (b3).
Figure JPOXMLDOC01-appb-C000020
 式(b1)において、R201、R202、およびR203は、各々独立に有機基を表す。X-は、非求核性アニオンを表し、好ましくはスルホン酸アニオン、カルボン酸アニオン、ビス(アルキルスルホニル)アミドアニオン、トリス(アルキルスルホニル)メチドアニオン、BF4 -、PF6 -、SbF6 -や以下に示す基などが挙げられ、好ましくはBF4 -、PF6 -、SbF6 -である。 In formula (b1), R 201 , R 202 , and R 203 each independently represents an organic group. X represents a non-nucleophilic anion, preferably a sulfonate anion, a carboxylate anion, a bis (alkylsulfonyl) amide anion, a tris (alkylsulfonyl) methide anion, BF 4 , PF 6 , SbF 6 or the following And the like, and BF 4 , PF 6 and SbF 6 are preferable.
 酸発生剤の市販品としては、WPAG-469(和光純薬工業社製)などが挙げられる。 Examples of commercially available acid generators include WPAG-469 (manufactured by Wako Pure Chemical Industries, Ltd.).
 酸発生剤の含有量は、活性エネルギー線硬化性組成物の全固形分に対し0.1~50質量%が好ましく、より好ましくは0.5~30質量%であり、さらに好ましくは1~20質量%である。活性エネルギー線硬化性組成物は、酸発生剤を、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記の範囲内であることが好ましい。 The content of the acid generator is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 1 to 20%, based on the total solid content of the active energy ray-curable composition. % By mass. The active energy ray-curable composition may contain only one type of acid generator, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
<<シランカップリング剤>>
 活性エネルギー線硬化性組成物には、基材との密着性を向上させる目的で、シランカップリング剤を含有させてもよい。特に、活性エネルギー線硬化性組成物が熱硬化性樹脂を含む場合は、シランカップリング剤をさらに含有させることが好ましい。熱硬化性樹脂を含む活性エネルギー線硬化性組成物を用いて、100℃以下の低温プロセスにて硬化膜を製造する場合であっても、シランカップリング剤をさらに含有させることで、基材との密着性を十分に確保することができる。
<< Silane coupling agent >>
The active energy ray-curable composition may contain a silane coupling agent for the purpose of improving the adhesion to the substrate. In particular, when the active energy ray-curable composition contains a thermosetting resin, it is preferable to further contain a silane coupling agent. Even when a cured film is produced by a low temperature process of 100 ° C. or lower using an active energy ray-curable composition containing a thermosetting resin, by further containing a silane coupling agent, Can be sufficiently secured.
 本発明において、シランカップリング剤とは、分子中に加水分解性基とそれ以外の官能基を有する化合物である。アルコキシ基等の加水分解性基は、ケイ素原子に結合していることが好ましい。加水分解性基とは、ケイ素原子に直結し、加水分解反応および/または縮合反応によってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基、アルケニルオキシ基が挙げられる。加水分解性基が炭素原子を有する場合、その炭素数は6以下であることが好ましく、4以下であることがより好ましい。特に、炭素数4以下のアルコキシ基または炭素数4以下のアルケニルオキシ基が好ましい。
 本発明において、シランカップリング剤は硬化膜の密着性を向上させるため、フッ素原子およびケイ素原子(ただし、加水分解性基が結合したケイ素原子は除く)を含まないことが好ましく、フッ素原子、ケイ素原子(ただし、加水分解性基が結合したケイ素原子は除く)、ケイ素原子で置換されたアルキレン基、炭素数8以上の直鎖アルキル基、および、炭素数3以上の分岐アルキル基は含まないことが望ましい。
In the present invention, the silane coupling agent is a compound having a hydrolyzable group and other functional groups in the molecule. A hydrolyzable group such as an alkoxy group is preferably bonded to a silicon atom. The hydrolyzable group refers to a substituent that is directly bonded to a silicon atom and can form a siloxane bond by a hydrolysis reaction and / or a condensation reaction. Examples of the hydrolyzable group include a halogen atom, an alkoxy group, an acyloxy group, and an alkenyloxy group. When the hydrolyzable group has a carbon atom, the number of carbon atoms is preferably 6 or less, and more preferably 4 or less. In particular, an alkoxy group having 4 or less carbon atoms or an alkenyloxy group having 4 or less carbon atoms is preferable.
In the present invention, the silane coupling agent preferably contains no fluorine atom or silicon atom (except for a silicon atom to which a hydrolyzable group is bonded) in order to improve the adhesion of the cured film. Does not include atoms (excluding silicon atoms to which hydrolyzable groups are bonded), alkylene groups substituted with silicon atoms, straight-chain alkyl groups having 8 or more carbon atoms, and branched alkyl groups having 3 or more carbon atoms. Is desirable.
 シランカップリング剤は、以下の式(Z)で表される基を有することが好ましい。*は結合位置を表す。
 式(Z) *-Si(Rz13-m(Rz2m
 Rz1はアルキル基を表し、Rz2は加水分解性基を表し、mは1~3の整数を表す。Rz1が表すアルキル基の炭素数は、1~5であることが好ましく、1~3がより好ましい。Rz2が表す加水分解性基の定義は上述の通りである。
The silane coupling agent preferably has a group represented by the following formula (Z). * Represents a bonding position.
Formula (Z) * -Si (R z1 ) 3-m (R z2 ) m
R z1 represents an alkyl group, R z2 represents a hydrolyzable group, and m represents an integer of 1 to 3. The number of carbon atoms of the alkyl group represented by R z1 is preferably 1 to 5, and more preferably 1 to 3. The definition of the hydrolyzable group represented by R z2 is as described above.
 シランカップリング剤は、硬化性官能基を有することが好ましい。硬化性官能基としては、(メタ)アクリロイルオキシ基、エポキシ基、オキセタニル基、イソシアナート基、ヒドロキシル基、アミノ基、カルボキシル基、チオール基、アルコキシシリル基、メチロール基、ビニル基、(メタ)アクリルアミド基、スチリル基、および、マレイミド基からなる群から選択される1種以上であることが好ましく、(メタ)アクリロイルオキシ基、エポキシ基、およびオキセタニル基からなる群から選択される1種以上であることがより好ましい。硬化性官能基は、直接、ケイ素原子に結合してもよく、連結基を介してケイ素原子に結合していてもよい。 The silane coupling agent preferably has a curable functional group. The curable functional group includes (meth) acryloyloxy group, epoxy group, oxetanyl group, isocyanate group, hydroxyl group, amino group, carboxyl group, thiol group, alkoxysilyl group, methylol group, vinyl group, (meth) acrylamide. It is preferably at least one selected from the group consisting of a group, a styryl group, and a maleimide group, and is at least one selected from the group consisting of a (meth) acryloyloxy group, an epoxy group, and an oxetanyl group It is more preferable. The curable functional group may be directly bonded to the silicon atom, or may be bonded to the silicon atom via a linking group.
 シランカップリング剤の分子量は特に制限されず、取り扱い性の点から、100~1,000が好ましく、本発明の効果がより優れる点で、270以上が好ましく、270~1,000がより好ましい。 The molecular weight of the silane coupling agent is not particularly limited, and is preferably from 100 to 1,000 from the viewpoint of handleability, preferably from 270 or more, and more preferably from 270 to 1,000, from the viewpoint of more excellent effects of the present invention.
 シランカップリング剤の好適な態様の一つとしては、式(W)で表されるシランカップリング剤Xが挙げられる。
 式(W)   Rz3-Lz-Si(Rz13-m(Rz2m
 Rz1はアルキル基を表し、Rz2は加水分解性基を表し、Rz3は、硬化性官能基を表し、Lzは、単結合または2価の連結基を表し、mは1~3の整数を表す。
 Rz1が表すアルキル基の定義は上述の通りである。Rz2が表す加水分解性基の定義は上述の通りである。Rz3が表す硬化性官能基の定義は上述の通りであり、好適範囲も上述の通りである。
 Lzは、単結合または2価の連結基を表す。2価の連結基としては、アルキレン基、アリーレン基、-NR12-、-CONR12-、-CO-、-CO2-、-SO2NR12-、-O-、-S-、-SO2-、または、これらの組み合わせが挙げられる。
 アルキレン基の炭素数は、1~20であることが好ましい。アルキレン基は、直鎖および分岐のいずれでもよい。アルキレン基およびアリーレン基は、無置換であってもよく、置換基を有していてもよい。置換基としては、ハロゲン原子、ヒドロキシル基が挙げられる。
 Lzは、炭素数2~10のアルキレン基および炭素数6~12のアリーレン基からなる群から選択される少なくとも1種、または、これらの基と-NR12-、-CONR12-、-CO-、-CO2-、-SO2NR12-、-O-、-S-、および-SO2-からなる群から選択される少なくとも1種の基との組み合わせからなる基が好ましく、炭素数2~10のアルキレン基、-CO2-、-O-、-CO-、-CONR12-、または、これらの基の組み合わせからなる基がより好ましい。ここで、上記R12は、水素原子またはメチル基を表す。
 mは1~3を表し、2~3が好ましく、3がより好ましい。
One preferred embodiment of the silane coupling agent is a silane coupling agent X represented by the formula (W).
Formula (W) R z3 -Lz-Si (R z1) 3-m (R z2) m
R z1 represents an alkyl group, R z2 represents a hydrolyzable group, R z3 represents a curable functional group, Lz represents a single bond or a divalent linking group, and m is an integer of 1 to 3. Represents.
The definition of the alkyl group represented by R z1 is as described above. The definition of the hydrolyzable group represented by R z2 is as described above. The definition of the curable functional group represented by R z3 is as described above, and the preferred range is also as described above.
Lz represents a single bond or a divalent linking group. Examples of the divalent linking group include an alkylene group, an arylene group, —NR 12 —, —CONR 12 —, —CO—, —CO 2 —, —SO 2 NR 12 —, —O—, —S—, —SO. 2- or a combination thereof.
The alkylene group preferably has 1 to 20 carbon atoms. The alkylene group may be linear or branched. The alkylene group and the arylene group may be unsubstituted or may have a substituent. Examples of the substituent include a halogen atom and a hydroxyl group.
Lz is at least one selected from the group consisting of an alkylene group having 2 to 10 carbon atoms and an arylene group having 6 to 12 carbon atoms, or these groups and —NR 12 —, —CONR 12 —, —CO—. , —CO 2 —, —SO 2 NR 12 —, —O—, —S—, and a group consisting of a combination with at least one group selected from the group consisting of —SO 2 — are preferred. A group consisting of ˜10 alkylene groups, —CO 2 —, —O—, —CO—, —CONR 12 —, or a combination of these groups is more preferred. Here, R 12 represents a hydrogen atom or a methyl group.
m represents 1 to 3, preferably 2 to 3, and more preferably 3.
 シランカップリング剤Xとしては、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン(信越化学工業社製商品名 KBM-602)、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン(信越化学工業社製商品名 KBM-603)、N-β-アミノエチル-γ-アミノプロピル-トリエトキシシラン(信越化学工業社製商品名 KBE-602)、γ-アミノプロピルトリメトキシシラン(信越化学工業社製商品名 KBM-903)、γ-アミノプロピルトリエトキシシラン(信越化学工業社製商品名 KBE-903)、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業社製商品名 KBM-503)、グリシドキシオクチルトリメトキシシラン(信越化学工業社製商品名 KBM-4803)などが挙げられる。 As the silane coupling agent X, N-β-aminoethyl-γ-aminopropylmethyldimethoxysilane (trade name KBM-602 manufactured by Shin-Etsu Chemical Co., Ltd.), N-β-aminoethyl-γ-aminopropyltrimethoxysilane ( Shin-Etsu Chemical Co., Ltd. trade name KBM-603), N-β-aminoethyl-γ-aminopropyl-triethoxysilane (Shin-Etsu Chemical Co., Ltd. trade name KBE-602), γ-aminopropyltrimethoxysilane (Shin-Etsu Chemical) Industrial brand name KBM-903), γ-aminopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd. trade name KBE-903), 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd. trade name KBM-503) Glycidoxyoctyltrimethoxysilane (trade name KBM-480 manufactured by Shin-Etsu Chemical Co., Ltd.) 3).
 シランカップリング剤は、分子内に少なくともケイ素原子と窒素原子と硬化性官能基とを有し、かつ、ケイ素原子に結合した加水分解性基を有する、シランカップリング剤Yも好ましい。
 シランカップリング剤Yは、分子内に少なくとも1つのケイ素原子を有すればよく、ケイ素原子は、以下の原子、置換基と結合できる。それらは同じ原子、置換基であっても異なっていてもよい。結合しうる原子、置換基は、水素原子、ハロゲン原子、水酸基、炭素数1~20のアルキル基、アルケニル基、アルキニル基、アリール基、アルキル基および/またはアリール基で置換可能なアミノ基、シリル基、炭素数1~20のアルコキシ基、アリーロキシ基などが挙げられる。これらの置換基はさらに、シリル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリーロキシ基、チオアルコキシ基、アルキル基および/またはアリール基で置換可能なアミノ基、ハロゲン原子、スルホンアミド基、アルコキシカルボニル基、アミド基、ウレア基、アンモニウム基、アルキルアンモニウム基、カルボキシル基またはその塩、スルホ基またはその塩などで置換されていてもよい。
 なお、ケイ素原子には少なくとも一つの加水分解性基が結合している。加水分解性基の定義は、上述の通りである。
 シランカップリング剤Yには、式(Z)で表される基が含まれていてもよい。
The silane coupling agent Y having at least a silicon atom, a nitrogen atom, and a curable functional group in the molecule and a hydrolyzable group bonded to the silicon atom is also preferable.
The silane coupling agent Y only needs to have at least one silicon atom in the molecule, and the silicon atom can be bonded to the following atoms and substituents. They may be the same atom, substituent or different. Atoms and substituents that can be bonded are a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, an alkyl group and / or an aryl group that can be substituted with an aryl group, silyl Group, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group, and the like. These substituents further include an amino group, a halogen atom, a sulfonamide group, a silyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, a thioalkoxy group, an alkyl group and / or an aryl group. It may be substituted with an alkoxycarbonyl group, an amide group, a urea group, an ammonium group, an alkylammonium group, a carboxyl group or a salt thereof, a sulfo group or a salt thereof, and the like.
Note that at least one hydrolyzable group is bonded to the silicon atom. The definition of the hydrolyzable group is as described above.
The silane coupling agent Y may contain a group represented by the formula (Z).
 シランカップリング剤Yは、分子内に窒素原子を少なくとも1つ以上有し、窒素原子は、2級アミノ基または3級アミノ基の形態で存在することが好ましく、即ち、窒素原子は置換基として少なくとも1つの有機基を有することが好ましい。なお、アミノ基の構造としては、含窒素ヘテロ環の部分構造の形態で分子内に存在してもよく、アニリンなど置換アミノ基として存在していてもよい。ここで、有機基としては、アルキル基、アルケニル基、アルキニル基、アリール基、または、これらの組み合わせなどが挙げられる。これらはさらに置換基を有してもよく、導入可能な置換基としては、シリル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリーロキシ基、チオアルコキシ基、アミノ基、ハロゲン原子、スルホンアミド基、アルコキシカルボニル基、カルボニルオキシ基、アミド基、ウレア基、アルキレンオキシ基、アンモニウム基、アルキルアンモニウム基、カルボキシル基またはその塩、スルホ基などが挙げられる。
 また、窒素原子は、任意の有機連結基を介して硬化性官能基と結合していることが好ましい。好ましい有機連結基としては、上述の窒素原子およびそれに結合する有機基に導入可能な置換基を挙げることができる。
The silane coupling agent Y has at least one nitrogen atom in the molecule, and the nitrogen atom is preferably present in the form of a secondary amino group or a tertiary amino group, that is, the nitrogen atom is used as a substituent. It preferably has at least one organic group. The amino group structure may exist in the molecule in the form of a partial structure of a nitrogen-containing heterocycle, or may exist as a substituted amino group such as aniline. Here, examples of the organic group include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof. These may further have a substituent, and examples of the substituent that can be introduced include a silyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, a thioalkoxy group, an amino group, a halogen atom, and a sulfonamide. Group, alkoxycarbonyl group, carbonyloxy group, amide group, urea group, alkyleneoxy group, ammonium group, alkylammonium group, carboxyl group or a salt thereof, sulfo group and the like.
Moreover, it is preferable that the nitrogen atom is couple | bonded with the curable functional group through arbitrary organic coupling groups. Preferred examples of the organic linking group include the above-described nitrogen atom and a substituent that can be introduced into the organic group bonded thereto.
 シランカップリング剤Yに含まれる硬化性官能基の定義は、上述の通りであり、好適範囲も上述の通りである。
 シランカップリング剤Yには、硬化性官能基は一分子中に少なくとも一つ以上有していればよいが、一分子中に硬化性官能基を2以上有することも可能である。感度、安定性の観点からは、一分子中に硬化性官能基を2~20有することが好ましく、4~15有することがより好ましく、6~10有することがさらに好ましい。
The definition of the curable functional group contained in the silane coupling agent Y is as described above, and the preferred range is also as described above.
The silane coupling agent Y only needs to have at least one curable functional group in one molecule, but it is also possible to have two or more curable functional groups in one molecule. From the viewpoints of sensitivity and stability, the molecule preferably has 2 to 20 curable functional groups, more preferably 4 to 15 and even more preferably 6 to 10.
 シランカップリング剤Yは、例えば以下の式(Y)で表される化合物が挙げられる。
 式(Y)  (Ry3n-LN-Si(Ry13-m(Ry2m
 Ry1はアルキル基を表し、Ry2は加水分解性基を表し、Ry3は、硬化性官能基を表し、
 LNは、窒素原子を有する(n+1)価の連結基を表し、
 mは1~3の整数を表し、nは1以上の整数を表す。
 式(Y)のRy1、Ry2、Ry3およびmは、式(W)のRz1、Rz2、Rz3およびmとそれぞれ同義であり、好ましい範囲も同様である。
 式(Y)のnは、1以上の整数を表す。上限は、例えば、20以下が好ましく、15以下がより好ましく、10以下がさらに好ましい。下限は、例えは、2以上が好ましく、4以上がより好ましく、6以上がさらに好ましい。また、nは1とすることもできる。
 式(Y)のLNは、窒素原子を有する基を表す。
 窒素原子を有する基としては、下記式(LN-1)~(LN-4)から選ばれる少なくとも一種、または、下記式(LN-1)~(LN-4)と、-CO-、-CO2-、-O-、-S-および-SO2-から選ばれる少なくとも1種との組み合わせからなる基が挙げられる。アルキレン基は、直鎖および分岐のいずれでもよい。アルキレン基およびアリーレン基は、無置換であってもよく、置換基を有していてもよい。置換基としては、ハロゲン原子、ヒドロキシル基が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 式中、*は、連結手を表す。
Examples of the silane coupling agent Y include compounds represented by the following formula (Y).
Formula (Y) (R y3 ) n -LN-Si (R y1 ) 3-m (R y2 ) m
R y1 represents an alkyl group, R y2 represents a hydrolyzable group, R y3 represents a curable functional group,
LN represents a (n + 1) -valent linking group having a nitrogen atom,
m represents an integer of 1 to 3, and n represents an integer of 1 or more.
R y1 , R y2 , R y3 and m in the formula (Y) have the same meanings as R z1 , R z2 , R z3 and m in the formula (W), respectively, and preferred ranges are also the same.
N in the formula (Y) represents an integer of 1 or more. For example, the upper limit is preferably 20 or less, more preferably 15 or less, and still more preferably 10 or less. For example, the lower limit is preferably 2 or more, more preferably 4 or more, and still more preferably 6 or more. Also, n can be 1.
LN in the formula (Y) represents a group having a nitrogen atom.
The group having a nitrogen atom is at least one selected from the following formulas (LN-1) to (LN-4), or the following formulas (LN-1) to (LN-4), and —CO—, —CO 2 -, - O -, - S- and -SO 2 - groups, which consist of a combination of at least one selected from the like. The alkylene group may be linear or branched. The alkylene group and the arylene group may be unsubstituted or may have a substituent. Examples of the substituent include a halogen atom and a hydroxyl group.
Figure JPOXMLDOC01-appb-C000021
In the formula, * represents a connecting hand.
 シランカップリング剤Yの具体例としては、例えば下記化合物が挙げられる。式中Etはエチル基を表す。また、特開2009-288703号公報の段落番号0018~0036に記載された化合物が挙げられ、この内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000022
Specific examples of the silane coupling agent Y include the following compounds. In the formula, Et represents an ethyl group. Further, compounds described in paragraphs 0018 to 0036 of JP-A-2009-288703 can be mentioned, the contents of which are incorporated herein.
Figure JPOXMLDOC01-appb-C000022
 シランカップリング剤の含有量は、活性エネルギー線硬化性組成物の全固形分に対して、0.01~10質量%が好ましく、0.01~5質量%がより好ましい。下限は、0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましく、0.5質量%以上が一層好ましい。シランカップリング剤は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上を併用する場合は、合計量が上記の範囲内であることが好ましい。 The content of the silane coupling agent is preferably 0.01 to 10% by mass and more preferably 0.01 to 5% by mass with respect to the total solid content of the active energy ray-curable composition. The lower limit is more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and further preferably 0.5% by mass or more. A silane coupling agent may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, it is preferable that a total amount exists in said range.
<<有彩色着色剤>>
 活性エネルギー線硬化性組成物は、有彩色着色剤を含有することができる。本発明において、有彩色着色剤とは、白色着色剤および黒色着色剤以外の着色剤を意味する。有彩色着色剤は、波長400nm以上650nm未満の範囲に吸収極大を有する着色剤が好ましい。
<< Chromatic colorant >>
The active energy ray-curable composition can contain a chromatic colorant. In the present invention, the chromatic colorant means a colorant other than the white colorant and the black colorant. The chromatic colorant is preferably a colorant having an absorption maximum in a wavelength range of 400 nm or more and less than 650 nm.
 本発明において、有彩色着色剤は、顔料であってもよく、染料であってもよい。好ましくは顔料である。
 顔料は、平均粒径(r)が、好ましくは20nm≦r≦300nm、より好ましくは25nm≦r≦250nm、さらに好ましくは30nm≦r≦200nmを満たす。ここでいう「平均粒径」とは、顔料の一次粒子が集合した二次粒子についての平均粒径を意味する。
 また、使用しうる顔料の二次粒子の粒径分布(以下、単に「粒径分布」ともいう。)は、(平均粒径±100)nmに入る二次粒子が全体の70質量%以上であることが好ましく、80質量%以上であることがより好ましい。なお、二次粒子の粒径分布は、散乱強度分布を用いて測定することができる。
 なお、一次粒子の平均粒径は、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)で観察し、粒子が凝集していない部分で粒子サイズを100個計測し、平均値を算出することによって求めることができる。
In the present invention, the chromatic colorant may be a pigment or a dye. A pigment is preferable.
The average particle size (r) of the pigment preferably satisfies 20 nm ≦ r ≦ 300 nm, more preferably 25 nm ≦ r ≦ 250 nm, and further preferably 30 nm ≦ r ≦ 200 nm. The “average particle size” here means the average particle size of secondary particles in which primary particles of the pigment are aggregated.
Further, the particle size distribution of the secondary particles of the pigment that can be used (hereinafter also simply referred to as “particle size distribution”) is such that the secondary particles falling into (average particle size ± 100) nm are 70% by mass or more of the total. It is preferable that it is 80% by mass or more. The particle size distribution of the secondary particles can be measured using the scattering intensity distribution.
In addition, the average particle diameter of primary particles is observed with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and 100 particle sizes are measured at a portion where the particles are not aggregated, and an average value is calculated. Can be determined by
 顔料は、有機顔料であることが好ましく、以下のものを挙げることができる。但し本発明は、これらに限定されるものではない。
 カラーインデックス(C.I.)Pigment Yellow 1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214等(以上、黄色顔料)、
 C.I.Pigment Orange 2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73等(以上、オレンジ色顔料)、
 C.I.Pigment Red 1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,270,272,279等(以上、赤色顔料)、
 C.I.Pigment Green 7,10,36,37,58,59等(以上、緑色顔料)、
 C.I.Pigment Violet 1,19,23,27,32,37,42等(以上、紫色顔料)、
 C.I.Pigment Blue 1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,60,64,66,79,80等(以上、青色顔料)、
 これら有機顔料は、単独または種々組合せて用いることができる。
The pigment is preferably an organic pigment, and examples thereof include the following. However, the present invention is not limited to these.
Color Index (CI) Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168, 169, 170 171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214 like (or more, and yellow pigment),
C. I. Pigment Orange 2, 5, 13, 16, 17: 1, 31, 34, 36, 38, 43, 46, 48, 49, 51, 52, 55, 59, 60, 61, 62, 64, 71, 73, etc. (Orange pigment)
C. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 17, 22, 23, 31, 38, 41, 48: 1, 48: 2, 48: 3, 48: 4 49, 49: 1, 49: 2, 52: 1, 52: 2, 53: 1, 57: 1, 60: 1, 63: 1, 66, 67, 81: 1, 81: 2, 81: 3 83, 88, 90, 105, 112, 119, 122, 123, 144, 146, 149, 150, 155, 166, 168, 169, 170, 171, 172, 175, 176, 177, 178, 179, 184 185, 187, 188, 190, 200, 202, 206, 207, 208, 209, 210, 216, 220, 224, 226, 242, 246, 254, 255, 264, 270, 272, 279, etc. (above, red Pigment)
C. I. Pigment Green 7, 10, 36, 37, 58, 59, etc. (above, green pigment),
C. I. Pigment Violet 1, 19, 23, 27, 32, 37, 42, etc. (above, purple pigment),
C. I. Pigment Blue 1, 2, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 64, 66, 79, 80, etc. (above, blue pigment),
These organic pigments can be used alone or in various combinations.
 染料は特に制限はなく、公知の染料を使用することができる。化学構造としては、ピラゾールアゾ系、アニリノアゾ系、トリアリールメタン系、アントラキノン系、アゾメチン系、アントラピリドン系、ベンジリデン系、オキソノール系、ピラゾロトリアゾールアゾ系、ピリドンアゾ系、シアニン系、フェノチアジン系、ピロロピラゾールアゾメチン系、キサンテン系、フタロシアニン系、ベンゾピラン系、インジゴ系、ピロメテン系等の染料を使用することができる。また、これらの染料の多量体を用いてもよい。また、特開2015-028144号公報、特開2015-34966号公報に記載の染料を用いることもできる。 The dye is not particularly limited, and a known dye can be used. Chemical structures include pyrazole azo, anilino azo, triaryl methane, anthraquinone, azomethine, anthrapyridone, benzylidene, oxonol, pyrazolotriazole azo, pyridone azo, cyanine, phenothiazine, pyrrolopyrazole Azomethine, xanthene, phthalocyanine, benzopyran, indigo, and pyromethene dyes can be used. Moreover, you may use the multimer of these dyes. Further, the dyes described in JP-A-2015-028144 and JP-A-2015-34966 can also be used.
 また、染料としては、酸性染料および/またはその誘導体を好適に使用することができる場合がある。
 その他、直接染料、塩基性染料、媒染染料、酸性媒染染料、アゾイック染料、分散染料、油溶染料、食品染料、および/または、これらの誘導体等も有用に使用することができる。
Moreover, as a dye, an acid dye and / or a derivative thereof may be preferably used.
In addition, a direct dye, a basic dye, a mordant dye, an acid mordant dye, an azoic dye, a disperse dye, an oil-soluble dye, a food dye, and / or a derivative thereof can be usefully used.
 以下に酸性染料の具体例を挙げるが、これらに限定されるものではない。例えば、以下の染料および、これらの染料の誘導体が挙げられる。
 Acid alizarin violet N、
 Acid blue 1,7,9,15,18,23,25,27,29,40~45,62,70,74,80,83,86,87,90,92,103,112,113,120,129,138,147,158,171,182,192,243,324:1、
 Acid chrome violet K、
 Acid Fuchsin;Acid green 1,3,5,9,16,25,27,50、
 Acid orange 6,7,8,10,12,50,51,52,56,63,74,95、
 Acid red 1,4,8,14,17,18,26,27,29,31,34,35,37,42,44,50,51,52,57,66,73,80,87,88,91,92,94,97,103,111,114,129,133,134,138,143,145,150,151,158,176,183,198,211,215,216,217,249,252,257,260,266,274、
 Acid violet 6B,7,9,17,19、
 Acid yellow 1,3,7,9,11,17,23,25,29,34,36,42,54,72,73,76,79,98,99,111,112,114,116,184,243、
 Food Yellow 3
Specific examples of the acid dye are shown below, but are not limited thereto. Examples thereof include the following dyes and derivatives of these dyes.
Acid alizarin violet N,
Acid blue 1,7,9,15,18,23,25,27,29,40-45,62,70,74,80,83,86,87,90,92,103,112,113,120, 129, 138, 147, 158, 171, 182, 192, 243, 324: 1,
Acid Chrome violet K,
Acid Fuchsin; Acid green 1,3,5,9,16,25,27,50,
Acid orange 6, 7, 8, 10, 12, 50, 51, 52, 56, 63, 74, 95,
Acid red 1,4,8,14,17,18,26,27,29,31,34,35,37,42,44,50,51,52,57,66,73,80,87,88, 91, 92, 94, 97, 103, 111, 114, 129, 133, 134, 138, 143, 145, 150, 151, 158, 176, 183, 198, 211, 215, 216, 217, 249, 252 257, 260, 266, 274,
Acid violet 6B, 7, 9, 17, 19,
Acid yellow 1,3,7,9,11,17,23,25,29,34,36,42,54,72,73,76,79,98,99,111,112,114,116,184 243,
Food Yellow 3
 また、上記以外の、アゾ系、キサンテン系、フタロシアニン系の酸性染料も好ましく、C.I.Solvent Blue 44、38;C.I.Solvent orange 45;Rhodamine B、Rhodamine 110等の酸性染料及びこれらの染料の誘導体も好ましく用いられる。
 なかでも、染料としては、トリアリールメタン系、アントラキノン系、アゾメチン系、ベンジリデン系、オキソノール系、シアニン系、フェノチアジン系、ピロロピラゾールアゾメチン系、キサンテン系、フタロシアニン系、ベンゾピラン系、インジゴ系、ピラゾールアゾ系、アニリノアゾ系、ピラゾロトリアゾールアゾ系、ピリドンアゾ系、アントラピリドン系、ピロメテン系から選ばれる着色剤であることが好ましい。
 さらに、顔料と染料を組み合わせて使用してもよい。
Other than the above, azo, xanthene and phthalocyanine acid dyes are also preferred. I. Solvent Blue 44, 38; C.I. I. Solvent orange 45; Rhodamine B, Rhodamine 110 and other acid dyes and derivatives of these dyes are also preferably used.
Among them, as the dye, triarylmethane, anthraquinone, azomethine, benzylidene, oxonol, cyanine, phenothiazine, pyrrolopyrazole azomethine, xanthene, phthalocyanine, benzopyran, indigo, pyrazoleazo A colorant selected from anilinoazo, pyrazolotriazole azo, pyridoneazo, anthrapyridone, and pyromethene is preferred.
Further, pigments and dyes may be used in combination.
 活性エネルギー線硬化性組成物が有彩色着色剤を含有する場合、有彩色着色剤の含有量は、活性エネルギー線硬化性組成物の全固形分に対し1~80質量%が好ましい。下限は、5質量%以上がより好ましく、10質量%以上がさらに好ましく、20質量%以上が一層好ましい。上限は、75質量%以下がより好ましく、70質量%以下がさらに好ましい。 When the active energy ray-curable composition contains a chromatic colorant, the content of the chromatic colorant is preferably 1 to 80% by mass with respect to the total solid content of the active energy ray curable composition. The lower limit is more preferably 5% by mass or more, further preferably 10% by mass or more, and further preferably 20% by mass or more. The upper limit is more preferably 75% by mass or less, and still more preferably 70% by mass or less.
<<黒色着色剤>>
 活性エネルギー線硬化性組成物は、黒色着色剤を含有することができる。黒色着色剤は、有機系黒色着色剤、無機系黒色着色剤のいずれを用いてもよい。また、両者を併用することもできる。黒色着色剤を含む組成物は、露光による硬化性は低く、従来は高温での熱処理を行っていたが、本発明の方法によれば、黒色着色剤を含む活性エネルギー線硬化性組成物であっても、低温プロセスにより、信頼性に優れた硬化膜を製造することができ、本発明の効果が特に顕著である。
<< Black colorant >>
The active energy ray-curable composition can contain a black colorant. As the black colorant, either an organic black colorant or an inorganic black colorant may be used. Moreover, both can also be used together. A composition containing a black colorant has low curability upon exposure and has been conventionally heat-treated at a high temperature. However, a cured film having excellent reliability can be produced by a low-temperature process, and the effect of the present invention is particularly remarkable.
(有機系黒色着色剤)
 有機系黒色着色剤としては、例えば、ビスベンゾフラノン化合物、アゾメチン化合物、ペリレン化合物、アゾ系化合物などが挙げられる。ビスベンゾフラノン化合物としては、特表2010-534726号公報、特表2012-515233号公報、特表2012-515234号公報などに記載されたものが挙げられ、例えば、BASF社製の「IRGAPHOR Black」として入手可能である。ペリレン化合物としては、C.I.Pigment Black 31、32などが挙げられる。アゾメチン化合物としては、特開平1-170601号公報、特開平2-34664号公報などに記載されたものが挙げられ、例えば、大日精化社製の「クロモファインブラックA1103」として入手できる。アゾ系化合物は、特に限定されないが、下記式(A-1)で表される化合物等を好適に挙げることができる。
(Organic black colorant)
Examples of the organic black colorant include bisbenzofuranone compounds, azomethine compounds, perylene compounds, and azo compounds. Examples of the bisbenzofuranone compounds include those described in JP-T 2010-534726, JP-A 2012-515233, JP-A 2012-515234, etc., for example, “IRGAPHOR Black” manufactured by BASF Is available as Examples of perylene compounds include C.I. I. Pigment Black 31, 32 and the like. Examples of the azomethine compound include those described in JP-A-1-170601, JP-A-2-34664, and the like, and can be obtained, for example, as “Chromofine Black A1103” manufactured by Dainichi Seika Co., Ltd. The azo compound is not particularly limited, and preferred examples include a compound represented by the following formula (A-1).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(無機系黒色着色剤)
 無機系黒色着色剤としては、カーボンブラック、チタンブラック、酸化チタン、酸化鉄、酸化マンガン、グラファイト等が挙げられる。これらは、少量で高い光学濃度を実現できる。なかでも、カーボンブラック、チタンブラックのうちの少なくとも1種を含むことが好ましく、特にチタンブラックが好ましい。
(Inorganic black colorant)
Examples of the inorganic black colorant include carbon black, titanium black, titanium oxide, iron oxide, manganese oxide, and graphite. These can realize a high optical density in a small amount. Especially, it is preferable to contain at least 1 sort (s) of carbon black and titanium black, and titanium black is especially preferable.
 チタンブラックとは、チタン原子を含有する黒色粒子である。好ましくは低次酸化チタンや酸窒化チタン等である。チタンブラック粒子は、分散性向上、凝集性抑制などの目的で必要に応じ、表面を修飾することが可能である。酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化マグネシウム、または、酸化ジルコニウムで被覆することが可能であり、また、特開2007-302836号公報に表されるような撥水性物質での処理も可能である。
 チタンブラックは、典型的には、チタンブラック粒子であり、個々の粒子の一次粒径および平均一次粒径のいずれもが小さいものであることが好ましい。
 具体的には、平均一次粒径が10nm~45nmの範囲であることが好ましい。なお、本発明における粒径、即ち、粒子直径とは、粒子の外表面の投影面積と等しい面積をもつ円の直径である。粒子の投影面積は、電子顕微鏡写真での撮影により得られた面積を測定し、撮影倍率を補正することにより得られる。
Titanium black is black particles containing titanium atoms. Preferred are low-order titanium oxide and titanium oxynitride. The surface of titanium black particles can be modified as necessary for the purpose of improving dispersibility and suppressing aggregation. It can be coated with silicon oxide, titanium oxide, germanium oxide, aluminum oxide, magnesium oxide, or zirconium oxide, and treatment with a water-repellent substance as disclosed in JP-A-2007-302836 is also possible. Is possible.
The titanium black is typically titanium black particles, and it is preferable that both the primary particle size and the average primary particle size of each particle are small.
Specifically, the average primary particle size is preferably in the range of 10 nm to 45 nm. In the present invention, the particle diameter, that is, the particle diameter is a diameter of a circle having an area equal to the projected area of the outer surface of the particle. The projected area of the particles can be obtained by measuring the area obtained by photographing with an electron micrograph and correcting the photographing magnification.
 チタンブラックの比表面積は特に制限されないが、チタンブラックを撥水化剤で表面処理した後の撥水性が所定の性能となるために、BET(Brunauer, Emmett, Teller)法にて測定した値が5~150m2/gであることが好ましく、20~120m2/gであることがより好ましい。
 チタンブラックの市販品の例としては、チタンブラック10S、12S、13R、13M、13M-C、13R、13R-N、13M-T(商品名:三菱マテリアル(株)製)、ティラック(Tilack)D(商品名:赤穂化成(株)製)などが挙げられる。
The specific surface area of titanium black is not particularly limited, but the value measured by the BET (Brunauer, Emmett, Teller) method is used in order that the water repellency after the surface treatment of titanium black with a water repellent becomes a predetermined performance. It is preferably 5 to 150 m 2 / g, more preferably 20 to 120 m 2 / g.
Examples of commercially available titanium black include titanium black 10S, 12S, 13R, 13M, 13M-C, 13R, 13R-N, 13M-T (trade name: manufactured by Mitsubishi Materials Corporation), Tilack D (trade name: manufactured by Ako Kasei Co., Ltd.) and the like.
 更に、チタンブラックを、チタンブラックおよびSi原子を含む被分散体として含有することも好ましい。
 この形態において、チタンブラックは、組成物中に被分散体として含有されるものであり、被分散体中のSi原子とTi原子との含有比(Si/Ti)は質量換算で0.05以上が好ましく、0.05~0.5がより好ましく、0.07~0.4がさらに好ましい。
 ここで、上記被分散体は、チタンブラックが一次粒子の状態であるもの、凝集体(二次粒子)の状態であるものの双方を包含する。
Furthermore, it is also preferable to contain titanium black as a dispersion containing titanium black and Si atoms.
In this embodiment, titanium black is contained as a dispersion in the composition, and the content ratio (Si / Ti) of Si atoms and Ti atoms in the dispersion is 0.05 or more in terms of mass. Is preferable, 0.05 to 0.5 is more preferable, and 0.07 to 0.4 is still more preferable.
Here, the to-be-dispersed bodies include both those in which titanium black is in the state of primary particles and those in the state of aggregates (secondary particles).
 被分散体のSi/Tiを変更する(例えば、0.05以上とする)ためには、以下のような手段を用いることができる。
 先ず、酸化チタンとシリカ粒子とを分散機を用いて分散することにより分散物を得て、この分散物を高温(例えば、850~1000℃)にて還元処理することにより、チタンブラック粒子を主成分とし、SiとTiとを含有する被分散体を得ることができる。上記還元処理は、アンモニアなどの還元性ガスの雰囲気下で行うこともできる。酸化チタンとしては、TTO-51N(商品名:石原産業製)などが挙げられる。シリカ粒子の市販品としては、AEROSIL(登録商標)90、130、150、200、255、300、380(商品名:エボニック製)などが挙げられる。
 酸化チタンとシリカ粒子との分散には、分散剤を用いてもよい。分散剤としては、上述の分散剤の欄で説明するものが挙げられる。
 上記の分散は溶剤中で行ってもよい。溶剤としては、水、有機溶剤が挙げられる。具体例としては、後述する有機溶剤の欄で説明するものが挙げられる。
 Si/Tiが、例えば、0.05以上等に調整されたチタンブラックは、例えば、特開2008-266045号公報の段落番号0005および段落番号0016~0021に記載された方法により作製することができる。
In order to change the Si / Ti of the object to be dispersed (for example, 0.05 or more), the following means can be used.
First, a dispersion is obtained by dispersing titanium oxide and silica particles using a disperser, and the dispersion is subjected to reduction treatment at a high temperature (for example, 850 to 1000 ° C.), whereby titanium black particles are mainly formed. A dispersed material containing Si and Ti as components can be obtained. The reduction treatment can also be performed in an atmosphere of a reducing gas such as ammonia. Examples of titanium oxide include TTO-51N (trade name: manufactured by Ishihara Sangyo). Examples of commercially available silica particles include AEROSIL (registered trademark) 90, 130, 150, 200, 255, 300, 380 (trade name: manufactured by Evonik).
A dispersant may be used for the dispersion of titanium oxide and silica particles. Examples of the dispersant include those described in the above-mentioned column of the dispersant.
The dispersion may be performed in a solvent. Examples of the solvent include water and organic solvents. Specific examples include those described in the column of organic solvent described later.
Titanium black in which Si / Ti is adjusted to, for example, 0.05 or more can be produced, for example, by the method described in paragraph No. 0005 and paragraph Nos. 0016 to 0021 of Japanese Patent Application Laid-Open No. 2008-266045. .
 チタンブラックおよびSi原子を含む被分散体において、チタンブラックは、上記したものを使用できる。
 また、この被分散体においては、チタンブラックと共に、分散性、着色性等を調整する目的で、Cu、Fe、Mn、V、Ni等の複合酸化物、酸化コバルト、酸化鉄、カーボンブラック、アニリンブラック等からなる黒色顔料の1種または2種以上の組み合わて使用してもよい。
 この場合、全被分散体中の50質量%以上をチタンブラックからなる被分散体が占めることが好ましい。
 また、この被分散体においては、遮光性の調整等を目的として、本発明の効果を損なわない限りにおいて、チタンブラックと共に、他の着色剤(有機顔料や染料など)を所望により併用してもよい。
 以下、被分散体にSi原子を導入する際に用いられる材料について述べる。被分散体にSi原子を導入する際には、シリカなどのSi含有物質を用いればよい。
 用いうるシリカとしては、沈降シリカ、フュームドシリカ、コロイダルシリカ、合成シリカなどを挙げることができ、これらを適宜選択して使用すればよい。
 更に、シリカ粒子の粒径が遮光膜を形成した際に膜厚よりも小さい粒径であると遮光性がより優れるため、シリカ粒子として微粒子タイプのシリカを用いることが好ましい。なお、微粒子タイプのシリカの例としては、例えば、特開2013-249417号公報の段落番号0039に記載のシリカが挙げられ、この内容は本明細書に組み込まれる。
In the dispersion containing titanium black and Si atoms, the above-described titanium black can be used.
Further, in this dispersion, in addition to titanium black, for the purpose of adjusting dispersibility, colorability, etc., complex oxides such as Cu, Fe, Mn, V, Ni, cobalt oxide, iron oxide, carbon black, aniline A black pigment composed of black or the like may be used alone or in combination of two or more.
In this case, it is preferable that 50% by mass or more of the total dispersion is occupied by the dispersion made of titanium black.
In addition, in this dispersion, for the purpose of adjusting the light shielding property, other colorants (such as organic pigments and dyes) may be used in combination with titanium black as long as the effects of the present invention are not impaired. Good.
Hereinafter, materials used for introducing Si atoms into the dispersion will be described. When Si atoms are introduced into the dispersion, a Si-containing material such as silica may be used.
Examples of silica that can be used include precipitated silica, fumed silica, colloidal silica, and synthetic silica. These may be appropriately selected and used.
Furthermore, if the particle size of the silica particles is smaller than the film thickness when the light shielding film is formed, the light shielding property is more excellent. Therefore, it is preferable to use fine particle type silica as the silica particles. Examples of the fine particle type silica include, for example, the silica described in paragraph No. 0039 of JP2013-249417A, the contents of which are incorporated herein.
 活性エネルギー線硬化性組成物が黒色着色剤を含有する場合、黒色着色剤の含有量は、活性エネルギー線硬化性組成物の全固形分に対し1~80質量%が好ましい。下限は、5質量%以上がより好ましく、10質量%以上がさらに好ましく、20質量%以上が一層好ましい。上限は、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
 また、黒色着色剤と有彩色着色剤との合計含有量は、活性エネルギー線硬化性組成物の全固形分に対し1~80質量%であることが好ましい。下限は、5質量%以上がより好ましく、10質量%以上がさらに好ましく、20質量%以上が一層好ましい。上限は、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
When the active energy ray-curable composition contains a black colorant, the content of the black colorant is preferably 1 to 80% by mass with respect to the total solid content of the active energy ray-curable composition. The lower limit is more preferably 5% by mass or more, further preferably 10% by mass or more, and further preferably 20% by mass or more. The upper limit is more preferably 75% by mass or less, and still more preferably 70% by mass or less.
The total content of the black colorant and the chromatic colorant is preferably 1 to 80% by mass with respect to the total solid content of the active energy ray-curable composition. The lower limit is more preferably 5% by mass or more, further preferably 10% by mass or more, and further preferably 20% by mass or more. The upper limit is more preferably 75% by mass or less, and still more preferably 70% by mass or less.
<<赤外線吸収剤>>
 活性エネルギー線硬化性組成物は、赤外線吸収剤を含有してもよい。
 本発明において、赤外線吸収剤とは、赤外領域(好ましくは、波長800~1300nm)の波長領域に極大吸収を有する化合物を意味する。
<< Infrared absorber >>
The active energy ray curable composition may contain an infrared absorber.
In the present invention, the infrared absorber means a compound having maximum absorption in the infrared region (preferably, a wavelength region of 800 to 1300 nm).
 赤外線吸収剤としては、例えば、ピロロピロール化合物、銅化合物、シアニン化合物、フタロシアニン化合物、イミニウム化合物、チオール錯体系化合物、遷移金属酸化物系化合物、スクアリリウム化合物、ナフタロシアニン化合物、クアテリレン化合物、ジチオール金属錯体系化合物、クロコニウム化合物等が挙げられる。 Examples of infrared absorbers include pyrrolopyrrole compounds, copper compounds, cyanine compounds, phthalocyanine compounds, iminium compounds, thiol complex compounds, transition metal oxide compounds, squarylium compounds, naphthalocyanine compounds, quaterylene compounds, dithiol metal complex systems. Compounds, croconium compounds and the like.
 ピロロピロール化合物は、特開2009-263614号公報の段落番号0049~0058に記載された化合物を使用してもよく、この内容は本明細書に組み込まれる。フタロシアニン化合物、ナフタロシアニン化合物、イミニウム化合物、シアニン化合物、スクアリリウム化合物およびクロコニウム化合物は、特開2010-111750号公報の段落番号0010~0081に開示された化合物を使用してもよく、この内容は本明細書に組み込まれる。また、シアニン化合物は、例えば、「機能性色素、大河原信/松岡賢/北尾悌次郎/平嶋恒亮・著、講談社サイエンティフィック」を参酌することができ、この内容は本明細書に組み込まれる。
 また、赤外線吸収剤として、特開平07-164729号公報の段落番号0004~0016に開示された化合物や、特開2002-146254号公報の段落番号0027~0062に開示された化合物、特開2011-164583号公報の段落番号0034~0067に開示されたCuおよび/またはPを含む酸化物の結晶子からなり数平均凝集粒子径が5~200nmである近赤外線吸収粒子を使用してもよく、これらの内容は本明細書に組み込まれる。また、FD-25(山田化学社製)、IRA842(Exiton社製)なども使用できる。
As the pyrrolopyrrole compound, compounds described in JP-A-2009-263614, paragraphs 0049 to 0058 may be used, the contents of which are incorporated herein. As the phthalocyanine compound, naphthalocyanine compound, iminium compound, cyanine compound, squarylium compound, and croconium compound, the compounds disclosed in paragraph numbers 0010 to 0081 of JP 2010-1111750 A may be used. Embedded in the book. In addition, as for the cyanine compound, for example, “functional pigment, Nobu Okawara / Ken Matsuoka / Kojiro Kitao / Kensuke Hirashima, Kodansha Scientific”, the contents of which are incorporated herein. .
Further, as infrared absorbers, compounds disclosed in paragraphs 0004 to 0016 of JP 07-164729 A, compounds disclosed in paragraphs 0027 to 0062 of JP 2002-146254 A, JP Near infrared absorbing particles composed of crystallites of oxides containing Cu and / or P disclosed in paragraph Nos. 0034 to 0067 of Japanese Patent No. 164583 and having a number average aggregate particle diameter of 5 to 200 nm may be used. Is incorporated herein by reference. Further, FD-25 (manufactured by Yamada Chemical Co., Ltd.), IRA842 (manufactured by Exiton), etc. can be used.
 活性エネルギー線硬化性組成物が赤外線吸収剤を含有する場合、赤外線吸収剤の含有量は、活性エネルギー線硬化性組成物の全固形分に対し1~80質量%であることが好ましい。下限は、5質量%以上がより好ましく、10質量%以上がさらに好ましく、20質量%以上が一層好ましい。上限は、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
 また、赤外線吸収剤と黒色着色剤と有彩色着色剤との合計含有量は、活性エネルギー線硬化性組成物の全固形分に対し1~80質量%であることが好ましい。下限は、5質量%以上がより好ましく、10質量%以上がさらに好ましく、20質量%以上が一層好ましい。上限は、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
When the active energy ray-curable composition contains an infrared absorber, the content of the infrared absorber is preferably 1 to 80% by mass with respect to the total solid content of the active energy ray-curable composition. The lower limit is more preferably 5% by mass or more, further preferably 10% by mass or more, and further preferably 20% by mass or more. The upper limit is more preferably 75% by mass or less, and still more preferably 70% by mass or less.
The total content of the infrared absorber, the black colorant, and the chromatic colorant is preferably 1 to 80% by mass with respect to the total solid content of the active energy ray-curable composition. The lower limit is more preferably 5% by mass or more, further preferably 10% by mass or more, and further preferably 20% by mass or more. The upper limit is more preferably 75% by mass or less, and still more preferably 70% by mass or less.
<<顔料誘導体>>
 活性エネルギー線硬化性組成物は、顔料誘導体を含有してもよい。顔料誘導体は、有機顔料の一部分を、酸性基、塩基性基またはフタルイミドメチル基で置換した構造を有する化合物が好ましい。顔料誘導体としては、酸性基または塩基性基を有する顔料誘導体が好ましい。
<< Pigment derivative >>
The active energy ray-curable composition may contain a pigment derivative. The pigment derivative is preferably a compound having a structure in which a part of an organic pigment is substituted with an acidic group, a basic group or a phthalimidomethyl group. As the pigment derivative, a pigment derivative having an acidic group or a basic group is preferable.
<<有機溶剤>>
 活性エネルギー線硬化性組成物は、有機溶剤を含有してもよい。
 有機溶剤は、各成分の溶解性や組成物の塗布性を満足すれば基本的には特に制限はない。
<< Organic solvent >>
The active energy ray curable composition may contain an organic solvent.
The organic solvent is basically not particularly limited as long as the solubility of each component and the coating property of the composition are satisfied.
 有機溶剤としては、エステル類として、例えば、酢酸エチル、酢酸n-ブチル、酢酸イソブチル、酢酸シクロヘキシル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、オキシ酢酸アルキル(例:オキシ酢酸メチル、オキシ酢酸エチル、オキシ酢酸ブチル等(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-オキシプロピオン酸アルキルエステル類(例:3-オキシプロピオン酸メチル、3-オキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-オキシプロピオン酸アルキルエステル類(例:2-オキシプロピオン酸メチル、2-オキシプロピオン酸エチル、2-オキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル等))、2-オキシ-2-メチルプロピオン酸メチルおよび2-オキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等、並びに、エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート等、並びに、ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン等、並びに、芳香族炭化水素類として、例えば、トルエン、キシレン等が好適に挙げられる。 Examples of organic solvents include esters such as ethyl acetate, n-butyl acetate, isobutyl acetate, cyclohexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, Alkyl oxyacetates (eg, methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate etc. (eg methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate etc.)), alkyl 3-oxypropionate Esters (eg, methyl 3-oxypropionate, ethyl 3-oxypropionate, etc. (eg, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.) )) 2-oxypropionic acid alkyl esters (eg, methyl 2-oxypropionate, ethyl 2-oxypropionate, propyl 2-oxypropionate, etc. (for example, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, 2 Propyl methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, etc.)), methyl 2-oxy-2-methylpropionate and ethyl 2-oxy-2-methylpropionate (for example, 2-methoxy -Methyl 2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.), methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, 2-oxobutane Ethyl acetate, etc. For example, diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol methyl Ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate and the like, and ketones, for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone and the like, and aromatic hydrocarbons, Example For example, toluene, xylene and the like are preferable.
 これらの有機溶剤は、重合性化合物、アルカリ可溶性樹脂等の溶解性、塗布面状の改良などの観点から、2種以上を混合して用いることも好ましい。この場合、特に好ましくは、上記の3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテル、及びプロピレングリコールメチルエーテルアセテートから選択される2種以上で構成される混合溶液である。
 本発明において、有機溶剤は、過酸化物の含有率が0.8mmol/L以下であることが好ましく、過酸化物を実質的に含まないことがより好ましい。
These organic solvents are also preferably used as a mixture of two or more kinds from the viewpoints of solubility of polymerizable compounds, alkali-soluble resins and the like, and improvement of the coated surface. In this case, particularly preferably, the above methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, cyclohexanone, ethyl It is a mixed solution composed of two or more selected from carbitol acetate, butyl carbitol acetate, propylene glycol methyl ether, and propylene glycol methyl ether acetate.
In the present invention, the organic solvent preferably has a peroxide content of 0.8 mmol / L or less, and more preferably contains substantially no peroxide.
 有機溶剤の活性エネルギー線硬化性組成物中における含有量は、塗布性の観点から、組成物の全固形分濃度が5~80質量%になる量とすることが好ましく、5~60質量%がより好ましく、10~50質量%がさらに好ましい。
 活性エネルギー線硬化性組成物は、有機溶剤を、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記の範囲内であることが好ましい。
The content of the organic solvent in the active energy ray-curable composition is preferably such that the total solid concentration of the composition is 5 to 80% by mass from the viewpoint of coating properties, and is 5 to 60% by mass. More preferred is 10 to 50% by mass.
The active energy ray-curable composition may contain only one type of organic solvent or two or more types of organic solvents. When two or more types are included, the total amount is preferably within the above range.
<<重合禁止剤>>
 活性エネルギー線硬化性組成物は、組成物の製造中または保存中において、重合性化合物の不要な熱重合を阻止するために、少量の重合禁止剤を添加することが望ましい。
 重合禁止剤としては、ハイドロキノン、パラ-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4'-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン第一セリウム塩等が挙げられる。
 活性エネルギー線硬化性組成物が重合禁止剤を含有する場合、重合禁止剤の含有量は、活性エネルギー線硬化性組成物の全固形分に対して、0.01~5質量%が好ましい。
 活性エネルギー線硬化性組成物は、重合禁止剤を、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記の範囲内であることが好ましい。
<< Polymerization inhibitor >>
The active energy ray-curable composition is desirably added with a small amount of a polymerization inhibitor in order to prevent unnecessary thermal polymerization of the polymerizable compound during the production or storage of the composition.
Polymerization inhibitors include hydroquinone, para-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt and the like.
When the active energy ray-curable composition contains a polymerization inhibitor, the content of the polymerization inhibitor is preferably 0.01 to 5% by mass with respect to the total solid content of the active energy ray-curable composition.
The active energy ray-curable composition may contain only one type of polymerization inhibitor, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
<<界面活性剤>>
 活性エネルギー線硬化性組成物には、塗布性をより向上させる観点から、各種の界面活性剤を添加してもよい。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用することができる。
<< Surfactant >>
Various surfactants may be added to the active energy ray-curable composition from the viewpoint of further improving applicability. As the surfactant, various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
 例えば、フッ素系界面活性剤を含有することで、塗布液として調製したときの液特性(特に、流動性)がより向上する。即ち、フッ素系界面活性剤を含有する着色組成物を用いて硬化膜を形成する場合においては、被塗布面と塗布液との界面張力を低下させることにより、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。このため、少量の液量で数μm程度の薄膜を形成した場合であっても、厚みムラの小さい均一厚の膜形成をより好適に行える点で有効である。 For example, by containing a fluorosurfactant, the liquid properties (particularly fluidity) when prepared as a coating liquid are further improved. That is, when forming a cured film using a colored composition containing a fluorosurfactant, the wettability to the coated surface is improved by reducing the interfacial tension between the coated surface and the coating liquid. As a result, the coating property to the coated surface is improved. For this reason, even when a thin film of about several μm is formed with a small amount of liquid, it is effective in that it is possible to more suitably form a film having a uniform thickness with small thickness unevenness.
 フッ素系界面活性剤中のフッ素含有率は、3~40質量%であることが好適であり、より好ましくは5~30質量%であり、さらに好ましくは7~25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的であり、着色組成物中における溶解性も良好である。 The fluorine content in the fluorosurfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and still more preferably 7 to 25% by mass. A fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity of coating film thickness and liquid-saving properties, and has good solubility in a colored composition.
 フッ素系界面活性剤としては、例えば、メガファックF171、同F172、同F173、同F176、同F177、同F141、同F142、同F143、同F144、同R30、同F437、同F475、同F479、同F482、同F554、同F780、同F781(以上、DIC(株)製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム(株)製)、サーフロンS-382、同SC-101、同SC-103、同SC-104、同SC-105、同SC1068、同SC-381、同SC-383、同S-393、同KH-40(以上、旭硝子(株)製)、PF636、PF656、PF6320、PF6520、PF7002(OMNOVA社製)等が挙げられる。
 フッ素系界面活性剤としてブロックポリマーを用いることもでき、具体例としては、例えば特開2011-89090号公報に記載された化合物が挙げられる。
 また、下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。
Figure JPOXMLDOC01-appb-C000024
 上記の化合物の重量平均分子量は、好ましくは3,000~50,000であり、例えば、14,000である。
 また、エチレン性不飽和基を側鎖に有する含フッ素重合体をフッ素系界面活性剤として用いることもできる。具体例としては、特開2010-164965号公報の段落番号0050~0090および0289~0295に記載された化合物、例えばDIC社製のメガファックRS-101、RS-102、RS-718K等が挙げられる。なお、エチレン性不飽和基を側鎖に有する含フッ素重合体は、上述したラジカル重合性化合物とは異なる化合物である。
Examples of the fluorosurfactant include Megafac F171, F172, F173, F176, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780, F780, F781 (above DIC Corporation), Florard FC430, FC431, FC171 (above, Sumitomo 3M Limited), Surflon S-382, SC-101, Same SC-103, Same SC-104, Same SC-105, Same SC1068, Same SC-381, Same SC-383, Same S-393, Same KH-40 (above, manufactured by Asahi Glass Co., Ltd.), PF636, PF656 PF6320, PF6520, PF7002 (manufactured by OMNOVA) and the like.
A block polymer can also be used as the fluorosurfactant, and specific examples thereof include compounds described in JP-A-2011-89090.
The following compounds are also exemplified as the fluorosurfactant used in the present invention.
Figure JPOXMLDOC01-appb-C000024
The weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example, 14,000.
Moreover, the fluoropolymer which has an ethylenically unsaturated group in a side chain can also be used as a fluorine-type surfactant. Specific examples include compounds described in JP-A 2010-164965, paragraph numbers 0050 to 0090 and 0289 to 0295, such as MegaFac RS-101, RS-102 and RS-718K manufactured by DIC. . The fluorine-containing polymer having an ethylenically unsaturated group in the side chain is a compound different from the above-described radical polymerizable compound.
 ノニオン系界面活性剤としては、具体的には、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレートおよびプロポキシレート(例えば、グリセロールプロポキシレート、グリセリンエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル(BASF社製のプルロニックL10、L31、L61、L62、10R5、17R2、25R2、テトロニック304、701、704、901、904、150R1)、ソルスパース20000(日本ルーブリゾール(株))等が挙げられる。また、竹本油脂(株)製のパイオニンD-6112-W、和光純薬工業社製の、NCW-101、NCW-1001、NCW-1002を使用することもできる。 Specific examples of nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane and ethoxylates and propoxylates thereof (for example, glycerol propoxylate, glycerin ethoxylate, etc.), polyoxyethylene lauryl ether, poly Oxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester (Pluronic L10, L31, L61 from BASF, L62, 10R5, 17R2, 25R2, Tetronic 304, 701, 704, 901, 904, 150R ), Solsperse 20000 (Lubrizol Japan Co., Ltd.), and the like. Alternatively, Pionein D-6112-W manufactured by Takemoto Yushi Co., Ltd., NCW-101, NCW-1001, NCW-1002 manufactured by Wako Pure Chemical Industries, Ltd. may be used.
 カチオン系界面活性剤としては、具体的には、フタロシアニン誘導体(商品名:EFKA-745、森下産業(株)製)、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社化学(株)製)、W001(裕商(株)製)等が挙げられる。 Specific examples of the cationic surfactant include phthalocyanine derivatives (trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid. (Co) polymer polyflow No. 75, no. 90, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.) and the like.
 アニオン系界面活性剤としては、具体的には、W004、W005、W017(裕商(株)製)等が挙げられる。 Specific examples of the anionic surfactant include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like.
 シリコーン系界面活性剤としては、例えば、東レ・ダウコーニング(株)製「トーレシリコーンDC3PA」、「トーレシリコーンSH7PA」、「トーレシリコーンDC11PA」、「トーレシリコーンSH21PA」、「トーレシリコーンSH28PA」、「トーレシリコーンSH29PA」、「トーレシリコーンSH30PA」、「トーレシリコーンSH8400」、モメンティブ・パフォーマンス・マテリアルズ社製「TSF-4440」、「TSF-4300」、「TSF-4445」、「TSF-4460」、「TSF-4452」、信越シリコーン株式会社製「KP341」、「KF6001」、「KF6002」、ビックケミー社製「BYK307」、「BYK323」、「BYK330」等が挙げられる。 Examples of the silicone surfactant include “Toray Silicone DC3PA”, “Toray Silicone SH7PA”, “Tore Silicone DC11PA”, “Tore Silicone SH21PA”, “Tore Silicone SH28PA”, “Toray Silicone” manufactured by Toray Dow Corning Co., Ltd. Silicone SH29PA, Torre Silicone SH30PA, Torre Silicone SH8400, Momentive Performance Materials TSF-4440, TSF-4300, TSF-4445, TSF-4460, TSF -4552 "," KP341 "," KF6001 "," KF6002 "manufactured by Shin-Etsu Silicone Co., Ltd.," BYK307 "," BYK323 "," BYK330 "manufactured by BYK Chemie.
 活性エネルギー線硬化性組成物が界面活性剤を含有する場合、界面活性剤の含有量は、活性エネルギー線硬化性組成物の全固形分に対して、0.001~2.0質量%であることが好ましく、より好ましくは0.005~1.0質量%である。
 活性エネルギー線硬化性組成物は、界面活性剤を、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記の範囲内であることが好ましい。
When the active energy ray-curable composition contains a surfactant, the content of the surfactant is 0.001 to 2.0% by mass with respect to the total solid content of the active energy ray-curable composition. It is preferably 0.005 to 1.0% by mass.
The active energy ray-curable composition may contain only one type of surfactant or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
<<その他添加剤>>
 活性エネルギー線硬化性組成物は、必要に応じて、各種添加物、例えば、充填剤、密着促進剤、酸化防止剤、紫外線吸収剤、凝集防止剤等を配合することができる。これらの添加物としては、特開2004-295116号公報の段落番号0155~0156に記載されたものを挙げることができ、この内容は本明細書に組み込まれる。
 活性エネルギー線硬化性組成物においては、特開2004-295116号公報の段落番号0078に記載された増感剤や光安定剤、同公報の段落番号0081に記載された熱重合防止剤を含有することができる。
<< Other additives >>
The active energy ray-curable composition can contain various additives such as fillers, adhesion promoters, antioxidants, ultraviolet absorbers, anti-aggregation agents, and the like, if necessary. Examples of these additives include those described in JP-A No. 2004-295116, paragraphs 0155 to 0156, the contents of which are incorporated herein.
The active energy ray-curable composition contains a sensitizer and a light stabilizer described in paragraph No. 0078 of JP-A No. 2004-295116 and a thermal polymerization inhibitor described in paragraph No. 0081 of the publication. be able to.
<活性エネルギー線硬化性組成物の一例>
 本発明の製造方法において、活性エネルギー線硬化性組成物は、厚さが0.5μmの硬化膜を形成した際に、波長260~440nmの範囲のいずれかの波長に対する光学濃度が、1以上(好ましくは2以上、より好ましくは3以上)となる組成物の場合、効果的である。
 また、活性エネルギー線硬化性組成物は、厚さが0.5μmの硬化膜を形成した際に、波長260~440nmの範囲における光学濃度の最小値が1以上であることが好ましく、2以上がより好ましく、3以上がさらに好ましい。
 また、活性エネルギー線硬化性組成物は、厚さが0.5μmの硬化膜を形成した際に、波長365nmにおける光学濃度が1以上であることが好ましく、2以上がより好ましく、3以上がさらに好ましい。
<Example of active energy ray-curable composition>
In the production method of the present invention, the active energy ray-curable composition has an optical density of 1 or more with respect to any wavelength in the wavelength range of 260 to 440 nm when a cured film having a thickness of 0.5 μm is formed. In the case of a composition that is preferably 2 or more, more preferably 3 or more, it is effective.
In the active energy ray-curable composition, when a cured film having a thickness of 0.5 μm is formed, the minimum value of the optical density in the wavelength range of 260 to 440 nm is preferably 1 or more, and 2 or more. More preferred is 3 or more.
The active energy ray-curable composition preferably has an optical density of 1 or more at a wavelength of 365 nm, more preferably 2 or more, and further preferably 3 or more when a cured film having a thickness of 0.5 μm is formed. preferable.
 なお、光学濃度とは、吸収度合を対数で表示した値であって、下記式で定義される値である。本発明において、硬化膜の光学濃度は、波長365nmの光を入射し、その透過率を日立ハイテクノロジーズ社製の分光器(UV4100(商品名))により測定した値である。
 OD(λ)=Log10[T(λ)/I(λ)]
 λは、波長を表し、OD(λ)は、波長λにおける光学濃度を表し、T(λ)は、波長λにおける透過光量を表し、I(λ)は波長λにおける入射光量を表す。
The optical density is a value expressed by the logarithm of the degree of absorption and is defined by the following formula. In the present invention, the optical density of the cured film is a value obtained by entering light having a wavelength of 365 nm and measuring the transmittance with a spectroscope (UV4100 (trade name)) manufactured by Hitachi High-Technologies Corporation.
OD (λ) = Log 10 [T (λ) / I (λ)]
λ represents a wavelength, OD (λ) represents an optical density at the wavelength λ, T (λ) represents a transmitted light amount at the wavelength λ, and I (λ) represents an incident light amount at the wavelength λ.
 硬化膜の上記波長領域における光学濃度の最小値を1以上とするには、260~440nmの波長領域の光を吸収する着色剤を含有させたり、全固形分中の着色剤の含有量を適宜調整することなどにより達成できる。 In order to set the minimum value of the optical density in the above wavelength region of the cured film to 1 or more, a colorant that absorbs light in the wavelength region of 260 to 440 nm is contained, or the content of the colorant in the total solid content is appropriately set. This can be achieved by adjusting.
 上記光学濃度を有する活性エネルギー線硬化性組成物としては、例えば、黒色着色剤(好ましくは、無機系黒色着色剤)を含む活性エネルギー線硬化性組成物が挙げられる。 Examples of the active energy ray-curable composition having the optical density include an active energy ray-curable composition containing a black colorant (preferably an inorganic black colorant).
 また、上記光学濃度を有する活性エネルギー線硬化性組成物の他の例として、波長400nm以上580nm未満の範囲における吸光度の最小値Aと、波長580nm以上750nm以下の範囲における吸光度の最小値Bとの比率A/Bが0.3~3であり、波長400nm以上750nm以下の範囲における吸光度の最小値Cと、波長1000nm以上1300nm以下の範囲における吸光度の最大値Dとの比率C/Dが5以上となる活性エネルギー線硬化性組成物も挙げられる。この分光特性を有する組成物を用いることで、波長400~700nmの範囲における透過率の最大値が20%以下であり、波長850~1300nmのある特定の範囲の最小値が80%以上の分光特性を有する硬化膜を好適に形成できる。 Further, as another example of the active energy ray-curable composition having the optical density, a minimum absorbance A in a wavelength range of 400 nm or more and less than 580 nm and a minimum absorbance B in a wavelength range of 580 nm or more and 750 nm or less The ratio A / B is 0.3 to 3, and the ratio C / D between the minimum absorbance C in the wavelength range from 400 nm to 750 nm and the maximum absorbance D in the wavelength range from 1000 nm to 1300 nm is 5 or more. An active energy ray-curable composition that becomes: By using the composition having the spectral characteristics, the maximum value of the transmittance in the wavelength range of 400 to 700 nm is 20% or less, and the minimum value in a specific range of the wavelength 850 to 1300 nm is 80% or more. A cured film having can be suitably formed.
 ある波長λにおける吸光度Aλは、以下の式(1)により定義される。
Aλ=-log(Tλ)   ・・・(1)
Aλは、波長λにおける吸光度であり、Tλは、波長λにおける透過率である。
 本発明において、吸光度の値は、溶液の状態で測定した値であってもよく、上記組成物を用いて製膜した膜の状態での値であってもよい。膜の状態で吸光度を測定する場合は、ガラス基板上に、スピンコート等の方法により乾燥後の膜厚が所定の膜厚となるように組成物を塗布し、ホットプレートを用いて100℃で120秒間乾燥して調製した膜を用いることが好ましい。膜の膜厚は、膜を有する基板を、触針式表面形状測定器(ULVAC社製 DEKTAK150)を用いて測定すること。
The absorbance Aλ at a certain wavelength λ is defined by the following equation (1).
Aλ = −log (Tλ) (1)
Aλ is the absorbance at the wavelength λ, and Tλ is the transmittance at the wavelength λ.
In the present invention, the absorbance value may be a value measured in a solution state, or may be a value in a film state formed using the composition. When measuring the absorbance in a film state, the composition is applied on a glass substrate by a method such as spin coating so that the film thickness after drying becomes a predetermined film thickness, and is used at 100 ° C. using a hot plate. It is preferable to use a membrane prepared by drying for 120 seconds. The film thickness is measured using a stylus type surface shape measuring instrument (DEKTAK150 manufactured by ULVAC) on the substrate having the film.
 また、吸光度は、従来公知の分光光度計を用いて測定できる。吸光度の測定条件は特に限定はないが、波長400nm以上580nm未満の範囲における吸光度の最小値Aが、0.1~3.0になるように調整した条件で、波長580nm以上750nm以下の範囲における吸光度の最小値B、波長400nm以上750nm以下の範囲における吸光度の最小値C、波長1000nm以上1300nm以下の範囲における吸光度の最大値Dを測定することが好ましい。このような条件で吸光度を測定することで、測定誤差をより小さくできる。波長400nm以上580nm未満の範囲における吸光度の最小値Aが、0.1~3.0になるように調整する方法としては、特に限定はない。例えば、組成物(溶液)の状態で吸光度を測定する場合は、試料セルの光路長を調整する方法が挙げられる。また、膜の状態で吸光度を測定する場合は、膜厚を調整する方法などが挙げられる。 The absorbance can be measured using a conventionally known spectrophotometer. Absorbance measurement conditions are not particularly limited, but in a condition where the minimum absorbance A in the wavelength range of 400 nm to less than 580 nm is adjusted to 0.1 to 3.0, in the wavelength range of 580 nm to 750 nm. It is preferable to measure the minimum absorbance B, the minimum absorbance C in the wavelength range from 400 nm to 750 nm, and the maximum absorbance D in the wavelength range from 1000 nm to 1300 nm. By measuring the absorbance under such conditions, the measurement error can be further reduced. There is no particular limitation on the method for adjusting the minimum absorbance A in the wavelength range of 400 nm or more and less than 580 nm to be 0.1 to 3.0. For example, when measuring absorbance in the state of a composition (solution), a method of adjusting the optical path length of the sample cell can be mentioned. Moreover, when measuring a light absorbency in the state of a film | membrane, the method etc. which adjust a film thickness are mentioned.
 膜の分光特性、膜厚等の測定方法を以下に示す。
 組成物を、ガラス基板上にスピンコート等の方法により、乾燥後の膜厚が前述した所定の膜厚となるように塗布し、ホットプレートを用い、100℃で120秒間乾燥した。膜の膜厚は、膜を有する乾燥後の基板を、触針式表面形状測定器(ULVAC社製 DEKTAK150)を用いて測定した。この膜を有する乾燥後の基板を、紫外可視近赤外分光光度計(日立ハイテクノロジーズ社製 U-4100)を用いて、波長300~1300nmの範囲における透過率を測定した。
Measuring methods for the spectral characteristics and film thickness of the film are shown below.
The composition was applied onto a glass substrate by a method such as spin coating so that the film thickness after drying was the predetermined film thickness described above, and dried at 100 ° C. for 120 seconds using a hot plate. The film thickness of the film was measured using a stylus type surface shape measuring instrument (DEKTAK150 manufactured by ULVAC) for the dried substrate having the film. The substrate having this film after drying was measured for transmittance in the wavelength range of 300 to 1300 nm using an ultraviolet-visible near-infrared spectrophotometer (U-4100 manufactured by Hitachi High-Technologies Corporation).
 上記分光特性を有する活性エネルギー線硬化性組成物は、可視光を遮光する色材を含む組成物が挙げられる。可視光を遮光する色材は、紫色から赤色の波長領域の光を吸収する材料であることが好ましい。可視光を遮光する色材は、以下の(A)および(B)の少なくとも一方の要件を満たすことが好ましい。
(A):2種類以上の有彩色着色剤を含み、2種以上の有彩色着色剤の組み合わせで黒色を形成している。
(B):有機系黒色着色剤を含む。
Examples of the active energy ray-curable composition having the spectral characteristics include a composition containing a colorant that blocks visible light. The colorant that blocks visible light is preferably a material that absorbs light in the wavelength range from purple to red. It is preferable that the color material that blocks visible light satisfies at least one of the following requirements (A) and (B).
(A): Two or more chromatic colorants are included, and black is formed by a combination of two or more chromatic colorants.
(B): Contains an organic black colorant.
 有彩色着色剤、有機系黒色着色剤としては、上述したものが挙げられる。
 本発明において、可視光を遮光する色材は、例えば、波長450~650nmの範囲における吸光度の最小値Aと、波長900~1300nmの範囲における吸光度の最小値Bとの比であるA/Bが4.5以上であることが好ましい。上記の特性は、1種類の素材で満たしていてもよく、複数の素材の組み合わせで満たしていてもよい。
Examples of the chromatic colorant and the organic black colorant include those described above.
In the present invention, the colorant that blocks visible light has, for example, an A / B that is a ratio of the minimum absorbance A in the wavelength range of 450 to 650 nm and the minimum absorbance B in the wavelength range of 900 to 1300 nm. It is preferable that it is 4.5 or more. The above characteristics may be satisfied by one kind of material, or may be satisfied by a combination of a plurality of materials.
 上記(A)の態様の場合、赤色着色剤、黄色着色剤、青色着色剤、および、紫色着色剤から選ばれる2種以上の着色剤を含有することが好ましい。また、赤色着色剤、黄色着色剤および紫色着色剤から選ばれる少なくとも1種と、青色着色剤とを含有することが好ましい。なかでも、以下の(1)~(3)のいずれかの態様が好ましい。
(1)赤色着色剤、黄色着色剤、青色着色剤、および、紫色着色剤を含有する態様。
(2)赤色着色剤、黄色着色剤、および、青色着色剤を含有する態様。
(3)黄色着色剤、青色着色剤、および、紫色着色剤を含有する態様。
In the case of the embodiment (A), it is preferable to contain two or more colorants selected from a red colorant, a yellow colorant, a blue colorant, and a purple colorant. Moreover, it is preferable to contain at least 1 sort (s) chosen from a red colorant, a yellow colorant, and a purple colorant, and a blue colorant. Of these, any of the following embodiments (1) to (3) is preferable.
(1) An embodiment containing a red colorant, a yellow colorant, a blue colorant, and a purple colorant.
(2) An embodiment containing a red colorant, a yellow colorant, and a blue colorant.
(3) An embodiment containing a yellow colorant, a blue colorant, and a purple colorant.
 有彩色着色剤として、赤色着色剤と、黄色着色剤と、青色着色剤と、紫色着色剤とを含有する場合、有彩色着色剤全量に対する質量比において、赤色着色剤の質量比が0.1~0.6であり、黄色着色剤の質量比が0.1~0.4であり、青色着色剤の質量比が0.1~0.6であり、紫色着色剤の質量比が0.01~0.3であることが好ましい。より好ましくは、赤色着色剤の質量比が0.2~0.5であり、黄色着色剤の質量比が0.1~0.3であり、青色着色剤の質量比が0.2~0.5であり、紫色着色剤の質量比が0.05~0.25である。
 また、有彩色着色剤として、赤色着色剤と、黄色着色剤と、青色着色剤とを含有する場合、有彩色着色剤全量に対する質量比において、赤色着色剤の質量比が0.2~0.7であり、黄色着色剤の質量比が0.1~0.4であり、青色着色剤の質量比が0.1~0.6であることが好ましい。より好ましくは、赤色着色剤の質量比が0.3~0.6であり、黄色着色剤の質量比が0.1~0.3であり、青色着色剤の質量比が0.2~0.5である。
 また、有彩色着色剤として、黄色着色剤と、青色着色剤と、紫色着色剤とを含有する場合、有彩色着色剤全量に対する質量比において、黄色着色剤の質量比が0.1~0.4であり、青色着色剤の質量比が0.1~0.6であり、紫色着色剤の質量比が0.2~0.7であることが好ましい。より好ましくは、黄色着色剤の質量比が0.1~0.3であり、青色着色剤の質量比が0.2~0.5であり、紫色着色剤の質量比が0.3~0.6である。
When the chromatic colorant contains a red colorant, a yellow colorant, a blue colorant, and a purple colorant, the mass ratio of the red colorant is 0.1 in the mass ratio to the total amount of the chromatic colorant. The mass ratio of yellow colorant is 0.1 to 0.4, the mass ratio of blue colorant is 0.1 to 0.6, and the mass ratio of purple colorant is 0.00. It is preferably 01 to 0.3. More preferably, the mass ratio of the red colorant is 0.2 to 0.5, the mass ratio of the yellow colorant is 0.1 to 0.3, and the mass ratio of the blue colorant is 0.2 to 0. And the mass ratio of the purple colorant is 0.05 to 0.25.
Further, when the chromatic colorant contains a red colorant, a yellow colorant, and a blue colorant, the mass ratio of the red colorant is 0.2 to 0.00 in the mass ratio with respect to the total amount of the chromatic colorant. Preferably, the mass ratio of the yellow colorant is 0.1 to 0.4, and the mass ratio of the blue colorant is 0.1 to 0.6. More preferably, the mass ratio of the red colorant is 0.3 to 0.6, the mass ratio of the yellow colorant is 0.1 to 0.3, and the mass ratio of the blue colorant is 0.2 to 0. .5.
Further, when the chromatic colorant contains a yellow colorant, a blue colorant, and a purple colorant, the mass ratio of the yellow colorant is 0.1 to 0.00 in the mass ratio with respect to the total amount of the chromatic colorant. Preferably, the mass ratio of the blue colorant is 0.1 to 0.6, and the mass ratio of the purple colorant is 0.2 to 0.7. More preferably, the mass ratio of the yellow colorant is 0.1 to 0.3, the mass ratio of the blue colorant is 0.2 to 0.5, and the mass ratio of the purple colorant is 0.3 to 0. .6.
 また、上記分光特性を有する活性エネルギー線硬化性組成物において、更に赤外線吸収剤(好ましくは、波長800~900nmの範囲に吸収極大を有する赤外線吸収剤)を含有させてもよい。これにより、波長400~830nmの範囲における透過率の最大値が20%以下であり、波長1000~1300nmの範囲における透過率の最小値が80%以上の分光特性を有する硬化膜を好適に形成できる。
 この態様において、赤外線吸収剤は、可視光を遮光する色材100質量部に対し、10~200質量部含有することが好ましい。また、赤外線吸収剤の含有量は、組成物の全固形分の1~60質量%であることが好ましく、10~40質量%であることがより好ましい。可視光を遮光する色材の含有量は、組成物の全固形分の10~60質量%であることが好ましく、30~50質量%であることがより好ましい。赤外線吸収剤と可視光を遮光する色材との合計量は、組成物の全固形分に対して、1~80質量%であることが好ましく、20~70質量%であることがより好ましく、30~70質量%であることがさらに好ましい。
Further, the active energy ray-curable composition having the above spectral characteristics may further contain an infrared absorber (preferably an infrared absorber having an absorption maximum in the wavelength range of 800 to 900 nm). Thereby, a cured film having a spectral characteristic in which the maximum value of the transmittance in the wavelength range of 400 to 830 nm is 20% or less and the minimum value of the transmittance in the wavelength range of 1000 to 1300 nm is 80% or more can be suitably formed. .
In this embodiment, the infrared absorber is preferably contained in an amount of 10 to 200 parts by mass with respect to 100 parts by mass of the colorant that blocks visible light. In addition, the content of the infrared absorber is preferably 1 to 60% by mass, more preferably 10 to 40% by mass, based on the total solid content of the composition. The content of the colorant that blocks visible light is preferably 10 to 60% by mass, more preferably 30 to 50% by mass, based on the total solid content of the composition. The total amount of the infrared absorber and the colorant that blocks visible light is preferably 1 to 80% by mass, more preferably 20 to 70% by mass, based on the total solid content of the composition. More preferably, it is 30 to 70% by mass.
<活性エネルギー線硬化性組成物の調製方法>
 活性エネルギー線硬化性組成物は、前述の成分を混合して調製できる。
 活性エネルギー線硬化性組成物の調製に際しては、各成分を一括配合してもよいし、各成分を溶剤に溶解・分散した後に逐次配合してもよい。また、配合する際の投入順序や作業条件は特に制約を受けない。例えば、全成分を同時に溶剤に溶解・分散して組成物を調製してもよいし、必要に応じては、各成分を適宜2つ以上の溶液・分散液としておいて、使用時(塗布時)にこれらを混合して組成物として調製してもよい。
 活性エネルギー線硬化性組成物の調製において、異物の除去や欠陥の低減などの目的で、フィルタでろ過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ナイロン(例えばナイロン-6、ナイロン-6,6)等のポリアミド樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度および/または超高分子量のポリオレフィン樹脂を含む)等の素材を用いたフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)およびナイロンが好ましい。
 フィルタの孔径は、0.01~7.0μm程度が適しており、好ましくは0.01~3.0μm程度、さらに好ましくは0.05~0.5μm程度である。この範囲とすることにより、後の工程において均一及び平滑な組成物の調製を阻害する、微細な異物を確実に除去することが可能となる。また、ファイバ状のろ材を用いることも好ましく、ろ材としては、例えば、ポリプロピレンファイバ、ナイロンファイバ、グラスファイバ等が挙げられ、具体的にはロキテクノ社製のSBPタイプシリーズ(SBP008など)、TPRタイプシリーズ(TPR002、TPR005など)、SHPXタイプシリーズ(SHPX003など)のフィルタカートリッジを用いることができる。
<Method for preparing active energy ray-curable composition>
The active energy ray-curable composition can be prepared by mixing the aforementioned components.
In preparing the active energy ray-curable composition, each component may be blended at once, or may be blended sequentially after each component is dissolved and dispersed in a solvent. In addition, there are no particular restrictions on the charging order and working conditions when blending. For example, the composition may be prepared by dissolving and dispersing all components in a solvent at the same time. If necessary, each component may be suitably used as two or more solutions / dispersions at the time of use (at the time of application). ) May be mixed to prepare a composition.
In the preparation of the active energy ray-curable composition, it is preferable to filter with a filter for the purpose of removing foreign substances or reducing defects. Any filter can be used without particular limitation as long as it has been conventionally used for filtration. For example, fluororesin such as polytetrafluoroethylene (PTFE), polyamide resin such as nylon (eg nylon-6, nylon-6,6), polyolefin resin such as polyethylene and polypropylene (PP) (high density and / or ultrahigh) And a filter using a material such as a molecular weight polyolefin resin). Among these materials, polypropylene (including high density polypropylene) and nylon are preferable.
The pore size of the filter is suitably about 0.01 to 7.0 μm, preferably about 0.01 to 3.0 μm, more preferably about 0.05 to 0.5 μm. By setting it as this range, it becomes possible to remove reliably the fine foreign material which inhibits preparation of a uniform and smooth composition in a subsequent process. Further, it is also preferable to use a fiber-like filter medium, and examples of the filter medium include polypropylene fiber, nylon fiber, glass fiber, and the like, specifically, SBP type series (SBP008 etc.) and TPR type series manufactured by Loki Techno Co., Ltd. (Such as TPR002 and TPR005) and SHPX type series (such as SHPX003) filter cartridges can be used.
 フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。
 また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社(DFA4201NXEYなど)、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)または株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
 第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたものを使用することができる。
 例えば、第1のフィルタでのフィルタリングは、分散液のみで行い、他の成分を混合した後で、第2のフィルタリングを行ってもよい。
When using filters, different filters may be combined. At that time, the filtering by the first filter may be performed only once or may be performed twice or more.
Moreover, you may combine the 1st filter of a different hole diameter within the range mentioned above. The pore diameter here can refer to the nominal value of the filter manufacturer. As a commercially available filter, for example, select from various filters provided by Nippon Pole Co., Ltd. (DFA4201NXEY, etc.), Advantech Toyo Co., Ltd., Japan Integris Co., Ltd. (formerly Nihon Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. can do.
As the second filter, a filter formed of the same material as the first filter described above can be used.
For example, the filtering by the first filter may be performed only with the dispersion, and the second filtering may be performed after mixing other components.
<硬化膜>
 本発明の硬化膜は、上記本発明の硬化膜の製造方法により得られたものである。
 本発明の硬化膜は、波長260~440nmの範囲のいずれかの波長に対する光学濃度が1以上であることが好ましく、2以上がより好ましく、3以上がさらに好ましい。
 また、波長260~440nmの範囲における光学濃度の最小値が、1以上であることが好ましく、2以上がより好ましく、3以上がさらに好ましい。
 また、波長365nmにおける光学濃度が、1以上であることが好ましく、2以上がより好ましく、3以上がさらに好ましい。
 本発明によれば、上記波長領域における光学濃度が高い硬化膜であっても、低温プロセスにて製造できる。このため、上記光学濃度が高いほど、本発明の効果が顕著である。
 上記光学濃度は、硬化膜の厚さが0.5μm以上での値であることが好ましい。
<Curing film>
The cured film of the present invention is obtained by the above-described method for producing a cured film of the present invention.
The cured film of the present invention preferably has an optical density of 1 or more, more preferably 2 or more, and further preferably 3 or more with respect to any wavelength in the wavelength range of 260 to 440 nm.
Further, the minimum value of the optical density in the wavelength range of 260 to 440 nm is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more.
The optical density at a wavelength of 365 nm is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more.
According to the present invention, even a cured film having a high optical density in the wavelength region can be produced by a low temperature process. For this reason, the higher the optical density, the more remarkable the effect of the present invention.
The optical density is preferably a value when the thickness of the cured film is 0.5 μm or more.
 本発明の硬化膜の厚さは、0.1~45μmであることが好ましい。上限は、例えば、44μm以下がより好ましく、43μm以下がさらに好ましく、40m以下が一層好ましい。下限は、例えば、0.2μm以上がより好ましい。硬化膜の厚さが上記範囲であれば、硬化膜の信頼性、および、基材との密着性が良好である。 The thickness of the cured film of the present invention is preferably 0.1 to 45 μm. For example, the upper limit is more preferably 44 μm or less, still more preferably 43 μm or less, and even more preferably 40 m or less. For example, the lower limit is more preferably 0.2 μm or more. When the thickness of the cured film is in the above range, the reliability of the cured film and the adhesion with the substrate are good.
 本発明の硬化膜は、カラーフィルタ、赤外線透過フィルタ、赤外線カットフィルタ、遮光膜、透明膜、バンドパスフィルタなどに好ましく用いることができる。また、活性エネルギー線硬化性組成物を印刷インキとして用いて、印刷物を形成することもできる。
 なお、本発明において、カラーフィルタとは、可視光域の波長の光のうち、特定の波長の光を通過させ、特定の波長の光を遮光するフィルタを意味する。また、赤外線透過フィルタとは、可視光域の波長の光を遮光し、特定の赤外域の波長の光(赤外線)を透過するフィルタを意味する。また、赤外線カットフィルタとは、可視光域の波長の光(可視光)を透過し、赤外域の波長の光(赤外線)の少なくとも一部を遮光するフィルタを意味する。また、遮光膜とは、少なくとも可視域の波長の光を遮光する膜を意味する。また、透明膜とは、少なくとも可視光域の波長の光を透過する膜を意味する。
The cured film of the present invention can be preferably used for a color filter, an infrared transmission filter, an infrared cut filter, a light shielding film, a transparent film, a band-pass filter, and the like. Moreover, a printed matter can also be formed using an active energy ray curable composition as printing ink.
In the present invention, the color filter means a filter that transmits light having a specific wavelength among light having a wavelength in the visible light range and shields light having a specific wavelength. The infrared transmission filter means a filter that blocks light having a wavelength in the visible light range and transmits light (infrared light) having a specific infrared wavelength. The infrared cut filter refers to a filter that transmits light having a wavelength in the visible light range (visible light) and shields at least a part of light having a wavelength in the infrared region (infrared light). In addition, the light shielding film means a film that shields at least light having a wavelength in the visible range. A transparent film means a film that transmits at least light having a wavelength in the visible light range.
 カラーフィルタ、赤外線透過フィルタ、赤外線カットフィルタは、CCD(電荷結合素子)やCMOS(相補性金属酸化膜半導体)等の固体撮像素子や、液晶表示装置などの画像表示装置や、有機エレクトロルミネッセンス(有機EL)素子等に好ましく用いることができる。 Color filters, infrared transmission filters, and infrared cut filters are solid-state imaging devices such as CCD (charge coupled device) and CMOS (complementary metal oxide semiconductor), image display devices such as liquid crystal display devices, and organic electroluminescence (organic). EL) can be preferably used for an element or the like.
 遮光膜は、画像表示装置やセンサモジュール内の各種部材(例えば、赤外線カットフィルタ、固体撮像素子の外周部、ウェハーレベルレンズ外周部、固体撮像素子裏面など)などに形成して用いることができる。また、赤外線カットフィルタの表面上の少なくとも一部に、遮光膜を形成して、遮光膜付き赤外線カットフィルタとしてもよい。 The light shielding film can be formed and used on various members in an image display device or a sensor module (for example, an infrared cut filter, an outer peripheral portion of a solid-state imaging device, an outer peripheral portion of a wafer level lens, a rear surface of a solid-state imaging device, etc.). Moreover, it is good also as an infrared cut filter with a light shielding film by forming a light shielding film in at least one part on the surface of an infrared cut filter.
 透明膜は、例えば、画像表示装置、固体撮像素子、有機EL素子などの保護膜などに用いることができる。また、光学デバイスに用いることもできる。 The transparent film can be used, for example, as a protective film such as an image display device, a solid-state image sensor, or an organic EL element. It can also be used for optical devices.
 固体撮像素子としては、本発明の硬化膜を備え、固体撮像素子として機能する構成であれば特に限定されないが、例えば、以下のような構成が挙げられる。 The solid-state imaging device is not particularly limited as long as it has the cured film of the present invention and functions as a solid-state imaging device, and examples thereof include the following configurations.
 支持体上に、固体撮像素子(CCDイメージセンサー、CMOSイメージセンサー等)の受光エリアを構成する複数のフォトダイオードおよびポリシリコン等からなる転送電極を有し、フォトダイオードおよび転送電極上にフォトダイオードの受光部のみ開口した遮光膜を有し、遮光膜上に遮光膜全面およびフォトダイオード受光部を覆うように形成された窒化シリコン等からなるデバイス保護膜を有し、デバイス保護膜上に、カラーフィルタを有する構成である。
 さらに、デバイス保護膜上であってカラーフィルタの下(支持体に近い側)に集光手段(例えば、マイクロレンズ等。以下同じ)を有する構成や、カラーフィルタ上に集光手段を有する構成等であってもよい。
The support has a transfer electrode made of a plurality of photodiodes and polysilicon constituting a light receiving area of a solid-state imaging device (CCD image sensor, CMOS image sensor, etc.). A light-shielding film having an opening only in the light-receiving portion, a device protective film made of silicon nitride or the like formed on the light-shielding film so as to cover the entire surface of the light-shielding film and the photodiode light-receiving portion, and a color filter on the device protective film It is the structure which has.
Further, a configuration having a light collecting means (for example, a micro lens, etc., the same applies hereinafter) on the device protective film and below the color filter (on the side close to the support), a structure having the light collecting means on the color filter, etc. It may be.
 画像表示装置としては、液晶表示装置や有機エレクトロルミネッセンス表示装置などが挙げられる。表示装置の定義や各表示装置の詳細については、例えば「電子ディスプレイデバイス(佐々木 昭夫著、(株)工業調査会 1990年発行)」、「ディスプレイデバイス(伊吹 順章著、産業図書(株)平成元年発行)」などに記載されている。また、液晶表示装置については、例えば「次世代液晶ディスプレイ技術(内田 龍男編集、(株)工業調査会 1994年発行)」に記載されている。本発明が適用できる液晶表示装置に特に制限はなく、例えば、上記の「次世代液晶ディスプレイ技術」に記載されている色々な方式の液晶表示装置に適用できる。 Examples of the image display device include a liquid crystal display device and an organic electroluminescence display device. For the definition of display devices and details of each display device, refer to, for example, “Electronic Display Device (Akio Sasaki, Kogyo Kenkyukai, 1990)”, “Display Device (Junsho Ibuki, Industrial Books Co., Ltd.) Issued in the first year). The liquid crystal display device is described, for example, in “Next-generation liquid crystal display technology (edited by Tatsuo Uchida, Industrial Research Co., Ltd., published in 1994)”. The liquid crystal display device to which the present invention can be applied is not particularly limited, and can be applied to, for example, various types of liquid crystal display devices described in the “next generation liquid crystal display technology”.
 画像表示装置は、白色有機EL素子を有するものであってもよい。白色有機EL素子としては、タンデム構造であることが好ましい。有機EL素子のタンデム構造については、特開2003-45676号公報、三上明義監修、「有機EL技術開発の最前線-高輝度・高精度・長寿命化・ノウハウ集-」、技術情報協会、326-328ページ、2008年などに記載されている。有機EL素子が発光する白色光のスペクトルは、青色領域(430nm-485nm)、緑色領域(530nm-580nm)および黄色領域(580nm-620nm)に強い極大発光ピークを有するものが好ましい。これらの発光ピークに加え、さらに赤色領域(650nm-700nm)に極大発光ピークを有するものがより好ましい。 The image display device may have a white organic EL element. The white organic EL element preferably has a tandem structure. Regarding the tandem structure of organic EL elements, JP 2003-45676 A, supervised by Akiyoshi Mikami, “Frontier of Organic EL Technology Development-High Brightness, High Precision, Long Life, Know-how Collection”, Technical Information Association, 326-328 pages, 2008, etc. The spectrum of white light emitted from the organic EL device preferably has a strong maximum emission peak in the blue region (430 nm to 485 nm), the green region (530 nm to 580 nm) and the yellow region (580 nm to 620 nm). In addition to these emission peaks, those having a maximum emission peak in the red region (650 nm to 700 nm) are more preferable.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す、材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は、以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は、質量基準である。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. Unless otherwise specified, “part” and “%” are based on mass.
<試験例1>
[チタンブラックA-1の作製]
 BET比表面積110m2/gの酸化チタン(「TTO-51N」商品名:石原産業製)を120g、BET表面積300m2/gのシリカ粒子(「AEROSIL(登録商標)300」、エボニック製)を25g、および、分散剤(「DISPERBYK-190」、BYKChemie社製)を100g秤量し、イオン電気交換水71gを加えてKURABO製MAZERSTAR KK-400Wを使用して、公転回転数1360rpm、自転回転数1047rpmにて30分間処理することにより均一な混合物水溶液を得た。この水溶液を石英容器に充填し、小型ロータリーキルン(株式会社モトヤマ製)を用いて酸素雰囲気中で920℃に加熱した後、窒素で雰囲気を置換し、同温度でアンモニアガスを100mL/分で5時間流すことにより窒化還元処理を実施した。終了後回収した粉末を乳鉢で粉砕し、Si原子を含み、粉末状の比表面積85m2/gのチタンブラック(A-1)〔チタンブラック粒子及びSi原子を含む被分散体〕を得た。
<Test Example 1>
[Production of Titanium Black A-1]
120 g of titanium oxide having a BET specific surface area of 110 m 2 / g (“TTO-51N”, trade name: manufactured by Ishihara Sangyo) and 25 g of silica particles having a BET surface area of 300 m 2 / g (“AEROSIL (registered trademark) 300”, manufactured by Evonik) , And 100 g of a dispersant (“DISPERBYK-190”, manufactured by BYKChemie), weighed 71 g of ion-exchanged water and used MURASTAR KK-400W manufactured by KURABO to achieve a revolution speed of 1360 rpm and a rotation speed of 1047 rpm. For 30 minutes to obtain a uniform aqueous mixture. This aqueous solution is filled in a quartz container, heated to 920 ° C. in an oxygen atmosphere using a small rotary kiln (manufactured by Motoyama Co., Ltd.), then the atmosphere is replaced with nitrogen, and ammonia gas is added at 100 mL / min for 5 hours at the same temperature. The nitriding reduction treatment was carried out by flowing. After the completion, the recovered powder was pulverized in a mortar to obtain a powdery titanium black (A-1) containing titanium atoms and containing Si atoms and having a specific surface area of 85 m 2 / g [a dispersion containing titanium black particles and Si atoms].
[チタンブラック分散物(TB分散液1)の調製]
下記組成1に示す成分を、攪拌機(IKA社製EUROSTAR)を使用して、15分間混合し、分散物aを得た。
 得られた分散物aに対し、寿工業(株)製のウルトラアペックスミルUAM015を使用して下記条件にて分散処理を行い、孔径0.45μmのナイロン製フィルタ(日本ポール(株)製、DFA4201NXEY)を用いてろ過を行って、チタンブラック分散物(以下、TB分散液1と表記する。)を得た。
[Preparation of Titanium Black Dispersion (TB Dispersion 1)]
The component shown in the following composition 1 was mixed for 15 minutes using a stirrer (EUROSTAR manufactured by IKA) to obtain dispersion a.
The obtained dispersion a was subjected to a dispersion treatment using the Ultra Apex Mill UAM015 manufactured by Kotobuki Industry Co., Ltd. under the following conditions, and a nylon filter having a pore diameter of 0.45 μm (manufactured by Nippon Pole Co., Ltd., DFA4201NXEY). ) To obtain a titanium black dispersion (hereinafter referred to as TB dispersion 1).
(組成1)
・上記のようにして得られたチタンブラック(A-1)・・・25質量部
・樹脂1のプロピレングリコールモノメチルエーテルアセテート30質量%溶液・・・25質量部
・プロピレングリコールモノメチルエーテルアセテート(PGMEA)・・・50質量部
・樹脂1:下記構造。特開2013-249417号公報の記載を参照して合成した。なお、樹脂1の式中、xは43質量%、yは49質量%、zは8質量%であった。また、樹脂1の重量平均分子量は30,000であり、酸価は60mgKOH/gであり、グラフト鎖の原子数(水素原子を除く)は117であった。
Figure JPOXMLDOC01-appb-C000025
(Composition 1)
-Titanium black (A-1) obtained as described above-25 parts by mass-30% by mass solution of propylene glycol monomethyl ether acetate in resin 1-25 parts by mass-Propylene glycol monomethyl ether acetate (PGMEA) ... 50 parts by mass / resin 1: The following structure. The synthesis was performed with reference to the description in JP2013-249417A. In the formula of resin 1, x was 43% by mass, y was 49% by mass, and z was 8% by mass. The weight average molecular weight of Resin 1 was 30,000, the acid value was 60 mgKOH / g, and the number of graft chain atoms (excluding hydrogen atoms) was 117.
Figure JPOXMLDOC01-appb-C000025
(分散条件)
・ビーズ径:直径0.05mm
・ビーズ充填率:75体積%
・ミル周速:8m/秒
・分散処理する混合液量:500g
・循環流量(ポンプ供給量):13kg/時
・処理液温度:25~30℃
・冷却水:水道水
・ビーズミル環状通路内容積:0.15L
・パス回数:90パス
(Distribution condition)
・ Bead diameter: 0.05mm in diameter
・ Bead filling rate: 75% by volume
・ Mill peripheral speed: 8 m / sec ・ Mixed liquid amount for dispersion treatment: 500 g
・ Circulating flow rate (pump supply amount): 13 kg / hour ・ Processing liquid temperature: 25-30 ° C.
・ Cooling water: Tap water ・ Bead mill annular passage volume: 0.15L
・ Number of passes: 90 passes
〔活性エネルギー線硬化性組成物の調製〕
 下記組成を混合した後、孔径0.45μmのナイロン製フィルタ(日本ポール(株)製、DFA4201NXEY)を用いてろ過して、活性エネルギー線硬化性組成物を調製した。
(Preparation of active energy ray-curable composition)
After mixing the following composition, it filtered using the nylon filter (Nihon Pole Co., Ltd. product, DFA4201NXEY) with the hole diameter of 0.45 micrometer, and prepared the active energy ray hardening composition.
 TB分散液1・・・63.9質量部
 アルカリ可溶性樹脂1(固形分30%、溶剤:プロピレングリコールモノメチルエーテルアセテート)・・・10.24質量部
 光重合開始剤(IRGACURE-OXE02(BASF社製))・・・1.81質量部
 ラジカル重合性化合物(KAYARAD DPHA(商品名:日本化薬(株)製))・・・6.29質量部
 界面活性剤1・・・0.02質量部
 溶剤(シクロヘキサノン)・・・4.66質量部
 フッ素系界面活性剤(メガファックRS-72-K、エチレン性不飽和基を側鎖に有する含フッ素重合体(DIC(株)製、固形分30%、溶剤:プロピレングリコールモノメチルエーテルアセテート)):10.65質量部
 シランカップリング剤(KBM-4803(信越化学工業(株)製)):0.36質量部
TB dispersion 1 ... 63.9 parts by mass Alkali-soluble resin 1 (solid content 30%, solvent: propylene glycol monomethyl ether acetate) ... 10.24 parts by mass Photopolymerization initiator (IRGACURE-OXE02 (manufactured by BASF) )) ... 1.81 parts by mass Radical polymerizable compound (KAYARAD DPHA (trade name: manufactured by Nippon Kayaku Co., Ltd.)) ... 6.29 parts by mass Surfactant 1 ... 0.02 parts by mass Solvent (cyclohexanone): 4.66 parts by mass Fluorosurfactant (Megafac RS-72-K, fluorinated polymer having ethylenically unsaturated groups in the side chain (manufactured by DIC Corporation, solid content 30) %, Solvent: propylene glycol monomethyl ether acetate)): 10.65 parts by mass Silane coupling agent (KBM-4803 (manufactured by Shin-Etsu Chemical Co., Ltd.)) : 0.36 parts by weight
 アルカリ可溶性樹脂1:下記構造。特開2010-106268号公報の段落番号0338~0340の製造方法に従い、合成した。なお、以下の式中、xは90質量%、zは10質量%であった。また、アルカリ可溶性樹脂1の重量平均分子量は40,000であり、酸価は100mgKOH/gであり、グラフト鎖の原子数(水素原子を除く)は117であった。
Figure JPOXMLDOC01-appb-C000026
 界面活性剤1:下記混合物(Mw=14,000)
Figure JPOXMLDOC01-appb-C000027
Alkali-soluble resin 1: the following structure. The compound was synthesized according to the production methods described in JP-A 2010-106268, paragraph numbers 0338 to 0340. In the following formula, x was 90% by mass and z was 10% by mass. The alkali-soluble resin 1 had a weight average molecular weight of 40,000, an acid value of 100 mgKOH / g, and the number of graft chain atoms (excluding hydrogen atoms) was 117.
Figure JPOXMLDOC01-appb-C000026
Surfactant 1: The following mixture (Mw = 14,000)
Figure JPOXMLDOC01-appb-C000027
〔硬化膜の製造〕
 ガラス基材(直径200mm(8インチ)、厚さ0.7mm、1737(商品名 コーニング社製))に対し、ヘキサメチルジシラザン(HMDS)処理を行ったものを基材として用いた。HMDS処理は、東京エレクトロン社製 ACT8(商品名)を用い、100℃で60秒間行った。
 上記で作製した活性エネルギー線硬化性組成物を、HMDS処理を行ったガラス基材にスピンコート法により塗布した後、65℃のホットプレートを用いて100秒間加熱処理(プリベーク)を行った。活性エネルギー線硬化性組成物の塗布膜厚は、プリベーク後の膜厚が4.0μmとなるように調整した。
 次いで、i線ステッパー露光装置(FPA-3000i5+、Canon(株)製、NA/σ=0.63/0.65、Focus offset=0μm)を使用し、転写パターン(10μm×10μmのアイランド、ピッチは20μm)を有するマスクを介して、8,000J/m2の露光量で露光した。
 次いで、AD-1200(ミカサ(株)製)を使用して、和光純薬工業社製の界面活性剤NCW-101(ノニオン系界面活性剤)を0.3質量%及びテトラメチルアンモニウムヒドロキシド(TMAH)0.01質量%を含む現像液にて、パドルで40秒間現像した。
 次に、純水を用いてリンス処理を行い、その後、30秒間200rpmの高速回転にて乾燥した。
 次に、以下の条件で、電子線照射を行い、硬化膜を製造した。
 電子線照射条件
 装置:浜松ホトニクス社製 電子線照射装置
 加速電圧:5.0kV~200kV、管電流値:4.0mA
 吸収線量145kGy
 基材と電子照射源のクリアランス:10mm
 酸素濃度≦1000体積ppm
 搬送速度(処理時のスキャンスピード)100mm/秒(直径200mmの基材で、2枚/秒)
 処理温度:23℃または50℃
[Production of cured film]
A glass substrate (diameter 200 mm (8 inches), thickness 0.7 mm, 1737 (trade name, manufactured by Corning)) treated with hexamethyldisilazane (HMDS) was used as the substrate. The HMDS treatment was performed at 100 ° C. for 60 seconds using ACT8 (trade name) manufactured by Tokyo Electron Limited.
The active energy ray-curable composition prepared above was applied by spin coating to a glass substrate that had been subjected to HMDS treatment, and then heat-treated (prebaked) for 100 seconds using a 65 ° C. hot plate. The coating thickness of the active energy ray-curable composition was adjusted so that the thickness after pre-baking was 4.0 μm.
Next, using an i-line stepper exposure apparatus (FPA-3000i5 +, manufactured by Canon Inc., NA / σ = 0.63 / 0.65, Focus offset = 0 μm), a transfer pattern (10 μm × 10 μm island, pitch is The film was exposed at a dose of 8,000 J / m 2 through a mask having a thickness of 20 μm.
Then, using AD-1200 (manufactured by Mikasa Co., Ltd.), 0.3 wt% of a surfactant NCW-101 (nonionic surfactant) manufactured by Wako Pure Chemical Industries, Ltd. and tetramethylammonium hydroxide ( (Development with TMAH) 0.01% by mass with paddle for 40 seconds.
Next, a rinsing process was performed using pure water, and then drying was performed at a high speed of 200 rpm for 30 seconds.
Next, electron beam irradiation was performed under the following conditions to produce a cured film.
Electron beam irradiation conditions Device: manufactured by Hamamatsu Photonics, Inc. Electron beam irradiation device Acceleration voltage: 5.0 kV to 200 kV, tube current value: 4.0 mA
Absorbed dose 145kGy
Clearance between substrate and electron irradiation source: 10mm
Oxygen concentration ≤ 1000 ppm by volume
Conveying speed (scanning speed during processing) 100mm / sec (2mm / sec for 200mm diameter substrate)
Processing temperature: 23 ° C or 50 ° C
(硬化膜の光学濃度(OD値)の測定)
 得られた硬化膜(膜厚4μm)に波長260~440nmの光を入射し、その透過率を日立ハイテクノロジーズ製分光器UV4100(商品名)を用いて測定し、波長260~440nmの範囲における光学濃度の最小値を測定した。
(Measurement of optical density (OD value) of cured film)
Light having a wavelength of 260 to 440 nm is incident on the obtained cured film (film thickness: 4 μm), and the transmittance is measured using a spectroscope UV4100 (trade name) manufactured by Hitachi High-Technologies, and optical in the wavelength range of 260 to 440 nm is measured. The minimum concentration was measured.
(硬化膜の密着性評価)
 得られた硬化膜を、シクロヘキサノン溶液に10分間浸漬した後、以下の基準で密着性を評価した。
A:パターン剥がれがない
B:パターン剥がれが生じた
(Evaluation of adhesion of cured film)
The obtained cured film was immersed in a cyclohexanone solution for 10 minutes, and then the adhesion was evaluated according to the following criteria.
A: No pattern peeling B: Pattern peeling occurred
(硬化膜の外観評価)
 得られた硬化膜の外観を評価した。
A:良好
B:表面に白濁が生じたが問題はない。
C:表面に白濁が多く生じて実用的でない。
(Appearance evaluation of cured film)
The appearance of the obtained cured film was evaluated.
A: Good B: White turbidity occurs on the surface, but there is no problem.
C: Many cloudiness occurs on the surface, which is not practical.
(硬化膜の信頼性の評価)
・温度サイクル試験耐性
 以下の条件で、硬化膜の温度サイクル試験を行った。
 装置:LTS-150-A/W(Hutech製)
 試験条件:-45℃および85℃の雰囲気下に、各15分放置し、これを1サイクルとして50サイクル行い、以下の基準で温度サイクル試験耐性を評価した。
A:パターン剥がれがない、
B:表面に白濁が生じたが問題はない、パターン剥がれはない
C:表面に白濁が多く生じて実用的でない。パターン剥がれも混在する
・恒温恒湿試験耐性
 以下の条件で、硬化膜の恒温恒湿試験を行った。
 85℃、相対湿度85%の環境下に100時間放置した後、以下の基準で恒温恒湿試験耐性を評価した。
A:パターン剥がれがない。
B:表面に白濁が生じたが問題はない、パターン剥がれはない。
C:表面に白濁が多く生じて実用的でない。パターン剥がれも混在する。
Figure JPOXMLDOC01-appb-T000028
 上記表に示す通り、10kV以上100kV未満の加速電圧の電子線を照射した試験No.101~108は、信頼性に優れた硬化膜を製造できた。また、得られた硬化膜は、密着性および外観も良好であった。
 一方、加速電圧が10kV未満である試験No.C11、加速電圧が100kV以上である試験No.C12、13は、得られた硬化膜の信頼性が劣っていた。
(Evaluation of cured film reliability)
-Temperature cycle test tolerance The temperature cycle test of the cured film was done on condition of the following.
Device: LTS-150-A / W (manufactured by Hutech)
Test conditions: Each sample was left in an atmosphere of −45 ° C. and 85 ° C. for 15 minutes, and this was regarded as one cycle for 50 cycles. The resistance to temperature cycle test was evaluated according to the following criteria.
A: No pattern peeling
B: White turbidity occurred on the surface, but there was no problem, and there was no pattern peeling. C: Many white turbidity occurred on the surface, which was not practical. Consistent peeling of patterns and resistance to constant temperature and humidity test The constant temperature and humidity test of the cured film was conducted under the following conditions.
After being left in an environment of 85 ° C. and relative humidity of 85% for 100 hours, the resistance to constant temperature and humidity test was evaluated according to the following criteria.
A: There is no pattern peeling.
B: White turbidity occurred on the surface, but there is no problem, and there is no pattern peeling.
C: Many cloudiness occurs on the surface, which is not practical. Pattern peeling is also mixed.
Figure JPOXMLDOC01-appb-T000028
As shown in the above table, Test No. irradiated with an electron beam having an acceleration voltage of 10 kV or more and less than 100 kV. Nos. 101 to 108 were able to produce cured films with excellent reliability. The obtained cured film also had good adhesion and appearance.
On the other hand, test No. whose acceleration voltage is less than 10 kV. C11, test No. whose acceleration voltage is 100 kV or more. C12 and 13 were inferior in the reliability of the obtained cured film.
<試験例2>
〔活性エネルギー線硬化性組成物の調製〕
 下記組成を混合した後、孔径0.45μmのナイロン製フィルタ(日本ポール(株)製、DFA4201NXEY)を用いてろ過して、活性エネルギー線硬化性組成物を調製した。
(組成)
 熱硬化性樹脂(サイクロマーP(ACA)230AA、((株)ダイセル製)・・・10.96質量%
 プロピレングリコールモノメチルエーテルアセテート・・・89.03質量%
 界面活性剤1・・・0.01質量%
 シランカップリング剤(KBM-602、信越化学工業製)・・・表2に示す割合(組成物中の固形分に対する質量%)
 なお、界面活性剤1は、試験例1の活性エネルギー線硬化性組成物の界面活性剤1と同じものを用いた。
<Test Example 2>
(Preparation of active energy ray-curable composition)
After mixing the following composition, it filtered using the nylon filter (Nihon Pole Co., Ltd. product, DFA4201NXEY) with the hole diameter of 0.45 micrometer, and prepared the active energy ray hardening composition.
(composition)
Thermosetting resin (Cyclomer P (ACA) 230AA, (manufactured by Daicel Corporation)) 10.96% by mass
Propylene glycol monomethyl ether acetate: 89.03 mass%
Surfactant 1 ... 0.01% by mass
Silane coupling agent (KBM-602, manufactured by Shin-Etsu Chemical Co., Ltd.): ratio shown in Table 2 (mass% based on solid content in the composition)
The same surfactant 1 as the surfactant 1 of the active energy ray-curable composition of Test Example 1 was used.
〔硬化膜の製造〕
 上記で作製した活性エネルギー線硬化性組成物を、HMDS処理を行ったガラス基材にスピンコート法により塗布した後、65℃のホットプレートを用いて100秒間加熱処理(プリベーク)を行った。活性エネルギー線硬化性組成物の塗布膜厚は、プリベーク後の膜厚が0.3μmとなるように調整した。
 次に、以下の条件で、電子線照射を行い、硬化膜を製造した。
 電子線照射条件
 装置:浜松ホトニクス社製 電子線照射装置
 加速電圧:70kV、管電流値:4.0mA
 吸収線量145kGy
 基材と電子照射源のクリアランス:10mm
 酸素濃度≦1000体積ppm
 搬送速度(処理時のスキャンスピード)100mm/秒(直径200mmの基材で、2枚/秒)
 処理温度:23℃
[Production of cured film]
The active energy ray-curable composition prepared above was applied by spin coating to a glass substrate that had been subjected to HMDS treatment, and then heat-treated (prebaked) for 100 seconds using a 65 ° C. hot plate. The coating thickness of the active energy ray-curable composition was adjusted so that the thickness after pre-baking was 0.3 μm.
Next, electron beam irradiation was performed under the following conditions to produce a cured film.
Electron beam irradiation conditions Device: manufactured by Hamamatsu Photonics, Inc. Electron beam irradiation device Acceleration voltage: 70 kV, tube current value: 4.0 mA
Absorbed dose 145kGy
Clearance between substrate and electron irradiation source: 10mm
Oxygen concentration ≤ 1000 ppm by volume
Conveying speed (scanning speed during processing) 100mm / sec (2mm / sec for 200mm diameter substrate)
Processing temperature: 23 ° C
(光学濃度(OD値)の測定)
 試験例1と同様にして、得られた硬化膜(膜厚0.3μm)のOD値を測定した。
(Measurement of optical density (OD value))
In the same manner as in Test Example 1, the OD value of the obtained cured film (film thickness: 0.3 μm) was measured.
(密着性(クロスカット)の評価)
 上記で作製した硬化膜の密着性を、クロスカット試験(JIS K5600に準ずる。但し、100個の膜片からなる格子パターンで行う)によって評価した。クロスカット試験では、硬化膜に対し、基材に到達するまでの深さの切込みを、縦と横方向に11か所ずつ入れた。
 100個の膜片中で剥離した膜片の個数を下記の評価基準に従って評価し、得られた結果を下記表2に記載した。
 A:0個
 B:1個以上100個未満
 C:100個
(Evaluation of adhesion (cross cut))
The adhesion of the cured film prepared above was evaluated by a cross-cut test (according to JIS K5600, but with a lattice pattern consisting of 100 film pieces). In the cross-cut test, incisions having a depth until reaching the base material were cut into the cured film at 11 points in the vertical and horizontal directions.
The number of the film pieces peeled in 100 film pieces was evaluated according to the following evaluation criteria, and the obtained results are shown in Table 2 below.
A: 0 B: 1 or more and less than 100 C: 100
(硬化膜の外観評価)
 試験例1と同様にして、硬化膜の外観を評価した。
(Appearance evaluation of cured film)
In the same manner as in Test Example 1, the appearance of the cured film was evaluated.
(硬化膜の信頼性の評価)
・温度サイクル試験耐性
 試験例1と同様にして、硬化膜の温度サイクル試験耐性を評価した。
・恒温恒湿試験耐性
 試験例1と同様にして、硬化膜の恒温恒湿試験耐性を評価した。
(Evaluation of cured film reliability)
-Temperature cycle test tolerance It carried out similarly to Test Example 1, and evaluated the temperature cycle test tolerance of the cured film.
-Resistance to constant temperature and humidity test In the same manner as in Test Example 1, the resistance to constant temperature and humidity test of the cured film was evaluated.
Figure JPOXMLDOC01-appb-T000029
 上記表に示す通り、10kV以上100kV未満の加速電圧の電子線を照射した試験No.201~206は、信頼性に優れた硬化膜を製造できた。
Figure JPOXMLDOC01-appb-T000029
As shown in the above table, Test No. irradiated with an electron beam having an acceleration voltage of 10 kV or more and less than 100 kV. Nos. 201 to 206 were able to produce cured films having excellent reliability.
<試験例3>
〔活性エネルギー線硬化性組成物の調製〕
 下記組成を混合した後、孔径0.45μmのナイロン製フィルタ(日本ポール(株)製、DFA4201NXEY)を用いてろ過して、活性エネルギー線硬化性組成物を調製した。
(組成)
 樹脂(アクリキュア RD-F8、(株)日本触媒製)・・・19.08質量部
 ラジカル重合性化合物(アロニックス TO-2349、東亞合成(株)製)・・・47.7質量部
 光重合開始剤(IRGACURE-184、BASF社製)・・・4.10質量部
 光重合開始剤(Lucirin-TPO、BASF社製)・・・0.57質量部
 シランカップリング剤(KBM-602、信越化学工業製)・・・0.05質量部
 界面活性剤(NCW-101、和光純薬工業社製)・・・0.01質量部
 プロピレングリコールモノメチルエーテルアセテート・・・28.62質量部
<Test Example 3>
(Preparation of active energy ray-curable composition)
After mixing the following composition, it filtered using the nylon filter (Nihon Pole Co., Ltd. product, DFA4201NXEY) with the hole diameter of 0.45 micrometer, and prepared the active energy ray hardening composition.
(composition)
Resin (Acrycure RD-F8, manufactured by Nippon Shokubai Co., Ltd.) ... 19.08 parts by mass Radical polymerizable compound (Aronix TO-2349, manufactured by Toagosei Co., Ltd.) ... 47.7 parts by mass Photopolymerization started Agent (IRGACURE-184, manufactured by BASF) ... 4.10 parts by mass Photopolymerization initiator (Lucirin-TPO, manufactured by BASF) ... 0.57 parts by mass Silane coupling agent (KBM-602, Shin-Etsu Chemical) 0.05 mass parts Surfactant (NCW-101, Wako Pure Chemical Industries, Ltd.) 0.01 mass parts Propylene glycol monomethyl ether acetate 28.62 mass parts
〔硬化膜の製造〕
 上記で作製した活性エネルギー線硬化性組成物を、ガラス基材(直径200mm(8インチ)、厚さ0.7mm、1737(商品名 コーニング社製))に、以下の条件で塗布した後、65℃のホットプレートを用いて100秒間加熱処理(プリベーク)を行った。
 塗布:スプレーコート法
 霧化圧:450Pa
 流量:3.0cm3/分
 ノズルと基材の距離:30mm
 塗布スキャンスピード:200mm/秒(直径200mmの基材で、2枚/秒)
 スキャンピッチ:5.0mm
 塗布膜厚:10.0μm-50.0μm(プリベーク後の膜厚、膜厚はスキャン回数で規定した。)
 次いで、i線ステッパー露光装置(FPA-3000i5+、Canon(株)製、NA/σ=0.63/0.65、Focus offset =0μm)を使用し、転写パターン(500μm×500μmのアイランド、ピッチは1000μm)を有するマスクを介して、8000J/m2の露光量で露光した。
 次いで、AD-1200(ミカサ(株)製)を使用して、アルカリ現像液(水酸化テトラメチルアンモニウム(TMAH)0.3質量%水溶液)にてパドルで60秒間現像した。
 次に、純水を用いてリンス処理を行い、その後、30秒間200rpmの高速回転にて乾燥した。
 次に、以下の条件で、電子線照射を行い、硬化膜を製造した。
 電子線照射条件
 装置:浜松ホトニクス社製 電子線照射装置
 加速電圧:95kV、管電流値:4.0mA
 基材と電子照射源のクリアランス:10mm
 酸素濃度≦1000体積ppm
 搬送速度(処理時のスキャンスピード)100mm/秒(直径200mmの基材で、2枚/秒)
 処理温度:23℃
[Production of cured film]
After applying the active energy ray-curable composition prepared above to a glass substrate (diameter 200 mm (8 inches), thickness 0.7 mm, 1737 (trade name, manufactured by Corning)) under the following conditions, 65 Heat treatment (pre-baking) was performed for 100 seconds using a hot plate at 0 ° C.
Application: Spray coating method Atomization pressure: 450Pa
Flow rate: 3.0 cm 3 / min Distance between nozzle and substrate: 30 mm
Application scan speed: 200 mm / sec (2 mm / sec for 200 mm diameter substrate)
Scan pitch: 5.0mm
Coating film thickness: 10.0 μm-50.0 μm (film thickness after pre-baking, film thickness is defined by the number of scans)
Next, using an i-line stepper exposure apparatus (FPA-3000i5 +, manufactured by Canon Inc., NA / σ = 0.63 / 0.65, Focus offset = 0 μm), a transfer pattern (500 μm × 500 μm island, pitch is The film was exposed through a mask having a thickness of 1000 μm) at an exposure amount of 8000 J / m 2 .
Subsequently, using AD-1200 (manufactured by Mikasa Co., Ltd.), development was performed with an alkaline developer (tetramethylammonium hydroxide (TMAH) 0.3 mass% aqueous solution) in a paddle for 60 seconds.
Next, a rinsing process was performed using pure water, and then drying was performed at a high speed of 200 rpm for 30 seconds.
Next, electron beam irradiation was performed under the following conditions to produce a cured film.
Electron beam irradiation conditions Device: manufactured by Hamamatsu Photonics Co., Ltd. Electron beam irradiation device Acceleration voltage: 95 kV, tube current value: 4.0 mA
Clearance between substrate and electron irradiation source: 10mm
Oxygen concentration ≤ 1000 ppm by volume
Conveying speed (scanning speed during processing) 100mm / sec (2mm / sec for 200mm diameter substrate)
Processing temperature: 23 ° C
(光学濃度(OD値)の測定)
 試験例1と同様にして、得られた硬化膜(表3に記載の膜厚)のOD値を測定した。
(Measurement of optical density (OD value))
In the same manner as in Test Example 1, the OD value of the obtained cured film (film thickness described in Table 3) was measured.
(硬化膜の信頼性の評価)
・温度サイクル試験耐性
 試験例1と同様にして、硬化膜の温度サイクル試験耐性を評価した。
・恒温恒湿試験耐性
 試験例1と同様にして、硬化膜の恒温恒湿試験耐性を評価した。
(Evaluation of cured film reliability)
-Temperature cycle test tolerance It carried out similarly to Test Example 1, and evaluated the temperature cycle test tolerance of the cured film.
-Resistance to constant temperature and humidity test In the same manner as in Test Example 1, the resistance to constant temperature and humidity test of the cured film was evaluated.
Figure JPOXMLDOC01-appb-T000030
 上記表に示す通り、10kV以上100kV未満の加速電圧の電子線を照射した試験No.201~206は、信頼性に優れた硬化膜を製造できた。
Figure JPOXMLDOC01-appb-T000030
As shown in the above table, Test No. irradiated with an electron beam having an acceleration voltage of 10 kV or more and less than 100 kV. Nos. 201 to 206 were able to produce cured films having excellent reliability.
<試験例4>
 基材として、試験例1で使用した、HMDS処理を行ったガラス基材を用いた。
 赤レジスト(SR2000、富士フイルムエレクトロニクスマテリアルズ社製)をスピンコート法により塗布した後、65℃のホットプレートを用いて150秒間加熱処理(プリベーク)を行った。活性エネルギー線硬化性組成物の塗布膜厚は、プリベーク後の膜厚が2μmとなるように調整した。
 次いで、i線ステッパー露光装置(FPA-3000i5+、Canon(株)製、NA/σ=0.63/0.65、Focus offset=0μm)を使用し、転写パターン(パターンサイズ:100μm×100μm)を有するマスクを介して、800mJ/cm2の露光量で露光した。
 次いで、AD-1200(ミカサ(株)製)を使用して、アルカリ現像液(水酸化テトラメチルアンモニウム(TMAH)0.3質量%水溶液)にてパドルで60秒間現像した。
 次に、純水を用いてリンス処理を行い、その後、30秒間200rpmの高速回転にて乾燥した。
 次に、下記のいずれかの条件で硬化処理を行い、硬化膜(赤色着色パターン)を製造した。
(EB硬化1)
 装置:浜松ホトニクス社製 電子線照射装置
 加速電圧:70kV、管電流値:4.0mA
 吸収線量:145kGy
 基材と電子照射源のクリアランス:10mm
 酸素濃度≦1000体積ppm
 搬送速度(処理時のスキャンスピード)100mm/秒(直径200mmの基材で、2枚/秒)
 処理温度:23℃
(EB硬化2)
 装置:浜松ホトニクス社製 電子線照射装置
 加速電圧:120kV、管電流値:4.0mA
 吸収線量:145kGy
 基材と電子照射源のクリアランス:10mm
 酸素濃度≦1000体積ppm
 搬送速度(処理時のスキャンスピード)100mm/秒(直径200mmの基材で、2枚/秒)
 処理温度:23℃
(UV硬化)
 露光量(紫外線):3,000mJ/cm2
 温度:35℃
<Test Example 4>
As the substrate, the glass substrate used in Test Example 1 and subjected to HMDS treatment was used.
A red resist (SR2000, manufactured by Fuji Film Electronics Materials Co., Ltd.) was applied by spin coating, and then heat-treated (prebaked) for 150 seconds using a 65 ° C. hot plate. The coating thickness of the active energy ray-curable composition was adjusted so that the thickness after pre-baking was 2 μm.
Next, an i-line stepper exposure apparatus (FPA-3000i5 +, manufactured by Canon Inc., NA / σ = 0.63 / 0.65, Focus offset = 0 μm) was used, and a transfer pattern (pattern size: 100 μm × 100 μm) was used. It exposed with the exposure amount of 800 mJ / cm < 2 > through the mask which has.
Subsequently, using AD-1200 (manufactured by Mikasa Co., Ltd.), development was performed with an alkaline developer (tetramethylammonium hydroxide (TMAH) 0.3 mass% aqueous solution) in a paddle for 60 seconds.
Next, a rinsing process was performed using pure water, and then drying was performed at a high speed of 200 rpm for 30 seconds.
Next, the hardening process was performed on either of the following conditions, and the cured film (red coloring pattern) was manufactured.
(EB curing 1)
Apparatus: Electron beam irradiation apparatus manufactured by Hamamatsu Photonics Co., Ltd. Acceleration voltage: 70 kV, tube current value: 4.0 mA
Absorbed dose: 145 kGy
Clearance between substrate and electron irradiation source: 10mm
Oxygen concentration ≤ 1000 ppm by volume
Conveying speed (scanning speed during processing) 100mm / sec (2mm / sec for 200mm diameter substrate)
Processing temperature: 23 ° C
(EB curing 2)
Apparatus: Electron beam irradiation apparatus manufactured by Hamamatsu Photonics Inc. Acceleration voltage: 120 kV, tube current value: 4.0 mA
Absorbed dose: 145 kGy
Clearance between substrate and electron irradiation source: 10mm
Oxygen concentration ≤ 1000 ppm by volume
Conveying speed (scanning speed during processing) 100mm / sec (2mm / sec for 200mm diameter substrate)
Processing temperature: 23 ° C
(UV curing)
Exposure amount (ultraviolet light): 3,000 mJ / cm 2
Temperature: 35 ° C
(分光評価)
 硬化処理前の膜の分光と、EB硬化1の条件で硬化処理後の膜の分光を、分光器(MCPD3000、大塚電子社製)を用いて測定したところ、硬化処理前後において、分光変動は見られなかった。
(Spectral evaluation)
The spectrum of the film before the curing process and the spectrum of the film after the curing process under the conditions of EB curing 1 were measured using a spectroscope (MCPD3000, manufactured by Otsuka Electronics Co., Ltd.). I couldn't.
(硬化膜の信頼性)
 EB硬化1の条件で硬化処理した硬化膜について、試験例1と同様の方法で、温度サイクル試験耐性、恒温恒湿試験耐性を行い、硬化膜の信頼性を評価したところ、パターン剥がれがなく、信頼性に優れていた。
(Reliability of cured film)
The cured film cured under the conditions of EB curing 1 was subjected to temperature cycle test resistance and constant temperature and humidity test resistance in the same manner as in Test Example 1, and when the reliability of the cured film was evaluated, there was no pattern peeling. Excellent reliability.
(混色の評価)
 硬化処理前の膜の分光を、分光器(MCPD3000、大塚電子社製)を使用して、600~700nmの波長範囲における最大透過率T0を測定した。
 次に、各硬化処理を行って製造した赤色着色パターン上に、混色評価用青レジスト(SB2000、富士フイルムエレクトロニクスマテリアルズ社製)を、乾燥後の膜厚が2μmになるようにスピン塗布し、65℃で150秒間加熱処理(プリベーク)を行った。
 次いで、転写パターン(パターンサイズ:100μm×100μm)を有するマスクを介して、i線ステッパー露光装置(FPA-3000i5+、Canon(株)製、NA/σ=0.63/0.65、Focus offset=0μm)を使用し、800mJ/cm2の露光量で露光した。
 次いで、AD-1200(ミカサ(株)製)を使用して、アルカリ現像液(水酸化テトラメチルアンモニウム(TMAH)0.3質量%水溶液)にてパドルで60秒間現像した。
 次に、純水を用いてリンス処理を行い、その後、30秒間200rpmの高速回転にて乾燥して青色着色パターンを形成した。
 次に、青色着色パターンを形成後の硬化膜(赤色着色パターン)について、分光器(MCPD3000、大塚電子社製)を使用して、600~700nmの波長範囲における最大透過率T1を測定し、最大透過率変化(ΔT=T0-T1)を算出した。
 また、赤色着色パターンの硬化処理のスペクトル、EB硬化1、およびUV硬化の条件で硬化処理後の赤色着色パターンの混色時化後のスペクトルを図1に示す。
(Evaluation of color mixture)
The spectrum of the film before the curing treatment was measured using a spectroscope (MCPD3000, manufactured by Otsuka Electronics Co., Ltd.) to measure the maximum transmittance T0 in the wavelength range of 600 to 700 nm.
Next, on the red coloring pattern produced by performing each curing treatment, a blue resist for color mixture evaluation (SB2000, manufactured by Fuji Film Electronics Materials Co., Ltd.) is spin-coated so that the film thickness after drying becomes 2 μm, Heat treatment (prebaking) was performed at 65 ° C. for 150 seconds.
Next, through a mask having a transfer pattern (pattern size: 100 μm × 100 μm), an i-line stepper exposure apparatus (FPA-3000i5 +, manufactured by Canon Inc., NA / σ = 0.63 / 0.65, Focus offset = 0 μm) and was exposed at an exposure amount of 800 mJ / cm 2 .
Subsequently, using AD-1200 (manufactured by Mikasa Co., Ltd.), development was performed with an alkaline developer (tetramethylammonium hydroxide (TMAH) 0.3 mass% aqueous solution) in a paddle for 60 seconds.
Next, a rinsing process was performed using pure water, followed by drying at a high speed of 200 rpm for 30 seconds to form a blue colored pattern.
Next, with respect to the cured film (red colored pattern) after forming the blue coloring pattern, the maximum transmittance T1 in the wavelength range of 600 to 700 nm is measured using a spectroscope (MCPD3000, manufactured by Otsuka Electronics Co., Ltd.). The transmittance change (ΔT = T0−T1) was calculated.
Further, FIG. 1 shows the spectrum of the red coloring pattern curing process, the EB curing 1 and the spectrum after color mixing of the red coloring pattern after the curing process under the UV curing conditions.
Figure JPOXMLDOC01-appb-T000031
 上記の結果より、EB硬化1の条件で硬化処理を行った試験No.401は、他色の混色を効果的に抑制できた。
Figure JPOXMLDOC01-appb-T000031
From the above results, the test No. 1 was cured under the conditions of EB curing 1. 401 was able to effectively suppress color mixing of other colors.
<試験例5>
 以下の表に示す基材に対し、電子線照射、または、220℃で5分(ホットプレート)または1時間(オーブン)の加熱処理を行い、基材のダメージを、以下の基準で評価した。
 電子線照射は以下の条件で行った。
 電子線照射条件
 装置:浜松ホトニクス社製 電子線照射装置
 加速電圧:95kV、管電流値:4.0mA
 基材と電子照射源のクリアランス:10mm
 酸素濃度≦1000体積ppm
 搬送速度(処理時のスキャンスピード)100mm/秒(直径200mmの基材で、2枚/秒)
 処理温度:23℃
 なお、処理条件ごとに基材を5枚使用した。また、表中のカッコ内の数値は、不良率である。
 A:処理後の基材に反り、欠け、割れおよび変色がない。
 B:基材の一部にひび割れ、または、欠けがあった。
 C:1~3枚の基材に、割れ、または、反りがあった。
 D:4枚以上の基材に、割れ、または、反りがあった。
組成物の硬化の手法として、220℃のホットプレート/オーブンと電子線照射が挙げられる。これら硬化手法による基材のダメージを評価した(基材5枚使用)。
<Test Example 5>
The substrate shown in the following table was subjected to electron beam irradiation or heat treatment at 220 ° C. for 5 minutes (hot plate) or 1 hour (oven), and the damage of the substrate was evaluated according to the following criteria.
Electron beam irradiation was performed under the following conditions.
Electron beam irradiation conditions Device: manufactured by Hamamatsu Photonics Co., Ltd. Electron beam irradiation device Acceleration voltage: 95 kV, tube current value: 4.0 mA
Clearance between substrate and electron irradiation source: 10mm
Oxygen concentration ≤ 1000 ppm by volume
Conveying speed (scanning speed during processing) 100mm / sec (2mm / sec for 200mm diameter substrate)
Processing temperature: 23 ° C
Five substrates were used for each processing condition. The numerical value in parentheses in the table is the defect rate.
A: The substrate after the treatment is not warped, chipped, cracked or discolored.
B: A part of the substrate was cracked or chipped.
C: 1 to 3 substrates were cracked or warped.
D: There were cracks or warpage in four or more substrates.
Examples of the method for curing the composition include a 220 ° C. hot plate / oven and electron beam irradiation. The damage of the base material by these curing methods was evaluated (use of 5 base materials).
Figure JPOXMLDOC01-appb-T000032
 上記の結果から明らかなように、熱処理では反り、欠け、割れなどが生じた基材であっても、電子線照射では、反り、欠けおよび割れは生じなかった。
Figure JPOXMLDOC01-appb-T000032
As is clear from the above results, even if the substrate was warped, chipped, or cracked by heat treatment, it was not warped, chipped or cracked by electron beam irradiation.
<試験例6>
〔顔料分散液B-1の調製〕
 下記組成の混合液を、0.3mm径のジルコニアビーズを使用して、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))で、3時間、混合、分散して、顔料分散液B-1を調製した。
・赤色顔料(C.I.ピグメントレッド254)および黄色顔料(C.I.ピグメントイエロー139)からなる混合顔料(C.I.ピグメントレッド254:C.I.ピグメントイエロー139=4:1(質量比))・・・11.8質量部
・樹脂1(分散剤)(BYKChemie社製、DISPERBYK-111)・・・9.1質量部
・プロピレングリコールメチルエーテルアセテート・・・79.1質量部
<Test Example 6>
[Preparation of pigment dispersion B-1]
A mixed solution having the following composition was mixed and dispersed for 3 hours using a zirconia bead having a diameter of 0.3 mm in a bead mill (high pressure disperser NANO-3000-10 with a pressure reducing mechanism (manufactured by Nippon BEE Co., Ltd.)). Thus, a pigment dispersion B-1 was prepared.
A mixed pigment (CI pigment red 254: CI pigment yellow 139 = 4: 1 (mass) consisting of a red pigment (CI pigment red 254) and a yellow pigment (CI pigment yellow 139) Ratio)) ... 11.8 parts by mass-Resin 1 (dispersant) (BYK Chemie, DISPERBYK-111)-9.1 parts by mass-Propylene glycol methyl ether acetate-79.1 parts by mass
〔顔料分散液B-2の調製〕
 下記組成の混合液を、0.3mm径のジルコニアビーズを使用して、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))で、3時間、混合、分散して、顔料分散液B-2を調製した。
・青色顔料(C.I.ピグメントブルー15:6)および紫色顔料(C.I.ピグメントバイオレット23)からなる混合顔料(C.I.ピグメントブルー15:6:C.I.ピグメントバイオレット23=9:4(質量比))・・・12.6質量部
・樹脂1(分散剤)(BYKChemie社製、DISPERBYK-111)・・・2.0質量部
・樹脂2(分散剤)・・・3.3質量部
・シクロヘキサノン・・・31.2質量部
・プロピレングリコールメチルエーテルアセテート・・・50質量部
[Preparation of pigment dispersion B-2]
A mixed solution having the following composition was mixed and dispersed for 3 hours using a zirconia bead having a diameter of 0.3 mm in a bead mill (high pressure disperser NANO-3000-10 with a pressure reducing mechanism (manufactured by Nippon BEE Co., Ltd.)). Thus, a pigment dispersion B-2 was prepared.
A mixed pigment (CI pigment blue 15: 6: CI pigment violet 23 = 9) consisting of a blue pigment (CI pigment blue 15: 6) and a purple pigment (CI pigment violet 23) : 4 (mass ratio)) ... 12.6 parts by mass Resin 1 (dispersant) (BYPER Chemie, DISPERBYK-111) ... 2.0 parts by mass resin 2 (dispersant) ... 3 3 parts by mass, cyclohexanone 31.2 parts by mass, propylene glycol methyl ether acetate 50 parts by mass
 樹脂2:下記構造(繰り返し単位における比はモル比である、Mw=14,000)
 なお、樹脂2はアルカリ可溶性樹脂でもある。
Figure JPOXMLDOC01-appb-C000033
Resin 2: The following structure (ratio in repeating units is molar ratio, Mw = 14,000)
Resin 2 is also an alkali-soluble resin.
Figure JPOXMLDOC01-appb-C000033
〔活性エネルギー線硬化性組成物の調製〕
 下記組成を混合した後、孔径0.45μmのナイロン製フィルタ(日本ポール(株)製、DFA4201NXEY)を用いてろ過して、活性エネルギー線硬化性組成物を調製した。
(組成)
・顔料分散液B-1・・・46.5質量部
・顔料分散液B-2・・・37.1質量部
・アルカリ可溶性樹脂1・・・1.1質量部
・ラジカル重合性化合物1・・・1.8質量部
・シランカップリング剤1・・・0.6質量部
・光重合開始剤1・・・0.9質量部
・界面活性剤1:・・・4.2質量部
・重合禁止剤(パラ-メトキシフェノール)・・・0.001質量部
・PGMEA・・・7.8質量部
(Preparation of active energy ray-curable composition)
After mixing the following composition, it filtered using the nylon filter (Nihon Pole Co., Ltd. product, DFA4201NXEY) with the hole diameter of 0.45 micrometer, and prepared the active energy ray hardening composition.
(composition)
-Pigment dispersion B-1 ... 46.5 parts by mass-Pigment dispersion B-2 ... 37.1 parts by mass-Alkali-soluble resin 1 ... 1.1 parts by mass-Radical polymerizable compound 1- 1.8 mass parts Silane coupling agent 1 0.6 mass parts Photoinitiator 1 0.9 mass parts Surfactant 1: 4.2 mass parts Polymerization inhibitor (para-methoxyphenol): 0.001 part by mass / PGMEA: 7.8 parts by mass
・アルカリ可溶性樹脂1:下記構造(繰り返し単位における比はモル比である、Mw=11,000)
Figure JPOXMLDOC01-appb-C000034
・ラジカル重合性化合物1:下記構造(左側化合物と右側化合物とのモル比が7:3の混合物)
Figure JPOXMLDOC01-appb-C000035
・シランカップリング剤1:下記構造
Figure JPOXMLDOC01-appb-C000036
光重合開始剤1:下記構造
Figure JPOXMLDOC01-appb-C000037
 なお、界面活性剤1は、試験例1の活性エネルギー線硬化性組成物の界面活性剤1と同じものを用いた。
Alkali-soluble resin 1: the following structure (ratio in repeating units is molar ratio, Mw = 11,000)
Figure JPOXMLDOC01-appb-C000034
Radical polymerizable compound 1: structure shown below (a mixture in which the molar ratio of the left compound to the right compound is 7: 3)
Figure JPOXMLDOC01-appb-C000035
・ Silane coupling agent 1: Structure shown below
Figure JPOXMLDOC01-appb-C000036
Photopolymerization initiator 1: structure shown below
Figure JPOXMLDOC01-appb-C000037
The same surfactant 1 as the surfactant 1 of the active energy ray-curable composition of Test Example 1 was used.
〔硬化膜の製造〕
 上記で作製した活性エネルギー線硬化性組成物を、ガラス基材(直径200mm(8インチ)、厚さ0.7mm、1737(商品名 コーニング社製))に塗布した後、65℃のホットプレートを用いて120秒間加熱処理(プリベーク)を行った。活性エネルギー線硬化性組成物の塗布膜厚は、プリベーク後の膜厚が2μmとなるように調整した。
 次いで、i線ステッパー露光装置(FPA-3000i5+、Canon(株)製、NA/σ=0.63/0.65、Focus offset =0μm)を使用し、転写パターン(パターンサイズ:100μm×100μm)を有するマスクを介して、500mJ/cm2の露光量で露光した。
 次いで、AD-1200(ミカサ(株)製)を使用して、アルカリ現像液(水酸化テトラメチルアンモニウム(TMAH)0.3質量%水溶液)にてパドルで60秒間現像した。
 次いで、純水を用いてリンス処理を行い、その後、30秒間200rpmの高速回転にて乾燥した。
 次いで、下記のいずれかの条件で硬化処理を行った後、ホットプレートを用いて、240℃で5分間追加ベーク処理を行った。
(EB硬化)
 装置:浜松ホトニクス社製 電子線照射装置
 加速電圧:70kV、管電流値:4.0mA
 吸収線量:145kGy
 基材と電子照射源のクリアランス:10mm
 酸素濃度≦1000体積ppm
 搬送速度(処理時のスキャンスピード)100mm/秒(直径200mmの基材で、2枚/秒)
 処理温度:23℃
(UV硬化)
 露光量(紫外線):3,000mJ/cm2
 温度:35℃
(加熱硬化)
 オーブンにて、220℃で1時間
[Production of cured film]
After applying the active energy ray-curable composition prepared above to a glass substrate (diameter 200 mm (8 inches), thickness 0.7 mm, 1737 (trade name, manufactured by Corning)), a 65 ° C. hot plate was applied. Heat treatment (pre-baking) was performed for 120 seconds using it. The coating thickness of the active energy ray-curable composition was adjusted so that the thickness after pre-baking was 2 μm.
Next, using an i-line stepper exposure apparatus (FPA-3000i5 +, manufactured by Canon Inc., NA / σ = 0.63 / 0.65, Focus offset = 0 μm), a transfer pattern (pattern size: 100 μm × 100 μm) was used. It exposed with the exposure amount of 500 mJ / cm < 2 > through the mask which has.
Subsequently, using AD-1200 (manufactured by Mikasa Co., Ltd.), development was performed with an alkaline developer (tetramethylammonium hydroxide (TMAH) 0.3 mass% aqueous solution) in a paddle for 60 seconds.
Next, a rinsing process was performed using pure water, and then drying was performed at a high speed of 200 rpm for 30 seconds.
Subsequently, after performing a curing process under any of the following conditions, an additional baking process was performed at 240 ° C. for 5 minutes using a hot plate.
(EB curing)
Apparatus: Electron beam irradiation apparatus manufactured by Hamamatsu Photonics Co., Ltd. Acceleration voltage: 70 kV, tube current value: 4.0 mA
Absorbed dose: 145 kGy
Clearance between substrate and electron irradiation source: 10mm
Oxygen concentration ≤ 1000 ppm by volume
Conveying speed (scanning speed during processing) 100mm / sec (2mm / sec for 200mm diameter substrate)
Processing temperature: 23 ° C
(UV curing)
Exposure amount (ultraviolet light): 3,000 mJ / cm 2
Temperature: 35 ° C
(Heat curing)
1 hour at 220 ° C in oven
(光学濃度(OD値)の測定)
 試験例1と同様にして、得られた硬化膜(膜厚2μm)のOD値を測定した。
(Measurement of optical density (OD value))
In the same manner as in Test Example 1, the OD value of the obtained cured film (film thickness: 2 μm) was measured.
(硬化膜の信頼性の評価)
・温度サイクル試験耐性
 試験例1と同様にして、硬化膜の温度サイクル試験耐性を評価した。
・恒温恒湿試験耐性
 試験例1と同様にして、硬化膜の恒温恒湿試験耐性を評価した。
(Evaluation of cured film reliability)
-Temperature cycle test tolerance It carried out similarly to Test Example 1, and evaluated the temperature cycle test tolerance of the cured film.
-Resistance to constant temperature and humidity test In the same manner as in Test Example 1, the resistance to constant temperature and humidity test of the cured film was evaluated.
(外観)
 硬化処理前、硬化処理後、追加ベーク後の膜の外観を評価した。
 A:問題ない
 B:表面に皺が生じた
(appearance)
The appearance of the film before the curing process, after the curing process, and after the additional baking was evaluated.
A: No problem B: Wrinkles on the surface
Figure JPOXMLDOC01-appb-T000038
 上記表に示す通り、10kV以上100kV未満の加速電圧の電子線を照射した試験No.601は、加熱硬化を行ったNo.603と同等の、信頼性に優れた硬化膜を製造できた。また、硬化処理後、追加ベーク後の膜には皺がなく、外観が良好であった。
 一方、UV硬化を行った、試験No.602は、信頼性が劣っていた。更には、追加ベーク後の膜には、皺が発生した。これは、露光パターンの表面のみ硬化が促進され、パターン内部の重合が不十分であったため、高温での処理により、表面と内部の膜収縮差により、表面に皺が発生したものと推測される。
Figure JPOXMLDOC01-appb-T000038
As shown in the above table, Test No. irradiated with an electron beam having an acceleration voltage of 10 kV or more and less than 100 kV. No. 601 is a No. 601 after heat curing. A cured film equivalent to 603 and excellent in reliability could be produced. Further, the film after additional baking was free from wrinkles and had a good appearance.
On the other hand, UV curing was performed, test No. 602 was inferior in reliability. Furthermore, wrinkles occurred in the film after the additional baking. This is presumed that wrinkles were generated on the surface due to the difference in film shrinkage between the surface and the inner surface due to the treatment at a high temperature because the curing of only the surface of the exposure pattern was promoted and the polymerization inside the pattern was insufficient. .
<試験例7>
〔活性エネルギー線硬化性組成物の調製〕
 下記組成を混合した後、孔径0.45μmのナイロン製フィルタ(日本ポール(株)製、DFA4201NXEY)を用いてろ過して、活性エネルギー線硬化性組成物を調製した。
(組成)
・カチオン重合性化合物(EHPE 3150、ダイセル化学工業社製)・・・4.0質量%
・酸発生剤(WPAG-469、和光純薬工業社製、20%プロピレングリコールモノメチルエーテルアセテート溶液)・・・1.0質量%
・界面活性剤1・・・0.1質量%
・プロピレングリコールモノメチルエーテルアセテート(PGMEA)・・・94.9質量%
 なお、界面活性剤1は、試験例1の活性エネルギー線硬化性組成物の界面活性剤1と同じものを用いた。
<Test Example 7>
(Preparation of active energy ray-curable composition)
After mixing the following composition, it filtered using the nylon filter (Nihon Pole Co., Ltd. product, DFA4201NXEY) with the hole diameter of 0.45 micrometer, and prepared the active energy ray hardening composition.
(composition)
・ Cationically polymerizable compound (EHPE 3150, manufactured by Daicel Chemical Industries, Ltd.): 4.0% by mass
Acid generator (WPAG-469, Wako Pure Chemical Industries, 20% propylene glycol monomethyl ether acetate solution) ... 1.0% by mass
・ Surfactant 1 ... 0.1% by mass
Propylene glycol monomethyl ether acetate (PGMEA) ... 94.9% by mass
The same surfactant 1 as the surfactant 1 of the active energy ray-curable composition of Test Example 1 was used.
〔硬化膜の製造〕
 上記で作製した活性エネルギー線硬化性組成物を、ガラス基材(直径200mm(8インチ)、厚さ0.7mm、1737(商品名 コーニング社製))に、スピンコート法により塗布した後、65℃のホットプレートを用いて120秒間加熱処理(プリベーク)を行った。活性エネルギー線硬化性組成物の塗布膜厚は、プリベーク後の膜厚が0.1μmとなるように調整した。
 次に、以下の条件で、電子線照射(浜松ホトニクス社製)を行い、硬化膜を製造した。
 (EB条件1)
 加速電圧:70kV、管電流値:4.0mA
 吸収線量:145kGy
 基材と電子照射源のクリアランス:10mm
 酸素濃度≦1000体積ppm
 搬送速度(処理時のスキャンスピード)100mm/秒×1スキャン
 処理温度:23℃
 (EB条件2)
 加速電圧:50kV、管電流値:2.6mA
 吸収線量:15kGy
 基材と電子照射源のクリアランス:10mm
 酸素濃度≦1000体積ppm
 搬送速度(処理時のスキャンスピード)100mm/秒×1スキャン
 処理温度:23℃
 (EB条件3)
 加速電圧:50kV、管電流値:2.6mA
 吸収線量:30kGy
 基材と電子照射源のクリアランス:10mm
 酸素濃度≦1000体積ppm
 搬送速度(処理時のスキャンスピード)100mm/秒×2スキャン
 処理温度:23℃
[Production of cured film]
After applying the active energy ray-curable composition prepared above to a glass substrate (diameter 200 mm (8 inches), thickness 0.7 mm, 1737 (trade name, manufactured by Corning)) by spin coating, 65 Heat treatment (pre-baking) was performed for 120 seconds using a hot plate at 0 ° C. The coating thickness of the active energy ray-curable composition was adjusted so that the thickness after pre-baking was 0.1 μm.
Next, electron beam irradiation (manufactured by Hamamatsu Photonics) was performed under the following conditions to produce a cured film.
(EB condition 1)
Acceleration voltage: 70 kV, tube current value: 4.0 mA
Absorbed dose: 145 kGy
Clearance between substrate and electron irradiation source: 10mm
Oxygen concentration ≤ 1000 ppm by volume
Conveyance speed (scanning speed during processing) 100 mm / sec x 1 scan Processing temperature: 23 ° C
(EB condition 2)
Acceleration voltage: 50 kV, tube current value: 2.6 mA
Absorbed dose: 15 kGy
Clearance between substrate and electron irradiation source: 10mm
Oxygen concentration ≤ 1000 ppm by volume
Conveyance speed (scanning speed during processing) 100 mm / sec x 1 scan Processing temperature: 23 ° C
(EB condition 3)
Acceleration voltage: 50 kV, tube current value: 2.6 mA
Absorbed dose: 30 kGy
Clearance between substrate and electron irradiation source: 10mm
Oxygen concentration ≤ 1000 ppm by volume
Conveyance speed (scanning speed during processing) 100 mm / second x 2 scans Processing temperature: 23 ° C
(耐溶剤性)
 得られた硬化膜を、PGMEAまたはシクロヘキサノンに5分間浸漬した後、以下の基準で硬化膜の耐溶剤性を評価した。
A:膜面の異常、および膜厚変動なし
B:膜面の異常がある、もしくは膜厚変動がある
(Solvent resistance)
The obtained cured film was immersed in PGMEA or cyclohexanone for 5 minutes, and then the solvent resistance of the cured film was evaluated according to the following criteria.
A: Abnormal film surface and no film thickness variation B: Abnormal film surface or film thickness variation
(硬化膜の信頼性の評価)
・温度サイクル試験耐性
 試験例1と同様にして、硬化膜の温度サイクル試験耐性を評価した。
・恒温恒湿試験耐性
 試験例1と同様にして、硬化膜の恒温恒湿試験耐性を評価した。
(Evaluation of cured film reliability)
-Temperature cycle test tolerance It carried out similarly to Test Example 1, and evaluated the temperature cycle test tolerance of the cured film.
-Resistance to constant temperature and humidity test In the same manner as in Test Example 1, the resistance to constant temperature and humidity test of the cured film was evaluated.
Figure JPOXMLDOC01-appb-T000039
 上記表に示す通り、10kV以上100kV未満の加速電圧の電子線を照射した試験No.701~703は、信頼性に優れた硬化膜を製造できた。
Figure JPOXMLDOC01-appb-T000039
As shown in the above table, Test No. irradiated with an electron beam having an acceleration voltage of 10 kV or more and less than 100 kV. Nos. 701 to 703 were able to produce cured films with excellent reliability.

Claims (23)

  1.  基材上に有する活性エネルギー線硬化性組成物の層に、10kV以上100kV未満の加速電圧の電子線を照射する工程を含む硬化膜の製造方法であって、全工程を通じて100℃以下の温度で行う、硬化膜の製造方法。 A method for producing a cured film comprising a step of irradiating an electron beam having an acceleration voltage of 10 kV or more and less than 100 kV to a layer of an active energy ray-curable composition on a substrate, and at a temperature of 100 ° C. or lower throughout the whole process. A method for producing a cured film.
  2.  前記活性エネルギー線硬化性組成物が、アルカリ可溶性樹脂を含む、請求項1に記載の硬化膜の製造方法。 The method for producing a cured film according to claim 1, wherein the active energy ray-curable composition contains an alkali-soluble resin.
  3.  前記基材は、ガラス転移温度が100℃以下の熱可塑性樹脂で構成された熱可塑性基材である、請求項1または2に記載の硬化膜の製造方法。 The method for producing a cured film according to claim 1 or 2, wherein the base material is a thermoplastic base material made of a thermoplastic resin having a glass transition temperature of 100 ° C or lower.
  4.  前記基材は、厚さ0.5mm以下のガラス基材である、請求項1または2に記載の硬化膜の製造方法。 The method for producing a cured film according to claim 1 or 2, wherein the substrate is a glass substrate having a thickness of 0.5 mm or less.
  5.  前記基材は、有機半導体層を含む、請求項1または2に記載の硬化膜の製造方法。 The method for producing a cured film according to claim 1 or 2, wherein the substrate includes an organic semiconductor layer.
  6.  前記基材は、有機半導体層を表面に有する、請求項1または2に記載の硬化膜の製造方法。 The method for producing a cured film according to claim 1 or 2, wherein the base material has an organic semiconductor layer on a surface thereof.
  7.  更に、前記活性エネルギー線硬化性組成物の層を露光する工程を含み、
     前記電子線を照射する工程を、前記露光する工程の後に行う、請求項1~6のいずれか1項に記載の硬化膜の製造方法。
    And a step of exposing the layer of the active energy ray-curable composition.
    The method for producing a cured film according to any one of claims 1 to 6, wherein the step of irradiating the electron beam is performed after the step of exposing.
  8.  更に、前記活性エネルギー線硬化性組成物の層を露光する工程と、前記露光する工程の後、前記活性エネルギー線硬化性組成物の層を現像してパターンを形成する工程とを含み、
     前記電子線を照射する工程を、前記パターンを形成する工程の後に行う、請求項1~6のいずれか1項に記載の硬化膜の製造方法。
    Furthermore, the step of exposing the layer of the active energy ray-curable composition, and the step of developing the layer of the active energy ray-curable composition to form a pattern after the exposing step,
    The method for producing a cured film according to any one of claims 1 to 6, wherein the step of irradiating the electron beam is performed after the step of forming the pattern.
  9.  前記露光する工程を、紫外線を用いて行う、請求項7または8に記載の硬化膜の製造方法。 The method for producing a cured film according to claim 7 or 8, wherein the exposing step is performed using ultraviolet rays.
  10.  前記活性エネルギー線硬化性組成物は、前記活性エネルギー線硬化性組成物の固形分中に、シランカップリング剤を0.01~5.0質量%含有する、請求項1~9のいずれか1項に記載の硬化膜の製造方法。 The active energy ray-curable composition contains 0.01 to 5.0 mass% of a silane coupling agent in the solid content of the active energy ray-curable composition. The manufacturing method of the cured film as described in claim | item.
  11.  前記活性エネルギー線硬化性組成物は、熱硬化性樹脂を含有する、請求項10に記載の硬化膜の製造方法。 The method for producing a cured film according to claim 10, wherein the active energy ray curable composition contains a thermosetting resin.
  12.  前記活性エネルギー線硬化性組成物は、有彩色着色剤および黒色着色剤から選ばれる少なくとも1種を含有する、請求項1~11のいずれか1項に記載の硬化膜の製造方法。 The method for producing a cured film according to any one of claims 1 to 11, wherein the active energy ray-curable composition contains at least one selected from a chromatic colorant and a black colorant.
  13.  前記硬化膜は、波長260~440nmの範囲のいずれかの波長に対する光学濃度が1以上である、請求項1~12のいずれか1項に記載の硬化膜の製造方法。 The method for producing a cured film according to any one of claims 1 to 12, wherein the cured film has an optical density of 1 or more with respect to any wavelength in a wavelength range of 260 to 440 nm.
  14.  前記硬化膜は、波長260~440nmの範囲における光学濃度の最小値が1以上である、請求項13に記載の硬化膜の製造方法。 The method for producing a cured film according to claim 13, wherein the cured film has a minimum optical density of 1 or more in a wavelength range of 260 to 440 nm.
  15.  前記硬化膜は、波長365nmに対する光学濃度が1以上である、請求項13に記載の硬化膜の製造方法。 The method for producing a cured film according to claim 13, wherein the cured film has an optical density of 1 or more with respect to a wavelength of 365 nm.
  16.  前記活性エネルギー線硬化性組成物は、光重合開始剤と、ラジカル重合性化合物とを含有する、請求項1~15のいずれか1項に記載の硬化膜の製造方法。 The method for producing a cured film according to any one of claims 1 to 15, wherein the active energy ray-curable composition contains a photopolymerization initiator and a radically polymerizable compound.
  17.  前記活性エネルギー線硬化性組成物は、酸発生剤と、カチオン重合性化合物とを含有する、請求項1~15のいずれか1項に記載の硬化膜の製造方法。 The method for producing a cured film according to any one of claims 1 to 15, wherein the active energy ray-curable composition contains an acid generator and a cationically polymerizable compound.
  18.  前記硬化膜の膜厚が、0.1~45μmである、請求項1~17のいずれか1項に記載の硬化膜の製造方法。 The method for producing a cured film according to any one of claims 1 to 17, wherein the thickness of the cured film is 0.1 to 45 µm.
  19.  前記基材上に前記活性エネルギー線硬化性組成物を適用した後、乾燥して前記活性エネルギー線硬化性組成物の層を形成する、請求項1~18のいずれか1項に記載の硬化膜の製造方法。 The cured film according to any one of claims 1 to 18, wherein the active energy ray-curable composition is applied onto the substrate and then dried to form a layer of the active energy ray-curable composition. Manufacturing method.
  20.  真空乾燥を行う工程を有する、請求項1~19のいずれか1項に記載の硬化膜の製造方法。 The method for producing a cured film according to any one of claims 1 to 19, further comprising a step of vacuum drying.
  21.  前記電子線を照射した層に対し、更に、100℃以下の温度で熱処理する工程を有する、請求項1~20のいずれか1項に記載の硬化膜の製造方法。 The method for producing a cured film according to any one of claims 1 to 20, further comprising a step of heat-treating the layer irradiated with the electron beam at a temperature of 100 ° C or lower.
  22.  前記基材が熱可塑性樹脂基材であり、前記熱処理する工程を、前記熱可塑性樹脂基材のガラス転移温度以下の温度であって、かつ、100℃以下の温度で行う、請求項21に記載の硬化膜の製造方法。 The said base material is a thermoplastic resin base material, The said heat-processing process is the temperature below the glass transition temperature of the said thermoplastic resin base material, and is performed at the temperature of 100 degrees C or less. A method for producing a cured film.
  23.  請求項1~22のいずれか1項に記載の硬化膜の製造方法で得られた硬化膜。 A cured film obtained by the method for producing a cured film according to any one of claims 1 to 22.
PCT/JP2016/067877 2015-06-22 2016-06-16 Method for producing cured film, and cured film WO2016208479A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017525283A JP6445156B2 (en) 2015-06-22 2016-06-16 Method for producing cured film and cured film
KR1020177034994A KR102028938B1 (en) 2015-06-22 2016-06-16 Manufacturing method of cured film, and cured film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015124568 2015-06-22
JP2015-124568 2015-06-22

Publications (1)

Publication Number Publication Date
WO2016208479A1 true WO2016208479A1 (en) 2016-12-29

Family

ID=57585076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067877 WO2016208479A1 (en) 2015-06-22 2016-06-16 Method for producing cured film, and cured film

Country Status (4)

Country Link
JP (1) JP6445156B2 (en)
KR (1) KR102028938B1 (en)
TW (1) TWI693484B (en)
WO (1) WO2016208479A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146630A (en) * 2017-03-01 2018-09-20 富士フイルム株式会社 Color filter base film composition, laminate, color filter, manufacturing method for color filter, solid-state image sensor, and image display device
CN108693704A (en) * 2017-03-31 2018-10-23 新日铁住金化学株式会社 The manufacturing method of photosensitive polymer combination, photomask, liquid crystal display device and photomask and liquid crystal display device
WO2019235435A1 (en) * 2018-06-04 2019-12-12 株式会社Adeka Composition, cured product, optical filter and method for producing cured product
CN113671796A (en) * 2021-08-25 2021-11-19 江苏汉拓光学材料有限公司 Application of organosilicon surfactant, method for improving sensitivity of electron beam photoresist, electron beam photoresist and preparation and application thereof
WO2023008534A1 (en) * 2021-07-30 2023-02-02 株式会社カネカ Substrate laminate, image sensor, and method for manufacturing substrate laminate
WO2024135427A1 (en) * 2022-12-21 2024-06-27 富士フイルム株式会社 Method for producing optical filter and method for producing solid-state imaging element
JP7535750B2 (en) 2020-09-14 2024-08-19 パナソニックIpマネジメント株式会社 Ultraviolet-curable resin composition, optical component, method for manufacturing optical component, light-emitting device, and method for manufacturing light-emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158413A (en) * 1996-12-03 1998-06-16 Toyo Ink Mfg Co Ltd Electron beam irradiating method, cross-linking or curing method, and object irradiated with electron beam
JPH10237356A (en) * 1997-02-24 1998-09-08 Toyo Ink Mfg Co Ltd Active energy ray-hardenable coating composition and hardening of the same
JP2009244689A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Color filter, method for manufacturing the same, and display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852154B2 (en) 1997-03-24 2006-11-29 凸版印刷株式会社 Photosensitive coloring composition and method for producing color filter
JP2004123802A (en) 2002-09-30 2004-04-22 Toyo Ink Mfg Co Ltd Printing ink, printed matter, and production method for printed matter
JP2004012843A (en) 2002-06-07 2004-01-15 Toppan Printing Co Ltd Color filter consisting of plastic as base material and method for manufacturing the same
JP5542313B2 (en) * 2008-06-18 2014-07-09 協立化学産業株式会社 Pattern formation method
KR101029517B1 (en) 2008-10-28 2011-04-18 호서대학교 산학협력단 Method of curing color filter for electronic display using electron-beam and method of fabricating color filter for electronic display using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158413A (en) * 1996-12-03 1998-06-16 Toyo Ink Mfg Co Ltd Electron beam irradiating method, cross-linking or curing method, and object irradiated with electron beam
JPH10237356A (en) * 1997-02-24 1998-09-08 Toyo Ink Mfg Co Ltd Active energy ray-hardenable coating composition and hardening of the same
JP2009244689A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Color filter, method for manufacturing the same, and display device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146630A (en) * 2017-03-01 2018-09-20 富士フイルム株式会社 Color filter base film composition, laminate, color filter, manufacturing method for color filter, solid-state image sensor, and image display device
CN108693704A (en) * 2017-03-31 2018-10-23 新日铁住金化学株式会社 The manufacturing method of photosensitive polymer combination, photomask, liquid crystal display device and photomask and liquid crystal display device
CN108693704B (en) * 2017-03-31 2024-03-26 日铁化学材料株式会社 Photosensitive resin composition, light shielding film, liquid crystal display device, and method for manufacturing light shielding film and liquid crystal display device
WO2019235435A1 (en) * 2018-06-04 2019-12-12 株式会社Adeka Composition, cured product, optical filter and method for producing cured product
CN111936546A (en) * 2018-06-04 2020-11-13 株式会社艾迪科 Composition, cured product, optical filter, and method for producing cured product
JPWO2019235435A1 (en) * 2018-06-04 2021-07-01 株式会社Adeka Method for manufacturing composition, cured product, optical filter and cured product
JP7374567B2 (en) 2018-06-04 2023-11-07 株式会社Adeka Composition, cured product, optical filter, and method for producing cured product
JP7535750B2 (en) 2020-09-14 2024-08-19 パナソニックIpマネジメント株式会社 Ultraviolet-curable resin composition, optical component, method for manufacturing optical component, light-emitting device, and method for manufacturing light-emitting device
WO2023008534A1 (en) * 2021-07-30 2023-02-02 株式会社カネカ Substrate laminate, image sensor, and method for manufacturing substrate laminate
CN113671796A (en) * 2021-08-25 2021-11-19 江苏汉拓光学材料有限公司 Application of organosilicon surfactant, method for improving sensitivity of electron beam photoresist, electron beam photoresist and preparation and application thereof
WO2024135427A1 (en) * 2022-12-21 2024-06-27 富士フイルム株式会社 Method for producing optical filter and method for producing solid-state imaging element

Also Published As

Publication number Publication date
TW201706731A (en) 2017-02-16
KR102028938B1 (en) 2019-10-07
TWI693484B (en) 2020-05-11
JPWO2016208479A1 (en) 2018-04-12
JP6445156B2 (en) 2018-12-26
KR20170141802A (en) 2017-12-26

Similar Documents

Publication Publication Date Title
JP6711866B2 (en) Colored photosensitive composition, cured film, pattern forming method, infrared light cut filter with light-shielding film, solid-state imaging device, image display device, and infrared sensor
JP6445156B2 (en) Method for producing cured film and cured film
KR101779467B1 (en) Coloring composition, film, color filter, pattern formation method, method for producing color filter, solid-state imaging element, and infrared ray sensor
WO2017164161A1 (en) Photosensitive composition, color filter, method for forming pattern, solid state image sensor and image display device
JP6591540B2 (en) Curable composition, method for producing curable composition, film, infrared cut filter, infrared transmission filter, pattern forming method and apparatus
KR101925813B1 (en) Coloring composition, film, color filter, pattern formation method, method for producing color filter, solid-state imaging element, and infrared ray sensor
WO2018021184A1 (en) Coloring composition, color filter, pattern formation method, solid-stage imaging element, and image display device
WO2017038708A1 (en) Coloring photosensitive composition, cured film, color filter, light-shielding film, solid-state imaging element, image display device, and method for manufacturing cured film
WO2018021313A1 (en) Coloring composition, color filter, pattern formation method, solid-stage imaging element, and image display device
JP6061828B2 (en) Resin composition, infrared transmission filter, method for producing the same, and infrared sensor
JP6604928B2 (en) Coloring composition, film and method for producing film
JP6793799B2 (en) Negative curable coloring composition, cured film, color filter, pattern forming method and equipment
JP6587697B2 (en) Coloring composition, color filter, pattern forming method, solid-state imaging device, and image display device
WO2017030155A1 (en) Dye composition, fluorescence sensor, and production method for fluorescence sensor
WO2017213028A1 (en) Coloring composition and method for producing film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177034994

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017525283

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814250

Country of ref document: EP

Kind code of ref document: A1