WO2016207072A1 - Beschichtung von holzwerkstoffplatten mit aminoplastharzfilmen, die mit einer abriebfesten easy clean und hydrophoben oberfläche ausgerüstet sind - Google Patents

Beschichtung von holzwerkstoffplatten mit aminoplastharzfilmen, die mit einer abriebfesten easy clean und hydrophoben oberfläche ausgerüstet sind Download PDF

Info

Publication number
WO2016207072A1
WO2016207072A1 PCT/EP2016/064007 EP2016064007W WO2016207072A1 WO 2016207072 A1 WO2016207072 A1 WO 2016207072A1 EP 2016064007 W EP2016064007 W EP 2016064007W WO 2016207072 A1 WO2016207072 A1 WO 2016207072A1
Authority
WO
WIPO (PCT)
Prior art keywords
sol
equipment
coating
abrasion
resistant
Prior art date
Application number
PCT/EP2016/064007
Other languages
English (en)
French (fr)
Inventor
Rolf Espe
Original Assignee
Hueck Rheinische Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hueck Rheinische Gmbh filed Critical Hueck Rheinische Gmbh
Priority to CA2989246A priority Critical patent/CA2989246A1/en
Priority to DK16747447.7T priority patent/DK3310498T3/da
Priority to PL16747447T priority patent/PL3310498T3/pl
Priority to ES16747447T priority patent/ES2740815T3/es
Priority to CN201680036076.7A priority patent/CN107750292B/zh
Priority to US15/737,394 priority patent/US10246829B2/en
Priority to RU2018102077A priority patent/RU2712611C2/ru
Priority to BR112017027345-4A priority patent/BR112017027345A2/pt
Priority to EP16747447.7A priority patent/EP3310498B1/de
Publication of WO2016207072A1 publication Critical patent/WO2016207072A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1233Organic substrates
    • C23C18/1237Composite substrates, e.g. laminated, premixed
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/02Metal coatings
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/02Metal coatings
    • D21H19/06Metal coatings applied as liquid or powder
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/80Paper comprising more than one coating
    • D21H19/82Paper comprising more than one coating superposed
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/18Paper- or board-based structures for surface covering
    • D21H27/22Structures being applied on the surface by special manufacturing processes, e.g. in presses
    • D21H27/26Structures being applied on the surface by special manufacturing processes, e.g. in presses characterised by the overlay sheet or the top layers of the structures
    • D21H27/28Structures being applied on the surface by special manufacturing processes, e.g. in presses characterised by the overlay sheet or the top layers of the structures treated to obtain specific resistance properties, e.g. against wear or weather

Definitions

  • the invention relates to the finishing of Aminoplastharzfilmen with an abrasion-resistant, easy clean and hydrophobic surface for the coating of wood-based panels that are used for the production of floor panels or find application in furniture.
  • Aminoplast resin films are melamine, formaldehyde condensation resins or mixed resins of urea and melamine, which are end condensed under pressure and temperature or spatially crosslinked.
  • Melamine resin films are used in the coating of HDF (High Density Fibreboards), which are then processed into floor panels.
  • HDF High Density Fibreboards
  • printed decor papers made of high-grade cellulose are impregnated with melamine resin, which are then precondensed in the drying zone of an impregnating channel.
  • the decorative papers are pressed together with impregnated overlay papers from 20 to 45 g / m2 in a hydraulic heating press.
  • the overlay is used for
  • Coating of decorative films and other highly stressed surfaces It consists of high-quality, high-grade paper, which is impregnated with melamine resin and additionally contains defined amounts of mineral fillers, such as corundum.
  • hard materials can be added directly to the melamine impregnating resin for paper surface coating.
  • the over- laypapier added directly to the papermaking a certain amount of corundum the raw paper mass, this eliminates the Korundismeischung in resin impregnation.
  • EP 0732449 AI a process for the production of decorative paper for use in the production of abrasion-resistant laminates is described.
  • the resin is mixed with abrasion-resistant mineral components such as corundum.
  • DE 195 29 987 A1 describes a process for the preparation of highly abrasion-resistant coating layers on solid support material.
  • This lacquer layer is produced by means of synthetic resin lacquers, such as acrylic resin, polyester resin or polyurethane resin lacquer, whereby a wear-inhibiting agent is scattered on the lacquer layers prior to hardening.
  • EP 1070688 Al a surface-coated hard material is described with a certain hardness. This hard material is added as a wear-inhibiting agent in the paint layers.
  • the production of synthetic corundum is usually carried out in an electric arc furnace, wherein the starting material alumina or bauxite is melted at about 2000 ° C. In this process, the product is produced in blocks, which are comminuted after cooling and then processed into a granulation.
  • the melamine resin films are pressed together with the overlay films in so-called hydraulic heating presses with corresponding press plates, which can be textured, frosted or glossy, under pressure and temperature.
  • the melamine resin flocks are finally condensed and form irreversible, hard surfaces.
  • the corundum particles are located after pressing on the surfaces of the coated wood-based panels.
  • the press plates used are usually made of hard chrome steels of provenance AISI 410, AISI 630 with a hardness of 38-42 HRC. However, it is also possible to use brass sheets MS 64 with a hardness of 130 HB.
  • the metal surfaces are provided with a chromium coating, which is carried out electrochemically in a chromic acid bath with Cr (VI) compounds.
  • the chrome coatings should have functional properties, therefore, hard chromium layers are over 20 ⁇ , sought.
  • the decorative and / or overlay papers after impregnation with an amino-plastharz receives an additional sol-gel coating, which is enriched with nanostructured tungsten or molybdenum disulfide, wherein the nanostructures of the metal disulphides are formed in the form of fullerene-like nanoparticles and nanotubes.
  • the additional enrichment of the fullerene-like nanoparticles of z For example, tungsten disulfide in the sol-gel mixture, surfaces with additional high release and sliding effect after curing of the films. This prevents abrasion on the press plate surfaces and improves the tribological properties of the composite layers.
  • the resulting from the sol-gel process surface layers of, for example, AI2O3, T1O2 or S1O2 produce the hardness of the surfaces of the later coated wood-based panels, which in addition creates an easy clean and hydrophobic surface.
  • the sol-gel process is a wet chemical process for the production of ceramic and hybrid organic-inorganic materials. It is possible to produce thin layers but also small particles and fibers, aerogels and xerogels and also monolithic materials via the sol-gel process. Basically, the sol-gel process describes two typical stages that go through each product.
  • a sol which consists of finely dispersed colloidal particles of about 1 nm to 100 nm in size in a liquid or dispersed oligomers, which consist of branched macromolecules.
  • a so-called precursor is used, which are metal alkoxides or metal salts dissolved in water or in another liquid.
  • M polyvalent metal ions
  • a metal hydroxide forms even in the presence of H2O even when the solvent evaporates, even at low temperatures Network. This then contains numerous MOH groups and is therefore hydrophilic and antistatic.
  • the gel forms a xerogel, which changes into a solid and compact form as a result of further temperature supply. It comes through the H2O cleavage to metal oxide groups and the surfaces are hard and scratch-resistant.
  • the deposition or the application of thin layers on the impregnated decorative or overlay papers, also referred to as a substrate in the further description, can be carried out with the aid of a plurality of coating methods.
  • dip-coating, spin coating is applicable, but it has proved suitable for one-sided surface application to coat by means of a doctor blade or to apply with a transfer roller.
  • the substrate is coated with the liquid sol.
  • the solvent evaporates, thereby greatly increasing the concentration of the particles, which, by binding the particles together, leads to the formation of a gel and thus to a solid but still porous layer.
  • This layer also called xerogel, still contains slight amounts of the solvent.
  • tempering which takes place in the subsequent drying zone of the impregnation, already forms the solid phase of the metal oxide from the sol-gel process and in the further course of the final condensation of the impregnating resins in the press under pressure and temperature, the entire hard layer of metal oxides educated.
  • metal oxides are to be made.
  • metal compounds the metals aluminum, zirconium, titanium and silicon have been found. With the help of their oxidic compounds, very good sol-gel layers can be achieved. In the further course, two sol-gel layers are described, which of the AI2O3 and SiO2
  • Starting material for the preparation of AI2O3 may be, for example, a Yoldas sol.
  • the first step of the process is the hydrolysis of aluminum alkoxide, it takes z.
  • aluminum tri-sec-butoxide Al (OCH (CH3) C2H5) 3 and hydrolyzed in a large excess of water at about 85 ° C. This results in an aluminum hydroxide slurry which is subsequently converted to a clear sol or colloidal solution by the addition of a small amount of nitric acid HNO3. If you want to work after the Yoldas process with a lower stoichiometric water content, so you mix z.
  • Another sol could be prepared from a boehmite powder which is commercially available.
  • Silica esters may be used in the preparation of S1O2 gels, for example a tetraethyl orthosilicate TEOS is used as precursor.
  • TEOS tetraethyl orthosilicate
  • the designation of such hybrid organic-inorganic layers of organically modified silica are also often referred to as ormosils.
  • Various materials can be used for the preparation of ormosil layers, in particular one starts from different silanes.
  • the subsequent mechanical behavior of the sol-gel layers depends on the chemical structure and its concentration in the sol. For example, a silane of the formula (OC 2 H 5) 3 Si (CH 2) 3-CH (O) CH 2 3-
  • Glycidoxypropyltrimethoxysilane also known under the brand name Dynasylan® or GLYMO use. If the hardness of the layers is to be increased, then nano-particles of S1O2 or Al2O3 can additionally be introduced. On the surface of the colloidal, amorphous SiO 2 particles located OH groups can react with the silane used and thus embed the particles in the layer matrix. It is also possible to prepare layers of organically modified S1O2 having a hydrophilic or hydrophobic or dirt-repellent effect.
  • the preparation for the inorganic fullerene-like tungsten disulphide particles then follows, both preparations being brought together.
  • Inorganic fullerene-like nanoparticles and nanotubes have particle diameters of 10 to 25 nm. Nanotubes have diameters of 10 to 25 nm and lengths from 200 to 300 nm.
  • the first inorganic fullerene-like particles of tungsten or molybdenum disulfide were observed in thin films formed by sulfidation of WO3 and MoO3 layers, respectively, under a reducing atmosphere. Inorganic fullerenes were first produced in Israel in 1990, and the materials used were tungsten disulfide (WS2) and molybdenum disulfide (M0S2).
  • fullerene-like materials such as TiS2, selenides, bromides and chlorides such as NiBr2, NiCl2, and various oxides such.
  • B V2O5 and boron nitride.
  • tungsten disulfide and also molybdenum disulfide was selected.
  • Tungsten disulfide in the form of fullerene-like nanoparticles and nanotubes are excellent for various uses because of their physical properties and crystallographic morphology.
  • fullerene-like tungsten disulphide has proven to be excellent, thus avoiding abrasion on the coated wood-based panels during later use.
  • the lubricating effect of tungsten disulfide and molybdenum disulfide in a tribological contact is mainly due to the formation of a thin film of WS2 or M0S2, which forms in the contact zone on the surfaces of the rubbing bodies.
  • This so-called Tribofilm allows a frictionless sliding of the surfaces against each other and thus reduces the wear of the rubbing body. Therefore, this effect is quite positive, compared to the frictional forces acting on the chromed press plate surfaces, from.
  • tungsten disulfide particles are supplied as a dry powder.
  • the particles are partly coalesced (aggregated) and agglomerated to form secondary particles several micrometers in diameter. If the powder thus formed is added directly to water and ethanol or to an aqueous sol, the tungsten disulfide precipitates directly due to the high mass. Therefore, the tungsten disulfide particles have to be deagglomerated before preparation in the sol-gel process and stabilized as sols in the sol.
  • the use of dispersants has proved to be advantageous.
  • the WS2 powder with cetyltrimethylammo- sium bromide from the company Sigma-Aldrich or Pretoctol (BASF) dispersed by means of ultrasound technology.
  • the proportion of fullerene-type tungsten disulfide WS2 in the sol depends on the desired surface finish of the coated wood-based panels and the demolding properties of the pressed panels used and can be from 1 to 50%, based on solids content.
  • sol-gel preparations with the dispersed WS2 particles are then applied to the surfaces of the resin-impregnated decorative or overlay patches used, as described above.
  • the sol-gel coating can be carried out in the known and according to the prior art impregnated drying equipment for thermoset resin impregnations.
  • the overlay paper is first impregnated with the corresponding liquid, aqueous aminoplast resin and dried in the heated drying zone to a certain moisture content and at the same time a precondensation takes place.
  • the prepared sol is then applied with the fullerene-like WS2 particles and then transferred to the heated drying channel.
  • the speed and channel temperature depend on the respective resin parameters that are set by the user beforehand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Paints Or Removers (AREA)

Abstract

Ausrüstung von mit Aminoplastharz imprägnierten Dekor- und/oder Overlay-Papieren, die für die Beschichtung von Holzwerkstoffplatten eingesetzt werden und eine abriebfeste, easy clean und hydrophobe Oberfläche ausbilden, dadurch gekennzeichnet, dass nach der erfolgten Harzimprägnierung in einem zweiten Auftragsschritt die imprägnierten Papiere mit einer Sol-Gel Präparation, die gelöste Metallalkoxide sowie fullerenartige Nanostrukturen und Nanoröhren aus Metalldisulfiden der Metalle Molybdän und/oder Wolfram enthält, beschichtet und anschließend nach Trocknung und Endkondensation die Oberflächen in einer hydraulischen Heizpresse ausgeformt werden.

Description

Beschichtung von Holzwerkstoffplatten mit Aminoplastharzfilmen, die mit einer abriebfesten, easy clean und hydrophoben Oberfläche ausgerüstet sind
[0001] Die Erfindung betrifft die Ausrüstung von Aminoplastharzfilmen mit einer abriebfesten, einer easy clean und hydrophoben Oberfläche für die Beschichtung von Holzwerkstoffplatten, die zur Herstellung von Fußbodenplatten eingesetzt werden oder im Möbelbau Anwendung finden. [0002] Unter Aminoplastharzfilmen versteht man Melamin-, Formaldehydkondensationsharze oder Mischharze aus Harnstoff und Melamin, die unter Druck und Temperatur endkondensiert bzw. räumlich vernetzt werden.
[0003] Melaminharzfilme werden bei der Beschichtung von HDF-Platten (High Density Fibreboards) eingesetzt, die anschließend zu Fußbodenpaneelen verarbeitet werden. Dabei benutzt man bedruckte Dekorpapiere aus Edelzellstoff mit Melaminharz imprägniert, die anschließend in der Trocknungszone eines Imprägnierkanals vorkondensiert werden. In der Regel verpresst man die Dekorpapiere zusammen mit imprägnierten Overlaypapieren von 20 bis 45 g/m2 in einer hydraulischen Heizpresse. Das Overlay dient zur
Vergütung der Dekorfilme und anderen hochbeanspruchten Oberflächen. Es besteht aus hochwertigen Edelzellstoffpapieren, welches mit Melaminharz getränkt wird und zusätzlich definierte Mengen an mineralischen Füllstoffen, wie zum Beispiel Korund, enthält.
[0004] Fußbodenplatten müssen relativ abriebfest sein, daher verstärkt man deren Oberflä- chen mit diesen Füllstoffen. Hier hat sich als Hartstoff aufgrund seiner Härte Transparenz und Inertheit AI2O3 in Form von Elektrokorund, Sinterkorund, Einkristallkorund und/oder kalzinierte oder gesinterte Tonerdeprodukte bewährt.
[0005] Der Auftrag derartiger Hartstoffe wird nach Stand der Technik in unterschiedlicher Weise durchgeführt. So können dem Melamintränkharz für die Papieroberflächenbeschich- tung direkt diese Hartstoffe beigemischt werden. In einem anderen Fall wurde dem Over- laypapier direkt bei der Papierherstellung eine bestimmte Menge Korund der Rohpapiermasse beigefügt, dadurch entfällt bei der Harzimprägnierung die Korundbeimischung.
[0006] In der EP 0732449 AI wird ein Verfahren zur Herstellung von Dekorpapier zur Verwendung bei der Herstellung von abriebfesten Laminaten beschrieben. Hier werden dem Harz abriebfeste Mineralbestandteile wie Korund beigemischt.
[0007] Die DE 195 29 987 AI beschreibt ein Verfahren zur Herstellung hochabriebfester Lackschichten auf festem Trägermaterial. Diese Lackschicht wird mittels Kunstharzlacken wie Acrylharz-, Polyesterharz- oder Polyurethanharzlack erzeugt, wobei ein verschleißhemmendes Mittel auf die Lackschichten vor der Aushärtung gestreut wird. In einer weiteren Druckschrift EP 1070688 AI wird ein oberflächenbeschichteter Hartstoff mit einer bestimmten Härte beschrieben. Dieser Hartstoff wird als verschleißhemmendes Mittel in die Lackschichten gegeben.
[0008] Die Herstellung von synthetischem Korund erfolgt üblicherweise im Lichtbogenofen, wobei der Ausgangsstoff Tonerde oder Bauxit bei ca. 2000°C geschmolzen wird. Das Produkt fällt bei diesem Prozess in Blöcken an, die nach dem Abkühlen zerkleinert und anschließend zu einer Körnung aufbereitet werden.
[0009] Bei der Zerkleinerung des Korunds entsteht aufgrund seines Sprödbruchverhaltens eine stark zerklüftete Oberfläche mit vielen Stufenversetzungen, Mikrokanten und Rissen.
[0010] Diese Korundteilchen verursachen bei dem späteren Pressvorgang in der
Heizpresse erhebliche Probleme auf den Oberflächen der eingesetzten Pressbleche.
[0011] Die Melaminharzfilme werden zusammen mit den Overlayfilmen in sogenannten hydraulischen Heizpressen mit entsprechenden Pressblechen, die strukturiert, mattiert oder auch glänzend sein können, unter Druck und Temperatur verpresst. Die Melamin- harzfüme werden dabei endkondensiert und bilden irreversible, harte Oberflächen aus.
Die Korundteilchen befinden sich nach der Verpressung an den Oberflächen der beschichteten Holzwerkstoffplatten. [0012] Die eingesetzten Pressbleche bestehen in der Regel aus harten Chromstählen der Provenienz AISI 410, AISI 630 mit einer Härte von 38–42 HRC. Es können aber auch Messingbleche MS 64 mit einer Härte von 130 HB zur Anwendung kommen. Um die Trenneigenschaften der metallischen Oberflächen gegenüber den Melaminharzen zu verbessern und die Oberflächen gegen Kratzer zu schützen, werden die Blechoberflächen mit einem Chromüberzug versehen, welches elektrochemisch in einem Chromsäurebad mit Cr(VI) Verbindungen durchgeführt wird. Die Chromüberzüge sollten funktionelle Eigenschaften aufweisen, daher werden Hartchromschichten, die über 20 μιη liegen, angestrebt.
[0013] Obwohl die verchromten Blechoberfiächen Härten von 1000 bis max. 1200 HV aufweisen, entsteht trotzdem ein vorzeitiger Verschleiß der Blechoberfläche, wobei der Glanzgrad der Chromschicht verändert wird. Dieses geschieht aufgrund der großen Härteunterschiede, Korund besitzt eine Härte nach Vickers von 1800 bis 2000 HV. Während des Pressvorgangs entstehen Bewegungen, bedingt durch die Blechausdehnung nach dem Zufahren der Heizplatten. Die Pressbleche erfahren einen Temperatursprung da sie engen Kontakt mit der Heizplatte bekommen. Auf der anderen Seite führt die fortschreitende Kondensation der Melaminharze zu einer Schrumpfung der Oberfläche, dadurch entsteht unter dem hohen Druck eine starke Reibung, die den vorzeitigen Verschleiß der Blechober- flächen auslöst. Die Blechoberfiächen müssen daher relativ schnell wieder aufgearbeitet und neu verchromt werden.
[0014] Der Erfindung liegt die Aufgabe zugrunde, Aminoplastharz imprägnierte Dekorpapiere und Overlays so auszurüsten, dass ein vorzeitiger Verschleiß der verchromten Press- blechoberfiächen verhindert, die endkondensierten Aminoplastharzoberflächen abriebfest sind und eine zuzügliche easy clean und hydrophobe Oberfläche gebildet wird.
[0015] Diese Aufgabe wird nach dem Vorschlag der Erfindung dadurch gelöst, dass die Dekor- und/oder Overlaypapiere nach der erfolgten Imprägnierung mit einem Amino- plastharz eine zuzügliche Sol-Gel Beschichtung erhält, die mit nanostrukturiertem Wolfram- oder Molybdändisulfid angereichert ist, wobei die Nanostrukturen der Metalldisul- fide in Form von fullerenartigen Nanopartikeln und Nanoröhren ausgebildet sind. [0016] Die zuzügliche Anreicherung der fullerenartigen Nanopartikeln von z. B. Wolfram- disulfid in der Sol-Gel Mischung, ergeben Oberflächen mit zuzüglich hoher Trenn- und Gleitwirkung nach der Aushärtung der Filme. Somit wird ein Abrieb an den Pressblechober- flächen verhindert und die tribologischen Eigenschaften der Kompositschichten verbessert. Die aus dem Sol-Gel-Verfahren entstehenden Oberflächenschichten aus zum Beispiel AI2O3, T1O2 oder S1O2 erzeugen die Härte der Oberflächen der späteren beschichteten Holzwerkstoffplatten, wobei zuzüglich eine easy clean und hydrophobe Oberfläche entsteht. [0017] Das Sol-Gel-Verfahren ist ein naßchemisches Verfahren zur Herstellung keramischer sowie hybrider organisch-anorganischer Materialien. Es können dünne Schichten aber auch kleine Partikel und Fasern, Aerogele und Xerogele und auch monolithische Materialien über den Sol-Gel- Prozess hergestellt werden. Im Grunde beschreibt das Sol-Gel-Verfahren zwei typische Stufen, die jedes Produkt durchläuft. Zunächst wird ein Sol hergestellt, dieses be- steht aus fein dispergierten kolloidalen Partikeln von etwa 1 nm bis zu 100 nm Größe in einer Flüssigkeit oder aus dispergierten Oligomeren, welche aus verzweigten Makromolekülen bestehen. Für die Erzeugung des Sols wird ein sogenannter Präkursor verwendet, das sind Metallalkoxide oder Metallsalze, die in Wasser oder in einer anderen Flüssigkeit gelöst sind. Werden zum Beispiel die aus einer alkoholischen Lösung hydrolsierbarer Alkoholate mehr- wertiger Metall-Ionen (M = Ti, Si, oder AI) auf eine Oberfläche aufgetragen, so bildet sich in Gegenwart von H2O bereits bei der Verdunstung des Lösungsmittels auch bei tiefen Temperaturen ein Metallhydroxid-Netzwerk aus. Dieses enthält dann zahlreiche MOH- Gruppen und ist daher hydrophil und antistatisch. [0018] In Folge der Hydrolyse- und Kondensationsreaktionen kommt es zu einem Wachstum der Partikel und zu einer verstärkten Polymerisierung, bis sich schließlich ein festes Netzwerk innerhalb der flüssigen Phase gebildet hat, dieses bezeichnet man dann als Gel. Durch die Verdampfung des Lösungsmittels entsteht aus dem Gel ein Xerogel, welches durch weitere Temperaturzuführung in eine feste und kompakte Form übergeht. Es kommt durch die H2O Abspaltung zu Metalloxid-Gruppierungen und die Oberflächen werden hart und kratzfest. [0019] Die Abscheidung oder der Auftrag dünner Schichten auf den imprägnierten Dekor- oder Overlaypapieren, in der weiteren Beschreibung auch als Substrat bezeichnet, kann mit Hilfe mehrerer Beschichtungsverfahren durchgeführt werden. So ist die Tauch- beschichtung (dip-coating), Schleuderbeschichtung (spin-coating) anwendbar, als geeig- net hat sich aber für den einseitigen Oberflächenauftrag die Beschichtung mittels Rakel oder der Antrag mit einer Verreibewalze erwiesen. Üblicherweise wird das Substrat mit dem flüssigen Sol beschichtet. Nach dem Auftrag kommt es dann zu einer Verdunstung des Lösungsmittels, dabei wird die Konzentration der Partikeln stark erhöht, dieses führt nun durch die Bindung der Partikeln untereinander zu der Entstehung eines Gels und so- mit zu einer festen aber noch porösen Schicht. Diese Schicht, auch Xerogel genannt, enthält noch leichte Anteile des Lösungsmittels. Erst durch Temperung, die in der anschließenden Trockenzone des Imprägnierkanals stattfindet, bildet sich bereits die feste Phase des Metalloxid aus dem Sol-Gel Prozess und im weiteren Verlauf der Endkondensation der Imprägnierharze in der Heizpresse unter Druck und Temperatur, wird die gesamte harte Schicht der Metalloxide ausgebildet.
[0020] Je nach gewünschter Oberflächenhärte ist die Auswahl der Metalloxide zu treffen. Als geeignete Metallverbindungen haben sich die Metalle Aluminium, Zirkonium, Titan und Silizium erwiesen. Mit Hilfe ihrer oxidischen Verbindungen lassen sich sehr gute Sol- Gel-Schichten erzielen. Im weiteren Verlauf werden zwei Sol-Gel-Schichten beschrieben, die des AI2O3 und Si02-
[0021] Ausgangsmaterial für die Präparation von AI2O3 kann zum Beispiel ein Yoldas-Sol sein. Der erste Schritt des Verfahrens ist die Hydrolyse von Aluminiumalkoxid, man nimmt z. B. Aluminium-tri-sec-butoxid Al(OCH(CH3)C2H5)3 und hydrolisiert in einem großen Überschuß von Wasser bei ca. 85°C. Dies ergibt eine Aluminiumhydroxidaufschlämmung, die nachfolgend durch die Zugabe einer kleinen Menge von Salpetersäure HNO3 zu einem klaren Sol bzw. in eine kolloide Lösung überführt wird. [0022] Will man nach dem Yoldas Prozeß mit einem geringeren stöchiometrischen Wassergehalt arbeiten, so mischt man z. B. Aluminium-tri-sec-butoxid mit absolutem Äthanol und Essigsäure in einem Verhältnis von Al-tri-sec-butoxid:C2H50H:H20 (DI) = 1 : 16:0,6 und erwärmt auf ca. 65°C unter ständigem Rühren von ca. 50 Minuten. Die ursprünglich trübe Mischung wird nach einsetzender Hydrolyse langsam klar. Die klare Sol-Mischung wird auf Raumtemperatur abgekühlt. Im zweiten Schritt wird ein Gel durch Zusatz von Methanol CH3 und H2O erzeugt, wobei die Gewichtsverhältnisse in etwa Sol:CH3:H20 = 1 g:0,2 g:0,003 g betragen können, dazu wird noch eine geringe Menge Essigsäure zugeführt.
[0023] Eine weiteres Sol könnte aus einem Böhmitpulver präpariert werden welches kommerziell zur Verfügung steht.
[0024] Bei der Präparation von S1O2 Gelen können Kieselsäureester zur Anwendung kommen, zum Beispiel wird als Präkursor ein Tetraethylorthosilikat TEOS eingesetzt. Die Bezeichnung solcher hybriden organisch-anorganischen Schichten aus organisch modifiziertem Siliziumoxid werden auch häufig als Ormosile bezeichnet. Für die Präparation von Ormosil- schichten können verschiedene Materialien Anwendung finden, insbesondere geht man von verschiedenen Silanen aus. Das spätere mechanische Verhalten der Sol-Gel-Schichten ist abhängig von der chemischen Struktur und deren Konzentration im Sol. Beispielsweise kann man ein Silan der Formel (OC2H5)3Si-(CH2)3-CH(0)CH2 3-
Glycidoxypropyltrimethoxysilan auch unter den Brand names Dynasylan® oder GLYMO bekannt, einsetzen. Will man die Härte der Schichten erhöhen, so können zuzüglich Nano- partkel aus S1O2 oder AI2O3 eingebracht werden. Auf der Oberfläche der kolloidalen, amorphen Si02-Partikel befindlichen OH-Gruppen können dabei mit dem verwendeten Silan reagieren und so die Partkel in die Schichtmatrix einbinden. Es können auch Schichten aus organisch modifiziertem S1O2 mit einer hydrophilen oder hydrophoben oder schmutzabwei- senden Wirkung präpariert werden.
[0025] Nach der Herstellung des Sols, welches für die Beschichtung vorgesehen ist, er- fogt anschliessend die Präparation für die anorganischen fullerenartigen Wolframdisul- fidpartikeln, beide Präparationen werden zusammengeführt.
[0026] Anorganische fullerenartige Nanopartikeln und Nanoröhren haben Teilchendurchmesser von 10 bis 25 nm. Nanoröhren haben Durchmesser von 10 bis 25 nm und Längen von 200 bis 300 nm. Die ersten anorganische fullerenartigen Partikel aus Wolfram- oder Molybdändisulfid wurden in dünnen Schichten beobachtet, die durch Sulfidierung von WO3- bzw. MoOß-Schichten unter reduzierender Atmosphäre entstanden waren. Anorganische Fullerene wurden im Jahr 1990 in Israel erstmalig hergestellt, die verwendeten Ma- terialien waren Wolframdisulfid (WS2) und Molybdändisulfid (M0S2). Im weiteren Verlauf wurden zahlreiche andere anorganische fullerenartigen Materialien hergestellt, wie zum Beispiel TiS2, Selenide, Bromide und Chloride wie NiBr2, NiCl2, auch verschiedene Oxide wie z. B. V2O5 sowie Bornitrid. Für die erfindungsgemäße Anwendung wurde Wolframdisulfid und auch Molybdändisulfid ausgewählt. Wolframdisulfid in Form von fullerenartigen Nanopartikeln und Nanoröhren sind wegen ihrer physikalischen Eigenschaften und kristallographischen Morphologie für verschiedene Verwendungszwecke ausgezeichnet geeignet. In der Sol- Gel Präparation hat sich fullerenartiges Wolframdisulfid hervorragend erwiesen und so den Abrieb auf den beschichteten Holzwerkstoffplatten beim späteren Einsatz vermieden. Ebenfalls wurde der Abrieb auf den Pressblechen während des Pressvorgangs verhindert. Die Schmierwirkung von Wolframdisulfid und Molybdändisulfid in einem tribologischen Kontakt beruht hauptsächlich auf der Ausbildung eines dünnen Films aus WS2 bzw. M0S2, der sich in der Kontaktzone auf den Oberflächen der reibenden Körper formt. Dieser sogenannte Tribofilm ermöglicht ein reibungsarmes gleiten der Oberflächen gegeneinander und verringert so den Verschleiß der reibenden Körper. Daher ge- staltet sich dieser Effekt recht positv, gegenüber den Reibungskräften die auf den verchromten Pressblechoberflächen wirken, aus.
[0027] Handelsüblich werden die meisten anorganischen fullerenartigen Wolframdis- ulfidpartikel als trocknes Pulver geliefert. Die Partikel sind jedoch aufgrund des Pro- duktionsprozesses teilweise zusammengewachsen (aggregiert) und agglomeriert und bilden so Sekundärpartikel, die einige Mikrometer Durchmesser haben. Gibt man das so ausgebildete Pulver direkt in Wasser und Ethanol oder in ein wässeriges Sol, so fällt das Wolframdisulfid aufgrund der hohen Masse direkt aus. Daher müssen die Wolf- ramdisulfid-Partikel vor der Präparation im Sol-Gel Prozess deagglomeriert werden und als Einzelpartikel im Sol stabilisiert werden. Die Verwendung von Dispergatoren haben sich als vorteilhaft erwiesen. So wird das WS2-Pulver mit Cetyltrimethylammo- niumbromid von der Fa. Sigma-Aldrich oder mit Pretoctol (Fa. BASF) mittels der Ultraschalltechnologie dispergiert.
[0028] Der Anteil von fullerenartigem Wolframdisulfid WS2 im Sol, richtet sich nach der gewünschten Oberflächenausführung der beschichteten Holzwerkstoffplatten und den Ent- formungseigenschaften der verwendeten Pressbleche und kann von 1 bis 50%, bezogen auf Festkörperanteil, betragen.
[0029] Die so gefertigen Sol-Gel-Präparationen mit den dispergierten WS2-Partikeln werden anschliessend auf die Oberflächen der eingesetzten, harzimprägnierten Dekoroder Overlaypaieren, wie zuvor beschrieben, aufgetragen.
[0030] Die Sol-Gel-Beschichtung kann in den bekannten und nach dem Stand der Technik ausgerüsteten Imprägnier-Trockenanlagen für Duroplastharzimprägnierungen erfolgen. Hier- bei wird zum Beispiel das Overlaypapier zunächst mit dem entsprechenden flüssigen, wässerigen Aminoplastharz imprägniert und in der beheizten Trockenzone auf einen bestimmten Feuchtigkeitsgehalt getrocknet wobei gleichzeitig eine Vorkondensation stattfindet. In einer zweiten Auftragszone wird dann das präparierte Sol mit den fullerenartigen WS2-T eilchen aufgetragen und anschließend in den beheizten Trockenkanal überführt. Die Geschwindigkeit und Kanaltemperatur richtet sich nach den jeweiligen Harzparametern die vom Anwender vorher festgelegt werden.

Claims

P a t e n t a n s p r ü c h e
1. Ausrüstung von mit Aminoplastharz imprägnierten Dekor- und/oder Overlay- Papieren, die für die Beschichtung von Holzwerkstoffplatten eingesetzt werden und eine abriebfeste, easy clean und hydrophobe Oberfläche ausbilden, dadurch gekennzeichnet, dass nach der erfolgten Harzimprägnierung in einem zweiten Auftragsschritt die imprägnierten Papiere mit einer Sol-Gel Präparation, die gelöste Metallalkoxide sowie fuUerenartige Nano- strukturen und Nanoröhren aus Metalldisulfiden der Metalle Molybdän und/oder Wolfram enthält, beschichtet und anschließend nach Trocknung und Endkondensation die Oberflä- chen in einer hydraulischen Heizpresse ausgeformt werden.
2. Ausrüstung der Aminoplastharzfüme nach Anspruch 1, dadurch gekennzeichnet, dass die Metallalkoxide bevorzugt aus den Metallen Aluminium, Titan, Silizium oder Zirkon bestehen.
3. Ausrüstung der Aminoplastharzfilme nach Anspruch 1, dadurch gekennzeichnet, dass der Sol-Gel Präparation mit den gelösten Metallalkoxiden zuzüglich zur Steigerung der Kratzfestigkeit geringe Mengen von nanoskaligen Metalloxiden (Si02, AI2O3, T1O2, Zr02) zudispergiert wird.
4. Ausrüstung der Aminoplastharzfilme nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die fullerenartigen Wolframdisulfid- und/oder Molybdändisulfidpartikeln mit den kationischen Tensiden Cetyltrimethylammoniumbromid oder Pretoctol KLC50 dispergiert werden.
5. Ausrüstung der Aminoplastharzfilme nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die Sol-Präparation aus einem Ormosil der Formulierung 3- Glycidoxypropytrimethoxysilan besteht.
6. Ausrüstung der Aminoplastharzfümen nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die Sol-Gel-Präparation aus einem Yoldas-Sol der Formulierung
Al(OCH(CH3)C2H5)3 besteht.
PCT/EP2016/064007 2015-06-20 2016-06-17 Beschichtung von holzwerkstoffplatten mit aminoplastharzfilmen, die mit einer abriebfesten easy clean und hydrophoben oberfläche ausgerüstet sind WO2016207072A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2989246A CA2989246A1 (en) 2015-06-20 2016-06-17 Coating of composite wood panels with aminoplast resin films, providing a finish with an abrasion-resistant, easy-clean and hydrophobic surface
DK16747447.7T DK3310498T3 (da) 2015-06-20 2016-06-17 Belægning af komposittræpaneler med aminoplastharpiksfolier, der er udstyret med en slidfast og hydrofob overflade, som er nem at rengøre
PL16747447T PL3310498T3 (pl) 2015-06-20 2016-06-17 Powlekanie płyt drzewnych warstwą aminoplastów, które wyposażone są w trudno ścieralną, łatwą do mycia i hydrofobową powierzchnię
ES16747447T ES2740815T3 (es) 2015-06-20 2016-06-17 Revestimiento de placas de materia derivada de la madera con películas de resina aminoplástica, que están acabadas con una superficie resistente a la abrasión, de limpieza fácil e hidrófoba
CN201680036076.7A CN107750292B (zh) 2015-06-20 2016-06-17 具有用耐磨的、容易清洁的和疏水的表面整理的氨基塑料树脂膜的木质复合板的涂层
US15/737,394 US10246829B2 (en) 2015-06-20 2016-06-17 Coating of composite wood panels with aminoplast resin films fitted with an abrasion-resistant, easy-clean and hydrophobic surface
RU2018102077A RU2712611C2 (ru) 2015-06-20 2016-06-17 Покрытие древесно-стружечных плит пленками из аминопластовой смолы, поверхности которых приданы свойства износостойкости, легкой очищаемости и гидрофобности
BR112017027345-4A BR112017027345A2 (pt) 2015-06-20 2016-06-17 acabamento de papéis decorativos e/ou de sobreposição impregnados com resina aminoplástica e acabamento dos filmes de resina aminoplástica
EP16747447.7A EP3310498B1 (de) 2015-06-20 2016-06-17 Beschichtung von holzwerkstoffplatten mit aminoplastharzfilmen, die mit einer abriebfesten easy clean und hydrophoben oberfläche ausgerüstet sind

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202015004389.5 2015-06-20
DE202015004389.5U DE202015004389U1 (de) 2015-06-20 2015-06-20 Beschichtung von Holzwerkstoffplatten mit Aminoplastharzfilmen, die mit einer abriebfesten, easy clean und hydrophoben Oberfläche ausgerüstet sind

Publications (1)

Publication Number Publication Date
WO2016207072A1 true WO2016207072A1 (de) 2016-12-29

Family

ID=53759297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/064007 WO2016207072A1 (de) 2015-06-20 2016-06-17 Beschichtung von holzwerkstoffplatten mit aminoplastharzfilmen, die mit einer abriebfesten easy clean und hydrophoben oberfläche ausgerüstet sind

Country Status (13)

Country Link
US (1) US10246829B2 (de)
EP (1) EP3310498B1 (de)
CN (1) CN107750292B (de)
BR (1) BR112017027345A2 (de)
CA (1) CA2989246A1 (de)
CL (1) CL2017003212A1 (de)
DE (1) DE202015004389U1 (de)
DK (1) DK3310498T3 (de)
ES (1) ES2740815T3 (de)
PL (1) PL3310498T3 (de)
RU (1) RU2712611C2 (de)
TR (1) TR201910885T4 (de)
WO (1) WO2016207072A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020216415A1 (de) 2019-04-23 2020-10-29 Technische Universität Bergakademie Freiberg Zusammensetzungen zur beschichtung von substratoberflächen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716973B (zh) * 2022-11-25 2023-09-05 湖南大学 一种减摩性能优异的聚酯树脂基复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044576A1 (de) * 1999-01-26 2000-08-03 Kronospan Technical Company Ltd. Verfahren zum herstellen von laminat-beschichtungen und laminat-beschichtung
EP1634995A1 (de) * 2004-09-08 2006-03-15 Kronotec Ag Imprägnat und Verfahren zur Herstellung des Imprägnates
DE102007019179A1 (de) * 2007-04-20 2008-10-30 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Verschleißschutzschicht

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19508797C1 (de) 1995-03-15 1996-08-29 Graudenz & Partner Consultatio Verfahren zur Herstellung von Dekorpapier zur Verwendung bei der Herstellung von abriebfesten Laminaten
DE19529987A1 (de) 1995-08-07 1997-02-13 Kunnemeyer Hornitex Verfahren zur Herstellung hochabriebfester Lackschichten auf festem Trägermaterial
DE19933710A1 (de) 1999-07-19 2001-01-25 Daniele Casalini Oberflächenbeschichteter Hartstoff
US20090017294A1 (en) * 2007-07-11 2009-01-15 Ppg Industries Ohio, Inc. Coating for decorative metals with improved mar and scratch resistance and methods of application
CN100567677C (zh) * 2007-10-31 2009-12-09 寇国模 复合地板表层、复合地板及其制造方法
CN101234786B (zh) * 2008-02-22 2011-05-11 长安大学 一种具有富勒烯结构的纳米二硫化钨的制备方法
CN103620116B (zh) * 2011-06-28 2016-08-17 纳幕尔杜邦公司 具有降低的光活性和抗微生物特性的处理过的无机颜料以及它们在纸材浆液中的用途
EP2789735A1 (de) * 2013-04-08 2014-10-15 Unilin BVBA Verfahren zur Herstellung beschichteter Paneele und beschichtetes Paneel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044576A1 (de) * 1999-01-26 2000-08-03 Kronospan Technical Company Ltd. Verfahren zum herstellen von laminat-beschichtungen und laminat-beschichtung
EP1634995A1 (de) * 2004-09-08 2006-03-15 Kronotec Ag Imprägnat und Verfahren zur Herstellung des Imprägnates
DE102007019179A1 (de) * 2007-04-20 2008-10-30 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Verschleißschutzschicht

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020216415A1 (de) 2019-04-23 2020-10-29 Technische Universität Bergakademie Freiberg Zusammensetzungen zur beschichtung von substratoberflächen
DE102019110519B4 (de) 2019-04-23 2021-10-07 Technische Universität Bergakademie Freiberg Zusammenstellung, aufweisend eine erste Zusammensetzung und eine zweite Zusammensetzung, daraus hergestellte Zusammensetzung zur Beschichtung von Substratoberflächen sowie deren Verwendung und Verfahren zu deren Herstellung

Also Published As

Publication number Publication date
RU2018102077A (ru) 2019-07-23
US10246829B2 (en) 2019-04-02
DK3310498T3 (da) 2019-08-05
EP3310498B1 (de) 2019-05-08
RU2018102077A3 (de) 2019-08-21
BR112017027345A2 (pt) 2018-09-04
ES2740815T3 (es) 2020-02-06
DE202015004389U1 (de) 2015-07-09
US20180187378A1 (en) 2018-07-05
CL2017003212A1 (es) 2018-05-04
CA2989246A1 (en) 2016-12-29
RU2712611C2 (ru) 2020-01-29
PL3310498T3 (pl) 2019-10-31
CN107750292A (zh) 2018-03-02
EP3310498A1 (de) 2018-04-25
CN107750292B (zh) 2020-02-21
TR201910885T4 (tr) 2019-08-21

Similar Documents

Publication Publication Date Title
EP2147157B1 (de) Verschleissschutzschicht
KR101599433B1 (ko) 이산화티타늄층이 로딩된 무기 비금속 광물질 복합재료, 그의 제조방법 및 용도
DE69706471T2 (de) Wasserverdünnbare Beschichtungszusammensetzung für Korrosionsschutz
EP2162565B1 (de) Ultraharte kompositschichten auf metalloberflächen und verfahren zu ihrer herstellung
WO2005118722A1 (de) Wässrige beschichtungszusammensetzung mit korrosionsstabilen dünnen deckenden aluminiumpigmenten, verfahren zu deren herstellung und verwendung derselben
EP1838646A1 (de) Beschichtungssystem
KR20080102198A (ko) 중공 바디로 피복된 이산화티탄 안료 및 이의 제조방법
WO2012013335A2 (de) Beschichtungszusammensetzung mit titandioxiderzeugendem mittel, nanoskalige beschichtung auf basis von titandioxid, deren herstellung, weiterverarbeitung und verwendung
EP3310498B1 (de) Beschichtung von holzwerkstoffplatten mit aminoplastharzfilmen, die mit einer abriebfesten easy clean und hydrophoben oberfläche ausgerüstet sind
CA2849758C (en) Treated inorganic pigments having improved dispersability and use thereof in coating compositions
EP4143263A1 (de) Zusammensetzung zur mattierung und reduzierung von anti-fingerprint-effekten von oberflächen auf trägermaterialien
EP1716199A2 (de) Verfahren zur herstellung von polyesterharzen mit nanoskaligen zusatzstoffen f r pulverlacke
EP2831339B1 (de) Verfahren zur herstellung eines walzenbezugs
EP0969977A1 (de) Mit melaminharz beschichtete festkörperpartikel und deren verwendung zur herstellung von dekorativen gegenständen
DE10161093A1 (de) Dekorfolien mit großer Oberflächenhärte und hohen Kratz- und Abriebfestigkeiten und Verfahren zur Herstellung
EP2288500B1 (de) Laminat und verfahren zu dessen herstellung
CN207348307U (zh) 一种玻璃钢外墙挂板
DE10127494A1 (de) Funktionelle anorganische Bornitrid Schichten
DE102011010718A1 (de) Verfahren zum Herstellen einer strukturierten, Bedruckstoff kontaktierenden Oberfläche
EP3013581B1 (de) Laminat mit aminoplastharz enthaltender beschichtung
US20140065412A1 (en) Dispersed nanoparticles in transparent coatings
EP2325389B1 (de) Beschichtungsstoff für Faserverbund
EP2251076A2 (de) Verfahren zur Herstellung beschichteter Granulatpartikel, beschichtete Granulatpartikel und deren Verwendung
WO2024084004A1 (de) Verfahren zur papierveredelung, zusammensetzung für einen papierstrich, papier und verwendung des papiers
Qi et al. Study on Surface Modification of Micaceous Iron Oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16747447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2989246

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018102077

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017027345

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017027345

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171218