WO2016206843A1 - Système et procédé de suppression automatique de courts-circuits dans un bus d'alimentaton - Google Patents

Système et procédé de suppression automatique de courts-circuits dans un bus d'alimentaton Download PDF

Info

Publication number
WO2016206843A1
WO2016206843A1 PCT/EP2016/059780 EP2016059780W WO2016206843A1 WO 2016206843 A1 WO2016206843 A1 WO 2016206843A1 EP 2016059780 W EP2016059780 W EP 2016059780W WO 2016206843 A1 WO2016206843 A1 WO 2016206843A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
snd
units
snd7
snd1
Prior art date
Application number
PCT/EP2016/059780
Other languages
German (de)
English (en)
Inventor
Martin Hediger
Anton Reichlin
Daniel Sigg
Original Assignee
Siemens Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz Ag filed Critical Siemens Schweiz Ag
Priority to EP16721138.2A priority Critical patent/EP3313710B1/fr
Publication of WO2016206843A1 publication Critical patent/WO2016206843A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L19/00Arrangements for interlocking between points and signals by means of a single interlocking device, e.g. central control
    • B61L19/06Interlocking devices having electrical operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/70Details of trackside communication

Definitions

  • the present invention relates to a system and method for automatically eliminating a
  • Function units are supplied with electrical energy.
  • train-influencing units To control vehicle influencing and / or vehicle monitoring units and to monitor the functionality and to record process data and report back to a central control and / or monitoring center, such as a control center or a signal box.
  • a central control and / or monitoring center such as a control center or a signal box.
  • Process variables of the moving train such as
  • Monitoring units can also use balises and
  • the present invention relates to all industrial installations in which functional
  • the central controller can be perceived by a stationary control center, but also by a non-stationary virtual control center. In railway traffic, it is usually the case that these decentralized functional units are controlled by an interlocking or a remote interlocking computer. For the data transfer between the signal box and the
  • Transport network arranged decentralized
  • Control system is coupled via at least one network access point on the data transport network
  • Network access point are connected, wherein:
  • the subnetwork of each of the subgroups at each of its two ends is coupled to the data transport network via a communication unit and via a network access point.
  • Such a device is in particular
  • Control system is coupled via at least one network access point on the data transport network
  • Examples are the energy management for buildings or for large plants in the producing or
  • Function units - also called element controllers or EC for short) are thereby connected to the data bus and the power bus by means of network node units - also called bus couplers or SNDs for short - Smart Node Device
  • the SND can, for example, the
  • the present invention is therefore based on the object of specifying a system and a method for the automatic elimination of a short circuit in an energy bus, which provides decentralized functional units arranged in an industrial plant with electrical energy.
  • the short circuit in the power bus should be reliably and quickly detectable and localizable, so that immediate measures to restore the correct function of the power bus can be initiated.
  • the object is achieved by a system for automatically eliminating a short circuit in an energy bus via the decentralized system arranged in an industrial plant
  • Function units are supplied with electrical energy, wherein:
  • Data telegrams exchanges information via a data bus
  • Feeding points of a ring-shaped power bus are arranged, the decentralized functional units access to the power bus and optionally also to
  • Switching module having a first switch and a second switch, wherein the two switches each having access to the two feed points is switchable, d) an evaluation module is provided which the measured voltage and / or the measured current within a network node unit and / or below neighboring ones
  • Energy bus evaluates, wherein upon detection of a short circuit, a time-staggered shutdown of at least a portion of the network node units of the Power bus by opening the first or the second switch is executable;
  • Data telegrams exchanges information via a data bus
  • Feeding points of a ring-shaped power bus are arranged, the decentralized functional units access to the power bus and optionally also to
  • Switching module having a first switch and a second switch, wherein the two switches each having access to the two feed points is switchable, d) an evaluation module is provided, the measured voltage and / or the measured current within a network node unit and / or below neighboring ones
  • Energy bus evaluates, wherein upon detection of a short circuit, a time-staggered shutdown of at least a portion of the network node units is executed;
  • Each network node unit therefore knows its respective shutdown time as soon as a short circuit has been detected.
  • a short circuit can be characterized, for example, a state of the power bus, which exceeds a pre-configured shutdown and / or drops the voltage of the power bus below a pre-configured shutdown voltage.
  • Node unit has the earliest AbschaltZeitrios for separation of the power bus to the other feed point and the other AbschaltZeits
  • this predeterminable time interval can be in the single-digit millisecond range, preferably for example 1 ms. Ultimately, however, this time interval depends on the dimensioning of the
  • a cascaded shutdown of the network node units could also be provided, in which case the staggered shutdown for separating the power bus from network node units may be executable until the evaluation module negates the presence of a short circuit.
  • Short circuit a message about the presence of the short circuit along with a timestamp sent.
  • this variant requires a sufficiently fast communication between the evaluation module and the
  • each network node unit can automatically detect the presence of a short circuit. With the detection of the short circuit therefore starts the time to the respective AbschaltZeit Vietnamese the network node unit, this AbschaltZeit Vietnamese for each network node unit in
  • Each network node unit therefore knows its respective turn-off time. The time until this shutdown time begins at the moment of
  • Figure 2 is a schematic view of a network node unit for connecting a decentralized network node unit.
  • Figure 3 is a schematic view of examples of the
  • FIG. 4 is a tabular view of the staggering of the temporal shut-off times for the network node units as a function of the position of the network node units in the power bus and of the current direction.
  • Figure 1 shows schematically a interlocking architecture with a system Sys, which i.a. a signal box STW, a redunant degraded data backbone NB1, NB2, one
  • the interlocking STW controls a train traffic on a track section G, in which signals S, points W, a level crossing Bue and axle counter AC are arranged.
  • These train protection and train control components each couple to a decentralized functional unit - also called element controller unit E - on the data bus CB and the power bus EB.
  • the decentralized functional units E are so on connected to the annular data bus CB that either access to the data backbone NB1 or NB2 is given on each side of the annular data bus CB.
  • the data bus CB couples with corresponding
  • FIG. 2 shows schematically the data
  • Controller unit E of a train control component here for example a switch W, to the data bus CB and the
  • Such an attachment point comprises a network node unit SND and the actual element
  • the network node unit SND comprises a communication unit SCU for data exchange over both branches of the data bus CB. Energy side is the
  • Network node unit SND designed so that it couples to both branches of the power bus EB and thus always, if necessary, over other network node units SND away - an access to two feed points PS1 and PS2 consists (as shown in Figure 1).
  • the network node unit SND further has a control and evaluation logic SL, which can be integrated, for example, in the switching module S, and thus controls and monitors the power bus EB.
  • the control and evaluation logic detects current violations and / or voltage dips
  • the network node unit is always supplied in redundant manner from two sides with electrical energy and therefore has in the context of a switching module S. via a left switch Sl and a right switch S2 and via a load switch S3 to
  • the network node unit SND also supplies the
  • Communication unit SCU with voltage and can use this also via an Ethernet connection data
  • the network node unit SND is here via the switch S3, the supply unit SPU
  • Network node unit SND and the supply unit SPU e.g. in the form of a serial RS 422, provided.
  • Energy-technically typical here is, for example, a three-phase connection with 400 VAC.
  • Controller EC controls and supplies the switch W in FIG. 2 in the present case.
  • the element controller EC receives data telegrams from a higher-level one
  • Communication unit SCU the feedback to the
  • the interlocking computer CPU can also represent a corresponding evaluation module that evaluates the received data as intended. In the present case, however, emphasis is placed in this embodiment on the control and evaluation logic integrated in the network node unit.
  • FIG. 3 shows, in a schematic view, three examples a) to c) for the short-circuit shutdown of the power bus EB by the respectively affected network node units. Based on three short-circuit cases KS1, KS2 and KS3, the behavior during short-circuit shutdowns is explained in more detail. PS1 and PS2 are the feed points for the power bus EB. In the further course, the
  • Feed-in point PS1 also as the left feed-in point PS1 and accordingly the feed-in point PS2 as the right-hand side
  • Feed point PS2 called.
  • Example a) and applies to examples b) and c) accordingly.
  • Each network node unit SND1 to SND7 measures the bus current i and the direction in which the bus current flows. If now the limit for the short-circuit current
  • Network node unit in a short circuit mode.
  • Power bus is not immediately disconnected by the network node units SNDL to SND7, but the response of the bus shutdown is staggered, e.g. in ms steps as shown in the table in FIG.
  • the waiting time of the network node unit SND1 to SND7 depends on the position in the energy bus EB and on the number of times in the
  • Network node unit SND7 is thus the first one
  • Network node unit which separates the right branch of the power bus EB from the remaining network node units. This is for the rest of the left branch of the
  • Delay scheme switches the network node unit SND closest to the short circuit
  • short-circuit KS1 For completeness, it should be mentioned for short-circuit KS1 that even the left PS2 stops here after 8ms the feed in case the short-circuit should still be present and thus not automatically isolated from both branches of the power bus EB by the staggered shutdown of the affected network node units could.
  • the short circuit occurs between the network node units SND4 and SND5 (case b).
  • the current i flows here for the network node units SND1 to SND4 from the left and for the network node units SND5 to SND7 from the right.
  • the network node unit SND4 is the first one
  • Network node units SND5 to SND7 fixed after 5ms. If now the two network node units SND4 and SND5 have their switches S2 and Sl open, the short circuit is disconnected from the power bus EB and the currents and
  • the short circuit occurs between the network node units SND1 and SND2.
  • the short-circuit current flows only for the
  • Network node unit SND1 from the left (ie supply of left feed point PS1) and for the network node units SND2 to SND7 right (ie supply from the right feed point SP2).
  • the network node unit SND2 is the first network node unit in the energy bus EB, which opens its left switch S1 at the time TO + 2 ms after the detection of the short circuit at the instant TO for the case "current from the right"
  • the node unit SND1 opens its right switch S2 at time TO + 7ms, as shown in the table for the network node unit
  • the short-circuit case KS3 for the network node unit SND1 is remedied after 7 ms If the two network node units SND2 and SND1 have their switches S1 or S2 open, the short circuit is disconnected from the energy bus EB after 7 ms and the currents and voltages normalize immediately, so that the other network node units,
  • Network node units SND Signal Node Device
  • Infeed of the power bus EB is redundant, so that all remain connected to the power bus EB
  • the element controllers e.g., trackside annunciators, signal control, level crossing control and signaling devices
  • PSU Power Supply Unit
  • the existence of a short-circuit case is affirmative if the bus current i exceeds a pre-configured switch-off current and optionally the bus voltage drops below a specific limit of, for example, nominal 750 VDC to below 500 VDC. These values can also be lower or higher. Likewise it was assumed here that the
  • Network node units and their consumers VI to V7 with their upstream PSU voltage converters are robust for a voltage interruption of up to approx. 20 ms. These values may also be differently dimensioned for other embodiments, such as e.g. 30ms or 50ms.
  • Network node units i. in particular knows the
  • the special inventive whistle lies in the fact that the energy bus EB sequentially involved
  • Network node units SND depending on the position of the network node unit in the power bus EB and the current direction in the network node unit have staggered bus off times. These switch-off times depend on the current direction of the power bus EB in the considered network node unit SND.
  • the use of the position of the network node unit SND in the power bus EB in combination with the current direction on the power bus EB is the key for determining the individual switch-off delay of the network node units SND participating in the power bus EB and for locating the network nodes
  • Energy bus EB (number in the bus order) and the number SND on the same power bus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

L'invention concerne un système (syst) et un procédé de suppression automatique d'un court-circuit dans un bus d'alimentation (EB) assurant l'alimentation en électricité d'unités fonctionnelles décentralisées (E) dans une installation industrielle. Selon l'invention a) le système comprend un système de commande maître (STW) échangeant des informations avec les unités fonctionnelles décentralisées (E)par l'intermédiaire de datagrammes sur un bus de données, (CB, NB1, NB2), b) des unités de noeuds de réseau (SND, SND1 à SND7) sont disposées en série entre deux points d'alimentation (PS1, PS2, Sp_L, Sp_R) d'un bus d'alimentation (EB) de configuration annulaire, et fournissent aux unités fonctionnelles décentralisées (E) l'accès au bus d'alimentation (EB) et éventuellement également l'accès au bus de données (CB), c) les unités de noeuds de réseau (SND) disposent d'un module de commutation (S) piloté qui comprend un premier commutateur (S1) et un second commutateur (S2), les deux commutateurs (S1, S2) commandant respectivement un accès aux deux points d'alimentation (PS1, PS2, Sp_L, Sp_R), d) le système comprend un module d'analyse (CPU) qui analyse la tension mesurée et/ou le courant mesuré dans une unité de noeud de réseau (SND) et/ou dans des unités de noeuds de réseau (SND) voisines et/ou au niveau d'au moins un des deux points d'alimentation pour détecter un court-circuit du bus d'alimentation (EB), une déconnexion échelonnée dans le temps d'au moins une partie des unités de noeuds de réseau (SND) pouvant être réalisée par ouverture du premier ou du second commutateur en cas de détection d'un court-circuit : et e) un instant de déconnexion de chaque unité de noeud de réseau est prévu en fonction du sens prédominant du courant et de la position de l'unité de noeud de réseau (SND) dans le bus d'alimentation (EB).
PCT/EP2016/059780 2015-06-25 2016-05-02 Système et procédé de suppression automatique de courts-circuits dans un bus d'alimentaton WO2016206843A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16721138.2A EP3313710B1 (fr) 2015-06-25 2016-05-02 Système et procédé d'élimination de court-circuit dans un bus d'alimentation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15173814.3 2015-06-25
EP15173814.3A EP3109128A1 (fr) 2015-06-25 2015-06-25 Système et procédé d'élimination de court-circuit dans un bus d'alimentation

Publications (1)

Publication Number Publication Date
WO2016206843A1 true WO2016206843A1 (fr) 2016-12-29

Family

ID=53488256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/059780 WO2016206843A1 (fr) 2015-06-25 2016-05-02 Système et procédé de suppression automatique de courts-circuits dans un bus d'alimentaton

Country Status (2)

Country Link
EP (2) EP3109128A1 (fr)
WO (1) WO2016206843A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3531137A1 (fr) 2018-02-26 2019-08-28 Thales Management & Services Deutschland GmbH Dispositif d'alimentation en énergie et procédé de fonctionnement d'un dispositif d'alimentation en énergie

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3415399B1 (fr) 2017-06-16 2019-10-23 Siemens Mobility AG Système d'alimentation à sureté intégrée d'un consommateur électrique à l'aide d'un bus d'énergie redondant
US10581684B2 (en) 2017-12-06 2020-03-03 Schweitzer Engineering Laboratories, Inc. Network management via a secondary communication channel in a software defined network
US10812392B2 (en) 2018-03-05 2020-10-20 Schweitzer Engineering Laboratories, Inc. Event-based flow control in software-defined networks
US10756956B2 (en) 2018-03-05 2020-08-25 Schweitzer Engineering Laboratories, Inc. Trigger alarm actions and alarm-triggered network flows in software-defined networks
US10560390B2 (en) 2018-03-05 2020-02-11 Schweitzer Engineering Laboratories, Inc. Time-based network operation profiles in a software-defined network
US11012442B2 (en) 2019-04-11 2021-05-18 Schweitzer Engineering Laboratories, Inc. Address resolution protocol response handling
US11425033B2 (en) 2020-03-25 2022-08-23 Schweitzer Engineering Laboratories, Inc. SDN flow path modification based on packet inspection
US11201759B1 (en) 2020-07-08 2021-12-14 Schweitzer Engineering Laboratories, Inc. Reconfigurable dual-ring network redundancy
EP4037126A1 (fr) 2021-01-29 2022-08-03 Siemens Mobility AG Système de démarrage rapide commandé et de fonctionnement d'un bus à énergie redondant destiné à l'alimentation à sécurité intégrée d'un consommateur électrique
US11677663B2 (en) 2021-08-12 2023-06-13 Schweitzer Engineering Laboratories, Inc. Software-defined network statistics extension
EP4160845B1 (fr) 2021-09-29 2024-04-17 Siemens Mobility AG Système de démarrage contrôlé et de fonctionnement d'un bus d'énergie redondant
US11882002B2 (en) 2022-06-22 2024-01-23 Schweitzer Engineering Laboratories, Inc. Offline test mode SDN validation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549620A2 (fr) * 2011-07-22 2013-01-23 Siemens Schweiz AG Dispositif de fonctionnement d'unités de fonction décentralisées et agencées dans une installation industrielle
EP2674346A1 (fr) * 2012-06-13 2013-12-18 Siemens Schweiz AG Procédé et système d'approvisionnement de puissance électrique pour des éléments de voie décentralisés d'un réseau de voies ferrées
EP2821313A2 (fr) * 2013-07-02 2015-01-07 Siemens Schweiz AG Dispositif et procédé de fonctionnement d'unités fonctionnelles disposées de façon décentralisée

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995916A1 (fr) 2007-05-24 2008-11-26 Siemens Schweiz AG Dispositif de commande et/ou de surveillance et de demande de données à partir d'unités de fonction décentralisées agencées le long d'un réseau de trafic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549620A2 (fr) * 2011-07-22 2013-01-23 Siemens Schweiz AG Dispositif de fonctionnement d'unités de fonction décentralisées et agencées dans une installation industrielle
EP2674346A1 (fr) * 2012-06-13 2013-12-18 Siemens Schweiz AG Procédé et système d'approvisionnement de puissance électrique pour des éléments de voie décentralisés d'un réseau de voies ferrées
EP2821313A2 (fr) * 2013-07-02 2015-01-07 Siemens Schweiz AG Dispositif et procédé de fonctionnement d'unités fonctionnelles disposées de façon décentralisée

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETER HEFTI ET AL: "Die neue dezentrale Stellwerksarchitektur Sinet im kommerziellen Betrieb der SBB", SIGNAL + DRAHT, TELZLAFF VERLAG GMBH. DARMSTADT, DE, vol. 106, no. 1/2, 1 January 2014 (2014-01-01), pages 36 - 40, XP001586600, ISSN: 0037-4997 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3531137A1 (fr) 2018-02-26 2019-08-28 Thales Management & Services Deutschland GmbH Dispositif d'alimentation en énergie et procédé de fonctionnement d'un dispositif d'alimentation en énergie

Also Published As

Publication number Publication date
EP3109128A1 (fr) 2016-12-28
EP3313710B1 (fr) 2019-06-26
EP3313710A1 (fr) 2018-05-02

Similar Documents

Publication Publication Date Title
EP3313710B1 (fr) Système et procédé d'élimination de court-circuit dans un bus d'alimentation
DE19923569B4 (de) Vorrichtung zur elektronischen Überwachung des Versorgungsstromes von an einen Bus angeschlossene Baugruppen
DE102016100175B4 (de) Robotersystem, welches mit einer Mehrzahl von Controllern vorgesehen ist, die eine Mehrzahl von Industrierobotern betätigen
DE102008010979A1 (de) Bordnetz für ein Kraftfahrzeug
EP1004162B1 (fr) Procede pour surveiller un appareil de protection
EP3313709B1 (fr) Système et procédé d'alimentation électrique d'unités fonctionnelles décentralisées
EP3469677B1 (fr) Procédé d'alimentation électrique et alimentation électrique pour des éléments de trafic ferroviaire disposés sur un tronçon de voie
EP3415399B1 (fr) Système d'alimentation à sureté intégrée d'un consommateur électrique à l'aide d'un bus d'énergie redondant
EP3191357B1 (fr) Convoyeur avec fonction de sécurité
DE102012202046A1 (de) System zur Steuerung, Sicherung und/oder Überwachung von Fahrwegen spurgebundener Fahrzeuge sowie Verfahren zum Betreiben eines solchen Systems
EP2625678B1 (fr) Procédé servant à faire fonctionner une installation d'annonces orales
EP3266031A1 (fr) Dispositif de commutation permettant de faire fonctionner au moins une charge
DE112012005740T5 (de) Duplexsteuerungssystem und dessen Steuerungsverfahren
EP2418580B1 (fr) Procédé destiné au fonctionnement d'un réseau et réseau
DE102013216939A1 (de) Schalteranordnung in einem Stromverteilungssystem
EP2978654B1 (fr) Procédé pour remplacer un premier poste d'aiguillage par un deuxième poste d'aiguillage
EP3822145B1 (fr) Procédé et système pour traiter une chaine d'appareils d'aiguillage
EP3305622A1 (fr) Procédé de diagnostic de composants techniques répartis dans l'espace
DE102015218906B4 (de) Verfahren zum Betreiben eines Datenübertragungssystems und Datenübertragungssystem
WO2017054951A1 (fr) Système et procédé permettant l'élimination automatique d'une tension pertubatrice excessive dans un bus d'alimentation
EP4160845B1 (fr) Système de démarrage contrôlé et de fonctionnement d'un bus d'énergie redondant
EP3531137B1 (fr) Dispositif d'alimentation en énergie et procédé de fonctionnement d'un dispositif d'alimentation en énergie
EP2466405A1 (fr) Système de commande pour un dispositif industriel à l'aide d'une commutation optionnelle sur différentes unités centrales
EP2817923B1 (fr) Réseau de calculateurs avec un bus de liaison de forme annulaire
EP4037126A1 (fr) Système de démarrage rapide commandé et de fonctionnement d'un bus à énergie redondant destiné à l'alimentation à sécurité intégrée d'un consommateur électrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16721138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016721138

Country of ref document: EP