WO2016208381A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2016208381A1
WO2016208381A1 PCT/JP2016/066901 JP2016066901W WO2016208381A1 WO 2016208381 A1 WO2016208381 A1 WO 2016208381A1 JP 2016066901 W JP2016066901 W JP 2016066901W WO 2016208381 A1 WO2016208381 A1 WO 2016208381A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
display device
pressure
conductive layer
sensitive conductive
Prior art date
Application number
PCT/JP2016/066901
Other languages
English (en)
French (fr)
Inventor
正太 西
僚 佐々木
隆之 田中
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016208381A1 publication Critical patent/WO2016208381A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements

Definitions

  • This technology relates to a display device that displays an image using an electrophoresis phenomenon.
  • a display device using a twisting ball method, an electrophoresis method, a magnetophoresis method or the like has been developed as a reflective image display medium capable of handwritten input.
  • a position input with a pen is detected by a sensor, and calculation processing is performed by the system based on the position information, and a locus of pen input is displayed on a display.
  • a display device having such an information processing flow it takes time to detect (sensing) position information and perform arithmetic operations between input and display, so the human eye feels a delay from input to display. It is done.
  • Patent Document 1 discloses an image forming apparatus in which a pressure-sensitive conductive layer is provided on the display surface side.
  • a pressure-sensitive conductive layer is provided on the display surface side.
  • an electric field is partially generated by applying pressure to the pressure-sensitive conductive layer with a pen or the like, and handwriting input and display thereof are possible without using a sensor.
  • the pressure-sensitive conductive layer is transparent and has excellent optical characteristics because the pressure-sensitive conductive layer is disposed between the display substrate and the display element. Desired. However, in reality, there is no pressure-sensitive conductive layer having sufficient transparency and excellent optical characteristics, and it has been difficult to realize an image forming apparatus capable of handwriting input having such a configuration. Moreover, even if such a material is developed, since the pressure-sensitive conductive layer is disposed on the front surface (display surface side) of the display element, it is difficult to ensure the extraction efficiency of the light reflected by the display element, There was a problem that the luminance was lowered. Furthermore, since the distance between the pen tip and the display element that actually performs display is separated from the thickness of the pressure-sensitive conductive layer, there is a problem in that parallax occurs during handwriting input.
  • a display device is provided with a drive substrate having a lower electrode, a drive substrate, a display substrate having an upper electrode, and a drive substrate provided between the drive substrate and the display substrate.
  • a display element whose display state changes according to a change in electric field and a pressure-sensitive conductive layer provided between the lower electrode and the display element are provided.
  • a display element whose display state changes according to a change in an applied electric field is used, and a pressure-sensitive conductive layer is provided between the display element and the lower electrode, so that display is actually performed. It is possible to dispose the display element that performs the display at a position close to the display surface.
  • the display state can be switched without detecting input information (for example, position information) and performing arithmetic processing based on the detection.
  • the pressure-sensitive conductive layer is provided between the lower electrode and the display element whose display state changes according to the change of the applied electric field.
  • the display element to be performed can be arranged at a position close to the display surface. Therefore, it is possible to provide a display device with little parallax between the pressed position and the display position.
  • the effect described here is not necessarily limited, and may be any effect described in the present technology.
  • FIG. 1 It is sectional drawing showing the structure of the display apparatus which concerns on one embodiment of this indication. It is a schematic diagram explaining the function of the pressure-sensitive conductive layer used for the display apparatus shown in FIG. It is a schematic diagram explaining the function of the pressure-sensitive conductive layer used for the display apparatus shown in FIG. It is a cross-sectional schematic diagram of a display device using a microcapsule electrophoretic element as a display element. It is a top view of the electrophoretic element used for the display apparatus shown in FIG. It is a schematic diagram explaining operation
  • FIG. 14 is a cross-sectional view illustrating another example of a configuration of a display device according to Modification 1 of the present disclosure.
  • FIG. FIG. 2 schematically illustrates a pressure-sensitive conductive layer at the time of pressing in the display device illustrated in FIG. 1.
  • FIG. 13 schematically shows a pressure-sensitive conductive layer at the time of pressing in the display device shown in FIG. 12.
  • 14 is a cross-sectional view illustrating an example of a configuration of a display device according to Modification 2 of the present disclosure.
  • FIG. FIG. 16 is a perspective view of a part of the display device shown in FIG. 15.
  • FIG. 16 is a plan view (A) and a cross-sectional view (B) illustrating another example of a configuration of a display device according to Modification 2 of the present disclosure. It is a perspective view showing the external appearance of the tablet personal computer using the display apparatus of this indication.
  • Embodiment (example in which a pressure-sensitive conductive layer is disposed between an electrophoretic element and a pixel electrode) 1-1.
  • Modification 1 (example in which a groove is provided in the pressure-sensitive conductive layer)
  • Modification 2 (example in which metal films separated from each other are provided on a pressure-sensitive conductive layer) 3.
  • Application example (electronic equipment)
  • FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) according to an embodiment of the present disclosure.
  • the display device 1 is a display device capable of handwritten input, and is suitable for various electronic devices such as an electronic paper display, for example.
  • the display device 1 includes, for example, an electrophoretic element 30 having a memory property as a display element between a drive substrate 10 and a display substrate 20 that are arranged to face each other with a spacer 35 interposed therebetween.
  • the display device 1 has a configuration in which a pressure-sensitive conductive layer 13 is disposed between the drive substrate 10 and the electrophoretic element 30.
  • FIG. 1 schematically shows the configuration of the electrophoretic element 30 and may differ from actual dimensions and shapes.
  • the drive substrate 10 is formed by laminating the pixel electrode 12 and the pressure-sensitive conductive layer 13 in this order on one surface of the support member 11.
  • the support member 11 is formed of, for example, one or more of inorganic materials, metal materials, plastic materials, and the like.
  • the inorganic material is, for example, silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum oxide (AlO x ), or the like. Etc. are included.
  • the metal material include aluminum (Al), nickel (Ni), and stainless steel.
  • the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethyl ether ketone (PEEK), cycloolefin polymer (COP), polyimide (PI), and polyether sulfone (PES). Etc.
  • the support member 11 may be light transmissive or non-light transmissive.
  • the support member 11 may be a rigid substrate such as a wafer, or may be a flexible thin glass or film. However, since a flexible (foldable) electronic paper display can be realized, it is desirable to be made of a flexible material.
  • the pixel electrode 12 is formed as a continuous film on one surface of the support member 11, for example, the entire displayable region.
  • the pixel electrode 12A is, for example, any one of conductive materials such as Al, Mo, ITO, Ni, Ti, Cr, Zn, C (carbon), gold (Au), silver (Ag), and copper (Cu). Or two or more types are included. Note that the pixel electrode 12 may be divided into a plurality of matrix shapes by adding a configuration for supplying power to each electrode.
  • the pressure-sensitive conductive layer 13 is provided on the pixel electrode 12, and is made of, for example, a pressure-sensitive conductive rubber.
  • the pressure-sensitive conductive layer 13 changes the resistance value per unit area in the thickness direction according to the pressure.
  • conductive particles 132 are dispersed in an insulating layer 131 made of, for example, a rubber material.
  • FIG. 2B for example, when the pressure P is applied in the thickness direction (Y-axis direction) of the pressure-sensitive conductive layer 13, the pressure-sensitive conductive layer 13 causes the conductive particles 132 in the insulating layer 131 to be continuous with each other.
  • a conductive path R is formed in the insulating layer 131.
  • Examples of the material of the pressure-sensitive conductive layer 13 include pressure-sensitive conductive rubber, pressure-sensitive ink, anisotropic conductive film, pressure-sensitive adhesive containing charged particles, and anisotropic conductive rubber.
  • the thickness of the pressure-sensitive conductive layer 13 is not particularly limited, but is preferably 1 mm or less, for example.
  • the display substrate 20 is provided with a counter electrode 22 on one surface of the support member 21.
  • the support member 21 is made of, for example, PET, TAC, PEN, PC, acrylic, glass, or the like.
  • the same material as the support member 11 may be used except that it is light transmissive. This is because an image is displayed on the upper surface side of the display substrate 20, and thus the support member 21 needs to be light transmissive.
  • the thickness of the support member 21 is, for example, 10 ⁇ m to 250 ⁇ m.
  • the counter electrode 22 includes, for example, one or more of translucent conductive materials (transparent conductive materials). Examples of such a conductive material include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO).
  • the thickness of the counter electrode 22 is, for example, 0.001 ⁇ m to 1 ⁇ m.
  • the counter electrode 22 is formed, for example, on one surface of the support member 21, for example, the entire displayable area, as in the pixel electrode 12. By adding a configuration to be supplied, for example, it may be divided and formed in a matrix.
  • the light transmittance of the counter electrode 22 is preferably as high as possible, for example, 80% or more. It is.
  • the electric resistance of the counter electrode 22 is preferably as low as possible, for example, 100 ⁇ / ⁇ (square) or less.
  • a voltage-controlled electrophoretic element is provided between the drive substrate 10 and the display substrate 20 as a display element.
  • the electrophoretic element generates contrast using an electrophoretic phenomenon, and includes electrophoretic particles that can move between a pair of electrodes (the pixel electrode 12 and the counter electrode 22) according to an electric field.
  • the electrophoretic element for example, a so-called microcapsule type electrophoretic element including a plurality of capsules in which electrophoretic particles colored in white and black are enclosed, for example, electrophoretic elements colored in black and white
  • the colored liquid or porous layer is responsible for black display and white display, and a column (rib) having a high elastic modulus is provided in the electrophoretic element (specifically, between the electrodes arranged opposite to each other).
  • a so-called microcup type electrophoretic element is a so-called microcup type electrophoretic element.
  • FIG. 3 schematically shows a cross section when a display device using a microcapsule electrophoretic element 300 as a display element is pressed.
  • the pressure applied by a pen or the like passes through the capsule 310, so that the deformation of the pressure-sensitive conductive layer 130 is delayed due to the damper effect due to the elasticity of the capsule 310.
  • the pressure applied by a pen or the like is once absorbed by the capsule 310 and dispersed. For this reason, the deformation width of the pressure-sensitive conductive layer 130 is wide (deformation region A). For this reason, when pressed with a pen or the like, the drawing width may be thicker than the width of the pen tip.
  • both ends of the spacer 35 are in contact with the pixel electrode 12 and the counter electrode 22, so that when the display surface S ⁇ b> 1 is pressed with a pen or the like, this pressure is sensed via the spacer 35.
  • the piezoelectric conductive layer 13 is directly deformed. Therefore, it is possible to further reduce the delay time from input to display as compared with the case where the microcapsule electrophoretic element 300 is used. In addition, it is possible to display the drawing width with respect to the pressing range with a pen or the like more precisely.
  • the electrophoretic element 30 includes, for example, a porous layer 33 together with the electrophoretic particles 32 in the insulating liquid 31.
  • the insulating liquid 31 is, for example, one type or two or more types of non-aqueous solvents such as an organic solvent, and specifically includes paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 31 be as low as possible. This is because the mobility (response speed) of the migrating particles 32 is improved, and the energy (power consumption) required to move the migrating particles 32 is lowered accordingly. In addition, since the difference between the refractive index of the insulating liquid 31 and the refractive index of the porous layer 33 is increased, the light reflectance of the porous layer 33 is increased. Note that a weak conductive liquid may be used instead of the insulating liquid 31.
  • the insulating liquid 31 may contain various materials as necessary. This material is, for example, a colorant, a charge control agent, a dispersion stabilizer, a viscosity modifier, a surfactant or a resin.
  • the electrophoretic particles 32 are one or more charged particles that are electrically movable, and are dispersed in the insulating liquid 31.
  • the migrating particles 32 can move between the pixel electrode 12 and the counter electrode 22 in the insulating liquid 31.
  • the migrating particles 32 also have arbitrary optical reflection characteristics (light reflectivity).
  • the light reflectance of the migrating particles 32 is not particularly limited, but is preferably set so that at least the migrating particles 32 can shield the porous layer 33. This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
  • the migrating particles 32 are, for example, one kind or two or more kinds of particles (powder) such as an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, or a polymer material (resin). .
  • the migrating particles 32 may be pulverized particles or capsule particles of resin solids containing the above-described particles.
  • Organic pigments include, for example, azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, perinones. Pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments.
  • Inorganic pigments include, for example, zinc white, antimony white, carbon black, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, Lead chromate, lead sulfate, barium carbonate, lead white or alumina white.
  • the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes.
  • the carbon material is, for example, carbon black.
  • the metal material is, for example, gold, silver or copper.
  • metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide.
  • the polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. As long as the polymer compound has a light absorption region in the visible light region, the type of the compound is not particularly limited.
  • the specific forming material of the migrating particles 32 is selected according to the role of the migrating particles 32 in order to cause contrast, for example.
  • the material in which white display is performed by the migrating particles 32 is, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate, and among these, titanium oxide is preferable. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance.
  • the material in the case where black display is performed by the migrating particles 32 is, for example, a carbon material or a metal oxide.
  • the carbon material is, for example, carbon black
  • the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like.
  • a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained.
  • the content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 32 are ensured. In this case, if it is less than 0.1% by weight, the migrating particles 32 may not easily shield the porous layer 33. On the other hand, when the amount is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may be aggregated in some cases.
  • the average particle diameter of the migrating particles 32 is preferably in the range of 0.1 ⁇ m to 10 ⁇ m, for example.
  • the migrating particles 32 are easily dispersed and charged in the insulating liquid 31 over a long period of time and are not easily adsorbed by the porous layer 33.
  • a dispersant or a charge adjusting agent
  • the electrophoretic particles 32 may be subjected to a surface treatment, or both may be used in combination.
  • the dispersing agent is, for example, Solsperse series manufactured by Lubrizol, BYK® series or Anti-Terra® series manufactured by BYK-Chemie, or Span series manufactured by ICI® Americas®.
  • the surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment.
  • graft polymerization treatment, microencapsulation treatment, or a combination thereof is preferable. This is because long-term dispersion stability and the like can be obtained.
  • the surface treatment material is, for example, a material (adsorbing material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32.
  • the type of functional group that can be adsorbed is determined according to the material for forming the migrating particles 32.
  • carbon materials such as carbon black are aniline derivatives such as 4-vinylaniline, and metal oxides are organosilane derivatives such as 3- (trimethoxysilyl) propyl methacrylate.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • the material for surface treatment is, for example, a material (graftable material) that can be grafted on the surface of the migrating particles 32 into which a polymerizable functional group is introduced.
  • the graft material preferably has a polymerizable functional group and a dispersing functional group that can be dispersed in the insulating liquid 31 and can maintain dispersibility due to steric hindrance.
  • the kind of polymerizable functional group is the same as that described for the adsorptive material.
  • the dispersing functional group is, for example, a branched alkyl group when the insulating liquid 31 is paraffin.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
  • the porous layer 33 is, for example, a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by a fibrous structure 331 as shown in FIG.
  • the porous layer 33 has a plurality of gaps (pores 333) through which the migrating particles 32 pass in places where the fibrous structure 331 does not exist.
  • FIG. 1 the illustration of the porous layer 33 is simplified.
  • the fibrous structure 331 includes one or more non-migrating particles 332, and the non-migrating particles 332 are held by the fibrous structure 331.
  • the porous layer 33 which is a three-dimensional structure, one fibrous structure 331 may be entangled at random, or a plurality of fibrous structures 331 may be gathered and overlap at random. However, both may be mixed.
  • each fibrous structure 331 preferably holds one or more non-migrating particles 332.
  • FIG. 3 shows a case where the porous layer 33 is formed by a plurality of fibrous structures 331.
  • the porous layer 33 is a three-dimensional structure
  • the irregular three-dimensional structure easily causes external light to be irregularly reflected (multiple scattering), so that the light reflectance of the porous layer 33 increases and the high light
  • the porous layer 33 can be thin in order to obtain the reflectance.
  • the contrast increases and the energy required to move the migrating particles 32 decreases.
  • the migrating particles 32 can easily pass through the pores 333. As a result, the time required to move the migrating particles 32 is shortened, and the energy required to move the migrating particles 32 is also reduced.
  • the reason why the non-migrating particles 332 are included in the fibrous structure 331 is that the light reflectance of the porous layer 33 is higher because external light is more easily diffusely reflected. Thereby, contrast becomes higher.
  • the shape (appearance) of the fibrous structure 331 is not particularly limited as long as the fibrous structure 331 has a sufficiently long length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction.
  • the formation method of the fibrous structure 331 is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous material having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
  • the average fiber diameter of the fibrous structure 331 is not particularly limited, but is preferably as small as possible. This is because light easily diffuses and the average pore diameter of the pores 333 increases. For this reason, it is preferable that the average fiber diameter of the fibrous structure 331 is 10 micrometers or less. In addition, although the minimum of an average fiber diameter is not specifically limited, For example, it is 0.1 micrometer and may be less than that. This average fiber diameter is measured, for example, by microscopic observation using a scanning electron microscope (SEM) or the like. Note that the average length of the fibrous structure 331 may be arbitrary.
  • the average pore diameter of the pores 333 is not particularly limited, but is preferably as large as possible. This is because the migrating particles 32 easily pass through the pores 333. Therefore, the average pore diameter of the pores 333 is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the thickness of the porous layer 33 is not particularly limited, but is, for example, 5 ⁇ m to 100 ⁇ m. This is because the shielding property of the porous layer 33 is enhanced and the migrating particles 32 easily pass through the pores 333. Moreover, by setting it as the said range, while the drive voltage of the electrophoretic element 30 is suppressed, the moving speed of the electrophoretic particle 32 is ensured.
  • the fibrous structure 33 for example, one or two or more of polymer materials or inorganic materials are included, and other materials may be included.
  • the polymer material include nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof.
  • the inorganic material is, for example, titanium oxide.
  • a polymer material is preferable as a material for forming the fibrous structure 331. This is because the reactivity (photoreactivity, etc.) is low (chemically stable), so that an unintended decomposition reaction of the fibrous structure 331 is suppressed. Note that in the case where the fibrous structure 331 is formed of a highly reactive material, the surface of the fibrous structure 331 is preferably covered with an arbitrary protective layer.
  • the fibrous structure 331 is preferably a nanofiber. Since the three-dimensional structure is complicated and external light is likely to be diffusely reflected, the light reflectance of the porous layer 33 is further increased, and the volume ratio of the pores 333 to the unit volume of the porous layer 33 is increased. This is because the migrating particles 32 can easily pass through the pores 333. Thereby, the contrast becomes higher and the energy required to move the migrating particles 32 becomes lower.
  • Nanofiber is a fibrous substance having a fiber diameter of 0.001 ⁇ m to 0.1 ⁇ m and a length that is 100 times or more of the fiber diameter.
  • the fibrous structure 331 that is a nanofiber is preferably formed by an electrospinning method using a polymer material. This is because the fibrous structure 331 having a small fiber diameter can be easily and stably formed.
  • This fibrous structure 331 preferably has an optical reflection characteristic different from that of the migrating particles 32.
  • the light reflectance of the fibrous structure 331 is not particularly limited, but is preferably set so that at least the porous layer 33 can shield the migrating particles 32 as a whole. As described above, this is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
  • Non-electrophoretic particles 332 are particles that are fixed to the fibrous structure 331 and do not migrate electrically. As long as the non-migrating particles 332 are held by the fibrous structure 331, the non-migrating particles 332 may be partially exposed from the fibrous structure 331 or embedded therein.
  • the specific forming material of the non-migrating particles 332 is selected according to the role played by the non-migrating particles 332 in order to generate contrast, for example. Specifically, a metal oxide is preferable and titanium oxide is more preferable. This is because it is excellent in electrochemical stability and fixability, and high reflectance can be obtained. As long as a contrast can be generated, the material for forming the non-migrating particles 332 may be the same material as the material for forming the migrating particles 32 or may be a different material.
  • the spacer 35 includes an insulating material such as a polymer material, for example.
  • the configuration of the spacer 35 is not particularly limited, and may be a sealing material mixed with fine particles.
  • the shape of the spacer 35 is not particularly limited, but is preferably a shape that does not hinder the movement of the migrating particles 32 between the pixel electrode 12 and the counter electrode 22 and that can be uniformly distributed. is there. Further, in view of the manufacturing process described later, for example, it is preferable that the shape is an inversely tapered shape from the drive substrate 10 side to the display substrate 20 side.
  • the thickness of the spacer 35 is not particularly limited, but in particular, it is preferably as thin as possible in order to reduce power consumption, for example, 10 ⁇ m to 100 ⁇ m.
  • the formation position of the spacer 35 may be provided at an appropriate position in the display layer.
  • the display device 1 of the present embodiment can be formed by, for example, the following method.
  • the counter electrode 22 is provided on one surface of the support member 21 by using an existing method such as various film forming methods, and the display substrate 20 is formed.
  • a spacer 35 is formed on the counter electrode 22.
  • the spacer 35 can be formed by, for example, the following imprint method. First, a solution containing a constituent material (for example, a photosensitive resin material) of the spacer 35 is applied onto the counter electrode 22. Next, a mold having a recess on the coated surface is pressed and exposed to light, and then the mold is removed. Thereby, the columnar spacer 35 is formed. At this time, the spacer 35 preferably has a so-called reverse taper in which the width gradually decreases from the display substrate 20 side to the drive substrate 10 side. Thereby, the mold can be easily removed from the spacer 35.
  • a fibrous structure 331 is disposed between the adjacent spacers 35, that is, in the cells 34.
  • polyacrylonitrile as a fibrous structure 331 is dispersed or dissolved in N, N′-dimethylformamide, and, for example, titanium oxide is added as non-electrophoretic particles 332 and sufficiently stirred to obtain a polymer solution (spinning). Solution).
  • the spinning solution is used to spin on another substrate by, for example, an electrostatic spinning method.
  • the fibrous structure 331 is formed by a phase separation method, a phase inversion method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, a spray coating method, or the like instead of the electrostatic spinning method. May be.
  • the fibrous structure 331 is divided into an appropriate size and placed in each cell 34. Specifically, the fibrous structure 331 is scraped off by the spacer 35 by pressing the fibrous structure 331 from above (the direction opposite to the support member 21). The cut fibrous structure 331 is accommodated between the spacers 35. In this manner, the porous layer 33 in which the non-electrophoretic particles 332 are held in the fibrous structure 331 can be formed for each cell 34.
  • the counter electrode 22 is normally connected to, for example, GND, and a voltage of, for example, 5 to 100 V is applied to the pixel electrode from the voltage application unit 51.
  • a bias voltage of 5 to 100 V is applied between the pixel electrode 12 and the counter electrode 22.
  • the resistance of the pressure-sensitive conductive layer 13 is very large, so that the migrating particles 32 responsible for display do not move and are arranged, for example, on the pixel electrode 12 side.
  • the migrating particles 32 are black particles that are negatively charged.
  • the pressure-sensitive conductive layer 13 in the pressed portion is shown in FIG. 2B.
  • the conductive path R is formed, and the resistance value of the pressure-sensitive conductive layer 13 at that portion is lowered.
  • an electric field is generated only in the pressurized portion, and the migrating particles 32 in that portion move to the counter electrode 22 side. In this way, the migrating particles 32 move toward the counter electrode 22 along the locus of the input pen 50 tracing the display surface S1 of the display device 1, and a black line is drawn on the display surface S1.
  • the input pen 50 does not have to be a pen dedicated to the display device 1 of the present embodiment, and the shape and structure thereof are not particularly limited as long as the display surface S1 can be pressurized.
  • the applied electric field between the pixel electrode 12 and the counter electrode 22 is changed to an electric field having a polarity opposite to that at the time of writing, that is, between the pixel electrode 12 and the counter electrode 22.
  • the black line drawn on the display surface S1 of the display device 1 can be arbitrarily erased.
  • FIG. 6 schematically shows a cross-sectional configuration of a drawing portion of the display device 1 in the writing mode.
  • 7A and 7B schematically show a cross-sectional configuration in the erase mode of the drawing portion shown in FIG.
  • a voltage of ⁇ 15 V is applied to the pixel electrode 12 and a voltage of 0 V, for example, is applied to the counter electrode 22.
  • the migrating particles 32 are negatively (negatively) charged.
  • the electrophoretic element 30 after pressurization is in a state where the electrophoretic particles 32 have moved to the counter electrode 22 side.
  • FIG. 7A when the voltage applied to the pixel electrode 12 is ⁇ 15 V and an electric field having a polarity opposite to that at the time of writing is applied between the pixel electrode 12 and the counter electrode 22, FIG.
  • the electrophoretic particles 32 move to the pixel electrode 12 side by applying pressure (P).
  • the black line drawn in the writing mode can be arbitrarily erased.
  • the migrating particles 32 that have moved to the counter electrode 22 side are moved to the pixel electrode 12 side, and the display device 1
  • the black line drawn on the display surface S1 can be erased, that is, the whole can be displayed in white. Thereby, the display device 1 can repeatedly write.
  • the tilt sensor 50A may be built in the input pen 50, and the writing mode and the erasing mode may be switched depending on the direction (up and down position) of the tip of the input pen 50.
  • FIG. 8 is a block diagram for explaining operation control of the display device 1 by the input pen 50 incorporating the tilt sensor 50A.
  • the orientation of the tip of the input pen 50 is recognized by the tilt sensor 50A, and the tilt sensor 50A transmits information (A) regarding the orientation of the tip of the input pen 50 to the display control unit 40, for example, wirelessly.
  • the display control unit 40 controls the voltage application unit 51 based on the information (A), and appropriately switches between positive and negative of the bias voltage applied between the pixel electrode 12 and the counter electrode 22.
  • the user can automatically switch the writing mode and the erasing mode of the display device 1 according to the vertical direction of the input pen 50 without manually switching the input mode and the erasing mode of the display device 1. It becomes possible. That is, as shown in FIG. 5, after writing at the tip of the input pen 50, as shown in FIG. 9, the tip of the input pen 50 is reversed to move to the counter electrode 22 side. The migrated particles 32 can be arbitrarily moved to the pixel electrode 12 side, and the drawn arbitrary portions can be partially erased as if they were erased with an eraser. By adopting such a configuration, it is possible to write and erase the electronic paper as if using a pencil with an eraser without being conscious of the electronic system.
  • a reflective image display device capable of general handwriting input
  • the processing steps as shown in FIG. 10 are passed from handwriting input to display on the display.
  • an input is performed with a pen or the like on the display surface of the image display device (step S1001).
  • the input position is detected by a sensor (step S1002).
  • the detected position information is subjected to calculation processing in the system (step S1003).
  • the pen input locus is displayed on the display (step S1004).
  • the human eye feels a delay from input to display.
  • an image forming apparatus provided with a pressure-sensitive conductive layer on the display surface side has been considered.
  • an electric field is partially generated by applying pressure to the pressure-sensitive conductive layer with a pen or the like, and a locus input by handwriting is displayed without using a sensor.
  • the delay from input to display is eliminated, but in order to realize such an image forming apparatus, the pressure-sensitive conductive layer is required to be transparent and have excellent optical characteristics. .
  • there is no such material and even if it is developed, there is a problem that luminance and resolution are lowered because an image is visually recognized through the pressure-sensitive conductive layer.
  • the pressure-sensitive conductive layer is provided on the upper part of the display element, there is a problem in that parallax occurs due to the separation of the thickness of the pressure-sensitive conductive layer from the distance between the input surface and the image display surface (display element).
  • the pressure-sensitive conductive layer 13 is provided between the display element (electrophoretic element 30) and the pixel electrode 12 on the drive substrate 10 side.
  • the trajectory input by the pen without performing the sensing and calculation processing of the position information and the like. Is immediately displayed on the display (step S102). Further, since the distance between the input surface and the image display surface (display element) is only the thickness of the support member 21 and the counter electrode 22, display at a position close to the input surface is possible.
  • a display element for example, the electrophoretic element 30
  • the display element and the display surface S1 are on the opposite side
  • the pressure-sensitive conductive layer 13 is provided between the pixel electrode 12 provided on the driving substrate 10 on the back surface S2 side.
  • the distance between the input surface and the image display surface (display element) is only the thickness of the support member 21 and the counter electrode 22, display at a position close to the input surface is possible.
  • the display device 1 it is possible to provide the display device 1 with a small delay and parallax from handwriting input to display, as if writing on paper with a pencil or the like.
  • the pressure-sensitive conductive layer 13 is disposed on the pixel electrode 12 side, it is not necessary to obtain optical characteristics for the pressure-sensitive conductive layer 13. Thereby, the choice of the material which comprises the pressure sensitive conductive layer 13 spreads.
  • Modification> (2-1. Modification 1) 12 and 13 illustrate an example of a cross-sectional configuration of the display device 2 (2A and 2B) according to the first modification of the above embodiment.
  • the display devices 2A and 2B are display devices capable of handwriting input, similar to the display device 1 of the above-described embodiment, and are applied to various electronic devices such as an electronic paper display, for example.
  • the display devices 2 ⁇ / b> A and 2 ⁇ / b> B include an electrophoretic element 30 as a display element between the drive substrate 10 and the display substrate 20 that are disposed to face each other with a spacer 35 interposed therebetween, and the drive substrate 10 and the electrophoretic element 30.
  • pressure-sensitive conductive layers 63A and 63B respectively.
  • the display device 2A is provided with a groove 631A on the back surface S2 side of the pressure-sensitive conductive layer 63A
  • the display device 2B is provided with a groove 631B on the display surface S1 side of the pressure-sensitive conductive layer 63B.
  • the pressure-sensitive conductive layers 63A and 63B are provided on the pixel electrode 12, and are made of, for example, pressure-sensitive conductive rubber.
  • the pressure-sensitive conductive layer 63A has a groove 631A on the pixel electrode 12 side, and pressure-sensitive conductive layers.
  • the layer 63B has a groove 631B on the electrophoretic element 30 side.
  • the groove 631A (and the groove 631B) extends in one direction (for example, the Z-axis direction) in the XZ plane of the pressure-sensitive conductive layer 63A (and the pressure-sensitive conductive layer 63B), and a plurality of the so-called stripes are provided side by side. It may be formed in a shape or may be provided in a lattice shape.
  • the shapes of the grooves 631A and 631B are not particularly limited.
  • the grooves 631A and 631B may have a triangular shape as viewed from the Z-axis direction as in the groove 631A in the display device 2A, or may be viewed from the Z-axis direction as in the display device 2B. It may be rectangular. In addition, it may be hemispherical or conical.
  • the inside of the groove 631A and the groove 631B may be, for example, a cavity, but may be filled with, for example, resin, rubber, adhesive, or the like. When filling with resin or the like, for example, it is preferable to fill with a material softer than the pressure-sensitive conductive layers 63A and 63B.
  • the grooves 631A and 631B may penetrate the pressure-sensitive conductive layers 63A and 63B, and may separate the pressure-sensitive conductive layers 63A and 63B into a plurality of pieces.
  • the pressure-sensitive conductive layer 13 is made of, for example, a pressure-sensitive conductive rubber as in the above-described embodiment, not only the position pressed with a pen or the like, but also its peripheral portion is simultaneously deformed as shown in FIG. 14A. Resulting in. For this reason, the conductive path R is formed in the pressure-sensitive conductive layer 13 in a wider range than the actual pressure portion, and the migrating particles 32 move. That is, the drawing line width becomes thicker than the actual pressing width.
  • the display device 2A is provided with a groove 631A on the back surface S2 side of the pressure-sensitive conductive layer 63A
  • the display device 2B is provided with a groove 631B on the display surface S1 side of the pressure-sensitive conductive layer 63B. I made it.
  • the continuous deformation of the pressure-sensitive conductive layer 63A around the pressing position when the pressure-sensitive conductive layer 63A is pressed with a pen or the like is blocked by the groove 631A.
  • the range in which the migrating particles 32 are moved by the pressure application can be made the same as the pressure application range, and the drawing line width can be further reduced.
  • channel 631B) provided side by side is as small as possible. As a result, finer drawing becomes possible.
  • the groove 631A is provided on the back surface S2 side of the pressure-sensitive conductive layer 63A as in the display device 2A, it is possible to further reduce the line width to be drawn.
  • the groove 631B is provided on the display surface S1 side of the pressure-sensitive conductive layer 63B as in the display device 2B, a finer groove 631B can be processed in manufacturing, so that the display element drive area is increased. Can be limited. That is, extremely fine drawing is possible.
  • FIG. 15 illustrates an example of a cross-sectional configuration of the display device 3 according to the second modification of the embodiment.
  • the display device 3 is a display device capable of handwriting input, similar to the display device 1 of the above embodiment, and is applied to various electronic devices such as an electronic paper display, for example.
  • the display device 3 includes an electrophoretic element 30 as a display element between the drive substrate 10 and the display substrate 20 that are arranged to face each other with a spacer 35 interposed therebetween.
  • the pressure-sensitive conductive layer 13 is disposed between them.
  • This modification differs from the above embodiment in that a plurality of metal films 75 are provided on the pressure-sensitive conductive layer 13 (display surface S1 side). 12 and 13 schematically illustrate the configuration of the electrophoretic element 30 and may differ from actual dimensions and shapes.
  • the metal film 75 is provided on the display surface S1 side of the pressure-sensitive conductive layer 13 as described above.
  • the metal film 75 is formed in a rectangular shape as shown in FIGS.
  • one metal film 75 may be provided for each cell 34, or may be further divided into a plurality of cells within the cell 34.
  • the material of the metal film 75 is not particularly limited.
  • the metal film 75 may be made of the same material as that of the pixel electrode 12.
  • the film thickness of the metal film 75 should just be 1 mm or less, for example, it is preferable that they are 0.01 micrometer or more and 100 micrometers or less.
  • conductive particles 132 are randomly dispersed in rubber (insulating layer 131). For this reason, there is a risk that bleeding unevenness appears in a line drawn by pressurization.
  • a plurality of metal films 75 are disposed on the pressure-sensitive conductive layer 13.
  • the potential of the pixel electrode 12 is applied to the metal film 75 at a position corresponding to the pressurization position via the conductive path R formed in the pressure-sensitive conductive layer 13 by pressurization.
  • An electric field is generated between the counter electrode 22 and the counter electrode 22. That is, regardless of the distribution state of the conductive particles 132 in the pressure-sensitive conductive layer 13, the drawing display at the position corresponding to the metal film 75 provided at the pressing position is uniform.
  • the shape of the metal film 75 is not particularly limited.
  • the metal film 75 may be formed in a regular hexagon, and the regular hexagonal metal film 75 is arranged in a so-called honeycomb shape. It may be.
  • this modification may be combined with the modification 1, and as shown in FIG. 17B, the groove 631B may be formed at a position where the metal film 75 is not formed.
  • the groove 631B is provided on the display surface S1 side is shown, but a groove (groove 631A) may be provided on the back surface S2, and the formation positions of the grooves 631A and 631B are not necessarily It does not have to correspond to the position where the metal film 75 is not formed.
  • a groove groove 631A
  • FIG. 18 shows the appearance of a tablet personal computer.
  • the tablet personal computer has, for example, a display unit 210 and a housing 220, and the display unit 210 is configured by the display device 1 (or the display devices 2A, 2B, 3).
  • the display device 1 (, 2A, 2B, 3) of the above-described embodiment and modifications 1 and 2 may be applied to an electronic bulletin board or the like.
  • the embodiment and modifications 1 and 2 have been described, but the present disclosure is not limited to the aspects described in the embodiment and the like, and various modifications are possible.
  • the configuration of the electrophoretic element 30 including the insulating liquid 31, the electrophoretic particles 32, and the porous layer 33 as the display layer is illustrated.
  • the present invention is not limited to the one using the porous layer 33, and any material that can form a contrast by light reflection for each pixel using the electrophoresis phenomenon may be used.
  • a capsule type or a type without a fibrous structure (colored liquid itself) may be used.
  • this technique can also take the following structures.
  • a display device comprising: a display element whose display state changes; and a pressure-sensitive conductive layer provided between the lower electrode and the display element.
  • the pressure-sensitive conductive layer has a groove on at least one of the display element side and the lower electrode side.
  • the groove extends in one direction and is provided in a plurality.
  • the display device according to (2), wherein the grooves are arranged in a lattice shape.
  • the display device according to any one of (1) to (4), wherein the pressure-sensitive conductive layer is separated by the groove. (6) The display device according to any one of (1) to (5), wherein a plurality of metal films are disposed between the pressure-sensitive conductive layer and the display element. (7) The pressure-sensitive conductive layer is composed of a pressure-sensitive conductive rubber, a pressure-sensitive ink, an anisotropic conductive film, an adhesive containing charged particles, or an anisotropic conductive rubber. The display device according to any one of 6). (8) The display device according to any one of (1) to (7), wherein an electric field having a polarity opposite to an applied electric field at the time of writing is applied to the display element in a state where writing has been performed. .
  • the display device according to any one of (1) to (12), wherein the display element is a microcup electrophoretic element.
  • the electrophoretic element includes an insulating liquid, one or more electrophoretic particles having optical reflection characteristics, and one or more non-electrophoretic particles having reflection characteristics different from the electrophoretic particles.
  • the display device including a porous layer composed of a structure.
  • the display element is a microcapsule electrophoretic element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本開示の一実施形態の表示装置は、下部電極を有する駆動基板と、駆動基板と対向配置されると共に、上部電極を有する表示基板と、駆動基板と表示基板との間に設けられると共に、印加電界の変化に応じて表示状態が変化する表示素子と、下部電極と表示素子との間に設けられた感圧導電層とを備える。

Description

表示装置
 本技術は、電気泳動現象を利用して画像表示を行う表示装置に関する。
 近年、手書き入力が可能な反射型の画像表示媒体として、ツイストボール方式、電気泳動方式、磁気泳動方式等を用いた表示デバイスが開発されている。このようなデバイスでは、ペンで入力した位置がセンサによって検知され、その位置情報を元にシステムで演算処理が行われ、ペン入力の軌跡がディスプレイに表示される。このような情報処理フローを有する表示デバイスでは、入力と表示までの間に位置情報の検知(センシング)および演算理の時間が必要となるため、人間の目には入力から表示までに遅延が感じられる。
 この遅延を改善する手段として、例えば、特許文献1では、表示面側に感圧導電層を配設した画像形成装置が開示されている。この画像形成装置では、感圧導電層にペン等によって圧力を加えることで部分的に電界を発生させ、センサを介さずに手書き入力およびその表示が可能となっている。
特開2002-14380号公報
 この画像形成装置では、遅延については改善されるものの、感圧導電層が表示基板と表示素子との間に配置されているため、感圧導電層には、透明、且つ、優れた光学特性が求められる。しかしながら、実際には、十分な透明性および優れた光学特性を有する感圧導電層はなく、現実的にこのような構成の手書き入力が可能な画像形成装置を実現することは困難であった。また、このような材料が開発されたとしても、表示素子の前面(表示面側)に感圧導電層が配置されるため、表示素子で反射された光の取り出し効率を確保することが難しく、輝度が低下するという問題があった。更に、ペン先と、実際に表示を担う表示素子との距離が感圧導電層の厚み分離れているため、手書き入力時に視差が生じるという問題があった。
 従って、遅延および視差が少なく、手書き入力が可能な表示装置を提供することが望ましい。
 本技術の一実施形態の表示装置は、下部電極を有する駆動基板と、駆動基板と対向配置されると共に、上部電極を有する表示基板と、駆動基板と表示基板との間に設けられると共に、印加電界の変化に応じて表示状態が変化する表示素子と、下部電極と表示素子との間に設けられた感圧導電層とを備えたものである。
 本技術の一実施形態の表示装置では、印加電界の変化に応じて表示状態が変化する表示素子を用いると共に、表示素子と下部電極との間に感圧導電層を設けることにより、実際に表示を行う表示素子を表示面に近い位置に配置することが可能となる。また、入力情報(例えば、位置情報)の検知およびそれを元にした演算処理等を行うことなく、表示状態の切り替えが可能となる。
 本技術の一実施形態の表示装置によれば、下部電極と、印加電界の変化に応じて表示状態が変化する表示素子との間に感圧導電層を設けるようにしたので、実際に表示を行う表示素子を表示面に近い位置に配置することが可能となる。よって、押圧位置と表示位置との視差の少ない表示装置を提供することが可能となる。また、入力(押圧)から表示までに、入力情報の検知および演算処理等を行うことなく表示の切り替えが可能となるため、遅延の少ない表示装置を提供することが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本技術中に記載されたいずれの効果であってもよい。
本開示の一実施の形態に係る表示装置の構成を表す断面図である。 図1に示した表示装置に用いられる感圧導電層の機能を説明する模式図である。 図1に示した表示装置に用いられる感圧導電層の機能を説明する模式図である。 表示素子としてマイクロカプセル方式の電気泳動素子を用いた表示装置の断面模式図である。 図1に示した表示装置に用いられる電気泳動素子の平面図である。 図1に示した表示装置の動作を説明する模式図である。 書き込みモード時における表示装置1の断面模式図である。 消去モード時の表示装置1の動作を説明する断面模式図である。 消去モード時の表示装置1の動作を説明する断面模式図である。 傾斜センサを備えた入力ペンを用いる場合の表示装置の動作制御を表すブロック図である。 傾斜センサを備えた入力ペンを用いる場合の表示装置の動作を説明する断面模式図である。 比較例としての表示装置における手書き入力から表示までの処理フロー図である。 本開示の表示装置における手書き入力から表示までの処理フロー図である。 本開示の変形例1に係る表示装置の構成の一例を表す断面図である。 本開示の変形例1に係る表示装置の構成の他の例を表す断面図である。 図1に示した表示装置における押圧時の感圧導電層を模式的に表したものである。 図12に示した表示装置における押圧時の感圧導電層を模式的に表したものである。 本開示の変形例2に係る表示装置の構成の一例を表す断面図である。 図15に示した表示装置の一部の斜視図である。 本開示の変形例2に係る表示装置の構成の他の例を表す平面図(A)および断面図(B)である。 本開示の表示装置を用いたタブレットパーソナルコンピュータの外観を表す斜視図である。
 以下、本開示における一実施形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
1.実施の形態(電気泳動素子と画素電極との間に感圧導電層を配置した例)
 1-1.表示装置の構成
 1-2.表示装置の製造方法
 1-3.表示装置の好ましい動作方法
 1-4.作用・効果
2.変形例
 2-1.変形例1(感圧導電層に溝を設けた例)
 2-2.変形例2(感圧導電層上に互いに分割された金属膜を設けた例)
3.適用例(電子機器)
<1.実施の形態>
 図1は、本開示の一実施の形態の表示装置(表示装置1)の断面構成を表したものである。表示装置1は、手書き入力が可能な表示装置であり、例えば、電子ペーパーディスプレイ等の多様な電子機器に適されるものである。この表示装置1は、スペーサ35を介して対向配置された駆動基板10と表示基板20との間に、表示素子として、例えば、メモリ性を有する電気泳動素子30を備えたものである。本実施の形態では、表示装置1は、駆動基板10と電気泳動素子30との間に感圧導電層13が配設された構成を有する。なお、図1は電気泳動素子30の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。
(1-1.表示装置の構成)
 駆動基板10は、例えば、支持部材11の一面に画素電極12および感圧導電層13がこの順に積層されたものである。
 支持部材11は、例えば、無機材料、金属材料またはプラスチック材料等のいずれか1種類または2種類以上により形成されている。無機材料は、例えば、ケイ素(Si)、酸化ケイ素(SiOx)、窒化ケイ素(SiNx)または酸化アルミニウム(AlOx)等であり、その酸化ケイ素には、例えば、ガラスまたはスピンオングラス(SOG)等が含まれる。金属材料は、例えば、アルミニウム(Al)、ニッケル(Ni)またはステンレス等である。プラスチック材料は、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチルエーテルケトン(PEEK)、シクロオレフィンポリマー(COP)、ポリイミド(PI)またはポリ
エーテルサルフォン(PES)等である。
 この支持部材11は、光透過性であってもよいし、非光透過性であってもよい。また、支持部材11は、ウェハ等の剛性を有する基板であってもよいし、可撓性を有する薄層ガラスまたはフィルム等であってもよい。但し、フレキシブル(折り曲げ可能)な電子ペーパーディスプレイを実現できることから、可撓性を有する材料からなることが望ましい。
 画素電極12は、支持部材11の一面の例えば、表示可能な領域の全面に連続膜として形成されている。画素電極12Aは、例えば、Al,Mo,ITO,Ni,Ti,Cr,Zn,C(炭素),金(Au)、銀(Ag)または銅(Cu)等の導電性材料のいずれか1種類または2種類以上を含んでいる。なお、画素電極12は、各電極に電力を供給する構成を追加することにより、マトリクス状に複数に分割形成されていてもよい。
 感圧導電層13は、画素電極12上に設けられたものであり、例えば、感圧導電ゴムによって構成されたものである。感圧導電層13は、圧力に応じて厚み方向の単位面積当たりの抵抗値が変化するものである。具体的には、図2Aに示したように、例えば、ゴム材料等によって構成された絶縁層131中に、例えば、導電粒子132を分散させたものである。感圧導電層13は、図2Bに示したように、例えば、感圧導電層13の厚み方向(Y軸方向)に圧力Pを印加すると、絶縁層131中の導電粒子132が互いに連続して絶縁層131内に導電経路Rが形成される。感圧導電層13の材料としては、感圧導電ゴムのほか、例えば、感圧インク、異方性導電膜、荷電粒子を含有した粘着材、異方性導電ゴム等が挙げられる。なお、感圧導電層13の厚みは、特に限定されないが、例えば、1mm以下であることが好ましい。
 表示基板20は、支持部材21の一面に対向電極22が設けられたものである。
 支持部材21は、例えば、PET,TAC,PEN,PC,アクリル,ガラス等により構成されている。この他、光透過性であることを除き、支持部材11と同様の材料を用いてもよい。表示基板20の上面側に画像が表示されるため、支持部材21は光透過性である必要があるからである。この支持部材21の厚みは、例えば10μm~250μmである。
 対向電極22は、例えば、透光性を有する導電性材料(透明導電材料)のいずれか1種類または2種類以上を含んでいる。このような導電性材料としては、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)等が挙げられる。この対向電極22の厚みは、例えば0.001μm~1μmである。なお、対向電極22は、画素電極12と同様に、例えば、支持部材21の一面の、例えば、表示可能な領域の全面に形成されているが、画素電極12と同様に、各電極に電力を供給する構成を追加することにより、例えば、マトリクス状に複数に分割形成されていてもよい。
 表示基板20側に画像を表示する場合には、対向電極22を介して電気泳動素子30を見ることになるため、その対向電極22の光透過率はできるだけ高いことが好ましく、例えば、80%以上である。また、対向電極22の電気抵抗は、できるだけ低いことが好ましく、例えば、100Ω/□(スクエア)以下である。
 駆動基板10と表示基板20との間には表示素子として、例えば、電圧制御される電気泳動素子が設けられている。電気泳動素子は、電気泳動現象を利用してコントラストを生じさせるものであり、電界に応じて一対の電極(画素電極12と対向電極22と)の間を移動可能な泳動粒子を含んでいる。電気泳動素子としては、例えば、白色および黒色に着色された泳動粒子が封入された複数のカプセルを備えた、いわゆるマイクロカプセル方式の電気泳動素子や、例えば、黒色に着色された泳動粒子および白色に着色された液体または多孔質層によって黒表示および白表示を担うと共に、電気泳動素子内(具体的には、対向配置された電極間)に弾性率の高い支柱(リブ)が設けられている、いわゆるマイクロカップ方式の電気泳動素子がある。
 図3は、マイクロカプセル方式の電気泳動素子300を表示素子として用いた表示装置を押圧した際の断面を模式的に表したものである。マイクロカプセル式の電気泳動素子300を用いた場合、ペン等によって印加された圧力は、カプセル310を介するため、カプセル310の弾性によるダンパー効果で、感圧導電層130の変形に遅延が生じする。また、ペン等によって印加された圧力は、カプセル310で一旦吸収されて分散される。このため、感圧導電層130の変形幅が広く(変形領域A)なる。このため、ペン等によって押圧した場合、描画幅はペン先の幅よりも太くなる虞がある。
 このため、本実施の形態では、図1に示したように、駆動基板10と表示基板20との間にリブ(スペーサ35)を有する、マイクロカップ方式の電気泳動素子30を用いることが好ましい。マイクロカップ方式の電気泳動素子30では、スペーサ35の両端が画素電極12と対向電極22とにそれぞれ接しているため、表示面S1をペン等で押圧した場合、この圧力がスペーサ35を介して感圧導電層13が直接変形するようになる。このため、マイクロカプセル式の電気泳動素子300を用いた場合と比較して、入力から表示までの遅延時間をより削減することが可能となる。また、ペン等による押圧範囲に対する描画幅をより精細に表示することが可能となる。
 以下に、本実施の形態の電気泳動素子30の構成を説明する。電気泳動素子30は、図4に示したように、例えば、絶縁性液体31中に泳動粒子32と共に、多孔質層33を含んでいる。
 絶縁性液体31は、例えば、有機溶媒等の非水溶媒のいずれか1種類または2種類以上であり、具体的には、パラフィンまたはイソパラフィン等を含んで構成されている。この絶縁性液体31の粘度および屈折率は、出来るだけ低いことが好ましい。泳動粒子32の移動性(応答速度)が向上すると共に、それに応じて泳動粒子32の移動に要するエネルギー(消費電力)が低くなるからである。また、絶縁性液体31の屈折率と多孔質層33の屈折率との差が大きくなるため、その多孔質層33の光反射率が高くなるからである。なお、絶縁性液体31の代わりに、微弱導電性液体を用いてもよい。
 なお、絶縁性液体31は、必要に応じて各種材料を含んでいてもよい。この材料は、例えば、着色剤、電荷制御剤、分散安定剤、粘度調整剤、界面活性剤または樹脂等である。
 泳動粒子32は、電気的に移動可能な1または2以上の荷電粒子であり、絶縁性液体31中に分散されている。この泳動粒子32は、絶縁性液体31中で画素電極12と対向電極22との間を移動可能になっている。泳動粒子32は、また、任意の光学的反射特性(光反射率)を有している。泳動粒子32の光反射率は、特に限定されないが、少なくとも泳動粒子32が多孔質層33を遮蔽可能となるように設定されることが好ましい。泳動粒子32の光反射率と多孔質層33の光反射率との違いを利用してコントラストを生じさせるためである。
 泳動粒子32は、例えば、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料(樹脂)等のいずれか1種類または2種類以上の粒子(粉末)である。なお、泳動粒子32は、上記した粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子等でもよい。
 有機顔料は、例えば、アゾ系顔料、メタルコンプレックスアゾ系顔料、ポリ縮合アゾ系顔料、フラバンスロン系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、キナクリドン系顔料、アントラキノン系顔料、ペリレン系顔料、ペリノン系顔料、アントラピリジン系顔料、ピランスロン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、イソインドリノン系顔料、キノフタロン系顔料またはインダンスレン系顔料等である。無機顔料は、例えば、亜鉛華、アンチモン白、カーボンブラック、鉄黒、硼化チタン、ベンガラ、マピコエロー、鉛丹、カドミウムエロー、硫化亜鉛、リトポン、硫化バリウム、セレン化カドミウム、炭酸カルシウム、硫酸バリウム、クロム酸鉛、硫酸鉛、炭酸バリウム、鉛白またはアルミナホワイト等である。染料は、例えば、ニグロシン系染料、アゾ系染料、フタロシアニン系染料、キノフタロン系染料、アントラキノン系染料またはメチン系染料等である。炭素材料は、例えば、カーボンブラック等である。金属材料は、例えば、金、銀または銅等である。金属酸化物は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸カリウム、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。高分子材料は、例えば、可視光領域に光吸収域を有する官能基が導入された高分子化合物等である。このように可視光領域に光吸収域を有する高分子化合物であれば、その種類は特に限定されない。
 泳動粒子32の具体的な形成材料は、例えば、コントラストを生じさせるために泳動粒子32が担う役割に応じて選択される。例えば、泳動粒子32によって白表示がなされる場合の材料は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウム等の金属酸化物であり、中でも、酸化チタンが好ましい。電気化学的安定性および分散性等に優れていると共に、高い反射率が得られるからである。一方、泳動粒子32により黒表示がなされる場合の材料は、例えば、炭素材料または金属酸化物等である。炭素材料は、例えば、カーボンブラック等であり、金属酸化物は、例えば、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。中でも、炭素材料が好ましい。優れた化学的安定性、移動性および光吸収性が得られるからである。
 絶縁性液体31中における泳動粒子32の含有量(濃度)は、特に限定されないが、例えば、0.1重量%~10重量%である。泳動粒子32の遮蔽(隠蔽)性および移動性が確保されるからである。この場合には、0.1重量%よりも少ないと、泳動粒子32が多孔質層33を遮蔽しにくくなる可能性がある。一方、10重量%よりも多いと、泳動粒子32の分散性が低下するため、泳動粒子32が泳動しにくくなり、場合によっては凝集する可能性がある。
 泳動粒子32の平均粒径は、例えば、0.1μm以上10μm以下の範囲であることが好ましい。
 なお、泳動粒子32は、絶縁性液体31中で長期間に渡って分散および帯電しやすいと共に、多孔質層33に吸着されにくいことが好ましい。このため、静電反発により泳動粒子32を分散させるために分散剤(または電荷調整剤)を用いたり、泳動粒子32に表面処理を施してもよく、両者を併用してもよい。
 分散剤は、例えばLubrizol社製のSolsperseシリーズ、BYK-Chemie社製のBYK シリーズまたはAnti-Terra シリーズ、あるいはICI Americas 社製Spanシリーズ等である。
 表面処理は、例えば、ロジン処理、界面活性剤処理、顔料誘導体処理、カップリング剤処理、グラフト重合処理またはマイクロカプセル化処理等である。中でも、グラフト重合処理、マイクロカプセル化処理またはそれらの組み合わせが好ましい。長期間の分散安定性等が得られるからである。
 表面処理用の材料は、例えば、泳動粒子32の表面に吸着可能な官能基と重合性官能基とを有する材料(吸着材料)等である。吸着可能な官能基の種類は、泳動粒子32の形成材料に応じて決定される。一例を挙げると、カーボンブラック等の炭素材料に対しては4-ビニルアニリン等のアニリン誘導体であり、金属酸化物に対してはメタクリル酸3-(トリメトキシシリル)プロピル等のオルガノシラン誘導体である。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。
 また、表面処理用の材料は、例えば、重合性官能基が導入された泳動粒子32の表面にグラフト可能な材料(グラフト性材料)である。このグラフト性材料は、重合性官能基と、絶縁性液体31中に分散可能であると共に、立体障害により分散性を保持可能な分散用官能基とを有していることが好ましい。重合性官能基の種類は、吸着性材料について説明した場合と同様である。分散用官能基は、例えば、絶縁性液体31がパラフィンである場合には分岐状のアルキル基等である。グラフト性材料を重合およびグラフトさせるためには、例えばアゾビスイソブチロニトリル(AIBN)等の重合開始剤を用いればよい。
 参考までに、上記したように絶縁性液体31中に泳動粒子32を分散させる方法の詳細については、「超微粒子の分散技術とその評価~表面処理・微粉砕と気中/液中/高分子中の分散安定化~(サイエンス&テクノロジー社)」等の書籍に掲載されている。
 多孔質層33は、例えば、図4に示したように、繊維状構造体331により形成された3次元立体構造物(不織布のような不規則なネットワーク構造物)である。この多孔質層33は、繊維状構造体331が存在していない箇所に、泳動粒子32が通過するための複数の隙間(細孔333)を有している。なお、図1では、多孔質層33の図示を簡略化している。
 繊維状構造体331には、1または2以上の非泳動粒子332が含まれており、その非泳動粒子332は、繊維状構造体331により保持されている。3次元立体構造物である多孔質層33では、1本の繊維状構造体331がランダムに絡み合っていてもよいし、複数本の繊維状構造体331が集合してランダムに重なっていてもよいし、両者が混在していてもよい。繊維状構造体331が複数本である場合、各繊維状構造体331は、1または2以上の非泳動粒子332を保持していることが好ましい。なお、図3では、複数本の繊維状構造体331により多孔質層33が形成されている場合を示している。
 多孔質層33が3次元立体構造物であるのは、その不規則な立体構造により外光が乱反射(多重散乱)されやすいため、多孔質層33の光反射率が高くなると共に、その高い光反射率を得るために多孔質層33が薄くて済むからである。これにより、コントラストが高くなると共に、泳動粒子32を移動させるために必要なエネルギーが低くなる。また、細孔333の平均孔径が大きくなると共に、その数が多くなるため、泳動粒子32が細孔333を通過しやすくなるからである。これにより、泳動粒子32の移動に要する時間が短くなると共に、その泳動粒子32の移動に要するエネルギーも低くなる。
 繊維状構造体331に非泳動粒子332が含まれているのは、外光がより乱反射しやすくなるため、多孔質層33の光反射率がより高くなるからである。これにより、コントラストがより高くなる。
 繊維状構造体331の形状(外観)は、上記したように繊維径に対して長さが十分に大きい繊維状であれば、特に限定されない。具体的には、直線状でもよいし、縮れていたり、途中で折れ曲がっていてもよい。また、一方向に延在しているだけに限らず、途中で1または2以上の方向に分岐していてもよい。この繊維状構造体331の形成方法は、特に限定されないが、例えば、相分離法、相反転法、静電(電界)紡糸法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法またはスプレー塗布法等であることが好ましい。繊維径に対して長さが十分に大きい繊維状物質を容易且つ安定に形成しやすいからである。
 繊維状構造体331の平均繊維径は、特に限定されないが、できるだけ小さいことが好ましい。光が乱反射しやすくなると共に、細孔333の平均孔径が大きくなるからである。このため、繊維状構造体331の平均繊維径は、10μm以下であることが好ましい。なお、平均繊維径の下限は、特に限定されないが、例えば、0.1μmであり、それ以下でもよい。この平均繊維径は、例えば、走査型電子顕微鏡(SEM)等を用いた顕微鏡観察により測定される。なお、繊維状構造体331の平均長さは、任意でよい。
 細孔333の平均孔径は、特に限定されないが、中でも、できるだけ大きいことが好ましい。泳動粒子32が細孔333を通過しやすくなるからである。このため、細孔333の平均孔径は、0.1μm~10μmであることが好ましい。
 多孔質層33の厚さは、特に限定されないが、例えば、5μm~100μmである。多孔質層33の遮蔽性が高くなると共に、泳動粒子32が細孔333を通過しやすくなるからである。また、上記範囲とすることで、電気泳動素子30の駆動電圧が抑制されると共に、泳動粒子32の移動速度が担保される。
 繊維状構造体331を構成する材料としては、例えば、高分子材料または無機材料等のいずれか1種類または2種類以上を含んでおり、他の材料を含んでいてもよい。高分子材料は、例えば、ナイロン、ポリ乳酸、ポリアミド、ポリイミド、ポリエチレンテレフタレート、ポリアクリロニトリル、ポリエチレンオキシド、ポリビニルカルバゾール、ポリビニルクロライド、ポリウレタン、ポリスチレン、ポリビニルアルコール、ポリサルフォン、ポリビニルピロリドン、ポリビニリデンフロリド、ポリヘキサフルオロプロピレン、セルロースアセテート、コラーゲン、ゼラチン、キトサンまたはそれらのコポリマー等である。無機材料は、例えば、酸化チタン等である。中でも、繊維状構造体331の形成材料としては、高分子材料が好ましい。反応性(光反応性等)が低い(化学的に安定である)ため、繊維状構造体331の意図しない分解反応が抑制されるからである。なお、繊維状構造体331が高反応性の材料により形成されている場合には、その繊維状構造体331の表面は任意の保護層により被覆されていることが好ましい。
 特に、繊維状構造体331は、ナノファイバーであることが好ましい。立体構造が複雑化して外光が乱反射しやすくなるため、多孔質層33の光反射率がより高くなると共に、多孔質層33の単位体積中に占める細孔333の体積の割合が大きくなるため、泳動粒子32が細孔333を通過しやすくなるからである。これにより、コントラストがより高くなると共に、泳動粒子32の移動に要するエネルギーがより低くなる。ナノファイバーとは、繊維径が0.001μm~0.1μmであると共に、長さが繊維径の100倍以上である繊維状物質である。ナノファイバーである繊維状構造体331は、高分子材料を用いて静電紡糸法により形成されていることが好ましい。繊維径が小さい繊維状構造体331を容易且つ安定に形成しやすいからである。
 この繊維状構造体331は、泳動粒子32とは異なる光学的反射特性を有していることが好ましい。具体的には、繊維状構造体331の光反射率は、特に限定されないが、少なくとも多孔質層33が全体として泳動粒子32を遮蔽可能となるように設定されることが好ましい。上記したように、泳動粒子32の光反射率と多孔質層33の光反射率との違いを利用してコントラストを生じさせるためである。
 非泳動粒子332は、繊維状構造体331に固定されており、電気的に泳動しない粒子である。非泳動粒子332は、繊維状構造体331により保持されていれば、繊維状構造体331から部分的に露出していてもよいし、その内部に埋設されていてもよい。
 非泳動粒子332の具体的な形成材料は、例えば、コントラストを生じさせるために非泳動粒子332が担う役割に応じて選択される。具体的には、金属酸化物が好ましく、酸化チタンがより好ましい。電気化学的安定性おび定着性等に優れていると共に、高い反射率が得られるからである。コントラストを生じさせることができれば、非泳動粒子332の形成材料は、泳動粒子32の形成材料と同じ材料でもよいし、違う材料でもよい。
 スペーサ35は、例えば、高分子材料等の絶縁性材料を含んでいる。但し、スペーサ35の構成は、特に限定されず、微粒子が混入されたシール材等でもよい。
 スペーサ35の形状は、特に限定されないが、泳動粒子32の画素電極12および対向電極22間の移動を妨げないと共に、それを均一分布させることができる形状であることが好ましく、例えば、格子状である。また、後述する製造工程の関係から、例えば、駆動基板10側から表示基板20側にかけて逆テーパ形状であることが好ましい。スペーサ35の厚みは、特に限定されないが、中でも、消費電力を低くするためにできるだけ薄いことが好ましく、例えば、10μm~100μmである。スペーサ35の形成位置は、表示層内において適当な位置に設ければよい。
(1-2.表示装置の製造方法)
 本実施の形態の表示装置1は、例えば、以下の方法により形成することができる。支持部材21の一面に対向電極22を、各種成膜法等の既存の方法を用いて設け、表示基板20を形成する。次に、対向電極22上にスペーサ35を形成する。スペーサ35は、例えば、以下のようなインプリント法により形成することができる。まず、スペーサ35の構成材料(例えば、感光性樹脂材料)を含む溶液を対向電極22上に塗布する。次いで、塗布面に凹部を有する型を押し当て、感光させた後、型を外す。これにより、柱状のスペーサ35が形成される。このとき、スペーサ35は、幅が表示基板20側から駆動基板10側に徐々に狭くなる、いわゆる逆テーパとすることが好ましい。これにより、スペーサ35から型を容易に外すことができる。
 続いて、隣り合うスペーサ35の間、即ち、セル34内に繊維状構造体331を配設する。まず、例えば、N,N’-ジメチルホルムアミドに繊維状構造体331としてポリアクリロニトリルを分散または溶解させると共に、非泳動粒子332として、例えば、酸化チタンを加えて十分に攪拌し、高分子溶液(紡糸溶液)を調整する。続いて、この紡糸溶液を用いて、例えば、静電紡糸法によって、別の基板上で紡糸する。なお、繊維状構造体331は、静電紡糸法に代えて、相分離法、相反転法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法およびスプレー塗布法等によって形成してもよい。
 また、繊維状構造体331の形成方法としては、高分子フィルムにレーザ加工を用いて孔開けを行い、繊維状構造体を形成する方法も提案されているが(特開2005-107146号公報参照)、この方法では孔径50μm程度の大きな孔しか形成できず、繊維状構造体により泳動粒子を完全に遮蔽することができない虞がある。
 次いで、繊維状構造体331を適当な大きさに分断して各セル34内に載置する。具体的には、繊維状構造体331を上(支持部材21と反対の方向)から押圧することによって、スペーサ35により繊維状構造体331は摺り切られる。この切断された繊維状構造体331をスペーサ35間に収容する。このようにして、繊維状構造体331に非泳動粒子332が保持された多孔質層33をセル34毎に形成することができる。
 続いて、多孔質層33が配置された表示基板20に、泳動粒子32を分散させた絶縁性液体31を塗布したのち、これを、例えば、封止剤(図示せず)を介してシール層14が配設された剥離部材(図示せず)を対向させる。最後に、剥離部材を剥がしたのち、シール層14上に粘着層(図示せず)を介して画素電極12および感圧導電層13が形成された駆動基板10を固定する。以上の工程により、表示装置1が完成する。
(1-3.表示装置の好ましい動作方法)
 本実施の形態の表示装置1は、通常、対向電極22は、例えば、GNDに接続され、画素電極には、例えば、5~100Vの電圧が電圧印加部51から印加されており、手書き入力時に画素電極12と対向電極22との間に、例えば、5~100Vのバイアス電圧が印加されるようになっている。表示面S1に圧力が印加されていない状態では、感圧導電層13の抵抗が非常に大きいため、表示を担う泳動粒子32は動かず、例えば画素電極12側に配置されている。なお、泳動粒子32は、マイナス(負)に帯電した黒色粒子とする。
 この表示装置1を、図5に示したように、任意の位置を入力ペン50で押圧(加圧)すると、加圧された部分の感圧導電層13には、図2Bに示したように、導電経路Rが形成され、その部分の感圧導電層13の抵抗値が下がる。このとき、加圧された部分のみに電界が発生して、その部分の泳動粒子32が対向電極22側に移動する。このようにして、表示装置1の表示面S1をなぞった入力ペン50の軌跡に沿って泳動粒子32が対向電極22側に移動し、表示面S1に黒い線が描画される。
 なお、入力ペン50は、本実施の形態の表示装置1専用のペンである必要はなく、表示面S1が加圧できれば、その形状や構造は特に問わない。
 また、本実施の形態の表示装置1は、画素電極12と対向電極22との間の印加電界を書き込み時とは逆極性の電界にする、即ち、画素電極12と対向電極22との間に印加されるバイアス電圧の正負を逆にすることによって、表示装置1の表示面S1に描画された黒い線を任意で消去することが可能となる。図6は、書き込みモード時における表示装置1の描画部分の断面構成を模式的に表したものである。図7Aおよび図7Bは、図6に示した描画部分の消去モード時における断面構成を模式的に表したものである。画素電極12には、例えば、-15Vの電圧が、対向電極22には、例えば、0Vの電圧がそれぞれ印加され、上記のように、泳動粒子32がマイナス(負)に帯電している場合には、加圧後の電気泳動素子30は、図6に示したように、泳動粒子32が対向電極22側に移動した状態となる。ここで、図7Aに示したように、画素電極12に印加される電圧を-15Vとして、画素電極12と対向電極22との間に、書き込み時とは逆極性の電界を印加すると、図7Bに示したように、圧力(P)を加えることによって泳動粒子32は、画素電極12側に移動する。即ち、書き込みモード時に描画された黒い線の任意での消去が可能となる。このように、画素電極12と対向電極22との間に印加されるバイアス電圧の正負を切り替えることによって、対向電極22側に移動した泳動粒子32を画素電極12側に移動させ、表示装置1の表示面S1に描画された黒い線を消去、即ち、全体を白表示とすることができる。これにより、表示装置1は繰り返し書き込みが可能となる。
 更に、例えば、入力ペン50に傾斜センサ50Aを内蔵させ、入力ペン50の先端の向き(上下の位置)によって書き込みモードおよび消去モードが切り替わるようにしてもよい。図8は、傾斜センサ50Aを内蔵した入力ペン50による表示装置1の動作制御を説明するブロック図である。入力ペン50の先端の向きは、傾斜センサ50Aによって認識され、傾斜センサ50Aは、この入力ペン50の先端の向きに関する情報(A)を、例えばワイヤレスで表示制御部40に送信する。表示制御部40は、その情報(A)に基づいて電圧印加部51を制御して、画素電極12と対向電極22との間に印加されるバイアス電圧の正負を適宜切り替える。これにより、使用者が、表示装置1の入力モードと消去モードとを手動で切り替えることなく、入力ペン50の上下の向きに応じて、表示装置1の書き込みモードおよび消去モードを自動で切り替えることが可能となる。即ち、図5に示したように、入力ペン50の先端で書き込みを行ったのち、図9に示したように、入力ペン50の先端の向きを逆にすることで、対向電極22側に移動した泳動粒子32を、任意に画素電極12側に移動させることが可能となり、消しゴムで消したように、描画された任意の箇所を部分的に消去することができる。このような構成とすることで、電子システムを意識せず、まるで消しゴム付き鉛筆を使っているような感覚で電子ペーパーの書き込みおよび消去が可能となる。
(1-4.作用・効果)
 一般的な手書き入力が可能な反射型の画像表示デバイスでは、手書き入力からディスプレイへの表示までに、図10に示したような処理工程を経由する。まず、画像表示デバイスの表示面にペン等で入力する(ステップS1001)。画像表示デバイスでは、入力された位置がセンサによって検出される(ステップS1002)。続いて、この検出された位置情報がシステムにおいて演算処理され(ステップS1003)、その結果に基づいて、ペン入力した軌跡がディスプレイに表示される(ステップS1004)。このように一般的な画像表示デバイスでは、入力から表示までの間に位置情報等のセンシングおよび演算処理の工程があるため、人間の目には入力から表示までの遅延が感じられる。
 この遅延を改善する画像表示デバイスとして、前述したように、表示面側に感圧導電層を設けた画像形成装置が考察されている。この画像形成装置では、ペン等によって感圧導電層に圧力を加えることによって部分的に電界を発生させ、センサを介さずに手書き入力した軌跡を表示する。このため、入力から表示までの遅延は解消されるが、このような画像形成装置を実現するためには、感圧導電層が透明、且つ、優れた光学特性を有していることが求められる。現在のところこのような材料はなく、また、開発されたとしても、感圧導電層を介して画像を視認するため、輝度や解像度が低下するという問題があった。また、表示素子の上部に感圧導電層があるため、入力面と画像表示面(表示素子)との距離が感圧導電層の厚み分離れることにより視差が生じるという問題があった。
 これに対して、本実施の形態の表示装置1では、感圧導電層13を表示素子(電気泳動素子30)と駆動基板10側の画素電極12との間に設けるようにした。これにより、本実施の形態の表示装置1では、図11に示したように、ペン等での入力(ステップS101)後に、位置情報等のセンシングおよび演算処理を介することなく、ペンの入力した軌跡が即座にディスプレイに表示される(ステップS102)。また、入力面と画像表示面(表示素子)との距離が支持部材21および対向電極22の厚みのみとなるため、入力面に近い位置での表示が可能となる。
 以上のように、本実施の形態では、印加電界の変化に応じて表示状態を変化可能な表示素子(例えば、電気泳動素子30)を用いると共に、この表示素子と表示面S1とは反対側(背面S2側)の駆動基板10に設けられた画素電極12との間に感圧導電層13を設けるようにした。これにより、位置情報等のセンシングおよび演算処理を介することなく、ペン等によって入力(押圧)された軌跡が即座にディスプレイに表示される。即ち、入力から表示までの遅延の少ない表示の切り替えが可能となる。また、入力面と画像表示面(表示素子)との距離が支持部材21および対向電極22の厚みのみとなるため、入力面に近い位置での表示が可能となる。即ち、本実施の形態では、あたかも紙に鉛筆等で書くような、手書き入力から表示までの遅延および視差の少ない表示装置1を提供することが可能となる。
 また、感圧導電層13を画素電極12側に配置するようにしたので、感圧導電層13に光学的特性を求める必要がなくなる。これにより、感圧導電層13を構成する材料の選択肢が広がる。
 以下、上記実施の形態の変形例について説明するが、以降の説明において上記実施の形態と同一構成部分については同一符号を付してその説明は適宜省略する。
<2.変形例>
(2-1.変形例1)
 図12および図13は、上記実施の形態の変形例1に係る表示装置2(2Aおよび2B)の断面構成の一例を表したものである。この表示装置2A,2Bは、上記実施の形態の表示装置1と同様に、手書き入力が可能な表示装置であり、例えば、電子ペーパーディスプレイ等の多様な電子機器に適用されるものである。表示装置2A,2Bは、スペーサ35を介して対向配置された駆動基板10と表示基板20との間に、表示素子として電気泳動素子30を備えたものであり、駆動基板10と電気泳動素子30との間に感圧導電層63A,63Bがそれぞれ配設された構成を有する。本変形例では、表示装置2Aでは、感圧導電層63Aの背面S2側に溝631Aを設けられており、表示装置2Bでは、感圧導電層63Bの表示面S1側に溝631Bが設けられている。この点が、上記実施の形態とは異なる。なお、図12および図13は電気泳動素子30の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。
 感圧導電層63A,63Bは、画素電極12上に設けられると共に、例えば、感圧導電ゴムによって構成されたものであり、感圧導電層63Aは画素電極12側に溝631Aを、感圧導電層63Bは電気泳動素子30側に溝631Bを有する。溝631A(および溝631B)は、例えば、感圧導電層63A(および感圧導電層63B)のXZ平面において、一方向(例えば、Z軸方向)に延伸すると共に、複数併設された、いわゆるストライプ状に形成されていてもよいし、格子状に設けられていてもよい。
 溝631A,631Bの形状は、特に問わず、例えば、表示装置2Aにおける溝631Aのように、Z軸方向から見て三角形状としてもよいし、表示装置2Bのように、Z軸方向から見て矩形状としてもよい。このほか、半球状や円錐状としてもよい。また、溝631Aおよび溝631B内は、例えば、空洞でもよいが、例えば、樹脂やゴム、粘着剤等によって充填されていてもよい。樹脂等によって充填する場合には、例えば、感圧導電層63A,63Bよりも柔らかい材料で充填することが好ましい。なお、溝631A,631Bは感圧導電層63A,63Bを貫通し、感圧導電層63A,63Bを複数に分離していてもよい。
 上記実施の形態のように、感圧導電層13を、例えば、感圧導電ゴムによって構成した場合、ペン等で加圧した位置だけでなく、図14Aに示したようにその周辺部も同時に変形してしまう。このため、実際の加圧部分よりも広い範囲で感圧導電層13内に導電経路Rが形成され、泳動粒子32が移動してしまう。即ち、描画線幅が実際の加圧幅よりも太くなる。
 これに対して、本変形例では、表示装置2Aでは、感圧導電層63Aの背面S2側に溝631Aを、表示装置2Bでは、感圧導電層63Bの表示面S1側に溝631Bを設けるようにした。これにより、例えば、図14Bに示したように、感圧導電層63Aをペン等によって加圧した場合の加圧位置周辺の感圧導電層63Aの連続した変形が溝631Aによって遮断される。即ち、圧力印加時における感圧導電層63A(および感圧導電層63B)の変形範囲を溝631A(および溝631B)によって制限することが可能となる。これにより、圧力印加による泳動粒子32が移動する範囲を圧力印加範囲と同程度とすることが可能となり、描画線幅をより細くすることができる。
 なお、溝631Aおよび溝631Bを上記のようにストライプ状あるいは格子状に設ける場合には、併設された溝631A(あるいは溝631B)の間隔(ピッチ)は、できるだけ細かいことが好ましい。これにより、より精細な描画が可能となる。
 また、表示装置2Aのように、溝631Aを感圧導電層63Aの背面S2側に設けた場合には、さらに、描画される線幅を細線化することが可能となる。また、表示装置2Bのように、溝631Bを感圧導電層63Bの表示面S1側に設けた場合には、製造上、より細かな溝631Bの加工が可能となるため、表示素子の駆動面積を限定することができる。即ち、極細な描画が可能となる。
(2-2.変形例2)
 図15は、上記実施の形態の変形例2に係る表示装置3の断面構成の一例を表したものである。この表示装置3は、上記実施の形態の表示装置1と同様に、手書き入力が可能な表示装置であり、例えば、電子ペーパーディスプレイ等の多様な電子機器に適用されるものである。表示装置3は、スペーサ35を介して対向配置された駆動基板10と表示基板20との間に、表示素子として電気泳動素子30を備えたものであり、駆動基板10と電気泳動素子30との間に感圧導電層13が配設された構成を有する。本変形例では、感圧導電層13上(表示面S1側)に、複数の金属膜75を設けた点が上記実施の形態とは異なる。なお、図12および図13は電気泳動素子30の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。
 金属膜75は、上記のように、感圧導電層13の表示面S1側に設けられたものであり、図15および図16に示したように、例えば、それぞれ矩形状に形成されている。金属膜75は、例えば、図15に示したように、セル34ごとに1つずつ設けてもよいし、セル34内でさらに複数に分割されていてもよい。金属膜75の材料は特に問わず、例えば、画素電極12と同じ材料で構成してもよい。金属膜75の膜厚は、1mm以下であればよく、例えば、0.01μm以上100μm以下であることが好ましい。
 感圧導電層13は、図2Aに示したように、ゴム(絶縁層131)内に導電粒子132がランダムに分散されている。このため、加圧によって描画された線には滲みムラが現れる虞がある。これに対して、本変形例では、感圧導電層13上に複数の金属膜75を配設するようにした。これにより、加圧位置に対応する位置の金属膜75には、画素電極12の電位が加圧によって感圧導電層13内に形成された導電経路Rを介して印加され、この金属膜75と対向電極22との間に電界が発生する。即ち、感圧導電層13中の導電粒子132の分布状態にかかわらず、加圧位置に設けられている金属膜75に対応する位置の描画表示は均一となる。
 なお、金属膜75の形状は特に限定されず、例えば、図17(A)に示したように、正六角形に形成されていてもよく、正六角形の金属膜75が、いわゆるハニカム状に配置されていてもよい。さらに、本変形例は上記変形例1と組み合わせてもよく、図17(B)図に示したように、金属膜75が形成されていない位置に溝631Bを形成するようにしてもよい。なお、ここでは、表示面S1側に溝631Bを設けた例を示したが、背面S2側に溝(溝631A)を設けるようにしてもよく、また、必ずしも溝631A,631Bの形成位置が、金属膜75の未形成位置に対応していなくてもよい。このように、変形例1と変形例2とを組み合わせることにより、極細且つ均一な描画表示が可能となる。
<3.適用例>
 次に、上記実施の形態および変形例1,2の表示装置1(,2A,2B,3)の適用例について説明する。但し、以下で説明する電子機器の構成はあくまで一例であるため、その構成は適宜変更可能である。
 図18は、タブレットパーソナルコンピュータの外観を表したものである。このタブレットパーソナルコンピュータは、例えば、表示部210および筐体220を有しており、表示部210が上記表示装置1(あるいは、表示装置2A,2B,3)により構成されている。
 また、上記実施の形態および変形例1,2の表示装置1(,2A,2B,3)は、電子掲示板等に適用してもよい。
 以上、実施形態および変形例1,2を挙げて説明したが、本開示内容は実施形態等で説明した態様に限定されず、種々の変形が可能である。例えば、上記実施の形態では、表示層として、絶縁性液体31、泳動粒子32および多孔質層33を備えた電気泳動素子30の構成を例示したが、電気泳動素子30の構成は、このような多孔質層33を用いたものに限定されず、電気泳動現象を利用して画素ごとに光反射によるコントラスト形成が可能なものであればよい。例えば、カプセルタイプのものや、繊維状構造体の無いタイプ(液体そのものを着色したもの)を用いてもかまわない。
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成を取ることも可能である。
(1)下部電極を有する駆動基板と、前記駆動基板と対向配置されると共に、上部電極を有する表示基板と、前記駆動基板と前記表示基板との間に設けられると共に、印加電界の変化に応じて表示状態が変化する表示素子と、前記下部電極と前記表示素子との間に設けられた感圧導電層とを備えた表示装置。
(2)前記感圧導電層は前記表示素子側および前記下部電極側の少なくとも一方に溝を有する、前記(1)に記載の表示装置。
(3)前記溝は一方向に延伸すると共に、複数併設されている、前記(2)に記載の表示装置。
(4)前記溝は格子状に配設されている、前記(2)に記載の表示装置。
(5)前記感圧導電層は前記溝によって分離されている、前記(1)乃至(4)のいずれかに記載の表示装置。
(6)前記感圧導電層と、前記表示素子との間に複数の金属膜が配設されている、前記(1)乃至(5)のいずれかに記載の表示装置。
(7)前記感圧導電層は、感圧導電ゴム、感圧インク、異方性導電膜、荷電粒子を含有する粘着材または異方性導電ゴムにより構成されている、前記(1)乃至(6)のいずれかに記載の表示装置。
(8)書き込みがなされた状態において、前記書き込みの際の印加電界とは逆極性の電界が前記表示素子に対して印加される、前記(1)乃至(7)のいずれかに記載の表示装置。
(9)先端の向きを認識可能であると共に、前記先端の向きに関する情報を送信可能な傾斜センサを内蔵したペンを用いて書き込みが行われる場合に、前記ペンから前記先端の向きに関する情報を受信して前記表示素子の表示状態を変化させる、前記(1)乃至(8)のいずれかに記載の表示装置。
(10)前記ペンの向きに関する情報に基づいて書き込みモードおよび消去モードを切り替える、前記(9)に記載の表示装置。
(11)前記下部電極は前記駆動基板に連続膜として設けられている、前記(1)乃至(10)のいずれかに記載の表示装置。
(12)前記表示素子はメモリ性を有する、前記(1)乃至(11)のいずれかに記載の画像表示装置。
(13)前記表示素子は、マイクロカップ方式の電気泳動素子である、前記(1)乃至(12)のいずれかにに記載の表示装置。
(14)前記電気泳動素子は、絶縁性液体と、光学的反射特性を有する1または2以上の泳動粒子と、前記泳動粒子とは異なる反射特性を有する1または2以上の非泳動粒子を含む繊維状構造体によって構成される多孔質層とを有する、前記(13)に記載の表示装置。
(15)前記表示素子は、マイクロカプセル方式の電気泳動素子である、前記(1)乃至(12)のいずれかに記載の表示装置。
 本出願は、日本国特許庁において2015年6月23日に出願された日本特許出願番号2015-125816号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (15)

  1.  下部電極を有する駆動基板と、
     前記駆動基板と対向配置されると共に、上部電極を有する表示基板と、
     前記駆動基板と前記表示基板との間に設けられると共に、印加電界の変化に応じて表示状態が変化する表示素子と、
     前記下部電極と前記表示素子との間に設けられた感圧導電層と
     を備えた表示装置。
  2.  前記感圧導電層は前記下部電極側および前記表示素子側の少なくとも一方に溝を有する、請求項1に記載の表示装置。
  3.  前記溝は一方向に延伸すると共に、複数併設されている、請求項2に記載の表示装置。
  4.  前記溝は格子状に配設されている、請求項2に記載の表示装置。
  5.  前記感圧導電層は前記溝によって分離されている、請求項2に記載の表示装置。
  6.  前記感圧導電層と、前記表示素子との間に複数の金属膜が配設されている、請求項1に記載の表示装置。
  7.  前記感圧導電層は、感圧導電ゴム、感圧インク、異方性導電膜、荷電粒子を含有する粘着材または異方性導電ゴムにより構成されている、請求項1に記載の表示装置。
  8.  書き込みがなされた状態において、前記書き込みの際の印加電界とは逆極性の電界が前記表示素子に対して印加される、請求項1に記載の表示装置。
  9.  先端の向きを認識可能であると共に、前記先端の向きに関する情報を送信可能な傾斜センサを内蔵したペンを用いて書き込みが行われる場合に、
     前記ペンから前記先端の向きに関する情報を受信して前記表示素子の表示状態を変化させる、請求項1に記載の表示装置。
  10.  前記ペンの向きに関する情報に基づいて書き込みモードおよび消去モードを切り替える、請求項9に記載の表示装置。
  11.  前記下部電極は前記駆動基板に連続膜として設けられている、請求項1に記載の表示装置。
  12.  前記表示素子はメモリ性を有する、請求項1に記載の画像表示装置。
  13.  前記表示素子は、マイクロカップ方式の電気泳動素子である、請求項1に記載の表示装置。
  14.  前記電気泳動素子は、絶縁性液体と、光学的反射特性を有する1または2以上の泳動粒子と、前記泳動粒子とは異なる反射特性を有する1または2以上の非泳動粒子を含む繊維状構造体によって構成される多孔質層とを有する、請求項13に記載の表示装置。
  15.  前記表示素子は、マイクロカプセル方式の電気泳動素子である、請求項1に記載の表示装置。
PCT/JP2016/066901 2015-06-23 2016-06-07 表示装置 WO2016208381A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015125816A JP2017009834A (ja) 2015-06-23 2015-06-23 表示装置
JP2015-125816 2015-06-23

Publications (1)

Publication Number Publication Date
WO2016208381A1 true WO2016208381A1 (ja) 2016-12-29

Family

ID=57585754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066901 WO2016208381A1 (ja) 2015-06-23 2016-06-07 表示装置

Country Status (2)

Country Link
JP (1) JP2017009834A (ja)
WO (1) WO2016208381A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195903A (ja) * 1997-09-24 1999-04-09 Seiko Denshi Kiki Kk 座標読取装置の座標指示器、座標読取装置及び座標読取システム
JP2002014380A (ja) * 2000-04-27 2002-01-18 Fuji Xerox Co Ltd 画像形成装置
JP2003270676A (ja) * 2002-03-13 2003-09-25 Sharp Corp 表示装置、電子情報機器、icカードビューア、その制御方法、決済処理システム、そのicカード発行制御方法および本人認証制御方法
JP2006236988A (ja) * 2005-01-31 2006-09-07 Matsushita Electric Ind Co Ltd 感圧導電シート及びその製造方法、並びにこれを用いたタッチパネル
JP2008164671A (ja) * 2006-12-27 2008-07-17 Seiko Epson Corp 表示装置及び電子ペーパー
JP2014110016A (ja) * 2012-12-04 2014-06-12 Sharp Corp 描画器
JP2015090477A (ja) * 2013-11-07 2015-05-11 ソニー株式会社 表示装置および電子機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195903A (ja) * 1997-09-24 1999-04-09 Seiko Denshi Kiki Kk 座標読取装置の座標指示器、座標読取装置及び座標読取システム
JP2002014380A (ja) * 2000-04-27 2002-01-18 Fuji Xerox Co Ltd 画像形成装置
JP2003270676A (ja) * 2002-03-13 2003-09-25 Sharp Corp 表示装置、電子情報機器、icカードビューア、その制御方法、決済処理システム、そのicカード発行制御方法および本人認証制御方法
JP2006236988A (ja) * 2005-01-31 2006-09-07 Matsushita Electric Ind Co Ltd 感圧導電シート及びその製造方法、並びにこれを用いたタッチパネル
JP2008164671A (ja) * 2006-12-27 2008-07-17 Seiko Epson Corp 表示装置及び電子ペーパー
JP2014110016A (ja) * 2012-12-04 2014-06-12 Sharp Corp 描画器
JP2015090477A (ja) * 2013-11-07 2015-05-11 ソニー株式会社 表示装置および電子機器

Also Published As

Publication number Publication date
JP2017009834A (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5741122B2 (ja) 電気泳動素子、表示装置および電子機器
JP5609700B2 (ja) 電気泳動素子および表示装置
JP2012198417A (ja) 電気泳動素子、表示装置および電子機器
JP6176252B2 (ja) 電気泳動素子、表示装置および電子機器
JP5942394B2 (ja) 電気泳動素子および表示装置
JP5880295B2 (ja) 電気泳動素子の製造方法
JP5900179B2 (ja) 電気泳動素子および表示装置
JP2014106333A (ja) 電気泳動素子、表示装置および電子機器
WO2017159075A1 (ja) 反射型表示装置および電子機器
WO2016208381A1 (ja) 表示装置
WO2017013973A1 (ja) 表示装置
JP2014106332A (ja) 電気泳動素子および表示装置
JP5942776B2 (ja) 電気泳動素子および表示装置
WO2016190136A1 (ja) 表示装置
WO2017141608A1 (ja) 表示装置および表示装置の製造方法ならびに電子機器
WO2016043057A1 (ja) 表示装置および電子機器
JP2013109222A (ja) 電気泳動素子およびその製造方法並びに表示装置
WO2017149986A1 (ja) 表示装置および電子機器
JP2017003685A (ja) 表示装置および電子機器
WO2017073169A1 (ja) 電気泳動素子、表示装置および電子機器
JP2014209159A (ja) 表示装置および電子機器
WO2016194504A1 (ja) 表示装置および電子機器
JP2016206412A (ja) 表示装置および表示装置の製造方法
WO2016114011A1 (ja) 表示装置および電子機器
WO2016129435A1 (ja) 電気泳動素子およびその製造方法ならびに表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814152

Country of ref document: EP

Kind code of ref document: A1