WO2016206636A1 - 一种聚氨酯、含有其的改性沥青和混合料及路面结构 - Google Patents
一种聚氨酯、含有其的改性沥青和混合料及路面结构 Download PDFInfo
- Publication number
- WO2016206636A1 WO2016206636A1 PCT/CN2016/087102 CN2016087102W WO2016206636A1 WO 2016206636 A1 WO2016206636 A1 WO 2016206636A1 CN 2016087102 W CN2016087102 W CN 2016087102W WO 2016206636 A1 WO2016206636 A1 WO 2016206636A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyurethane
- polyol
- asphalt
- modified asphalt
- mixture
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/26—Bituminous materials, e.g. tar, pitch
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B11/00—Layered products comprising a layer of bituminous or tarry substances
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1018—Coating or impregnating with organic materials
- C04B20/1029—Macromolecular compounds
- C04B20/1044—Bituminous materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/10—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B26/16—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/24—Catalysts containing metal compounds of tin
- C08G18/242—Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/24—Catalysts containing metal compounds of tin
- C08G18/244—Catalysts containing metal compounds of tin tin salts of carboxylic acids
- C08G18/246—Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3203—Polyhydroxy compounds
- C08G18/3206—Polyhydroxy compounds aliphatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/36—Hydroxylated esters of higher fatty acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4825—Polyethers containing two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4833—Polyethers containing oxyethylene units
- C08G18/4837—Polyethers containing oxyethylene units and other oxyalkylene units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/64—Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
- C08G18/6476—Bituminous materials, e.g. asphalt, coal tar, pitch; derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/69—Polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
- C08G18/7671—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/794—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aromatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/798—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing urethdione groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8003—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
- C08G18/8006—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
- C08G18/8009—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
- C08G18/8022—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
- C08G18/8029—Masked aromatic polyisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8003—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
- C08G18/8051—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/36
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L95/00—Compositions of bituminous materials, e.g. asphalt, tar, pitch
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/18—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00612—Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/0075—Uses not provided for elsewhere in C04B2111/00 for road construction
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2206—Oxides; Hydroxides of metals of calcium, strontium or barium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0016—Plasticisers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2555/00—Characteristics of bituminous mixtures
- C08L2555/20—Mixtures of bitumen and aggregate defined by their production temperatures, e.g. production of asphalt for road or pavement applications
- C08L2555/22—Asphalt produced above 140°C, e.g. hot melt asphalt
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2555/00—Characteristics of bituminous mixtures
- C08L2555/20—Mixtures of bitumen and aggregate defined by their production temperatures, e.g. production of asphalt for road or pavement applications
- C08L2555/24—Asphalt produced between 100°C and 140°C, e.g. warm mix asphalt
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2555/00—Characteristics of bituminous mixtures
- C08L2555/20—Mixtures of bitumen and aggregate defined by their production temperatures, e.g. production of asphalt for road or pavement applications
- C08L2555/26—Asphalt produced between 65°C and 100°C, e.g. half warm mix asphalt, low energy asphalt produced at 95°C or low temperature asphalt produced at 90°C
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2555/00—Characteristics of bituminous mixtures
- C08L2555/40—Mixtures based upon bitumen or asphalt containing functional additives
- C08L2555/50—Inorganic non-macromolecular ingredients
- C08L2555/52—Aggregate, e.g. crushed stone, sand, gravel or cement
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2555/00—Characteristics of bituminous mixtures
- C08L2555/40—Mixtures based upon bitumen or asphalt containing functional additives
- C08L2555/80—Macromolecular constituents
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/35—Toppings or surface dressings; Methods of mixing, impregnating, or spreading them
Definitions
- the mass ratio of the polyester polyol to the polyether polyol is 2:1 to 1:1.
- the polyester polyol is first added to the reactor, and the temperature is raised to 50 ⁇ .
- the reaction is kept at 80 ° C for 0.5 to 1.5 hours, and then the polyether polyol is added dropwise to the reaction system, and the reaction is kept for 1.5 to 3 hours.
- the technical scheme connects the polyether polyol with better flexibility in the molecule, so that the synthesized macromolecule is more flexible, so that the low temperature flexibility of the modified asphalt is better; in the scheme of using the composite polyol, the post-dropping Generally, the relative molecular weight is small to allow the reaction to proceed.
- the R value is the total molar ratio of the two groups, converted according to the respective mass.
- the catalyst is one of an organotin catalyst and a tertiary amine catalyst
- the chain extender is trimethylolpropane, 1,4-butanediol, 1,2-propanediol, polyethylene-2.
- One of a small molecule alcohol such as alcohol 200 or triethanolamine and an amine, the plasticizer being one of dioctyl phthalate and dibutyl phthalate, said defoaming
- the agent is calcium oxide.
- the invention also provides a polyurethane modified asphalt comprising the polyurethane and the matrix asphalt proposed by the invention, and the mass ratio of the polyurethane to the matrix asphalt is 10 to 90%.
- the catalyst is one of an organotin catalyst and a tertiary amine catalyst, and accounts for 1-3% of the total amount of the polyurethane.
- the preparation method of the mixture is one of the following methods:
- Method 2 preheating 100 parts of aggregate at 130-165 ° C, adding fine aggregate and coarse aggregate to the mixing pot heated to 130-165 ° C, mixing uniformly; adding 4-6 parts to the aggregate
- Compaction molding at ⁇ 140 °C the molded test piece is placed in an oven at 100 ° C for 20 to 30 hours, and then cured at room temperature for 2 to 4 days;
- Method 3 preheating the aggregate at 140-170 ° C, adding the fine aggregate and the coarse aggregate to a mixing pot heated to 140-170 ° C, and mixing uniformly; adding the claims 1 to 5 to the aggregate
- the castor oil-based polyurethane modified asphalt prepared by the method is mixed for 90-180 s; the ore powder is added to the mixed mixture to continue mixing for 90-180 s, the mixture is evenly mixed, and compacted at 140-150 ° C Forming, compacting 70 to 80 times, putting the formed test piece into the oven at 100 ° C for 24 hours, and curing at room temperature for 2 to 4 days.
- the fine aggregate has a nominal particle size of 0.075 mm ⁇ 4.75 mm
- the coarse aggregate has a nominal particle size of 4.75 mm ⁇
- the ore powder is ground by limestone
- the nominal particle size is ⁇ 0.075 mm.
- the grading of the aggregate is a gradation to meet the technical specifications of highway asphalt pavement construction;
- the plasticizer is one of dioctyl phthalate and dibutyl phthalate, accounting for 2 to 5% of the total amount of the vegetable oil-based polyurethane;
- the antifoaming agent is calcium oxide, which accounts for 0 to 1% of the total amount of the vegetable oil-based polyurethane.
- the application of the mixture according to the present invention can be used for paving, reinforcing and repairing ordinary highways, highways, municipal roads, heavy traffic, hot roads, square pavements, airport pavements.
- a pavement structure using a urethane modified asphalt comprising a subgrade, a base layer and a top layer disposed in order from bottom to top, wherein the top layer is made of the mixture of the present invention; the number of layers of the surface layer is at least layer.
- a sealing layer is disposed between the permeable layer oil and the surface layer.
- the base layer is a flexible base layer or a semi-rigid base layer or a rigid base layer.
- the polyurethane proposed by the invention has mild synthesis conditions, can react with the active hydrogen component in air and asphalt twice in the curing molding process, further improves the strength of the mixture, and the standard Marshall stability of 60 ° C meets the requirements of the petroleum asphalt specification. , can extend the service life of asphalt pavement;
- the modified asphalt mixture adopting the polyurethane of the invention has low mixing temperature and short curing curing time. Under relatively low dosage, the Marshall strength of the mixture is high in a short time, and the temperature is increased and the curing time is prolonged. Increase.
- Figure 2 shows the infrared spectrum of different amounts of polyurethane modified asphalt.
- Fig. 3 is a structural schematic view showing the structure of a polyurethane modified asphalt pavement according to Embodiment 20 of the present invention.
- TMP polyol trimethylolpropane
- the polyurethane spline was prepared after solidification molding at 130 °C.
- Preparation of polyurethane modified asphalt After baking the matrix asphalt and the synthesized polyurethane prepolymer at 120 ° C for 10 minutes, the polyurethane prepolymer modified asphalt is obtained, wherein the ratio of the polyurethane prepolymer to the modified asphalt is 20%.
- the aggregate in this example consisted of 21.1% by mass of fine aggregate and 73.8% by mass of coarse aggregate and 5.1% of ore fines.
- the fine aggregate nominal particle size is 0.075mm ⁇ 2.36mm
- the coarse aggregate nominal particle size is 2.36mm ⁇
- the mineral powder nominal particle size is ⁇ 0.075mm
- the fine aggregate and coarse aggregate are limestone. .
- the vegetable oil-based polyurethane modified asphalt was obtained by shearing for 90 min and shearing uniformly.
- the infrared spectrum of the polyurethane prepolymer modifier is shown in Figure 1.
- the ordinate of this figure is the light transmittance.
- In the combined absorption peak near the wave number of 3334cm -1 is NH stretching vibration, 1710cm -1 at a carbamate (NH-CO-O) and a carbonyl group (-CO-O) on the long carbon chain of the castor oil Characteristic absorption peak, 2275cm -1 is the anti-symmetric stretching peak of -NCO group in isocyanate, and 1310 ⁇ 1360cm -1 is the symmetric stretching peak of -NCO group in isocyanate.
- the acid ester segment is formed and the composition is an excess-NCO terminated polyurethane prepolymer.
- 1450 ⁇ 1650cm -1 is the five-finger absorption peak of the benzene ring
- this figure is the infrared spectrum absorption peak spectrum of the synthesized vegetable oil-based polyurethane modifier.
- Step 1) The method of synthesizing the vegetable oil-based polyurethane prepolymer is the same as in Example 4.
- Figure 2 is an infrared contrast chart of the polyurethane prepolymer before and after the addition of the modifier to the asphalt in Examples 2-6.
- the characteristic functional group of the isocyanate-NCO has some intensity changes at a characteristic absorption peak of about 2275 cm -1 , and the -NCO peak type in the polyurethane prepolymer is obvious, further confirming that the system-NCO is excessive, and the synthesized prepolymer is -NCO. Capped.
- the characteristic peak of the characteristic isocyanate-NCO at 2275 cm -1 is significantly reduced until it reaches 0, indicating that the polyurethane prepolymer can continue to react with the active hydrogen compound in the asphalt system.
- the simple physical blending modification gradually transforms into chemical modification, which further improves the performance of the asphalt, which is also the reason why the strength of the mixture is increased to a certain extent compared with the matrix asphalt.
- the modification mechanism of the modifier and the asphalt can be explained by the change in the intensity of the absorption peak provided in the figure, and the reason for the increase in the strength of the mixture is further explained from the viewpoint of the chemical reaction.
- Figure 2 from top to bottom, the top line is PU, the second line is 20%, the third line is 40%, the fourth line is 30%, and the fifth line is 10%. Second, the peaks of the three lines overlap almost.
- the aggregate in this embodiment satisfies the aggregate of highway asphalt pavement construction technical specification, wherein the fine aggregate is limestone, the nominal particle size is 0.075mm ⁇ 4.75mm, the coarse aggregate is basalt, and the nominal particle size is 4.75mm.
- the ore powder is made of high-quality limestone, the nominal particle size is ⁇ 0.075mm; the grading of the aggregate is AC-type grading to meet the technical specifications of highway asphalt pavement construction.
- composition of the aggregate was the same as in Example 7.
- composition of the aggregate was the same as in Example 7.
- composition of the aggregate was the same as in Example 7.
- composition of the aggregate was the same as in Example 7.
- the vegetable oil-based polyurethane prepolymer is prepared as the A component with the isocyanate index R of 2.0; and the total amount of the prepolymer is 4.0% of the chain extender three strong methyl propane.
- TMP is dissolved in absolute mass ratio of 1:3, 4.0% plasticizer dioctyl phthalate, 1.0% catalyst dibutyltin dilaurate, 1.0% defoamer calcium oxide (CaO ) as a component B.
- the matrix asphalt was used as the C component, and the components A and B were uniformly mixed, and the mixture was mixed with the C component at a ratio of 1:1 to prepare a mixture.
- the isocyanate index R which controls the content of the two monomers is 1.6.
- a corresponding amount of liquefied MDI was added dropwise to the reaction vessel at 115 ° C with a dropping funnel, and the dropping rate was controlled at 10 drops/min, and the mixture was sufficiently sheared for 20 minutes to make the dispersion of the reaction system uniform and stable.
- the test results of the three modified indexes of the prepared modified asphalt were 5.4 cm at 5 ° C, 53 ° C at 5 ° C, and 69 mm at 25 ° C.
- the thickness of the surface layer of the single-layer structure ranges from 10 mm to 80 mm; the total thickness of the surface layer of the double-layer or three-layer structure ranges from 60 mm to 300 mm, which not only satisfies the use requirements, but also ensures a good new type.
- the effect is also beneficial to avoid waste of resources, save money, and have good economy.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Civil Engineering (AREA)
- Inorganic Chemistry (AREA)
- Architecture (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
一种聚氨酯,所述聚氨酯是由以下方法制备得到:在反应容器中加入阻聚剂、催化剂、异氰酸酯组分,在氮气保护条件下,常温边搅拌边向反应器加入多元醇,升温至50~80℃下保温反应0.5~6小时。一种含有所述聚氨酯的混合料,以及聚氨酯改性沥青路面结构。聚氨酯合成的条件温和,养护成型过程中能与空气及沥青中活性氢组分二次反应,使其混合料强度进一步提升,且60℃标准马歇尔稳定度均达到石油沥青规范要求,能够延长沥青路面的使用寿命。
Description
本发明属于道路工程领域,具体涉及一种聚氨酯及其制备方法和应用。
聚氨酯是一种软硬段镶嵌而成的有机聚合物,硬段与软段两相极性上的差异及硬段本身的结晶性导致软硬段互不相容,可发生类似于SBS的两相分离的结构。聚氨酯固化后的硬段为材料提供一定强度,同时,软段又使材料具有相应的柔韧性,将其应用在沥青体系中,可提高基质沥青的高低温性能。
中国专利CN102617070A公开了一种聚氨酯沥青混凝土及其制备方法和用途,该聚氨酯预聚体是以异氰酸酯与多元醇化合物、催化剂、增塑剂为原料反应制得,与稀释沥青以冷拌冷铺的方式制得的聚氨酯沥青混凝土混合料性能优异,但其聚氨酯预聚物合成原料均为不可再生的石油资源,且必须含有催化剂,增塑剂等添加助剂,合成温度高达80~90℃。
中国专利CN103232717A公开了一种聚氨酯环氧复合改性沥青及其制备方法,该复合改性沥青产品由多元醇,与催化剂,环氧树脂在高温下反应,再与异氰酸酯组分反应制得聚氨酯改性环氧树脂半成品,再加入增溶剂,增塑剂,固化剂等助剂制得聚氨酯环氧复合改性沥青产品。其复合改性沥青混凝土60℃马歇尔稳定度达到环氧沥青混凝土EA-10规范要求,但其添加助剂复杂,且混合料的高强度大都依赖于环氧沥青的刚性大,高强度。
目前,因重载车辆引起的早期病害严重,已建道路在未达到设计年限时出现车辙现象频发,增加了道路在使用年限内的维修次数与寿命周期成本,荷载裂缝及温度裂缝在行车荷载的催化作用下极易诱发并产生破坏性损伤,从而造成路面出现温度裂缝和疲劳裂缝。将聚氨酯用以改进现有的路面结构抗车辙能力、低温抗裂性能和抗疲劳性能,可以显著改善路面的耐久性。
发明内容
针对现有技术存在的不足之处,本发明的目的之一是提供一种聚氨酯。
本发明的另一目的是提出所述聚氨酯的制备方法。
本发明的第三个目的是提出含有所述聚氨酯的改性沥青。
本发明的第四个目的是提出含有所述聚氨酯的沥青混合料。
本发明的第五个目的是提出含有所述聚氨酯沥青混合料的路面结构。
实现本发明上述目的的技术方案为:
一种聚氨酯,所述聚氨酯是由以下方法制备得到:
在反应容器中加入阻聚剂、催化剂、异氰酸酯组分,在氮气保护条件下,常温边搅拌边向反应器加入多元醇,升温至50~80℃下保温反应0.5~6小时;
其中,所述阻聚剂为对苯磺酸酯、苯甲酰氯、磷酸、硫酸二甲酯中的一种或两种,所述异氰酸酯组分选自液化MDI、TDI二聚体、TDI三聚体、TDI-TMP加成物、HDI二聚体、HDI三聚体、IPDI三聚体中的一种或两种;所述多元醇选自蓖麻油、脱水蓖麻油、包含己二酸系聚酯二醇、聚烯烃多元醇、聚氧化丙烯尔醇(PPG)、聚氧化丙烯-氧化乙烯共聚醚三醇、三羟甲基丙烷(TMP)、植物油多元醇、聚四氢呋喃多元醇中的一种或多种。
具体在聚氨酯制备方法中,异氰酸酯组分中-NCO基团和多元醇组份中的-OH基团的摩尔比值R(异氰酸酯指数)优选为1.4~2.0,以异氰酸酯组分和多元醇质量和为总质量,加入总质量0.01~3%的阻聚剂,
其中,聚氨酯的制备方法中,以异氰酸酯组分和多元醇质量和为总质量,加入0.5~1%的催化剂,所述催化剂为有机锡类催化剂、叔胺类催化剂叔胺类化合物和季铵盐类化合物中的一种。
其中,所述多元醇为聚酯多元醇、聚醚多元醇及植物油多元醇中的一种或任两种组合的复合多元醇,所述聚酯多元醇选自己二酸系聚酯二醇、聚烯烃多元醇、聚氧化丙烯尔醇(PPG)中的一种,所述聚醚多元醇选自聚氧化丙烯-氧化乙烯共聚醚三醇、三羟甲基丙烷(TMP)、植物油多元醇、聚四氢呋喃多元醇等中的一种或多种。
更优选地,所述复合多元醇中,聚酯多元醇与聚醚多元醇的质量比例为2∶1~1∶1,制备方法中,先向反应器加入聚酯多元醇,升温至50~80℃下保温反应0.5~1.5小时,再向反应体系中滴加聚醚多元醇,保温反应1.5~3小时。
本技术方案在分子中接上柔性较好的聚醚多元醇,使合成后的大分子柔性较好,从而使改性沥青的低温柔性较好;采用复合多元醇的方案中,,后滴加的一般为相对分子量较小的,才能使反应继续进行。R值是两个基团的摩尔总比值,根据各自质量换算。
其中,所述的多元醇在100~120℃,0.05~0.2MPa真空箱中脱水2~3h制得;在制备方法中,反应容器中加入占反应物总质量的10~50%的溶剂,所述的溶剂为丙酮,乙酸乙酯,乙酸丁酯中的一种或两种。
所述的聚氨酯,经过所述制备方法,在50~80℃下保温反应0.5~6小时后,所得反应体系(可称为预聚物)作为A组份,其他助剂为B组份,所述其他助剂为质量份的催化剂1份、扩链剂3份、增塑剂1份、消泡剂1份调节而得,A,B组份按质量比例1∶0.8~1.2搅拌混合后使用;
其中所述的催化剂为有机锡类催化剂、叔胺类催化剂中的一种,所述的扩链剂为三羟甲基丙烷、1,4-丁二醇、1,2-丙二醇、聚乙二醇200、三乙醇胺等小分子醇类和胺类中的一种,所述的增塑剂为邻苯二甲酸二辛酯、邻苯二甲酸二丁酯中的一种,所述的消泡剂为氧化钙。
本发明还提出一种聚氨酯改性沥青,所述聚氨酯改性沥青含有本发明提出的聚氨酯和基质沥青,聚氨酯占基质沥青的质量比例为10~90%。
所述的聚氨酯改性沥青,通过以下方法制备:
将聚氨酯与基质沥青混合,在120~130℃下,快速搅拌10~30分钟,得到聚氨酯改性沥青。
所述聚氨酯改性沥青改性的组成为:聚氨酯10~45份,沥青90~50份,其他助剂添加量为0~5份,所述其他助剂为催化剂、扩链剂、增塑剂、消泡剂中的一种或多种。
其中,所述的催化剂为有机锡类催化剂、叔胺类催化剂中的一种,占所述聚氨酯总量的1-3%。
所述的扩链剂为三羟甲基丙烷(TMP)、1,4-丁二醇、1,2-丙二醇、聚乙二醇200、三乙醇胺等小分子醇类和胺类中的一种,占所述植物油基聚氨酯总量的2~4%。
所述的增塑剂为邻苯二甲酸二辛酯、邻苯二甲酸二丁酯中的一种,占所述植物油基聚氨酯总量的2~5%;所述的消泡剂为氧化钙,占所述植物油基聚氨酯总量的0~1%。
更进一步地,所述的聚氨酯改性沥青,通过以下方法制备:
基质沥青在135℃烘3小时,然后在110~120℃下,边剪切边向基质沥青中缓慢加入所述聚氨酯。
含有本发明所述聚氨酯的混合料。
所述混合料的制备方法为以下方法中的一种:
方法一:将集料在120~130℃的烘箱中烘3~6小时,将100份烘过的集料加入110~150℃的拌和锅中,向其中加入聚氨酯改性沥青2~8份,在110~150℃下拌合均匀,再加入矿粉,拌合90秒;
方法二:在130~165℃下预热100份集料,将细集料和粗集料加入升温到130~165℃的拌和锅中,拌合均匀;向集料中加入4~6份的权利要求1~6任一所述的植物油基聚氨酯、其他助剂和沥青,拌合90~180s;向拌合好的混合料中加入矿粉继续拌合90~180s,拌合均匀,在135~140℃下击实成型,将成型好的试件放进100℃烘箱中养护20~30h,再常温养护2~4天即得;
方法三:在140~170℃下预热集料,将细集料和粗集料加入升温到140~170℃的拌和锅中,拌合均匀;向集料中加入权利要求1~5中任一所述方法制备的蓖麻油基聚氨酯改性沥青,拌合90~180s;向拌合好的混合料中加入矿粉继续拌合90~180s,拌合均匀,在140~150℃下击实成型,击实70~80次,将成型好的试件放进100℃烘箱中养护24h,常温养护2~4天即得。
其中,所述细集料为公称粒径为0.075mm<δ<4.75mm,粗集料为公称粒径为4.75mm≤δ,矿粉由石灰岩磨制而成,公称粒径为δ≤0.075mm;所述集料的级配为满足公路沥青路面施工技术规范的级配;
所述其他助剂为催化剂、扩链剂、增塑剂、消泡剂中的一种或多种,所述的催化剂为有机锡类催化剂、叔胺类催化剂中的一种,占所述聚氨酯总量的1-3%,所述的扩链剂为三羟甲基丙烷(TMP)、1,4-丁二醇、1,2-丙二醇、聚乙二醇200、三乙醇胺等小分子醇类和胺类中的一种,占所述植物油基聚氨
酯总量的2~4%,所述的增塑剂为邻苯二甲酸二辛酯、邻苯二甲酸二丁酯中的一种,占所述植物油基聚氨酯总量的2~5%;所述的消泡剂为氧化钙,占所述植物油基聚氨酯总量的0~1%。
本发明所述的混合料的应用,可用于普通公路、高速公路、市政道路、特重交通、炎热地区路面、广场路面、机场路面的摊铺、加固、修补。
一种使用聚氨酯改性沥青的路面结构,其包括由下至上依次设置的路基、基层及面层,所述面层采用本发明所述的混合料制成;所述面层的层数至少为一层。
进一步地,所述面层的层数为二层以上,在各面层之间设有粘结层,所述粘结层采用乳化沥青或改性乳化沥青或改性沥青或石油沥青或其他符合公路沥青路面施工技术规范要求的粘结材料制成,且所述粘结层的洒布量为0.3L/m2~2.5L/m2。
其中,在所述基层与所述面层之间喷洒有透层油。
其中,在所述透层油与所述面层之间设有封层。
其中,所述基层为柔性基层或半刚性基层或刚性基层。
本发明的有益效果在于:
本发明提出的聚氨酯,合成的条件温和,养护成型过程中能与空气及沥青中活性氢组分二次反应,使其混合料强度进一步提升,且60℃标准马歇尔稳定度均达到石油沥青规范要求,能够延长沥青路面的使用寿命;
采用本发明聚氨酯的改性沥青混合料拌合温度低,固化成型养护时间短,在相对较低掺量下,短时间内混合料马歇尔强度高,随着温度的提高以及养护时间的延长,强度增大。
本发明提供的聚氨酯改性沥青路面结构,该路面结构的面层采用聚氨酯改性沥青混合料制成,聚氨酯改性沥青混合料具有抗疲劳、硬度高、弹性好、耐磨性强等优点,能有效提高路面的抗车辙、耐低温及抗水抗裂能力,避免路面开裂,起到了保护路面的作用,既能延长道路使用寿命,又能提高路面安全性能;除此之外,聚氨酯改性沥青路面结构的后期维护成本低,也有利于经济性。
图1为实施例3制备的聚氨酯改性剂的红外光谱图。
图2为不同掺量聚氨酯改性沥青红外光谱。
图3是本发明实施例20聚氨酯改性沥青路面结构的结构示意图。
图中:1:上面层;2:第一粘结层;3:中面层;4:第二粘结层;5:下面层。
现以以下最佳实施例来说明本发明,但不用来限制本发明的范围。
实施例中改性沥青软化点、延度的测试分别采用国家标准GB/T4507-1999、GB/T4508-1999进行。
实施例中的脱水蓖麻油制备:蓖麻油(国药集团,AR,羟值为164mgKOH/g)在110℃,0.1MPa真空烘箱中脱水2h,降温冷却以备用。
实施例1:
聚氨酯的制备:在反应容器中加入总质量分数为0.5%的阻聚剂磷酸、溶剂丙酮,0.5%的催化剂二月桂酸二丁基锡,搅拌均匀,再加入异氰酸酯组分液化MDI,在氮气保护条件下,按R为1.6(两种多元醇一起算),常温边搅拌边向反应器加入己二酸系聚酯二醇、升温至50℃下保温反应2小时;
再用恒压分液漏斗向反应体系中滴加第二种多元醇三羟甲基丙烷(TMP)进行扩链(第二种多元醇和第一种的质量为2∶1),保温反应2小时;降温至室温条件下,停止通入氮气,停止反应,出料。
在130℃下固化成型后制备得聚氨酯样条。
聚氨酯改性沥青的制备:将基质沥青烘化后和合成的聚氨酯预聚物在120℃下搅拌10分钟,得到聚氨酯预聚物改性沥青,其中聚氨酯预聚物占其改性沥青的比例为20%。
其改性沥青混合料的制备:将AC-20级配的集料在120℃的烘箱中烘5小时,将100份上述AC-20级配的集料加入120℃的拌和锅中,向其中加入上述制得的聚氨酯预聚物改性沥青4.3份,在120℃下拌合均匀,拌合时间90秒,再加入矿粉,拌合90秒。
成型后的试件在150℃的烘箱中进行固化养护成型。
本实施例中的集料由质量百分比占21.1%的细集料和质量百分比占73.8%的粗集料和5.1%的矿粉组成。其中,细集料公称粒径为0.075mm<δ<2.36mm,粗集料公称粒径为2.36mm≤δ,矿粉公称粒径为δ≤0.075mm,细集料和粗集料均为石灰岩。
性能表征
按照《公路工程沥青及沥青混合料试验规程(JTG E20-2011)》对实施例的混合料试件进行常规马歇尔性能测试,按照标准GBT 1040-2006《塑料拉伸性能的测定》对聚氨酯样条的抗拉强度和断裂伸长率进行测试,测试结果见表1,表2。
表1:实施例1样条的力学性能
实施例 | 抗拉强度/Mpa | 断裂伸长率/% |
实施例1 | 8.78 | 93.23 |
表2:实施例1混合料试件进行常规马歇尔性能测试
实施例2
植物油基聚氨酯改性沥青的制备如下:
1)合成植物油基聚氨酯预聚物:在常温和氮气保护条件下,向干燥的四口瓶中加入占蓖麻油和液化MDI总质量的0.1%的正磷酸阻聚剂,按异氰酸酯指数R=1.6加入液化MDI,搅拌5分钟,用滴液漏斗逐滴向四口瓶中滴加相应量的脱水蓖麻油,控制搅拌速度和滴加速度,反应过程中,视反应体系粘度变化加入丙酮溶剂调节,使反应继续进行,共加入占反应物总量的35%的丙酮溶剂调节粘度;待蓖麻油滴加完毕,继续反应50min制得端NCO的聚氨酯预聚物。
2)改性沥青的制备
将2份的锡类催化剂二月桂酸二丁基锡添加至70份沥青中,再将步骤1)
合成的植物油基聚氨酯预聚物30份在115℃下边剪切边缓慢加入到加了锡类催化剂的70份基质沥青中,剪切70min,剪切均匀即制得植物油基聚氨酯改性沥青。
实施例3
植物油基聚氨酯改性沥青的制备如下:
1)合成植物油基聚氨酯预聚物:在常温和氮气保护条件下,向干燥的四口瓶中加入占蓖麻油和液化MDI总质量的0.1%的正磷酸阻聚剂,按异氰酸酯指数R=1.8加入液化MDI,搅拌5分钟,用滴液漏斗逐滴向四口瓶中滴加相应量的脱水蓖麻油,控制搅拌速度和滴加速度,反应过程中,视反应体系粘度变化加入丙酮溶剂调节,共加入占反应物总量的40%的丙酮溶剂调节粘度,使反应继续进行;待蓖麻油滴加完毕,继续反应50min制得端NCO的聚氨酯预聚物。
2)改性沥青的制备
将2份的锡类催化剂二月桂酸二丁基锡添加至60份基质沥青中,再将步骤1)合成的植物油基聚氨酯预聚物40份在115℃下边剪切边缓慢加入到加了催化剂的60份沥青中,剪切90min,剪切均匀即制得植物油基聚氨酯改性沥青。
聚氨酯预聚物改性剂的红外光谱图见图1,此图纵坐标是透光率。在波数3334cm-1附近的吸收峰为N-H的伸缩振动峰,1710cm-1处为氨基甲酸酯(NH-CO-O)和蓖麻油的长碳链上的羰基(-CO-O)的联合特征吸收峰,2275cm-1处为异氰酸酯中-NCO基团的反对称伸缩特征峰,1310~1360cm-1处为异氰酸酯中-NCO基团的对称伸缩峰,由此可知,生成物中有氨基甲酸酯链段生成,合成物为过量-NCO封端的聚氨酯预聚物。其中,1450~1650cm-1为苯环的五指吸收峰型,此图是所合成的植物油基聚氨酯改性剂的红外光谱吸收峰谱图。
实施例4
植物油基聚氨酯改性沥青的制备如下:
1)合成植物油基聚氨酯预聚物:在常温和氮气保护条件下,向干燥的四口瓶中加入占蓖麻油和液化MDI总质量的0.1%的正磷酸阻聚剂,按异氰酸酯
指数R=1.6加入液化MDI,搅拌5分钟,用滴液漏斗逐滴向四口瓶中滴加相应量的脱水蓖麻油,控制搅拌速度和滴加速度,反应过程中,视反应体系粘度变化加入丙酮溶剂调节,共加入占反应物总量的35%的丙酮溶剂调节粘度,使反应继续进行;待蓖麻油滴加完毕,继续反应50min制得端NCO的聚氨酯预聚物。
2)改性沥青的制备
将2份的锡类催化剂二月桂酸二丁基锡添加至90份基质沥青中,再将步骤1)合成的植物油基聚氨酯预聚物10份在115℃下边剪切边缓慢加入到有锡类催化剂的90份沥青中,剪切40min,剪切均匀即制得植物油基聚氨酯改性沥青。
实施例5
植物油基聚氨酯改性沥青的制备如下:
1)合成植物油基聚氨酯预聚物:在常温和氮气保护条件下,向干燥的四口瓶中加入占蓖麻油和液化MDI总质量的0.5%的正磷酸阻聚剂,按异氰酸酯指数R=2.0加入液化MDI,搅拌5分钟,用滴液漏斗逐滴向四口瓶中滴加相应量的脱水蓖麻油,控制搅拌速度和滴加速度,反应过程中,视反应体系粘度变化加入丙酮溶剂调节,共加入占反应物总量的40%的丙酮溶剂调节粘度,使反应继续进行,待蓖麻油滴加完毕,继续向四口瓶中缓慢滴加体系总质量的3.0%的扩链剂三羟甲基丙烷(TMP),滴加完毕,继续反应10min制得端NCO的聚氨酯预聚物。
2)改性沥青的制备
将预聚物总量的1.0%的催化剂二月桂酸二丁基锡、3.0%的增塑剂邻苯二甲酸二辛酯、0.5%的消泡剂氧化钙(CaO)依次加入90份基质沥青中,搅拌均匀。将步骤1)合成的已用三羟甲基丙烷扩链的植物油基聚氨酯预聚物10份在120℃下边剪切边缓慢加入到添加了其他助剂的90份沥青中,剪切60min,剪切均匀即制得植物油基聚氨酯改性沥青。
实施例6
步骤1)合成植物油基聚氨酯预聚物方法和实施例4相同。
2)改性沥青的制备
将预聚物总量的1.0%的催化剂二月桂酸二丁基锡加入80份基质沥青中,搅拌均匀。将步骤1)合成的植物油基聚氨酯预聚物20份在120℃下边剪切边缓慢加入到上述80份的沥青中,剪切60min,剪切均匀即制得植物油基聚氨酯改性沥青。
图2是实施例2-6中改性剂加入沥青后与加入之前的聚氨酯预聚物的红外对比图。图中异氰酸酯的特征官能团-NCO在2275cm-1左右的特征吸收峰发生一些列强度变化,聚氨酯预聚物中-NCO峰型明显,进一步证实体系-NCO过量,合成的预聚物是以-NCO封端的。聚氨酯预聚物添加入基质沥青后,过量的异氰酸酯特征官能团-NCO在2275cm-1处特征吸收峰强度明显降低直至为0,说明聚氨酯预聚物能与沥青体系中的活性氢化合物继续反应,由简单的物理共混改性向化学改性逐渐转化,使沥青性能得以进一步提升,这也是混合料强度较基质沥青一定程度提升的原因。通过图中提供的吸收峰的强度变化,可以说明改性剂与沥青的改性机理,从化学反应的角度进一步说明混合料强度上升的原因。图2从上向下,最上面的线为PU,第二条线为20%,第三条线为40%,第四条线为30%,第五条线为10%的。其中第二,三条线峰值差不多重叠。
实施例7:混合料的制备
将100份AC-13级配的集料加入165℃拌和锅中拌和均匀,向其中加入4.8份的实施例2制备的植物油聚氨酯改性沥青,拌合均匀,拌合时间90s,向拌合好的混合料中加入矿粉继续拌合90s,拌合均匀,在135℃击实成型,击实次数75次(击实设备为全自动混合料击实仪,型号:LD139)。将成型好的试件放进100℃烘箱中养护24h,常温养护2天测试60℃马歇尔稳定度为11.01,流值为3.71。
本实施例中的集料满足公路沥青路面施工技术规范的集料,其中,细集料为石灰岩,公称粒径为0.075mm<δ<4.75mm,粗集料为玄武岩,公称粒径为4.75mm≤δ,矿粉由优质石灰岩磨制而成,公称粒径为δ≤0.075mm;所述集料的级配为满足公路沥青路面施工技术规范的AC型级配。
实施例8:混合料的制备
将100份AC-13级配的集料加入165℃拌和锅中拌和均匀,向其中加入4.8份的实施例3制备植物油聚氨酯改性沥青,拌合均匀,拌合时间90s,向拌合好的混合料中加入矿粉继续拌合90s,拌合均匀,在135℃击实成型,击实次数75次(击实设备为全自动混合料击实仪,型号:LD139)。将成型好的试件放进100℃烘箱中养护24h,常温养护3天测试60℃马歇尔稳定度为12.51,流值为3.43。
集料的组成同实施例7。
实施例9:混合料的制备
将100份AC-13级配的集料加入165℃拌和锅中拌和均匀,向其中加入4.8份的实施例4制备植物油聚氨酯改性沥青,拌合均匀,拌合时间90s,向拌合好的混合料中加入矿粉继续拌合90s,拌合均匀,在135℃击实成型,击实次数75次(击实设备为全自动混合料击实仪,型号:LD139)。将成型好的试件放进100℃烘箱中养护24h,常温养护4天测试60℃马歇尔稳定度为10.53,流值为3.42。
集料的组成同实施例7。
实施例10:混合料的制备
将100份AC-13级配的集料加入165℃拌和锅中拌和均匀,向其中加入4.8份的实施例5制备植物油聚氨酯改性沥青,拌合均匀,拌合时间90s,向拌合好的混合料中加入矿粉继续搅拌90s,拌合均匀,在135℃击实成型,击实次数75次(击实设备为全自动混合料击实仪,型号:LD139)。将成型好的试件放进100℃烘箱中养护24h,常温养护2天测试60℃马歇尔稳定度为11.0,流值为3.02。
集料的组成同实施例7。
实施例11:混合料的制备
将100份AC-13级配的集料加入165℃拌和锅中拌和均匀,向其中加入4.8份的实施例6制备植物油聚氨酯改性沥青,拌合均匀,拌合时间90s,向拌合好的混合料中加入矿粉继续搅拌90s,拌合均匀,在135℃击实成型,击实次数80次(击实设备为全自动混合料击实仪,型号:LD139)。将成型好
的试件放进100℃烘箱中养护24h,常温养护2天测试60℃马歇尔稳定度为10.23,流值为3.58。
集料的组成同实施例7。
实施例12
按实施例3中植物油基聚氨酯预聚物的制备方法,异氰酸酯指数R为2.0制备植物油基聚氨酯预聚物作为A组分;将预聚物总量的4.0%的扩链剂三强甲基丙烷(TMP)用无水乙醇按1∶3的质量比溶解,4.0%的增塑剂邻苯二甲酸二辛酯、1.0%的催化剂二月桂酸二丁基锡、1.0%的消泡剂氧化钙(CaO)作为B组分。基质沥青作为C组分,将A、B组分混合均匀,与C组分按1∶1混合制备混合料。
将100份AC-13级配的集料加入165℃拌和锅中拌和均匀,向其中加入4.8份的上述A、B、C组分的混合物,拌合均匀,拌合时间90s,向拌合好的混合料中加入矿粉继续搅拌90s,拌合均匀,在135℃击实成型,击实次数75次(击实设备为全自动混合料击实仪,型号:LD139)。将成型好的试件放进100℃烘箱中养护24h,常温养护2天测试60℃马歇尔稳定度为11.5,流值为3.15。
实施例7-12的性能表征
按照《公路工程沥青及沥青混合料试验规程(JTG E20-2011)》对实施例2-6植物油基聚氨酯所制改性沥青混合料进行常规马歇尔性能对比测试。
表3.植物油基聚氨酯改性沥青混合料马歇尔性能测试
实施例13:
蓖麻油基聚氨酯改性沥青的制备如下:
1)制备含油沥青:基质沥青在135℃烘3小时,在110℃下,边剪切边向基质沥青体中缓慢加入蓖麻油,共剪切40min;
2)改性沥青的制备:向含油沥青体系加入1%的阻聚剂磷酸控制沥青体系的聚合反应,按内掺法计算两单体添加量为10%,内掺法的计算式:
两单体之和/(两单体之和+基质沥青)=10%
控制两单体含量的异氰酸酯指数R为1.6。在115℃下用滴液漏斗逐滴向反应容器中滴加相应量的液化MDI,滴加速度控制在10滴/min,滴完再充分剪切20min以使反应体系分散均匀稳定。制得的改性沥青三大指标测试结果为5℃延度为5.4cm,5℃软化点为53℃,25℃针入度为69mm。
实施例14
蓖麻油基聚氨酯改性沥青的制备如下:
1)制备含油沥青:基质沥青在135℃烘3小时,在115℃下,边剪切边向基质沥青体中缓慢加入蓖麻油,共剪切60min;
2)改性沥青的制备:向含油沥青体系加入2%的阻聚剂对甲苯磺酸酯控制沥青体系的聚合反应,按内掺法计算两单体添加量为20%,控制两单体含量的异氰酸酯指数R为1.8。在120℃下用滴液漏斗逐滴向反应容器中滴加相应量的液化MDI,滴加速度控制在12滴/min,滴完再充分剪切40min以使反应体系分散均匀,其改性沥青三大指标测试结果为5℃延度为12.2cm,5℃软化点为49.6℃,25℃针入度为88mm。
实施例15
蓖麻油基聚氨酯改性沥青的制备中步骤1)同实施例2;
2)改性沥青的制备:向含油沥青体系加入2%的阻聚剂磷酸控制沥青体系的聚合反应,按内掺法计算两单体添加量为25%,控制两单体含量的异氰酸酯指数R为1.6。在120℃下用滴液漏斗逐滴向反应容器中滴加相应量的液化MDI,滴加速度控制在12滴/min,滴完再充分剪切30min以使反应体系分散均匀。制得的改性沥青三大指标测试结果为5℃延度为11.8cm,5℃软化
点为50℃,25℃针入度为84mm。具有和实施例2接近的性质。
实施例16
蓖麻油基聚氨酯改性沥青的制备如下:
1)制备含油沥青:基质沥青在135℃烘3小时,在120℃下,边剪切边向基质沥青体中缓慢加入蓖麻油,共剪切90min;
2)改性沥青的制备:向含油沥青体系加入3%的阻聚剂控制沥青体系的聚合反应,按内掺法计算两单体添加量为30%,控制两单体含量的异氰酸酯指数R为1.8。在140℃下用滴液漏斗逐滴向反应容器中滴加相应量的液化MDI,滴加速度控制在15滴/min,滴完再充分剪切50min以使反应体系分散均匀稳定,其改性沥青三大指标测试结果为5℃延度为4.8cm,5℃软化点为57.6℃,25℃针入度为64mm。
表4.蓖麻油基聚氨酯改性沥青三大指标测试
实施例 | 5℃软化点/℃ | 5℃延度/cm | 25℃针入度/mm |
实施例13 | 53.0 | 5.4 | 69 |
实施例14 | 49.6 | 12.2 | 88 |
实施例15 | 50.0 | 11.8 | 84 |
实施例16 | 57.6 | 4.8 | 64 |
实施例17:改性沥青混合料的制备
实施例中使用的集料为:以细集料、粗集料和矿粉总质量计,细集料质量百分比占50%,粗集料质量百分比占45%,矿粉质量百分比占5%,其中,细集料为石灰岩,公称粒径为0.075mm<δ<4.75mm,粗集料为玄武岩,公称粒径为4.75mm≤δ,矿粉由优质石灰岩磨制而成,公称粒径为δ≤0.075mm。集料的级配满足公路沥青路面施工技术规范的级配。
将100份AC-13级配的集料加入170℃拌和锅中拌和均匀,向其中加入4.8份的实施例13的植物油聚氨酯改性沥青,拌合均匀,拌合时间90s,向拌合好的混合料中加入矿粉继续拌合90s,拌合均匀,在140℃击实成型,击实次数75次。将成型好的试件放进100℃烘箱中养护24h,常温养护2天测试60℃马歇尔稳定度为11.66,流值为4.04。
实施例18:改性沥青混合料的制备
将100份AC-13级配的集料加入165℃拌和锅中拌和均匀,向其中加入4.8份的实施例14制备的蓖麻油基聚氨酯改性沥青,拌合均匀,拌合时间180s,向拌合好的混合料中加入矿粉继续拌合180s,拌合均匀,在145℃击实成型,击实次数75次。将成型好的试件放进100℃烘箱中养护24h,常温养护3天测试60℃马歇尔稳定度为10.85,流值为3.69。
实施例19:改性沥青混合料的制备
将100份AC-13级配的集料加入170℃拌和锅中拌和均匀,向其中加入4.8份的实施例16制备的蓖麻油基聚氨酯改性沥青,拌合均匀,拌合时间180s,向拌合好的混合料中加入矿粉继续拌合180s,拌合均匀,在150℃击实成型,击实次数75次。将成型好的试件放进100℃烘箱中养护24h,常温养护4天测试60℃马歇尔稳定度为10.73,流值为3.10。
实施例17-19的性能表征
按照《公路工程沥青及沥青混合料试验规程(JTG E20-2011)》对实施例5-7植物油基聚氨酯改性沥青混合料进行常规马歇尔性能对比测试。
表5.植物油基聚氨酯改性沥青混合料马歇尔性能测试
实施例 | 马歇尔稳定度(KN) | 流值(mm) |
实施例17 | 11.66 | 4.04 |
实施例18 | 10.85 | 3.69 |
实施例19 | 10.73 | 3.10 |
实施例20
如图3所示,本实施例提供了一种聚氨酯改性沥青路面结构,该聚氨酯改性沥青路面结构包括由下至上依次设置的路基、基层及面层。优选地,在本实施例中,面层的层数为三层,在面层之间分别设有粘结层,则由下至上依次铺设有下面层5、第二粘结层4、中面层3、第一粘结层2及上面层1,上面层1、中面层3及下面层5中至少一层采用了高低温性能均较好的聚氨酯改性沥青混合料制成,与普通沥青路面相比,该混合料硬度高、弹性好且耐磨性强,能有效提高路面的抗车辙能力、低温抗裂性能,起到了保护路面
的作用,也有利于延长道路使用寿命,提高交通安全。此外,采用聚氨酯改性沥青混合料能降低后期维护成本,经济性强。
具体地,聚氨酯改性沥青混合料类型为AC或ATB或SMA或AM或ATPB或OGFC或其他符合公路沥青路面施工技术规范要求的沥青混合料。在本实施例中,面层可选用AC或ATB或SMA或AM或ATPB或OGFC等常规级配类型,但应满足《公路沥青路面设计规范》中的设计要求。
进一步地,面层的层数为单层或双层或三层。根据预算经费及具体实施条件,选择适宜的面层层数,若采用单层结构,则采用聚氨酯改性沥青混合料;若为双层或三层结构时,其中至少一层采用聚氨酯改性沥青混合料,不采用聚氨酯改性沥青混合料的其它面层可根据具体情况选择基质沥青或改性沥青。
具体地,在多个面层之间设有粘结层,粘结层采用乳化沥青或改性乳化沥青或改性沥青或石油沥青或其他符合公路沥青路面施工技术规范要求的粘结材料制成,且粘结层的洒布量为0.3L/m2~2.5L/m2。在本实施例中,第一粘结层2能在上面层1与中面层3之间起到粘结作用,第二粘结层4作为连接中面层3与下面层5之间的过渡层,对采用了聚氨酯改性沥青的面层的性能充分发挥有着十分重要的作用,第二粘结层4采用沥青材料具有防水、防潮及防腐功效,能有效提高路面结构的使用性能;综合考虑了粘结效果及经济性,将第一粘结层2和第二粘结层4的洒布量的范围控制在0.3L/m2~2.5L/m2之间。
其中,在基层与面层之间喷洒有透层油,进一步地,在透层油与面层之间还可设置封层。通过在基层上喷洒透层油,在基层表面形成一定深度的薄层,能达到防止基层透水、固结基层表面、使基层与沥青面层连接良好等有益效果。
其中,基层为柔性基层或半刚性基层或刚性基层。在本实施例中,基层为水泥稳定碎石层,属于半刚性基层。下面层5铺设在基层上,采用基质沥青或改性沥青的目的是为了保证水泥稳定碎石基层具有一定的柔性,从而解决水泥稳定碎石基层易于干缩开裂和温缩开裂的问题,特别地,下面层选用
本发明的聚氨酯改性沥青具有优良的路用性能。
优选地,在本实施例中,单层结构的面层厚度范围为10mm~80mm;双层或三层结构的面层总厚度范围为60mm~300mm,既满足了使用需求,又能保证良好新型效果,同时还有利于避免资源的浪费,节约资金,经济性好。
实施例21
本实施例还提供了一种聚氨酯改性沥青路面结构,该聚氨酯改性沥青路面结构包括由下至上依次设置的路基、基层及面层。优选地,在本实施例中,面层的层数为双层,在双层面层之间设有一层粘结层,其它技术方案与实施例一中的技术方案相同,为避免赘述,在这不做额外的阐述。
实施例22
本实用新型实施例还提供了一种聚氨酯改性沥青路面结构,该聚氨酯改性沥青路面结构包括由下至上依次设置的路基、基层及面层。优选地,在本实施例中,面层的层数为单层,无需设有粘结层,其它技术方案与实施例一中的技术方案相同,为避免赘述,在这不做额外的阐述。
特别地,在本实施例中,面层的层数至少为一层,上述实施例中仅举出面层为单层或双层或三层的优选方案,但不仅局限于三层,面层的层数为四层或四层以上时,参照实施例20,相应设置粘结层。
本发明提供的聚氨酯,合成的条件温和,养护成型过程中能与空气及沥青中活性氢组分二次反应,使其混合料强度进一步提升,且60℃标准马歇尔稳定度均达到石油沥青规范要求,能够延长沥青路面的使用寿命,采用本发明的聚氨酯改性沥青混合料拌合温度低,固化成型养护时间短,在相对较低掺量下,短时间内混合料马歇尔强度高,随着温度的提高以及养护时间的延长,强度增大。
本发明提供的聚氨酯改性沥青路面结构,该路面结构的面层采用聚氨酯改性沥青混合料制成,聚氨酯改性沥青混合料具有抗疲劳、硬度高、弹性好、耐磨性强等优点,能有效提高路面的抗车辙、耐低温及抗水抗裂能力,避免路面开裂,起到了保护路面的作用,既能延长道路使用寿命,又能提高路面
安全性能;除此之外,聚氨酯改性沥青路面结构的后期维护成本低,也有利于经济性。
Claims (20)
- 一种聚氨酯,其特征在于,所述聚氨酯是由以下方法制备得到:在反应容器中加入阻聚剂、催化剂、异氰酸酯组分,在氮气保护条件下,常温边搅拌边向反应器加入多元醇,升温至50~80℃下保温反应0.5~6小时;其中,所述阻聚剂为对苯磺酸酯、苯甲酰氯、磷酸、硫酸二甲酯中的一种或两种,所述异氰酸酯组分选自液化MDI、TDI二聚体、TDI三聚体、TDI-TMP加成物、HDI二聚体、HDI三聚体、IPDI三聚体中的一种或两种;所述多元醇选自蓖麻油、脱水蓖麻油、己二酸系聚酯二醇、聚烯烃多元醇、聚氧化丙烯尔醇、聚氧化丙烯-氧化乙烯共聚醚三醇、三羟甲基丙烷、植物油多元醇、聚四氢呋喃多元醇中的一种或多种。
- 根据权利要求1所述的聚氨酯,其特征在于,聚氨酯的制备方法中,异氰酸酯组分和多元醇反应的R指数为1.4~2.0,以异氰酸酯组分和多元醇质量和为总质量,加入总质量0.01~3%的阻聚剂,
- 根据权利要求1所述的聚氨酯,其特征在于,聚氨酯的制备方法中,以异氰酸酯组分和多元醇质量和为总质量,加入0.5~1%的催化剂,所述催化剂为有机锡类催化剂、叔胺类催化剂叔胺类化合物和季铵盐类化合物中的一种。
- 根据权利要求1所述的聚氨酯,其特征在于,所述多元醇为聚酯多元醇、聚醚多元醇及植物油多元醇中的一种或任两种组合的复合多元醇,所述聚酯多元醇选自己二酸系聚酯二醇、聚烯烃多元醇、聚氧化丙烯尔醇中的一种,所述聚醚多元醇选自聚氧化丙烯-氧化乙烯共聚醚三醇、三羟甲基丙烷、植物油多元醇、聚四氢呋喃多元醇等中的一种或多种。
- 根据权利要求4所述的聚氨酯,其特征在于,所述复合多元醇中,聚酯多元醇与聚醚多元醇的质量比例为(2∶1)~(1∶1),制备方法中,先向反应器加入聚酯多元醇,升温至50~80℃下保温反应0.5~1.5小时,再向反应体系中滴加聚醚多元醇,保温反应1.5~3小时。
- 根据权利要求1所述的聚氨酯的预聚物,其特征在于,所述多元醇为在110~120℃,0.05~0.2MPa真空箱中脱水2~3h制得;在制备方法中,反应容 器中加入占反应物总质量的10~50%的溶剂,所述的溶剂为丙酮,乙酸乙酯,乙酸丁酯中的一种或两种。
- 根据权利要求1~6任一所述的聚氨酯,其特征在于,50~80℃下保温反应0.5~6小时后,所得反应体系作为A组份,其他助剂为B组份,所述其他助剂为质量份的催化剂1份、扩链剂3份、增塑剂1份、消泡剂1份调节而得,A,B组份按质量比例1∶0.8~1.2搅拌混合后使用;所述的催化剂为有机锡类催化剂、叔胺类催化剂中的一种,所述的扩链剂为三羟甲基丙烷、1,4-丁二醇、1,2-丙二醇、聚乙二醇200、三乙醇胺等小分子醇类和胺类中的一种,所述的增塑剂为邻苯二甲酸二辛酯、邻苯二甲酸二丁酯中的一种,所述的消泡剂为氧化钙。
- 一种聚氨酯改性沥青,其特征在于,所述聚氨酯改性沥青含有权利要求1~7任一所述聚氨酯的预聚物和基质沥青,聚氨酯的预聚物占基质沥青的质量比例为10~90%。
- 根据权利要求8所述的聚氨酯改性沥青,其特征在于,通过以下方法制备:将聚氨酯与基质沥青混合,在120~130℃下,快速搅拌10~30分钟,得到聚氨酯预聚物改性沥青。
- 根据权利要求8所述的聚氨酯改性沥青,其特征在于,所述聚氨酯改性沥青改性的组成为:聚氨酯10~45份,沥青90~50份,其他助剂添加量为0~5份,所述其他助剂为催化剂、扩链剂、增塑剂、消泡剂中的一种或多种。
- 根据权利要求10所述的聚氨酯改性沥青,其特征在于,所述的催化剂为有机锡类催化剂、叔胺类催化剂中的一种,占所述聚氨酯总量的1-3%;所述的扩链剂为三羟甲基丙烷、1,4-丁二醇、1,2-丙二醇、聚乙二醇200、三乙醇胺等小分子醇类和胺类中的一种,占所述聚氨酯总量的2~4%;所述的增塑剂为邻苯二甲酸二辛酯、邻苯二甲酸二丁酯中的一种,占所述植物油基聚氨酯总量的2~5%;所述的消泡剂为氧化钙,占所述聚氨酯总量的0~1%。
- 根据权利要求8所述的聚氨酯改性沥青,其特征在于,通过以下方法 制备:基质沥青在135℃烘3小时,然后在110~120℃下,边剪切边向基质沥青中缓慢加入所述聚氨酯预聚物。
- 含有权利要求1~7任一所述聚氨酯改性沥青的混合料。
- 根据权利要求13所述的混合料,其特征在于,所述混合料的制备方法为以下方法中的一种:方法一:将集料在120~130℃的温度下烘3~6小时,将100份上述烘过的集料加入拌和锅中,向其中加入聚氨酯预聚物改性沥青2~8份,在110~150℃下拌合均匀,再加入矿粉,拌合80~150秒;方法二:在130~165℃下预热100份集料,将细集料和粗集料加入升温到130~165℃的拌和锅中,拌合均匀;向集料中加入4~6份的权利要求1~7任一所述的聚氨酯、其他助剂和沥青,拌合90~180s;向拌合好的混合料中加入矿粉继续拌合90~180s,拌合均匀,在135~140℃下击实成型,将成型好的试件放进100℃烘箱中养护20~30h,再常温养护2~4天即得;方法三:在140~170℃下预热集料,将细集料和粗集料加入升温到140~170℃的拌和锅中,拌合均匀;向集料中加入权利要求1~5中任一所述方法制备的聚氨酯改性沥青,拌合90~180s;向拌合好的混合料中加入矿粉继续拌合90~180s,拌合均匀,在140~150℃下击实成型,击实70~80次,将成型好的试件放进100℃烘箱中养护24h,常温养护2~4天即得。
- 根据权利要求14所述的混合料,其特征在于,所述细集料为公称粒径为0.075mm<δ<4.75mm,粗集料为公称粒径为4.75mm≤δ,矿粉由石灰岩磨制而成,公称粒径为δ≤0.075mm;所述集料的级配为满足公路沥青路面施工技术规范的级配;所述其他助剂为催化剂、扩链剂、增塑剂、消泡剂中的一种或多种,所述的催化剂为有机锡类催化剂、叔胺类催化剂中的一种,占所述聚氨酯预聚物总量的1-3%,所述的扩链剂为三羟甲基丙烷(TMP)、1,4-丁二醇、1,2-丙二醇、聚乙二醇200、三乙醇胺等小分子醇类和胺类中的一种,占所述植物油基聚氨酯预聚物总量的2~4%,所述的增塑剂为邻苯二甲酸二辛酯、邻苯二甲 酸二丁酯中的一种,占所述植物油基聚氨酯预聚物总量的2~5%;所述的消泡剂为氧化钙,占所述植物油基聚氨酯预聚物总量的0~1%。
- 权利要求13~15任一所述的混合料的应用,其特征在于,可用于普通公路、高速公路、市政道路、特重交通、炎热地区路面、广场路面、机场路面的摊铺、加固、修补。
- 一种使用聚氨酯改性沥青的路面结构,其特征在于:包括由下至上依次设置的路基、基层及面层,所述面层采用权利要求13~15任一所述的混合料制成;所述面层的层数至少为一层。
- 根据权利要求17所述的聚氨酯改性沥青路面结构,其特征在于,所述面层的层数为二层以上,在各面层之间设有粘结层,所述粘结层采用乳化沥青或改性乳化沥青或改性沥青或石油沥青或其他符合公路沥青路面施工技术规范要求的粘结材料制成,且所述粘结层的洒布量为0.3L/m2~2.5L/m2。
- 根据权利要求17所述的聚氨酯改性沥青路面结构,其特征在于,在所述基层与所述面层之间喷洒有透层油,所述基层为柔性基层或半刚性基层或刚性基层。
- 根据权利要求19所述的聚氨酯改性沥青路面结构,其特征在于,在所述透层油与所述面层之间设有封层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/739,662 US20180312437A1 (en) | 2015-06-24 | 2016-06-24 | Polyurethane, modified asphalt and mixture material containing same and pavement structure |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510353659.XA CN106317915B (zh) | 2015-06-24 | 2015-06-24 | 植物油基聚氨酯改性沥青和含有该改性沥青的混合料 |
CN201510353659.X | 2015-06-24 | ||
CN201510359604.XA CN106317371B (zh) | 2015-06-25 | 2015-06-25 | 一种制备蓖麻油基聚氨酯改性沥青及其混合料的方法 |
CN201510359604.X | 2015-06-25 | ||
CN201620198729.9 | 2016-03-15 | ||
CN201620198729 | 2016-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016206636A1 true WO2016206636A1 (zh) | 2016-12-29 |
Family
ID=57584678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/087102 WO2016206636A1 (zh) | 2015-06-24 | 2016-06-24 | 一种聚氨酯、含有其的改性沥青和混合料及路面结构 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20180312437A1 (zh) |
WO (1) | WO2016206636A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108559252A (zh) * | 2017-12-19 | 2018-09-21 | 翟琳 | 一种铁路轨道弹性垫板的制备方法 |
CN112679697A (zh) * | 2020-12-28 | 2021-04-20 | 山东一诺威聚氨酯股份有限公司 | 高强度改性喷面材料及其制备方法 |
CN112778961A (zh) * | 2020-12-31 | 2021-05-11 | 山西省交通科技研发有限公司 | 一种环保型彩色防滑路面用胶粘剂及其制备方法 |
CN113045261A (zh) * | 2021-03-08 | 2021-06-29 | 东北林业大学 | 一种高韧性早强聚氨酯混凝土及其制备方法 |
CN113429886A (zh) * | 2021-06-22 | 2021-09-24 | 北京东方雨虹防水技术股份有限公司 | 聚氨酯改性沥青、水性聚氨酯改性沥青乳液、水性聚氨酯改性沥青防水涂料及其制备方法 |
CN113831893A (zh) * | 2021-09-27 | 2021-12-24 | 常州市建筑科学研究院集团股份有限公司 | 一种双组份低粘度沥青路面灌缝胶 |
CN117901294A (zh) * | 2023-12-27 | 2024-04-19 | 杭州湾绿色养护(嘉兴)股份有限公司 | 一种高性能沥青混合料的制备方法及应用方法 |
CN118063729A (zh) * | 2024-02-21 | 2024-05-24 | 北京工业大学 | 一种自修复型疏水性多孔聚氨酯胶结冷补料制备方法及应用 |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109749051A (zh) * | 2018-12-28 | 2019-05-14 | 中国铁道科学研究院集团有限公司铁道建筑研究所 | 一种无砟轨道结构修复用界面解粘材料及其制备方法 |
CN110078879A (zh) * | 2019-04-22 | 2019-08-02 | 山东科技大学 | 一种高强型煤矿用硅基聚合物加固材料及其制备方法 |
US11455312B1 (en) | 2019-11-20 | 2022-09-27 | Sabre Glbl Inc. | Data query system with improved response time |
CN112812730A (zh) * | 2020-12-27 | 2021-05-18 | 溧阳康达威实业有限公司 | 一种碳烃树脂双组分内层防腐材料及其制备方法和应用 |
CN114686007B (zh) * | 2020-12-30 | 2023-05-30 | 江苏苏博特新材料股份有限公司 | 一种反应型半柔性路面用沥青改性剂及其制备方法和应用 |
CN114250058B (zh) * | 2020-12-31 | 2024-04-19 | 山西省交通科技研发有限公司 | 一种沥青混凝土路面裂缝修补用双组份灌封胶及其制备方法 |
TWI750045B (zh) * | 2021-02-26 | 2021-12-11 | 南亞塑膠工業股份有限公司 | 路面鋪設方法 |
CN113354338A (zh) * | 2021-06-28 | 2021-09-07 | 香港理工大学 | 一种单组份聚氨酯改性沥青混合料及其制备方法 |
CN113549191A (zh) * | 2021-08-18 | 2021-10-26 | 陕西培文路泰交通科技有限公司 | 一种膨胀型高分子聚合物注浆加固材料及制备方法 |
CN113861489B (zh) * | 2021-11-02 | 2022-11-01 | 郑州中科新兴产业技术研究院 | 一种聚氨酯发泡的泡沫冷拌沥青混合料及其制备方法 |
CN114315233A (zh) * | 2022-01-12 | 2022-04-12 | 合肥市市政设计研究总院有限公司 | 高性能多孔路面混合料及其常温制备方法 |
CN114539722B (zh) * | 2022-01-23 | 2024-07-05 | 山西省交通科技研发有限公司 | 一种适用于厂拌热再生的缓释型再生剂及其制备方法 |
CN114456696B (zh) * | 2022-03-17 | 2022-08-23 | 浙江欣苗化工有限公司 | 一种集装箱地板水性沥青漆及其加工方法 |
CN114958133B (zh) * | 2022-04-19 | 2022-12-13 | 铁科腾跃科技有限公司 | 一种生物基改性耐低温速凝沥青乳液涂料及其制备方法 |
CN114956670B (zh) * | 2022-05-13 | 2023-07-14 | 东南大学 | 用于高铁路桥过渡段的预制式环氧沥青弹性道床 |
CN115353326A (zh) * | 2022-07-27 | 2022-11-18 | 魏玉芝 | 一种反光防车印沥青及其制备方法 |
CN115897909B (zh) * | 2022-11-09 | 2024-09-20 | 河南彩虹建材科技有限公司 | 一种环保型耐候性改性沥青防水卷材及其生产工艺 |
CN115677271B (zh) * | 2022-11-14 | 2023-11-10 | 山东远通公路工程集团有限公司 | 就地冷再生混合料及道路面层再生方法 |
CN116396012B (zh) * | 2022-12-02 | 2024-02-23 | 中冶路桥建设有限公司 | 一种温拌高模量改性沥青混合料及生产工艺、生产装置 |
CN116577160B (zh) * | 2023-02-20 | 2024-03-19 | 山东省交通科学研究院 | 一种单组分聚氨酯混合料的室内成型方法 |
CN116200047B (zh) * | 2023-03-18 | 2023-10-20 | 陕西国威沥青新产品有限公司 | 一种聚氨酯改性的乳化沥青及其制备方法 |
CN116013444B (zh) * | 2023-03-27 | 2023-06-09 | 武汉理工大学 | 环氧沥青混合料施工温度计算方法、电子设备及存储介质 |
CN116874716B (zh) * | 2023-08-24 | 2024-05-28 | 山东高速集团有限公司创新研究院 | 一种萜烯型环氧聚氨酯预聚体的制备方法及所得产品和在沥青改性中的应用 |
CN117964283B (zh) * | 2023-12-29 | 2024-08-02 | 达濠市政建设有限公司 | 一种具有控温相变和抗车辙功能的沥青路面材料及其制备方法 |
CN118005323B (zh) * | 2024-03-05 | 2024-09-06 | 北京建筑大学 | 煤间接液化残渣超薄磨耗层及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100256295A1 (en) * | 2007-09-14 | 2010-10-07 | Basf Se | Method for producing mineral-bearing cover layers for floor coverings |
CN102585685A (zh) * | 2011-01-14 | 2012-07-18 | 周太峰 | 一种单组分聚氨酯防水涂料及制备工艺 |
CN102617070A (zh) * | 2012-03-23 | 2012-08-01 | 重庆市智翔铺道技术工程有限公司 | 一种聚氨酯沥青混凝土及其制备方法和用途 |
CN103102706A (zh) * | 2013-01-22 | 2013-05-15 | 烟台万华聚氨酯股份有限公司 | 一种道路沥青用聚氨酯型耐高温抗车辙改性剂 |
CN104176985A (zh) * | 2014-08-11 | 2014-12-03 | 交通运输部公路科学研究所 | 一种水性聚氨酯乳化沥青混凝土及其制备方法和用途 |
-
2016
- 2016-06-24 WO PCT/CN2016/087102 patent/WO2016206636A1/zh active Application Filing
- 2016-06-24 US US15/739,662 patent/US20180312437A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100256295A1 (en) * | 2007-09-14 | 2010-10-07 | Basf Se | Method for producing mineral-bearing cover layers for floor coverings |
CN102585685A (zh) * | 2011-01-14 | 2012-07-18 | 周太峰 | 一种单组分聚氨酯防水涂料及制备工艺 |
CN102617070A (zh) * | 2012-03-23 | 2012-08-01 | 重庆市智翔铺道技术工程有限公司 | 一种聚氨酯沥青混凝土及其制备方法和用途 |
CN103102706A (zh) * | 2013-01-22 | 2013-05-15 | 烟台万华聚氨酯股份有限公司 | 一种道路沥青用聚氨酯型耐高温抗车辙改性剂 |
CN104176985A (zh) * | 2014-08-11 | 2014-12-03 | 交通运输部公路科学研究所 | 一种水性聚氨酯乳化沥青混凝土及其制备方法和用途 |
Non-Patent Citations (1)
Title |
---|
WANG LI ET AL.: "Study on Structural Layer Design of Bituminous Pavement in the Circumstance of Heavy Traffic", COMMUNICATIONS SCIENCE AND TECHNOLOGY HEILONGJIANG, 15 January 2007 (2007-01-15), pages 44 and 46 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108559252A (zh) * | 2017-12-19 | 2018-09-21 | 翟琳 | 一种铁路轨道弹性垫板的制备方法 |
CN112679697A (zh) * | 2020-12-28 | 2021-04-20 | 山东一诺威聚氨酯股份有限公司 | 高强度改性喷面材料及其制备方法 |
CN112778961A (zh) * | 2020-12-31 | 2021-05-11 | 山西省交通科技研发有限公司 | 一种环保型彩色防滑路面用胶粘剂及其制备方法 |
CN113045261A (zh) * | 2021-03-08 | 2021-06-29 | 东北林业大学 | 一种高韧性早强聚氨酯混凝土及其制备方法 |
CN113429886A (zh) * | 2021-06-22 | 2021-09-24 | 北京东方雨虹防水技术股份有限公司 | 聚氨酯改性沥青、水性聚氨酯改性沥青乳液、水性聚氨酯改性沥青防水涂料及其制备方法 |
CN113831893A (zh) * | 2021-09-27 | 2021-12-24 | 常州市建筑科学研究院集团股份有限公司 | 一种双组份低粘度沥青路面灌缝胶 |
CN113831893B (zh) * | 2021-09-27 | 2023-10-27 | 常州市建筑科学研究院集团股份有限公司 | 一种双组份低粘度沥青路面灌缝胶 |
CN117901294A (zh) * | 2023-12-27 | 2024-04-19 | 杭州湾绿色养护(嘉兴)股份有限公司 | 一种高性能沥青混合料的制备方法及应用方法 |
CN118063729A (zh) * | 2024-02-21 | 2024-05-24 | 北京工业大学 | 一种自修复型疏水性多孔聚氨酯胶结冷补料制备方法及应用 |
CN118063729B (zh) * | 2024-02-21 | 2024-09-10 | 北京工业大学 | 一种自修复型疏水性多孔聚氨酯胶结冷补料制备方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
US20180312437A1 (en) | 2018-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016206636A1 (zh) | 一种聚氨酯、含有其的改性沥青和混合料及路面结构 | |
Cong et al. | The use of polyurethane for asphalt pavement engineering applications: A state-of-the-art review | |
US9850625B2 (en) | Composite pavement structures | |
EP2960294A1 (en) | Novel highly viscoelastic warm mix modifier composition and preparation method therefor, and new and regenerated warm mix modified asphalt concrete mixture composition and preparation method therefor | |
JP6153640B2 (ja) | ポリウレタン系の道路の形成 | |
CN101575492B (zh) | 一种双组分弹性体聚氨酯胶粘剂及其制造方法和应用 | |
KR100790386B1 (ko) | 노면의 미끄럼방지층 조성물 | |
CN106145776A (zh) | 一种聚氨酯聚脲改性沥青混合料及其制备和应用 | |
KR102119736B1 (ko) | Sis, sebs, 재생아스팔트 순환골재 및 개선된 골재 입도의 미분말 골재를 포함하는 도로포장용 개질아스팔트 콘크리트 조성물 및 이의 시공방법 | |
CN102617070A (zh) | 一种聚氨酯沥青混凝土及其制备方法和用途 | |
CN104693783A (zh) | 一种沥青路面用双组份常温固化灌缝材料 | |
US20180100066A1 (en) | High-grade mastic asphalt composition and paving construction method using the same | |
JP2011127288A (ja) | 屋外施設用舗装体の製法およびそれに用いられる表面仕上げ材、並びにそれによって得られる屋外施設用舗装体 | |
CN1176964C (zh) | 弹性高强度聚氨酯预聚物的制备方法及其应用 | |
CN106317915A (zh) | 植物油基聚氨酯改性沥青和含有该改性沥青的混合料 | |
EP3512818B1 (en) | Adhesion promoter coated particles for polymer concrete compositions | |
KR20190052675A (ko) | 중합체 콘크리트 조성물용 중합체 코팅 입자 | |
CN115448642A (zh) | 沥青冷补料及其制备方法 | |
KR20140118090A (ko) | 습기 경화형 고무 변성 폴리우레탄 수지를 포합하는 아스팔트 도로 보수재 조성물, 그 조성물을 현장에서 시공하기 위한 혼합장치 | |
KR101123558B1 (ko) | 친환경 소재를 적용한 폴리우레탄 조성물 및 이로부터 제조된 폴리우레탄 방수?바닥재 | |
KR102119747B1 (ko) | Sis, sebs, 재생아스팔트 순환골재 및 개선된 골재 입도의 미분말 골재를 포함하는 중온아스팔트 콘크리트 조성물 및 이의 시공방법 | |
KR102657419B1 (ko) | 고강도 박층 덧씌우기용 친환경 에폭시 수지 조성물 및 이를 이용한 박층 덧씌우기 포장 시공방법 | |
CN107057031A (zh) | 一种球场用合成面层材料及其制备方法 | |
JP2007113249A (ja) | 駐車場床及びその施工方法 | |
CN105131818A (zh) | 一种建筑防水材料工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16813752 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15739662 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16813752 Country of ref document: EP Kind code of ref document: A1 |