EP3313710B1 - Système et procédé d'élimination de court-circuit dans un bus d'alimentation - Google Patents

Système et procédé d'élimination de court-circuit dans un bus d'alimentation Download PDF

Info

Publication number
EP3313710B1
EP3313710B1 EP16721138.2A EP16721138A EP3313710B1 EP 3313710 B1 EP3313710 B1 EP 3313710B1 EP 16721138 A EP16721138 A EP 16721138A EP 3313710 B1 EP3313710 B1 EP 3313710B1
Authority
EP
European Patent Office
Prior art keywords
network node
snd
snd1
snd7
short circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16721138.2A
Other languages
German (de)
English (en)
Other versions
EP3313710A1 (fr
Inventor
Martin Hediger
Anton Reichlin
Daniel Sigg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility AG
Original Assignee
Siemens Mobility AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Mobility AG filed Critical Siemens Mobility AG
Publication of EP3313710A1 publication Critical patent/EP3313710A1/fr
Application granted granted Critical
Publication of EP3313710B1 publication Critical patent/EP3313710B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L19/00Arrangements for interlocking between points and signals by means of a single interlocking device, e.g. central control
    • B61L19/06Interlocking devices having electrical operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/70Details of trackside communication

Definitions

  • the present invention relates to a system and a method for automatically eliminating a short circuit in an energy bus, are supplied via the arranged in an industrial plant decentralized functional units with electrical energy.
  • Such decentralized functional units are used in particular in rail transport networks such as the railroad, where these are used to control vehicle influencing and / or vehicle monitoring units and to monitor functionality and to record process data and back to a central control and / or Monitoring center, such as a control center or a signal box, to report.
  • a central control and / or Monitoring center such as a control center or a signal box
  • As Switzerlandbeeinu units that give instructions to the driver or even make direct intervention in the vehicle control or directly set a safe track for example, signals, points, balises, line conductors, track magnets and the like, as well as sensors for detecting process variables of the moving train, such as power consumption, speed and the like.
  • train and track section monitoring units can also balise and line conductors, but also axle and track circuits and other train detection systems are called.
  • the present invention relates to all industrial plants in which functional units are distributed over long distances and yet must be centrally controlled.
  • the central controller can be perceived by a stationary control center, but also by
  • a digital data transport network be used, which is robust in any way against a simple fault event, yet a very skillful use of very widely used in railway engineering Cu cables, for example, previously available interlocking cables, allowed and finally only a relatively small number of network access points needed.
  • Such a device is used in a particularly advantageous manner for a rail network for rail transport. Consequently, it is then expedient, by means of the decentralized functional units traffic-monitoring and traffic-controlling functional units, such as in particular signals, switches, axle counter, track circuits, point and line-shaped train control elements to couple to the data transport network.
  • traffic-monitoring and traffic-controlling functional units such as in particular signals, switches, axle counter, track circuits, point and line-shaped train control elements to couple to the data transport network.
  • the supply of the connected consumers can take place from both supply sides. This creates a previously unavailable redundancy of the energy supply.
  • the decentralized functional units also known as element controllers or EC for short
  • EC element controllers
  • SNDs bus couplers
  • the SNDs can interrupt or bypass the power bus, as well as measure currents and voltages in the power bus.
  • the present invention is therefore based on the object of specifying a system and a method for the automatic elimination of a short circuit in an energy bus, which provides decentralized functional units arranged in an industrial plant with electrical energy.
  • the short circuit in the power bus should be reliably and quickly detectable and localizable, so that immediate measures to restore the correct function of the power bus can be initiated.
  • the network node units closest to the short circuit first of all interrupt the power bus, whereby this interruption takes place by opening the switch of the network node unit directed in each case to the side of the short circuit.
  • this shutdown is configured for each network node unit in dependence on the current direction and the position in the power bus.
  • Each network node unit therefore knows its respective shutdown time as soon as a short circuit has been detected.
  • a short circuit can be characterized, for example, a state of the power bus, which exceeds a pre-configured shutdown and / or drops the voltage of the power bus below a pre-configured shutdown voltage.
  • the network node furthest away from this feed point has the earliest switch-off time for separating the power bus to the other feed point and the further switch-off times are sequentially staggered from network node unit to network node unit with a predeterminable time interval increase toward the feeding point.
  • this predeterminable time interval can be in the single-digit millisecond range, preferably for example 1 ms.
  • this time interval depends on the dimensioning of the power bus and the decentralized functional unit. For example, is the maximum number of network node units sequentially arranged in the power bus 16 network node units, results under the boundary condition that a decentralized functional unit E can buffer a supply interruption for 20 ms, the value of about one millisecond for this time interval (when stocking a small reserve).
  • a cascaded shutdown of the network node units could also be provided, in which case the staggered shutdown for separating the power bus from network node units can be executed until the evaluation module negates the presence of a short circuit.
  • a further advantageous embodiment of the invention can be realized if the evaluation module sends a message about the presence of the short circuit together with a time stamp to all network node units after the detection of a short circuit.
  • this variant requires a sufficiently fast communication between the evaluation module and the network node units.
  • a further advantageous embodiment of the invention which in this respect requires virtually no communication between the network node units for the selective shutdown of the power bus, can be achieved if each network node unit itself has the evaluation module.
  • each network node unit can automatically detect the presence of a short circuit. With the detection of the short circuit therefore starts the time until the respective shutdown time of the network node unit, this shutdown is configured for each network node unit in dependence on the current direction and the position in the power bus.
  • Each network node unit therefore knows its respective shutdown time. The time up to this switch-off time begins to run in the moment of detection of the short circuit.
  • FIG. 1 schematically shows an interlocking architecture with a system Sys, which has, inter alia, a signal box STW, a redunant degraded data backbone NB1, NB2, a data bus CB and an energy bus EB with two feed points PS1 and PS2.
  • the interlocking STW controls a train traffic on a track section G, in which signals S, points W, a level crossing Bue and axle counter AC are arranged.
  • These train protection and train control components each couple to a decentralized functional unit - also called element controller unit E - on the data bus CB and the power bus EB.
  • the decentralized functional units E are so on connected to the annular data bus CB that either access to the data backbone NB1 or NB2 is given on each side of the annular data bus CB.
  • the sequential connection of the Element Controller Unit E to the annular power bus ensures that each Element Controller Unit E provides redundant electrical power from both sides Energy can be supplied.
  • FIG. 2 now shows schematically the data and power supply connection of the Element Controller Unit E of a train control component, here for example a switch W, to the data bus CB and the power bus EB.
  • a train control component here for example a switch W
  • Such an attachment point comprises a network node unit SND and the actual element controller EC.
  • the network node unit SND comprises a communication unit SCU for data exchange over both branches of the data bus CB.
  • the network node unit SND is designed so that it couples to both branches of the power bus EB and thus always, if necessary, across other network node units SND away - an access to both feed points PS1 and PS2 consists (as in FIG. 1 shown).
  • the network node unit SND further has a control and evaluation logic SL, which can be integrated, for example, in the switching module S, and thus controls and monitors the power bus EB.
  • the control and evaluation logic detects current violations and / or voltage dips within the power bus EB and / or the connected consumer (SPU with EC) and evaluates this data for a possibly present short circuit.
  • the network node unit is always supplied in redundant manner from two sides with electrical energy and therefore has in the context of a switching module S. via a left switch S1 and a right switch S2 and via a load switch S3 to the supply unit SPU of the element controller EC.
  • the network node unit SND also supplies the communication unit SCU with voltage and can also exchange data with it via an Ethernet connection and is thus integrated into the data bus CB (eg activation of manual operation of the SND via remote access and actuation of the switches S1 to S3, delivery of diagnostic data to the interlocking or a higher-level service and Diagnoseytem, query the current voltages, currents, energy and power values, parameterization of the SND, data for charging a not further illustrated energy storage or the registration of a future power requirements).
  • the supply unit SPU is integrated via the switch S3, which converts the voltage of the power bus EB to the input voltage required for the element controller EC.
  • a data connection between the switching module S of the network node unit SND and the supply unit SPU, for example in the form of a serial RS 422, is provided.
  • Energy-technically typical here is, for example, a three-phase connection with 400 VAC.
  • the element controller EC controls and supplies in FIG. 2
  • the switch W receives the element controller EC data telegrams from a higher-level interlocking CPU via an Ethernet connection from the communication unit SCU and are via this communication unit SCU feedback to the interlocking computer CPU.
  • the interlocking computer CPU can also represent a corresponding evaluation module that evaluates the received data as intended. In the present case, however, emphasis is placed in this embodiment on the control and evaluation logic integrated in the network node unit.
  • FIG. 3 shows a schematic view of three examples a) to c) for the short-circuit shutdown of the power bus EB by the respective affected network node units.
  • PS1 and PS2 are the feed points for the power bus EB.
  • the feed point PS1 is also referred to as the left feed point PS1 and, correspondingly, the feed point PS2 is referred to as the right feed point PS2.
  • seven network node units SND1 to SND7 are sequentially connected in the power bus EB.
  • the entire power consumers of the Element Controller Unit E are hereby referred to as consumers V1 to V7. Power consumers in this sense include the Element Controller EC and the upstream supply unit SPU. This notation was used in the FIG. 3 for the sake of clarity, only for example a) is inserted and applies correspondingly to examples b) and c).
  • Each network node unit SND1 to SND7 measures the bus current i and the direction in which the bus current flows. If the limit value for the short-circuit current is exceeded and / or the bus voltage falls below a defined value, the respective network node unit enters a short-circuit mode.
  • the power bus is not immediately disconnected by the network node units SND1 to SND7, but the response of the bus shutdown is staggered eg in ms steps as in the table in FIG. 4 shown.
  • the waiting time of the network node unit SND1 to SND7 depends on the position in the energy bus EB and on the number of network node units SND1 to SND7 present in the energy bus EB.
  • the short circuit KS1 case no longer exists for the entire remaining left branch of the power bus. There is therefore no further shutdown of the right branch of the power bus.
  • the network node unit SND1 on the far left would have been the first network node unit which would have interrupted the connection to the left branch of the power bus by opening its left switch S1.
  • the network node unit SND which is closest to the short circuit, automatically switches off first.
  • the network node units further afield on the respective branch are no longer short-circuiting at the time they are allowed to shut down.
  • the short circuit occurs between the network node units SND4 and SND5 (case b).
  • the current i flows here for the network node units SND1 to SND4 from the left and for the network node units SND5 to SND7 from the right.
  • the network node unit SND4 is the first network node unit in the power bus EB, which opens after the detection of the short circuit at time T0 in the case of "power from the left" their right switch S2 at time T0 + 4ms. This eliminates the short-circuit KS2 for the network node units SND1 to SND4 after 4 ms.
  • the network node unit SND5 opens its left switch S1 at time T0 + 5ms, as indicated in the table for the network node unit SND5 at "power from the right". This eliminates the short-circuit KS2 for the network node units SND5 to SND7 after 5 ms. Now, if the two network node units SND4 and SND5 have their switches S2 and S1 open, the short circuit is disconnected from the power bus EB and the currents and voltages normalize immediately, so that the other network node units, here SND1 to SND3, SND6 and SND7 no longer turn.
  • KS3 occurs the short circuit between the network node units SND1 and SND2.
  • the short-circuit current only flows for the network node unit SND1 from the left (ie supply from the left supply point PS1) and for the network node units SND2 to SND7 on the right (ie supply from the right-hand supply point SP2).
  • the network node unit SND2 is the first network node unit in the power bus EB, which opens after the detection of the short circuit at time T0 in the case of "power from the right" their left switch S1 at time T0 + 2ms.
  • the network node unit SND1 opens its right switch S2 at time T0 + 7 ms, as shown in the table for the network node unit SND1 is provided at "power from the left”. This eliminates the short-circuit KS3 for the network node unit SND1 after 7 ms. If the two network node units SND2 and SND1 have now opened their switches S1 and S2, the short circuit is disconnected from the energy bus EB after 7 ms and the currents and voltages normalize immediately, so that the other network node units, here SND3 to SND7, no longer switch ,
  • the exemplary embodiments described above thus explain a system and a method which, in the case of a short circuit on the energy bus EB, selectively separates the power bus at that track section such that only that track section at which the short circuit actually takes place is disconnected.
  • the selective separation of the bus takes place via the network node units SND (Sigrid Node Device), which are used along the energy bus EB. Since the supply of the power bus EB is redundant, so remain all connected to the power bus EB consumers V1 to V7 available and there are no restrictions for the industrial plant, here for the rail traffic. With the detection of the short-circuit case KS1 to KS3 a diagnostic message is issued, so that the defective track part can be repaired and the system can be repaired again.
  • the element controllers for example, control and signaling devices for track vacancy, signal control, level crossing control and points control
  • PSU Power Supply Unit
  • the existence of a short-circuit case is affirmative if the bus current i exceeds a pre-configured switch-off current and optionally the bus voltage drops below a specific limit of, for example nominally 750 VDC to below 500 VDC. These values can also be lower or higher.
  • the network node units and their consumers V1 to V7 with their upstream voltage converters PSU are robust for a voltage interruption of up to approximately 20 ms. These values may also be differently dimensioned for other embodiments, such as e.g. 30ms or 50ms.
  • the particular inventive whistle lies in the fact that the energy bus EB sequentially integrated network node units SND depending on the position of the network node unit in the power bus EB and the current direction in the network node unit have staggered bus off times. These switch-off times depend on the current direction of the power bus EB in the considered network node unit SND.
  • the use of the position of the network node unit SND in the power bus EB in combination with the current direction on the power bus EB, is the key for determining the individual switch-off delay of the network node SND participating in the power bus EB as well as for the location of the link, lying on the between two network node units SND the short circuit has occurred.
  • the method and the system Sys need thus no communication between the network node units SND to perform the selective bus shutdown, it suffices a prior configuration in the network node unit SND with respect to the position of the network node unit SND on the power bus EB (number in the bus order) and the number SND at the same energy bus.
  • the max. Number of SNDs to be considered for the calculation of the shutdown times is not limited to 16.
  • the network node unit SND When configuring the network node unit, the network node unit SND must therefore be informed as to how many SND are present in the bus and at which position it is located. From this information, the SND can then also calculate the necessary reaction times for switching off in the event of a short circuit, whereby the provision of the corresponding formula also predetermines the switch-off time.
  • a short circuit of a consumer connected to the network node unit SND V1 to V7 has for the remaining network node units SND on the power bus EB the same effect as a short circuit in the power bus EB.
  • the affected network node unit SND switches the consumer V1 to V7ab without delay, so that there are no bus shutdowns. If, in this case, a network node unit does not switch off the load immediately, the immediately adjacent network node unit would disconnect the faulty network node unit with its consumer causing the short circuit from the power bus on both sides.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Claims (14)

  1. Système (Sys) d'élimination automatique d'un court-circuit dans un bus d'alimentation (EB) via lequel des unités fonctionnelles décentralisées (E) agencées dans une installation industrielle sont alimentées en énergie électrique,
    a) un système de commande (STW) principal étant prévu, lequel échange des informations avec les unités fonctionnelles décentralisées (E) au moyen de télégrammes de données via un bus de données (CB, NB1, NB2),
    b) des unités de noeuds de réseau (SND, SND1 à SND7) étant agencées séquentiellement entre deux points d'alimentation (PS1, PS2) d'un bus d'alimentation (EB) de structure annulaire qui fournissent aux unités fonctionnelles décentralisées (E) l'accès au bus d'alimentation (EB) ainsi que, en option, au bus de données (CB),
    c) les unités de noeuds de réseau (SND) disposant d'un module de commutation commandable (S) qui comprend un premier commutateur (S1) et un deuxième commutateur (S2), respectivement un accès aux deux points d'alimentation (PS1, PS2) pouvant être commuté au moyen des deux commutateurs (S1, S2), caractérisé en ce que :
    d) un module d'analyse (CPU, SL) est prévu, lequel analyse la tension mesurée et/ou le courant mesuré dans une unité de noeud de réseau (SND) et/ou entre unités de noeuds de réseau voisines (SND) et/ou dans au moins un des deux points d'alimentation (PS1, PS2) quant à un court-circuit du bus d'alimentation (EB), une coupure échelonnée dans le temps d'au moins une partie des unités de noeuds de réseau (SND) du bus d'alimentation (EB) pouvant, en cas de détection d'un court-circuit, être exécutée par ouverture du premier ou du deuxième commutateur (S1, S2) et
    e) un instant de coupure étant prévu, pour chaque unité de noeud de réseau (SND), en fonction d'un sens de courant dominant dans l'unité de noeud de réseau (SND) et de la position de l'unité de noeud de réseau (SND) dans le bus d'alimentation (EB).
  2. Système selon la revendication 1, caractérisé en ce que, étant donné un flux de courant traversant un des deux points d'alimentation (PS1, PS2), l'unité de noeud de réseau (SND, SND1 à SND7) la plus éloignée de ce point d'alimentation (PS1, PS2) présente l'instant de coupure le plus précoce pour déconnecter le bus d'alimentation (EB) de l'autre point d'alimentation (PS1, PS2) et les autres instants de coupure augmentent séquentiellement d'unité de noeud de réseau (SND, SND1 à SND7) en unité de noeud de réseau (SND, SND1 à SND7), de manière échelonnée avec un intervalle de temps prédéterminable, en direction du point d'alimentation (PS1, PS2) qui assure l'alimentation.
  3. Système selon la revendication 1 ou 2, caractérisé en ce que l'intervalle de temps prédéterminable est de l'ordre de la milliseconde et est de préférence de 1 ms.
  4. Système selon l'une des revendications précédentes, caractérisé en ce que la coupure échelonnée pour déconnecter le bus d'alimentation (EB) d'unités de noeuds de réseau (SND, SND1 à SND7) peut être exécutée jusqu'à ce que le module d'analyse (CPU, SL) nie la présence d'un court-circuit.
  5. Système selon l'une des revendications précédentes, caractérisé en ce que le module d'analyse (CPU, SL) envoie à toutes les unités de noeuds de réseau (SND, SND1 à SND7), après la détection d'un court-circuit, une communication sur la présence du court-circuit accompagnée d'un timbre temporel.
  6. Système selon l'une des revendications précédentes, caractérisé en ce que chaque unité de noeud de réseau (SND, SND1 à SND7) connaît l'instant de coupure respectif pour les deux sens du flux de courant.
  7. Système selon l'une des revendications précédentes, caractérisé en ce que chaque unité de noeud de réseau (SND, SND1 à SND7) dispose d'un module d'analyse (SL).
  8. Procédé d'élimination automatique d'un court-circuit dans un bus d'alimentation (EB) via lequel des unités fonctionnelles décentralisées (E) agencées dans une installation industrielle sont alimentées en énergie électrique,
    a) un système de commande (STW) principal étant prévu, lequel échange des informations avec les unités fonctionnelles décentralisées (E) au moyen de télégrammes de données via un bus de données (CB, NB1, NB2),
    b) des unités de noeuds de réseau (SND) étant agencées séquentiellement entre deux points d'alimentation (PS1, PS2) d'un bus d'alimentation (EB) de structure annulaire qui fournissent aux unités fonctionnelles décentralisées (E) l'accès au bus d'alimentation (EB) ainsi que, en option, au bus de données (CB, NB1, NB2),
    c) les unités de noeuds de réseau (SND) disposant d'un module de commutation commandable (S) qui comprend un premier commutateur (S1) et un deuxième commutateur (S2), respectivement un accès aux deux points d'alimentation (PS1, PS2) pouvant être commuté au moyen des deux commutateurs (S1, S2), caractérisé en ce que :
    d) un module d'analyse (CPU, SL) est prévu, lequel analyse la tension mesurée et/ou le courant mesuré dans une unité de noeud de réseau (SND) et/ou entre unités de noeuds de réseau voisines (SND) et/ou dans au moins un des deux points d'alimentation (PS1, PS2) quant à un court-circuit du bus d'alimentation (EB), une coupure échelonnée dans le temps d'au moins une partie des unités de noeuds de réseau (SND, SND1 à SND7) étant exécutée en cas de détection d'un court-circuit et
    e) un instant de coupure étant prévu, pour chaque unité de noeud de réseau (SND, SND1 à SND7), en fonction d'un sens de courant dominant dans l'unité de noeud de réseau (SND, SND1 à SND7) et de la position de l'unité de noeud de réseau (SND, SND1 à SND7) dans le bus d'alimentation (EB).
  9. Procédé selon la revendication 8, caractérisé en ce que, étant donné un flux de courant traversant un des deux points d'alimentation (PS1, PS2), l'unité de noeud de réseau (SND, SND1 à SND7) la plus éloignée de ce point d'alimentation (PS1, PS2) présente l'instant de coupure le plus précoce pour déconnecter le bus d'alimentation (EB) de l'autre point d'alimentation (PS1, PS2) et les autres instants de coupure augmentent séquentiellement d'unité de noeud de réseau (SND, SND1 à SND7) en unité de noeud de réseau (SND, SND1 à SND7), de manière échelonnée avec un intervalle de temps prédéterminable, en direction du point d'alimentation (PS1, PS2) qui assure l'alimentation.
  10. Procédé selon la revendication 8 ou 9, caractérisé en ce que l'intervalle de temps prédéterminable est de l'ordre de la milliseconde et est de préférence de 1 ms.
  11. Procédé selon l'une des revendications précédentes 8 à 10, caractérisé en ce que la coupure échelonnée pour déconnecter le bus d'alimentation (EB) d'unités de noeuds de réseau (SND, SND1 à SND7) est exécutée jusqu'à ce que le module d'analyse (CPU, SL) nie la présence d'un court-circuit.
  12. Procédé selon l'une des revendications précédentes 8 à 11, caractérisé en ce que le module d'analyse (CPU, SL) envoie à toutes les unités de noeuds de réseau (SND, SND1 à SND7), après la détection d'un court-circuit, une communication sur la présence du court-circuit accompagnée d'un timbre temporel.
  13. Procédé selon l'une des revendications précédentes 8 à 12, caractérisé en ce que chaque unité de noeud de réseau (SND, SND1 à SND7) connaît l'instant de coupure respectif pour les deux sens du flux de courant.
  14. Procédé selon l'une des revendications précédentes 8 à 13, caractérisé en ce que chaque unité de noeud de réseau (SND, SND1 à SND7) dispose d'un module d'analyse (SL).
EP16721138.2A 2015-06-25 2016-05-02 Système et procédé d'élimination de court-circuit dans un bus d'alimentation Active EP3313710B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15173814.3A EP3109128A1 (fr) 2015-06-25 2015-06-25 Système et procédé d'élimination de court-circuit dans un bus d'alimentation
PCT/EP2016/059780 WO2016206843A1 (fr) 2015-06-25 2016-05-02 Système et procédé de suppression automatique de courts-circuits dans un bus d'alimentaton

Publications (2)

Publication Number Publication Date
EP3313710A1 EP3313710A1 (fr) 2018-05-02
EP3313710B1 true EP3313710B1 (fr) 2019-06-26

Family

ID=53488256

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15173814.3A Withdrawn EP3109128A1 (fr) 2015-06-25 2015-06-25 Système et procédé d'élimination de court-circuit dans un bus d'alimentation
EP16721138.2A Active EP3313710B1 (fr) 2015-06-25 2016-05-02 Système et procédé d'élimination de court-circuit dans un bus d'alimentation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15173814.3A Withdrawn EP3109128A1 (fr) 2015-06-25 2015-06-25 Système et procédé d'élimination de court-circuit dans un bus d'alimentation

Country Status (2)

Country Link
EP (2) EP3109128A1 (fr)
WO (1) WO2016206843A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3415399T3 (pl) 2017-06-16 2020-04-30 Siemens Mobility Ag System do bezusterkowego zasilania elektrycznego urządzenia odbiorczego z redundantną magistralą energetyczną
US10581684B2 (en) 2017-12-06 2020-03-03 Schweitzer Engineering Laboratories, Inc. Network management via a secondary communication channel in a software defined network
ES2833470T3 (es) 2018-02-26 2021-06-15 Thales Man & Services Deutschland Gmbh Dispositivo de suministro de energía y procedimiento para operar un dispositivo de suministro de energía
US10756956B2 (en) 2018-03-05 2020-08-25 Schweitzer Engineering Laboratories, Inc. Trigger alarm actions and alarm-triggered network flows in software-defined networks
US10560390B2 (en) 2018-03-05 2020-02-11 Schweitzer Engineering Laboratories, Inc. Time-based network operation profiles in a software-defined network
US10812392B2 (en) 2018-03-05 2020-10-20 Schweitzer Engineering Laboratories, Inc. Event-based flow control in software-defined networks
US11012442B2 (en) 2019-04-11 2021-05-18 Schweitzer Engineering Laboratories, Inc. Address resolution protocol response handling
US11425033B2 (en) 2020-03-25 2022-08-23 Schweitzer Engineering Laboratories, Inc. SDN flow path modification based on packet inspection
US11201759B1 (en) 2020-07-08 2021-12-14 Schweitzer Engineering Laboratories, Inc. Reconfigurable dual-ring network redundancy
EP4037126A1 (fr) 2021-01-29 2022-08-03 Siemens Mobility AG Système de démarrage rapide commandé et de fonctionnement d'un bus à énergie redondant destiné à l'alimentation à sécurité intégrée d'un consommateur électrique
US11677663B2 (en) 2021-08-12 2023-06-13 Schweitzer Engineering Laboratories, Inc. Software-defined network statistics extension
EP4160845B1 (fr) 2021-09-29 2024-04-17 Siemens Mobility AG Système de démarrage contrôlé et de fonctionnement d'un bus d'énergie redondant
US11882002B2 (en) 2022-06-22 2024-01-23 Schweitzer Engineering Laboratories, Inc. Offline test mode SDN validation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995916A1 (fr) 2007-05-24 2008-11-26 Siemens Schweiz AG Dispositif de commande et/ou de surveillance et de demande de données à partir d'unités de fonction décentralisées agencées le long d'un réseau de trafic
EP2549620A3 (fr) 2011-07-22 2013-04-24 Siemens Schweiz AG Dispositif de fonctionnement d'unités de fonction décentralisées et agencées dans une installation industrielle
ES2528736T3 (es) * 2012-06-13 2015-02-12 Siemens Schweiz Ag Procedimiento y sistema de aprovisionamiento de potencia eléctrica a los elementos de campo descentralizados de una red ferroviaria
EP2821313A3 (fr) * 2013-07-02 2015-05-06 Siemens Schweiz AG Dispositif et procédé de fonctionnement d'unités fonctionnelles disposées de façon décentralisée

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2016206843A1 (fr) 2016-12-29
EP3313710A1 (fr) 2018-05-02
EP3109128A1 (fr) 2016-12-28

Similar Documents

Publication Publication Date Title
EP3313710B1 (fr) Système et procédé d'élimination de court-circuit dans un bus d'alimentation
DE19923569B4 (de) Vorrichtung zur elektronischen Überwachung des Versorgungsstromes von an einen Bus angeschlossene Baugruppen
DE102016100175B4 (de) Robotersystem, welches mit einer Mehrzahl von Controllern vorgesehen ist, die eine Mehrzahl von Industrierobotern betätigen
DE102008010979A1 (de) Bordnetz für ein Kraftfahrzeug
EP2859226B1 (fr) Système de sécurité pour éolienne
DE10139318A1 (de) Verfahren zur Fehlererkennung in einem elektrischen Strahlennetz, eine Anwendung des Verfahrens und eine Anordnung zur Fehlererkennung in einem elektrischen Strahlennetz
EP3313709B1 (fr) Système et procédé d'alimentation électrique d'unités fonctionnelles décentralisées
EP3469677B1 (fr) Procédé d'alimentation électrique et alimentation électrique pour des éléments de trafic ferroviaire disposés sur un tronçon de voie
EP3247015B1 (fr) Dispositif d'alimentation electrique et procede de fonctionnement d'un dispositif d'alimentation electrique
EP3415399B1 (fr) Système d'alimentation à sureté intégrée d'un consommateur électrique à l'aide d'un bus d'énergie redondant
EP3191357B1 (fr) Convoyeur avec fonction de sécurité
WO2011100949A1 (fr) Circuit de sécurité passif
EP3266031A1 (fr) Dispositif de commutation permettant de faire fonctionner au moins une charge
DE112012005740T5 (de) Duplexsteuerungssystem und dessen Steuerungsverfahren
EP3822145B1 (fr) Procédé et système pour traiter une chaine d'appareils d'aiguillage
DE102015218906B4 (de) Verfahren zum Betreiben eines Datenübertragungssystems und Datenübertragungssystem
EP3305622A1 (fr) Procédé de diagnostic de composants techniques répartis dans l'espace
EP3356199A1 (fr) Système et procédé permettant l'élimination automatique d'une tension pertubatrice excessive dans un bus d'alimentation
EP2466405A1 (fr) Système de commande pour un dispositif industriel à l'aide d'une commutation optionnelle sur différentes unités centrales
EP4160845B1 (fr) Système de démarrage contrôlé et de fonctionnement d'un bus d'énergie redondant
EP3531137B1 (fr) Dispositif d'alimentation en énergie et procédé de fonctionnement d'un dispositif d'alimentation en énergie
EP4037126A1 (fr) Système de démarrage rapide commandé et de fonctionnement d'un bus à énergie redondant destiné à l'alimentation à sécurité intégrée d'un consommateur électrique
DE102014016018B4 (de) Schalteinrichtung für ein Bordnetz eines Kraftfahrzeugs, Bordnetz und Kraftfahrzeug
WO2021008790A1 (fr) Dispositif présentant une fonction d'arrêt d'urgence individuelle
DE102014206245B4 (de) Verfahren zur Prüfung der Kommunikationsverbindungen einer Schalteranordnung zur Stromverteilung und entsprechende Schalteranordnung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS MOBILITY AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1147944

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016005260

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190926

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190927

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190926

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191028

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191026

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016005260

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220411

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220719

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220809

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016005260

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1147944

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231201