WO2016206443A1 - 冷聚变反应管 - Google Patents

冷聚变反应管 Download PDF

Info

Publication number
WO2016206443A1
WO2016206443A1 PCT/CN2016/078621 CN2016078621W WO2016206443A1 WO 2016206443 A1 WO2016206443 A1 WO 2016206443A1 CN 2016078621 W CN2016078621 W CN 2016078621W WO 2016206443 A1 WO2016206443 A1 WO 2016206443A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold fusion
fusion reaction
electrode
excitation
tube
Prior art date
Application number
PCT/CN2016/078621
Other languages
English (en)
French (fr)
Inventor
林溪石
Original Assignee
林溪石
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林溪石 filed Critical 林溪石
Publication of WO2016206443A1 publication Critical patent/WO2016206443A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • This invention relates to nuclear reaction devices, and more particularly to a cold fusion reaction tube.
  • the sun is a star that continuously undergoes a thermonuclear reaction. It relies on the uninterrupted generation of a nuclear reaction by helium atoms, which generates a large amount of light and heat, which is sent to the stars of the solar system. At the same time, it carries a large number of solar winds.
  • the helium atom forms cosmic dust and is emitted to the universe.
  • Helium atom is a kind of high-energy particle hydrogen isotope. It is the best fuel for nuclear fusion.
  • Most of the helium atoms brought by the solar wind to the earth are scattered on the sea. After hundreds of millions of years of accumulation, The stock of strontium atoms/ions in the ocean is already huge. How to use marine resources and find environmentally friendly energy is a major issue for scientists all over the world.
  • the present invention provides a cold fusion reaction tube which can be applied to the liquid fuel.
  • the present invention adopts the following technical solutions:
  • a cold fusion reaction tube includes an outer tube and a ⁇ particle generator, a helium atom channel and an excitation electrode disposed axially in the outer tube; the excitation electrode has a plurality of pairs, each pair of excitation electrodes including a positive electrode and a negative electrode
  • the electrode passes through a helium atom channel to pass a reaction raw material containing a ruthenium atom, and the ⁇ particle generator generates a ⁇ particle, and discharges between the positive electrode and the negative electrode of the excitation electrode.
  • the ⁇ particle attracts the ruthenium atom to quickly approach and collide, A cold fusion reaction is produced to release heat.
  • the helium atom channel has one, surrounded by an inner tube nested in the outer tube; the ⁇ particle generator and the excitation electrode are both disposed in the helium atom channel.
  • the outer tube is an aluminum alloy outer tube
  • the inner tube is a copper inner tube
  • a bracket for supporting the excitation electrode is disposed in the inner tube.
  • the inner tube is disposed close to the inner wall of the outer tube, and the ⁇ particle generator is disposed at the axial center of the inner tube.
  • the excitation electrode is a high frequency electrode.
  • each of the germanium atom channels is correspondingly provided with at least one pair of excitation electrodes, and the positive electrode and the negative electrode of the excitation electrode are respectively disposed on the germanium atom channel The outer sides.
  • a bracket for supporting the excitation electrode is disposed in the outer tube.
  • the ⁇ particle generator is disposed at an axial center of the outer tube; the germanium atom channel has an even number, and the even number of germanium atom channels are symmetrically distributed around the ⁇ particle generator; the plurality of pairs of excitation electrodes The positive and negative electrodes in the middle are also symmetrically distributed around the ⁇ particle generator.
  • reaction raw material is a seawater concentrate
  • total amount of dissolved solids (TDS value) in the seawater concentrate is equal to or more than 30,000 mg/liter.
  • the invention provides a cold fusion reaction tube, wherein a ⁇ particle generator, a helium atom channel and an excitation electrode are arranged in the reaction tube; the seawater concentrate contains a large amount of germanium atoms, and the ⁇ particles rapidly move when the electrode is discharged.
  • Characteristics It is not necessary to heat the reaction environment to ultra-high temperature, so that the fusion reaction of helium atoms under cold fusion conditions can be realized, the reaction efficiency of helium atoms can be improved, and the cold fusion reaction can be rapidly generated in a specific environment, and a large amount of heat energy can be released.
  • the conversion of seawater to heat. This transformation combined with the thermoelectric power generation device has made the great idea of using seawater power generation possible, and has great development prospects.
  • FIG. 1 is a side cross-sectional structural view showing a cold fusion reaction tube according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional structural view of a cold fusion reaction tube according to a second embodiment of the present invention.
  • seawater is rich in helium atoms, which in turn can be used as a raw material for nuclear reactions.
  • the seawater concentrate is extracted from seawater by reverse osmosis technology, and the fresh water and impurities are filtered out.
  • TDS value total amount of dissolved solids
  • the liquid can be used as a liquid fuel. That is, the concentration of cerium ions contained in a certain amount of seawater concentrate reaches a certain value, and a cold fusion reaction can be generated under a specific condition to generate a large amount of energy.
  • the invention can provide a cold fusion reaction tube capable of converting atomized seawater into heat energy; the converted heat energy can be converted into electric energy through other devices to realize seawater power generation.
  • a cold fusion reaction tube provided by an embodiment of the present invention includes an outer tube 1 and a ⁇ particle generator 3, a helium atom channel 2, and an excitation electrode 4 disposed in the outer tube 1 in the axial direction.
  • the excitation electrode 4 has a plurality of pairs, each pair of excitation electrodes 4 includes a positive electrode and a negative electrode, and a reaction material containing germanium atoms is introduced through the helium atom channel 2, and the ⁇ particle generator 3 generates ⁇ particles to excite the electrode 4
  • the helium atomic channel 2 is used to provide helium atoms for the cold fusion reaction, and in combination with the background of the invention, the helium atom provided to the helium atom channel 2 is mainly derived from the liquid fuel extracted from seawater (concentrated and enriched) In particular, in order to make the cold fusion reaction more sufficient, the liquid fuel can be atomized, and then the helium atom-containing mist is introduced into the helium atom channel 2 in the direction of the arrow shown in FIG.
  • the ⁇ particle generator 3 is used to disperse ⁇ particles into the space inside the helium atom channel 2, and to provide ⁇ particles as a catalyst for the cold fusion reaction of helium atoms.
  • the ⁇ particle generator 3 is disposed at the axial center of the inner tube 5.
  • each pair of excitation electrodes 4 includes a positive electrode and a negative electrode.
  • a bracket 6 for supporting the excitation electrode 4 is also disposed in the inner tube 5, and the plurality of pairs of excitation electrodes 4 are randomly arranged in the helium atom channel 2 and fixed by the bracket 6.
  • the excitation electrode 4 serves to enhance the activity of the ruthenium atom and the ⁇ particle, and activate the cold fusion reaction.
  • a high frequency electrode is used as the excitation electrode 4.
  • the outer tube 1 is an aluminum alloy outer tube
  • the inner tube 5 is a copper inner tube.
  • the main principle of the present invention is that when the erbium atom hits the ⁇ particle, it automatically combines with the ⁇ particle group; under the irradiation of the high frequency electric field formed by the excitation electrode 4, the cesium atom and the ⁇ particle of the group are substantially in the inner tube 5. According to the movement track 7, it rotates or beats regularly; because the life of the ⁇ particles is very short, only a few picoseconds will disappear. When the ⁇ particles suddenly disappear, the helium atoms of the cluster will suddenly come close due to the loss of the ⁇ particles, making it The distance reaches the level of the fly, which produces a cold fusion reaction that emits a lot of heat.
  • a cold fusion reaction tube provided by an embodiment of the present invention includes an outer tube 1 and a ⁇ particle generator 3, a helium atom channel 2, and an excitation electrode 4 disposed in the outer tube 1 in the axial direction.
  • the plurality of germanium atom channels 2 are disposed in the periphery of the ⁇ particle generator 3 in the present embodiment; each of the germanium atom channels 2 is correspondingly provided with at least one pair of excitation electrodes 4, and the excitation is performed.
  • the positive electrode 41 and the negative electrode 42 of the electrode 4 are respectively disposed on both outer sides of the helium atom channel 2.
  • the bracket 6 for supporting the excitation electrode 4 is also disposed in the outer tube 1.
  • the ⁇ particle generator 3 is disposed at the axial center of the outer tube 1; the germanium atom channel 2 has four, and the four germanium atom channels 2 are symmetrically distributed around the ⁇ particle generator 3; Each of the helium atomic channels 2 is provided with two pairs of excitation electrodes 4; the positive electrode 41 and the negative electrode 42 of the pair of excitation electrodes 4 are also symmetrically distributed around the ⁇ particle generator 3.
  • the cold fusion reaction tube provided by the invention can be combined with a heat exchanger and a thermoelectric power generation tube to realize a seawater power generation function.
  • the heat exchanger is filled with a heat medium such as a liquid metal, and the cold fusion reaction tube and the temperature difference power generation tube are both placed in the heat exchanger; a large amount of heat energy generated by the fusion reaction in the cold fusion reaction tube is transmitted through the heat medium.
  • the thermoelectric tube the thermal energy is converted into electrical energy and transmitted to an external storage device for storage or transmission.
  • the invention provides a cold fusion reaction tube, wherein a ⁇ particle generator, a helium atom channel and an excitation electrode are arranged in the reaction tube; the seawater concentrate contains a large amount of germanium atoms, and the ⁇ particles rapidly move when the electrode is discharged.
  • Characteristics It is not necessary to heat the reaction environment to ultra-high temperature, so that the fusion reaction of helium atoms under cold fusion conditions can be realized, the reaction efficiency of helium atoms can be improved, and the cold fusion reaction can be rapidly generated in a specific environment, and a large amount of heat energy can be released.
  • the conversion of seawater to heat. This transformation combined with the thermoelectric power generation device has made the great idea of using seawater power generation possible, and has great development prospects.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Particle Accelerators (AREA)

Abstract

一种冷聚变反应管,包括外管(1)以及沿轴向设置于外管(1)内的μ粒子发生器(3)、氘原子通道(2)和激发电极(4);所述激发电极(4)有多对,每对激发电极(4)包括一正电极和一负电极。利用了海水浓缩液中含有大量氘原子,以及μ粒子在电极放电时快速运动的特性;无需将反应环境加热到超高温,即可实现氘原子在冷聚变条件下进行聚变反应,提高氘原子的反应效率,使其在特定环境下快速地产生冷聚变反应,而释放大量热能。

Description

冷聚变反应管 技术领域
本发明涉及核反应装置,特别是一种冷聚变反应管。
背景技术
能源的开发和创新是世界性难题,目前,已被人们开发利用的能源有石油、煤、矿石、太阳能、水力、风力等,主要广泛应用还是石油和煤等深藏资源,这些能源总有用尽之时,并且数百年的燃烧使用,也给整个地球带来了很多的废气废物的污染,在利用自然界的资源的同时,给自然界带来了更多的环境污染。
科学发现,太阳是一个不断进行热核反应的恒星,它依靠氘原子不间断的产生聚变核反应,产生了大量的光和热,给太阳系的各个恒星送去,同时,还以太阳风的形式携带大量的氘原子形成宇宙尘埃并向宇宙散发,氘原子是一种高能粒子氢的同位素,是核聚变最好的燃料,太阳风带到地球的氘原子大部分都散落在海上,经过数亿年的积累,海洋中的氘原子/离子的存量已非常巨大,如何对利用海洋资源,寻找环保能源是各国科学家们的一大课题。
本申请人通过多年实验研究发现,从海水中提取出液体燃料,并通过激发液体燃料中富含的氘原子产生聚变反应而释放的大量热能,能够被利用来进行发电。但是,为了激发氘原子产生聚变反应,需要提供一种特定的冷聚变反应装置,现有技术中还没有一种简单可行的冷聚变反应装置能够符合使用要求。
发明内容
为了能将从海水中提取获得的液体燃料进行聚变反应,将其在冷聚变条件下转换成热能,本发明提供了一种能适用于所述液体燃料的冷聚变反应管。
为实现上述目的,本发明采用以下技术方案:
一种冷聚变反应管,包括外管以及沿轴向设置于外管内的μ粒子发生器、氘原子通道和激发电极;所述激发电极有若干对,每对激发电极包括一正电极和一负电极,通过氘原子通道通入含有氘原子的反应原料,μ粒子发生器产生μ粒子,激发电极的正电极和负电极之间放电,在放电区域,当μ粒子吸引氘原子快速靠近并碰撞,产生冷聚变反应而释放热量。
进一步地,所述氘原子通道有一个,由一嵌套在外管中的内管围成;所述μ粒子发生器和激发电极均设置于氘原子通道内。
进一步地,所述外管为铝合金外管,所述内管为紫铜内管。
进一步地,所述内管内设有用于支撑激发电极的支架。
进一步地,所述内管紧贴外管的内壁设置,所述μ粒子发生器设置于内管的轴心处。
进一步地,所述激发电极为高频电极。
进一步地,所述氘原子通道有多个,设置于μ粒子发生器的四周;每个氘原子通道对应设置至少一对激发电极,所述激发电极的正电极和负电极分别设置于氘原子通道的外部两侧。
进一步地,所述外管内设有用于支撑激发电极的支架。
进一步地,所述μ粒子发生器设置于外管的轴心处;所述氘原子通道有偶数个,所述偶数个氘原子通道以μ粒子发生器为中心对称分布;所述多对激发电极中的正电极和负电极也以μ粒子发生器为中心对称分布。
进一步地,反应原料为海水浓缩液,海水浓缩液中的溶解性固体总量(TDS值)等于或大于3万毫克/升。
本发明提供了一种冷聚变反应管,在反应管中设置了μ粒子发生器、氘原子通道和激发电极;利用了海水浓缩液中含有大量氘原子,以及μ粒子在电极放电时快速运动的特性;无需将反应环境加热到超高温,即可实现氘原子在冷聚变条件下进行聚变反应,提高氘原子的反应效率,使其在特定环境下快速地产生冷聚变反应,而释放大量热能,实现了海水向热量的转换。这一转化结合温差发电装置,使得利用海水发电的伟大创想获得了实现的可能,具有极大的发展前景。
附图说明
图1为本发明实施例一的冷聚变反应管的侧面剖视结构示意图。
图2为本发明实施例二的冷聚变反应管的截面结构示意图。
具体实施方式
科学家通过实验发现海水中富含氘原子,而氘原子又可作为核反应的原料。通过反渗透技术从海水中提取出海水浓缩液,将淡水和杂质滤除,当检测海水浓缩液中的溶解性固体总量(TDS值)等于或大于3万毫克/升时,获得的海水浓缩液可作为液体燃料使用。即一定量的海水浓缩液中所含的氘离子的浓度达到一定值,能够在特定条件下发生冷聚变反应而产生巨大能量。
虽然能够发现海水中富含氘原子,可用于作为液体燃料,但如何将其真正地转换成为能量,也是当代科学家们为之探索研究的一大难题。为了使得所述由海水提取获得的液体燃料 能够进行反应转化,本发明提供了一种冷聚变反应管,能够将雾化的海水转换成热能;转化出的热能可以进过其他装置再转换成电能,实现海水发电。
下面将结合附图和具体的实施例,对本发明的技术方案进行详细说明。
实施例一
如图1所示,本发明实施例提供的一种冷聚变反应管包括外管1以及沿轴向设置于外管1内的μ粒子发生器3、氘原子通道2和激发电极4。所述激发电极4有若干对,每对激发电极4包括一正电极和一负电极,通过氘原子通道2通入含有氘原子的反应原料,μ粒子发生器3产生μ粒子,激发电极4的正电极和负电极之间放电,在放电区域,当μ粒子吸引氘原子快速靠近并碰撞,产生冷聚变反应而释放热量。
其中,所述氘原子通道2用于为冷聚变反应提供氘原子,结合本发明的研发背景,向氘原子通道2中提供的氘原子主要来源于从海水中提取获得的液体燃料(经浓缩富含氘原子的海水);特别地,为了使冷聚变反应更加充分,可以将液体燃料进行雾化,然后沿图1所示的箭头方向,将含氘原子的雾气通入氘原子通道2中。
本发明实施例中,氘原子通道2仅有一个,由一嵌套在外管1中的内管5围成;所述μ粒子发生器3和激发电极4均设置于氘原子通道2内。所述μ粒子发生器3用于向氘原子通道2内的空间散布μ粒子,为氘原子的冷聚变反应提供μ粒子作为催化剂。为了使μ粒子在氘原子通道2内更加均匀地分布,所述μ粒子发生器3设置于内管5的轴心处。
所述激发电极4有多对,每对激发电极4包括一正电极和一负电极。所述内管5内还设有用于支撑激发电极4的支架6,所述多对激发电极4随机地排布在氘原子通道2内,并通过支架6固定。所述激发电极4用于增强氘原子和μ粒子的活性,激活冷聚变反应。本实施例中,采用高频电极作为激发电极4使用。
进一步地,为了便于传导热量且避免在高温下融化,所述外管1采用铝合金外管,所述内管5采用紫铜内管。
本发明的主要原理是:当氘原子碰到μ粒子时,会自动与μ粒子组团;在激发电极4形成的高频电场的照射下,组团的氘原子和μ粒子会在内管5内大致按照运动轨迹7有规律地旋转或跳动;由于μ粒子的寿命很短,只有几个皮秒就会消失,当μ粒子突然消失时,抱团的氘原子由于失去μ粒子就会突然接近,使其距离达到飞米级,从而产生冷聚变反应,发出大量的热量。
实施例二
如图2所示,本发明实施例提供的一种冷聚变反应管包括外管1以及沿轴向设置于外管1内的μ粒子发生器3、氘原子通道2和激发电极4。
与实施例一不同的是,本实施例中所述氘原子通道2有多个,设置于μ粒子发生器3的四周;每个氘原子通道2对应设置至少一对激发电极4,所述激发电极4的正电极41和负电极42分别设置于氘原子通道2的外部两侧。相应地,用于支撑激发电极4的支架6也设置于外管内1。
具体地,所述μ粒子发生器3设置于外管1的轴心处;所述氘原子通道2有四个,所述四个氘原子通道2以μ粒子发生器3为中心对称分布;其中,每个氘原子通道2均对应设置两对激发电极4;所述各对激发电极4中的正电极41和负电极42也以μ粒子发生器3为中心对称分布。
本发明实施例的工作原理与实施例一类似,在此不再赘述。
在实际工程实践中,本发明提供的冷聚变反应管可以与换热器和温差发电管组合实现海水发电功能。具体地,在换热器中填充液态金属等发热介质,将冷聚变反应管和温差发电管均置入换热器中;冷聚变反应管中发生聚变反应而产生的大量热能,经由发热介质传递至温差发电管,最终由温差发电管将热能转换成电能传输至外部蓄电器进行存储或传输。
本发明提供了一种冷聚变反应管,在反应管中设置了μ粒子发生器、氘原子通道和激发电极;利用了海水浓缩液中含有大量氘原子,以及μ粒子在电极放电时快速运动的特性;无需将反应环境加热到超高温,即可实现氘原子在冷聚变条件下进行聚变反应,提高氘原子的反应效率,使其在特定环境下快速地产生冷聚变反应,而释放大量热能,实现了海水向热量的转换。这一转化结合温差发电装置,使得利用海水发电的伟大创想获得了实现的可能,具有极大的发展前景。

Claims (10)

  1. 一种冷聚变反应管,其特征在于,包括外管以及沿轴向设置于外管内的μ粒子发生器、氘原子通道和激发电极;所述激发电极有若干对,每对激发电极包括一正电极和一负电极,通过氘原子通道通入含有氘原子的反应原料,μ粒子发生器产生μ粒子,激发电极的正电极和负电极之间放电,在放电区域,当μ粒子吸引氘原子快速靠近并碰撞,产生冷聚变反应而释放热量。
  2. 根据权利要求1所述的冷聚变反应管,其特征在于,所述氘原子通道有一个,由一嵌套在外管中的内管围成;所述μ粒子发生器和激发电极均设置于氘原子通道内。
  3. 根据权利要求2所述的冷聚变反应管,其特征在于,所述外管为铝合金外管,所述内管为紫铜内管。
  4. 根据权利要求2所述的冷聚变反应管,其特征在于,所述内管内设有用于支撑激发电极的支架。
  5. 根据权利要求2所述的冷聚变反应管,其特征在于,所述内管紧贴外管的内壁设置,所述μ粒子发生器设置于内管的轴心处。
  6. 根据权利要求1所述的冷聚变反应管,其特征在于,所述激发电极为高频电极。
  7. 根据权利要求1所述的冷聚变反应管,其特征在于,所述氘原子通道有多个,设置于μ粒子发生器的四周;每个氘原子通道对应设置至少一对激发电极,所述激发电极的正电极和负电极分别设置于氘原子通道的外部两侧。
  8. 根据权利要求7所述的冷聚变反应管,其特征在于,所述外管内设有用于支撑激发电极的支架。
  9. 根据权利要求7所述的冷聚变反应管,其特征在于,所述μ粒子发生器设置于外管的轴心处;所述氘原子通道有偶数个,所述偶数个氘原子通道以μ粒子发生器为中心对称分布;所述多对激发电极中的正电极和负电极也以μ粒子发生器为中心对称分布。
  10. 根据权利要求1-9中任一项所述的冷聚变反应管,其特征在于:反应原料为海水浓缩液,海水浓缩液中的溶解性固体总量(TDS值)等于或大于3万毫克/升。
PCT/CN2016/078621 2015-06-24 2016-04-07 冷聚变反应管 WO2016206443A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510358996.8 2015-06-24
CN201510358996.8A CN104952491A (zh) 2015-06-24 2015-06-24 冷聚变反应管

Publications (1)

Publication Number Publication Date
WO2016206443A1 true WO2016206443A1 (zh) 2016-12-29

Family

ID=54167095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078621 WO2016206443A1 (zh) 2015-06-24 2016-04-07 冷聚变反应管

Country Status (2)

Country Link
CN (1) CN104952491A (zh)
WO (1) WO2016206443A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556457A (zh) * 2018-11-12 2019-04-02 广州冷聚变电力科技有限公司 一种热聚变弹丸发射装定装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966534A (zh) * 2015-06-24 2015-10-07 广州同合能源科技有限公司 冷聚变发电装置
CN104952491A (zh) * 2015-06-24 2015-09-30 广州同合能源科技有限公司 冷聚变反应管
CN105206313B (zh) * 2015-10-15 2017-05-31 西安雍科建筑科技有限公司 一种冷聚变反应试验装置
CN105529957A (zh) * 2016-01-19 2016-04-27 广州同合能源科技有限公司 一种汽车动力电源

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394980A2 (en) * 1989-04-27 1990-10-31 Matsushita Electric Industrial Co., Ltd. Cold nuclear fusion apparatus
WO1990013125A1 (en) * 1989-04-26 1990-11-01 Brigham Young University Piezonuclear fusion
CN1077563A (zh) * 1993-04-24 1993-10-20 王家君 诱导冷核聚变
CN1080765A (zh) * 1992-06-26 1994-01-12 量子原子核工程公司 从量子能阶的相互作用,到控制机率所引起的能量产生
CN104564420A (zh) * 2015-01-16 2015-04-29 宁波华斯特林电机制造有限公司 一种镍氢冷聚变斯特林电机装置
CN104952491A (zh) * 2015-06-24 2015-09-30 广州同合能源科技有限公司 冷聚变反应管
CN204720172U (zh) * 2015-06-24 2015-10-21 广州同合能源科技有限公司 冷聚变反应管

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4111134A1 (de) * 1991-04-06 1992-10-08 Bernhard Philberth Verfahren zur fusion von wasserstoffkernen zur friedlichen nutzung
JPH0961568A (ja) * 1995-08-28 1997-03-07 Joshin Uramoto 電子ビームと正イオンビームによる負のパイオン、ミューオン源
JPH0961569A (ja) * 1995-08-28 1997-03-07 Joshin Uramoto 水素、重水素放電による負のパイオン、ミューオン源
JPH10253785A (ja) * 1997-03-12 1998-09-25 Laser Gijutsu Sogo Kenkyusho 核融合反応発生方法及び装置
WO2002029826A1 (en) * 2000-10-03 2002-04-11 Cheng Sing Wang COLD FUSION WITH A PILOT FOR SELF GENERATING NEUTRON AND β-PARTICLE
US20080008286A1 (en) * 2006-05-09 2008-01-10 Jacobson Joseph M Fusion energy production
JP2009096441A (ja) * 2007-10-15 2009-05-07 Motohiko Inai ミューオン触媒核融合炉を動力源とした飛翔体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990013125A1 (en) * 1989-04-26 1990-11-01 Brigham Young University Piezonuclear fusion
EP0394980A2 (en) * 1989-04-27 1990-10-31 Matsushita Electric Industrial Co., Ltd. Cold nuclear fusion apparatus
CN1080765A (zh) * 1992-06-26 1994-01-12 量子原子核工程公司 从量子能阶的相互作用,到控制机率所引起的能量产生
CN1077563A (zh) * 1993-04-24 1993-10-20 王家君 诱导冷核聚变
CN104564420A (zh) * 2015-01-16 2015-04-29 宁波华斯特林电机制造有限公司 一种镍氢冷聚变斯特林电机装置
CN104952491A (zh) * 2015-06-24 2015-09-30 广州同合能源科技有限公司 冷聚变反应管
CN204720172U (zh) * 2015-06-24 2015-10-21 广州同合能源科技有限公司 冷聚变反应管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556457A (zh) * 2018-11-12 2019-04-02 广州冷聚变电力科技有限公司 一种热聚变弹丸发射装定装置

Also Published As

Publication number Publication date
CN104952491A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2016206443A1 (zh) 冷聚变反应管
WO2016206445A1 (zh) 冷聚变发电装置
MXPA06005642A (es) Pila nuclear voltaica.
WO2016049768A1 (en) Neutron source based on a counter-balancing plasma beam configuration
AU2017236191A1 (en) Method and apparatus for energy conversion
Pouzo et al. Applications of the dense plasma focus to nuclear fusion and plasma astrophysics
CN204720172U (zh) 冷聚变反应管
Booth et al. Prospects of generating power with laser-driven fusion
WO2016206444A1 (zh) 高压温差发电管
WO2016173389A1 (zh) 冷聚变反应装置
Lightfoot et al. Nuclear fission fuel is inexhaustible
Ongena Nuclear fusion and its large potential for the future world energy supply
WO2016161940A1 (zh) 一种液体燃料
JP2009150709A (ja) リチウムクラスター化学核融合発生方法及びリチウムクラスター化学核融合装置
Adelerhof et al. Clean and sustainable fusion energy for the future
Magurean et al. Einstein’s equation in nuclear and solar energy
Sadowski Important problems of future thermonuclear reactors
Petrescu et al. Nano Energy
CN106024071A (zh) 一种利用核聚变发电的方法及系统
Miley et al. Block ignition inertial confinement fusion (ICF) for space propulsion
Miley 1995 Edward Teller Lecture Patience and Optimism (LIRPP Vol. 12)
Pouzo et al. Dense Plasma Focus: Remarks on its Possibilities as First Generation Nuclear Fusion Reactor and its Applications as Corpuscular and Electromagnetic Radiator
Jones The Power of the Stars How Nuclear Fusion Could Power the Future
Kosinov et al. POWER PHENOMENON OF VACUUM
Miley et al. Distributed power sources for mars

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/05/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16813559

Country of ref document: EP

Kind code of ref document: A1