WO2016206383A1 - 一种气体探测器及其报警方法 - Google Patents

一种气体探测器及其报警方法 Download PDF

Info

Publication number
WO2016206383A1
WO2016206383A1 PCT/CN2016/073239 CN2016073239W WO2016206383A1 WO 2016206383 A1 WO2016206383 A1 WO 2016206383A1 CN 2016073239 W CN2016073239 W CN 2016073239W WO 2016206383 A1 WO2016206383 A1 WO 2016206383A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
alarm
control unit
micro control
fault alarm
Prior art date
Application number
PCT/CN2016/073239
Other languages
English (en)
French (fr)
Inventor
李海宾
Original Assignee
中航泰德(深圳)海洋工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中航泰德(深圳)海洋工程有限公司 filed Critical 中航泰德(深圳)海洋工程有限公司
Publication of WO2016206383A1 publication Critical patent/WO2016206383A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/185Electrical failure alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms

Definitions

  • the invention relates to the field of industrial detection, in particular to a gas detector and an alarm method thereof.
  • Gas detectors include transmitters and sensors. They can be divided into civil-grade gas detectors and industrial-grade gas detectors. Civil-grade gas detectors are mainly used in homes or restaurants. Industrial-grade gas detectors are mainly used. Oil drilling, aviation, chemical and other important industrial enterprises. Compared with civil-grade gas detectors, the stability and safety of industrial-grade gas detectors are more important. Once the industrial-grade gas detectors are ineffective, the consequences are difficult to estimate.
  • the main object of the present invention is to provide a gas detector and an alarm method thereof, which can improve the operational stability of the gas detector.
  • a gas detector alarm method comprising:
  • a gas detector includes a transmitter and a sensor, the transmitter including a vibration sensor, a voltage monitoring unit, a calibration device detecting unit, and a fault alarm unit, wherein the sensor includes a photoelectric sensor;
  • the vibration sensor is configured to drive the fault alarm unit to alarm when the fault alarm condition preset by itself is met; and/or,
  • the voltage monitoring unit is configured to drive the fault alarm unit to alarm when the fault alarm condition preset by itself is met; and/or,
  • the calibration device detecting unit is configured to drive the fault alarm unit to alarm when the fault alarm condition preset by itself is met; and/or,
  • the photoelectric sensor is configured to drive the fault alarm unit to alarm when the fault alarm condition preset by itself is met.
  • the gas detector and the alarm method thereof provided by the embodiments of the invention can connect the variator, the sensor inlet, the transmitter and the sensor through the vibration sensor, the voltage monitoring unit, the calibration device detecting unit and the spot sensor. Wired, non-normative calibration and other abnormal conditions may be monitored to prevent various causes of damage to the accuracy and stability of the gas detector, improve the operational stability of the gas detector, and effectively ensure user safety.
  • FIG. 1 is a flow chart showing an implementation of a gas detector alarm method according to an embodiment of the present invention
  • Embodiment 1 of a gas detector alarm method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a module of a gas detector according to an embodiment of the present invention.
  • the gas detector of the present invention comprises a transmitter and a sensor, wherein the transmitter can be composed of a transmitter housing, a first micro control unit, a vibration sensor, a voltage monitoring unit, a calibration device detecting unit, an alarm unit, and a fault alarm unit.
  • the first PCB board and the like, the sensor may be composed of a sensor shell, a second micro control unit, a gas sensor, a photoelectric sensor, a second PCB board, etc.; the sensor and the transmitter are connected by four wires, wherein, two The wires are power cables, and the other two wires are communication wires. If any of the four wires breaks, the sensor will lose power and the gas detector will stop detecting.
  • FIG. 1 shows a gas detector alarm method according to an embodiment of the present invention.
  • the gas detector alarm method of the embodiment of the present invention is applied to the gas detector as described above. As shown in FIG. 1, the method includes:
  • Step 101 Driving a fault alarm of the transmitter when at least one of the vibration sensor, the voltage monitoring unit, the calibration device detecting unit, and the photoelectric sensor in the sensor meets a preset fault alarm condition Unit alarm.
  • the gas detector is usually fixedly mounted, and the installation position is no longer moved.
  • a vibration sensor built in the transmitter when the gas detector is disassembled or moved, vibration is generated. Sensing by a vibration sensor that outputs a digital signal to a first micro control unit of the transmitter when the vibration sensor of the transmitter senses a shock; the first micro control unit receives the number After the signal, the fault alarm unit is driven to perform an alarm, prompting the detector to be damaged by movement or the like.
  • the voltage monitoring unit of the transmitter monitors the voltage returned by the sensor, and when the voltage returned by the sensor is lower than a preset voltage value, indicating that the sensor is de-energized, triggering the first micro-control of the transmitter.
  • the unit drives the fault alarm unit to make an alarm, prompting that the sensor is powered abnormally, the line between the sensor and the transmitter may be damaged, and the like.
  • the calibration device detection unit of the transmitter receives a digital signal transmitted by a calibration tool paired with the detector, and triggers the first signal when the digital signal received by the calibration device detection unit is not from the calibration tool
  • the micro control unit drives the fault alarm unit to perform an alarm, prompting the gas detector to receive an illegal instruction, and there may be a situation such as vandalism;
  • the calibration device detecting unit receives the digital signal sent by the calibration tool paired with the gas detector again, and sends the digital signal to the first micro-control unit for analysis.
  • the first micro control unit analyzes that the digital signal is not a range (SPAN) point calibration instruction, indicating that the current calibration operation is not standardized, the first micro control unit drives the fault alarm unit to perform an alarm, prompting The gas detector is abnormally calibrated.
  • SPN range
  • the first micro control unit drives the fault alarm unit to perform an alarm, prompting
  • the gas detector is abnormally calibrated.
  • the air inlet of the sensor of the gas detector is a channel for sensing the change of the target gas concentration around the gas detector, and the airflow of the channel needs to be kept smooth at all times.
  • the direction of the sensor is perpendicular to the plane of the air inlet.
  • a pair of photoelectric sensors are built in, the pair of photoelectric sensors include a far infrared photoelectric transmitter and a far infrared photoelectric receiver, and the second micro control unit of the sensor collects the far infrared photoelectric transmission received by the far infrared photoelectric receiver
  • the electrical signal of the device when the collected electrical signal is the same as the fixed electrical signal, indicates that the airflow in the channel is smooth; when the collected electrical signal is different from the preset electrical signal, the channel is occluded. Or the clogging or the like affects the airflow, the second micro control unit sends a fault alarm data command to the first micro control unit of the transmitter, and the first micro control unit receives the fault alarm data command, and drives the The fault alarm unit performs an alarm.
  • the fault alarm unit may be driven to alarm.
  • the specific sequence and the number of the present invention are not limited in the embodiment of the present invention. .
  • the gas detector alarm method provided by the embodiment of the invention can pass the vibration sensor, the voltage monitoring unit, the calibration device detecting unit and the spot sensor to the connection line between the variator, the sensor inlet, the transmitter and the sensor, Non-normative calibration and other abnormal conditions may be monitored to prevent various causes of damage to the accuracy and stability of the gas detector, improve the operational stability of the gas detector, and effectively ensure user safety.
  • FIG. 2 is a flowchart showing an implementation of Embodiment 1 of a gas detector alarming method according to an embodiment of the present invention.
  • the first embodiment is applied to a gas detector as described above, as shown in FIG.
  • One includes the following steps:
  • Step 201 The gas detector is powered on, and enters a working state after a preset warm-up time
  • the preset duration may be 3 minutes.
  • Step 202 the second micro control unit of the sensor collects the concentration signal of the gas sensor, and compares the collected concentration signal with an alarm preset threshold stored in a memory of the second micro control unit;
  • the concentration signal is greater than or equal to the alarm preset threshold, step 203 is performed, otherwise step 204 is performed;
  • Step 203 When the collected concentration signal is greater than or equal to the alarm preset threshold, the second micro control unit sends an alarm data command to the first micro control unit, and after receiving the alarm data command, the first micro control unit receives the alarm data command. Driving the alarm unit to alarm;
  • Step 204 When the collected concentration signal is less than the alarm preset threshold, the second micro control unit sends an alarm cancellation data command to the first micro control unit, and after receiving the alarm cancellation data command, the first micro control unit receives the alarm cancellation data command. Driving the alarm unit to cancel the alarm state, and the alarm unit becomes a normal output;
  • Step 205 when the vibration sensor of the transmitter senses vibration, outputting a digital signal to the first micro control unit of the transmitter; after receiving the digital signal, the first micro control unit drives The fault alarm unit performs an alarm.
  • the gas detector is usually fixedly mounted, and the installation position is no longer moved.
  • a vibration sensor built in the transmitter when the gas detector is disassembled or moved, vibration is generated, and the vibration is generated by the vibration.
  • the inductor senses, when the vibration sensor of the transmitter senses a vibration, outputs a digital signal to the first micro control unit of the transmitter; after receiving the digital signal, the first micro control unit receives the digital signal And driving the fault alarm unit to perform an alarm, prompting the detector to be damaged by movement or the like.
  • Step 206 The second micro control unit collects an electrical signal received by the far infrared photoelectric receiver of the photoelectric sensor; when the electrical signal is different from the preset electrical signal, the second micro control unit sends The fault alarm data is commanded to the first micro control unit of the transmitter; after receiving the fault alarm data command, the first micro control unit drives the fault alarm unit to perform an alarm.
  • the air inlet of the sensor of the gas detector is a channel for sensing the change of the target gas concentration around the gas detector, and the airflow of the channel needs to be kept smooth at all times.
  • the direction of the sensor is perpendicular to the plane of the air inlet.
  • a pair of photoelectric sensors are built in, the pair of photoelectric sensors include a far infrared photoelectric transmitter and a far infrared photoelectric receiver, and the second micro control unit of the sensor collects the far infrared photoelectric transmission received by the far infrared photoelectric receiver
  • the electrical signal of the device when the collected electrical signal is the same as the fixed electrical signal, indicates that the airflow in the channel is smooth; when the collected electrical signal is different from the preset electrical signal, the channel is occluded. Or the clogging or the like affects the airflow, the second micro control unit sends a fault alarm data command to the first micro control unit of the transmitter, and the first micro control unit receives the fault alarm data command, and drives the The fault alarm unit performs an alarm.
  • Step 207 When the voltage monitoring unit monitors that the voltage returned by the sensor is lower than a preset voltage value, the first micro control unit that triggers the transmitter drives the fault alarm unit to perform an alarm.
  • the voltage monitoring unit of the transmitter monitors the voltage returned by the sensor, and when the voltage returned by the sensor is lower than a preset voltage value, indicating that the sensor is de-energized, triggering the first of the transmitter
  • the micro control unit drives the fault alarm unit to make an alarm, prompting that the sensor is powered abnormally, the line between the sensor and the transmitter may be damaged, and the like.
  • Step 208 When the digital signal received by the calibration device detecting unit is not a calibration tool from the pairing of the detector, the first micro control unit that triggers the transmitter drives the fault alarm unit to perform an alarm;
  • the calibration device detection unit of the transmitter receives a digital signal transmitted by a calibration tool paired with the detector, and triggers the first signal when the digital signal received by the calibration device detection unit is not from the calibration tool
  • the micro control unit drives the fault alarm unit to perform an alarm, prompting the detector to receive an illegal instruction, and there may be a situation such as vandalism;
  • Step 209 when the calibration device detecting unit receives the digital signal sent by the calibration tool paired with the gas detector, sending the digital signal to the first micro control unit for analysis, if the analysis determines that the digital signal is 0 point calibration command, 0 point calibration; not 0 point calibration command, step 202;
  • the 0 point calibration is performed, specifically, the first micro control unit sends the 0 point calibration instruction to the second micro control unit, and the second micro control unit collects the concentration signal of the gas sensor, and stores the collected concentration signal. a zero point data storage location to the internal memory of the second micro control unit;
  • Step 210 When the detector completes the zero point calibration, and the calibration device detecting unit receives the digital signal sent by the calibration tool paired with the detector again, the digital signal is sent to the first micro control unit. Analysis; when the analysis determines that the digital signal is not a SPAN point calibration instruction, driving the fault alarm unit to perform an alarm; when it is a SPAN point calibration instruction, performing a SPAN point calibration;
  • the calibration device detecting unit receives the digital signal sent by the calibration tool paired with the gas detector again, and sends the digital signal to the first micro-control unit for analysis.
  • the first micro control unit analyzes that the digital signal is not a SPAN point calibration instruction, indicating that the current calibration operation is not standardized, the first micro control unit drives the fault alarm unit to perform an alarm to prompt the gas.
  • the detector is abnormally calibrated.
  • the first micro control unit analyzes the SPAN point calibration instruction when determining the digital signal, performing SPAN point calibration, specifically, the first micro control unit sends the SPAN point calibration instruction to the second micro control unit, where The second micro control unit collects the concentration signal of the gas sensor, and stores the collected concentration signal to the SPAN point data storage location of the internal memory of the second micro control unit.
  • Step 211 The second micro control unit determines an alarm preset threshold according to the 0 point concentration signal of the 0 point data storage position and the SPAN point concentration signal of the SPAN point data storage position, and stores the determined alarm preset threshold value to the second The alarm preset threshold storage location of the internal memory of the micro control unit is executed in step 202.
  • the embodiment of the present invention further provides a gas detector, wherein the functional modules of the gas detector can be used in the process of the foregoing method embodiment.
  • the present invention includes: a transmitter and a sensor, and the transmitter includes a vibration sensor, a voltage monitoring unit, a calibration device detecting unit, and a fault alarm unit, wherein the sensor includes a photoelectric sensor;
  • the vibration sensor is configured to drive the fault alarm unit to alarm when the fault alarm condition preset by itself is met; and/or,
  • the voltage monitoring unit is configured to drive the fault alarm unit to alarm when the fault alarm condition preset by itself is met; and/or,
  • the calibration device detecting unit is configured to drive the fault alarm unit to alarm when the fault alarm condition preset by itself is met; and/or,
  • the photoelectric sensor is configured to drive the fault alarm unit to alarm when the fault alarm condition preset by itself is met.
  • the transmitter further includes a first micro control unit
  • the vibration sensor is specifically configured to output a digital signal to the first micro control unit when the vibration is sensed;
  • the first micro control unit is configured to drive the fault alarm unit to perform an alarm after receiving the digital signal.
  • the voltage monitoring unit is specifically configured to trigger the first micro control unit to drive the fault alarm unit to perform an alarm when the voltage returned by the sensor is lower than a preset voltage value.
  • the calibration device detecting unit is specifically configured to trigger the first micro control unit to drive the fault alarm unit to perform an alarm when the received digital signal is not a calibration tool from the pairing of the detectors; or The detector completes the zero-point calibration and receives the digital signal sent by the calibration tool paired with the detector again. Transmitting the digital signal to the first micro control unit;
  • the first micro control unit is configured to drive the fault alarm unit to perform an alarm when it is determined that the digital signal is not a range point calibration instruction.
  • the senor further includes: a second micro control unit, configured to collect an electrical signal received by the far infrared photoelectric receiver of the photoelectric sensor, when the electrical signal and the preset electrical signal have a fixed value At the same time, sending a fault alarm data command to the first micro control unit;
  • the first micro control unit is configured to drive the fault alarm unit to perform an alarm after receiving the fault alarm data command.
  • the senor further includes a gas sensor and a memory
  • the second micro control unit is further configured to collect a concentration signal of the gas sensor, and compare the collected concentration signal with an alarm preset threshold stored in a memory of the second micro control unit; when the collected When the concentration signal is greater than or equal to the alarm preset threshold, the second micro control unit sends an alarm data command to the first micro control unit, and when the collected concentration signal is less than the alarm preset threshold, the second micro control unit sends The alarm cancels the data command to the first micro control unit.
  • the calibration device detecting unit is configured to: when the calibration device detecting unit receives the digital signal sent by the calibration tool paired with the gas detector, send the digital signal to the first micro control unit. analysis;
  • the first micro control unit specifically for analyzing and determining that the digital signal is a zero point calibration instruction, sending the zero point calibration instruction to the second micro control unit;
  • the second micro control unit is specifically configured to collect a concentration signal of the gas sensor, and store the collected concentration signal to a zero point data storage location of the internal memory of the second micro control unit.
  • the first micro control unit is configured to analyze, when the received digital signal is a range point calibration instruction, send the range point calibration instruction to the second micro control unit;
  • the second micro control unit collects the concentration signal of the gas sensor and stores the collected concentration signal to the SPAN point data storage location of the internal memory of the second micro control unit.
  • the gas detector and the alarm method thereof provided by the embodiments of the invention can connect the variator, the sensor inlet, the transmitter and the sensor through the vibration sensor, the voltage monitoring unit, the calibration device detecting unit and the spot sensor. Wired, non-normative calibration and other abnormal conditions may be monitored to prevent various causes of damage to the accuracy and stability of the gas detector, improve the operational stability of the gas detector, and effectively ensure user safety.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

一种气体探测器及其报警方法,所述方法包括当变送器中的震动感应器、电压监视单元、校准设备检测单元及传感器中的光电传感器的至少一个满足自身预设的故障报警条件时,驱动所述变送器的故障报警单元报警(101)。该气体探测器及其报警方法,能够通过震动感应器、电压监视单元、校准设备检测单元及光电传感器对变送器、传感器进气口、变送器和传感器之间的连接线、非规范性校准等可能出现的异常情况进行实时监测,防止各种原因对气体探测器的准确性、稳定性进行破坏,提高了气体探测器的运行稳定性,有效保证了用户安全。

Description

一种气体探测器及其报警方法 技术领域
本发明涉及工业探测领域,尤其涉及一种气体探测器及其报警方法。
背景技术
气体探测器包括变送器、传感器两部分,具体可分为民用级气体探测器和工业级气体探测器,民用级气体探测主要用于家庭住宅或饭店等领域,工业级气体探测器主要用于石油钻采、航空、化工等重要工业企业。相对民用级气体探测器,工业级气体探测器稳定性、安全性更为重要,一旦工业级气体探测器本身失去作用,后果难以估量。
目前,工业级气体探测器稳定性相对民用产品要高,但是还是缺乏对自身安全性的监管预防措施。当气体探测器自身发生故障时,如:对人为破坏变送器、人为堵塞传感器进气口、人为断开传感器和变送器连线、非规范性校准等,往往不能被及时识别与发现,进而造成气体探测器准确性变差或永久性失灵,存在较大的安全隐患。
技术问题
有鉴于此,本发明的主要目的在于提供一种气体探测器及其报警方法,能够提高气体探测器的运行稳定性。
技术解决方案
为达到上述目的,本发明的技术方案是这样实现的:
一种气体探测器报警方法,所述气体探测器包括变送器和传感器,所述方法包括:
当所述变送器中的震动感应器、电压监视单元、校准设备检测单元及所述传感器中的光电传感器的至少一个满足自身预设的故障报警条件时,驱动所述变送器的故障报警单元报警。
一种气体探测器,所述气体探测器包括变送器和传感器,所述变送器包括震动感应器、电压监视单元、校准设备检测单元以及故障报警单元,所述传感器包括光电传感器;其中,
所述震动感应器,用于当满足自身预设的故障报警条件时,驱动所述故障报警单元报警;和/或,
所述电压监视单元,用于当满足自身预设的故障报警条件时,驱动所述故障报警单元报警;和/或,
所述校准设备检测单元,用于当满足自身预设的故障报警条件时,驱动所述故障报警单元报警;和/或,
所述光电传感器,用于当满足自身预设的故障报警条件时,驱动所述故障报警单元报警。
有益效果
本发明实施例提供的气体探测器及其报警方法,能够通过震动感应器、电压监视单元、校准设备检测单元及光点传感器对变动器、传感器进气口、变送器和传感器之间的连接线、非规范性校准等等可能出现的异常情况进行实施监测,防止各种原因对气体探测器准确性、稳定性进行破坏,提高了气体探测器的运行稳定性,有效保证了用户安全。
附图说明
图1为本发明实施例提供的气体探测器报警方法的实现流程图;
图2为本发明实施例提供的气体探测器报警方法的实施例一的实现流程图;
图3为本发明实施例提供的气体探测器的模块示意图。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下举实施例并参照附图,对本发明进一步详细说明。
本发明中气体探测器包括变送器和传感器,其中,变送器可以由变送器外壳、第一微控制单元、震动感应器、电压监视单元、校准设备检测单元、报警单元、故障报警单元、第一PCB板等组成,传感器可以由传感器外壳、第二微控制单元、气体感应器、光电传感器、第二PCB板等组成;传感器和变送器之间通过四条电线进行连接,其中,两条电线为电源线,另两条电线为通信线,若这四条电线中任一条出现断线,传感器将会失电,气体探测器则会停止探测。
图1示出了本发明实施例提供的气体探测器报警方法,本发明实施例的气体探测器报警方法应用在如上所述的气体探测器中,如图1所示,所述方法包括:
步骤101, 当所述变送器中的震动感应器、电压监视单元、校准设备检测单元及所述传感器中的光电传感器的至少一个满足自身预设的故障报警条件时,驱动所述变送器的故障报警单元报警。
这里,所述气体探测器通常为固定安装,安装位置不会再发生移动,通过在所述变送器内置一震动感应器,当气体探测器被拆卸或移动时,均会产生震动,此时通过震动感应器进行感应,当所述变送器的震动感应器感应到震动时,输出数字信号至所述变送器的第一微控制单元;所述第一微控制单元接收到所述数字信号后,驱动所述故障报警单元进行报警,提示探测器遭受移动等破坏。
所述变送器的电压监视单元监视所述传感器返回的电压,当所述传感器返回的电压低于预设电压值时,说明所述传感器失电,触发所述变送器的第一微控制单元驱动所述故障报警单元进行报警,提示所述传感器供电异常,所述传感器和变送器之间的线路可能发生破坏等等。
所述变送器的校准设备检测单元接收与所述探测器配对的校准工具发送的数字信号,当所述校准设备检测单元接收到的数字信号不是来自所述校准工具时,触发所述第一微控制单元驱动所述故障报警单元进行报警,提示气体探测器接收到非法指令,可能存在蓄意破坏等情形;
当所述探测器完成0点校准后,所述校准设备检测单元再次接收到与所述气体探测器配对的校准工具发送的数字信号时,将所述数字信号发送至第一微控制单元进行分析,当所述第一微控制单元分析确定所述数字信号不是量程(SPAN)点校准指令时,说明当前的校准操作不规范,所述第一微控制单元驱动所述故障报警单元进行报警,提示所述气体探测器校准异常。
所述气体探测器的传感器的进气口是气体探测器感应周围目标气体浓度变化的通道,需要时刻保持该通道气流顺畅,本发明实施例中,所述传感器内垂直于进气口平面的方向内置一对光电式传感器,该对光电传感器包括远红外光电式发送器和远红外光电式接收器,所述传感器的第二微控制单元采集远红外光电式接收器接收到的远红外光电式发送器的电信号,当采集到的电信号与预设的电信号固定值相同,说明所述通道气流顺畅;当采集到的电信号与预设的电信号固定值不同,说明所述通道发生遮挡或堵塞等情况影响气流顺畅,第二微控制单元发送故障报警数据指令给所述变送器的第一微控制单元,所述第一微控制单元接收到所述故障报警数据指令后,驱动所述故障报警单元进行报警。
另外,上述震动感应器、电压监视单元、校准设备检测单元及光电传感器中至少一个满足故障报警条件时,即可驱动所述故障报警单元报警,具体发生顺序及个数本发明实施例并不限制。
本发明实施例提供的气体探测器报警方法,能够通过震动感应器、电压监视单元、校准设备检测单元及光点传感器对变动器、传感器进气口、变送器和传感器之间的连接线、非规范性校准等等可能出现的异常情况进行实施监测,防止各种原因对气体探测器准确性、稳定性进行破坏,提高了气体探测器的运行稳定性,有效保证了用户安全。
图2示出了本发明实施例提供的气体探测器报警方法的实施例一的实现流程,所述实施例一应用在如上所述的气体探测器中,如图2所示,所述实施例一包括下述步骤:
步骤201,所述气体探测器上电,经过预设时长的预热时间,进入工作状态;
具体地,该预设时长可以为3分钟。
步骤202,所述传感器的第二微控制单元采集气体传感器的浓度信号,并将采集到的浓度信号与第二微控制单元内部的存贮器存贮的报警预设阈值进行比较;若所述浓度信号大于或等于报警预设阈值,执行步骤203,否则执行步骤204;
步骤203,当采集到的浓度信号大于或等于报警预设阈值时,所述第二微控制单元发送报警数据指令给第一微控制单元,第一微控制单元接收到所述报警数据指令后,驱动所述报警单元报警;
步骤204,当采集到的浓度信号小于报警预设阈值时,所述第二微控制单元发送报警取消数据指令给第一微控制单元,第一微控制单元接收到所述报警取消数据指令后,驱动所述报警单元取消报警状态,报警单元变为正常输出;
步骤205,当所述变送器的震动感应器感应到震动时,输出数字信号至所述变送器的第一微控制单元;所述第一微控制单元接收到所述数字信号后,驱动所述故障报警单元进行报警。
所述气体探测器通常为固定安装,安装位置不会再发生移动,通过在所述变送器内置一震动感应器,当气体探测器被拆卸或移动时,均会产生震动,此时通过震动感应器进行感应,当所述变送器的震动感应器感应到震动时,输出数字信号至所述变送器的第一微控制单元;所述第一微控制单元接收到所述数字信号后,驱动所述故障报警单元进行报警,提示探测器遭受移动等破坏。
步骤206,第二微控制单元采集所述光电传感器的远红外光电式接收器接收到的电信号;当所述电信号与预设的电信号固定值不同时,所述第二微控制单元发送故障报警数据指令给所述变送器的第一微控制单元;第一微控制单元接收到所述故障报警数据指令后,驱动所述故障报警单元进行报警。
所述气体探测器的传感器的进气口是气体探测器感应周围目标气体浓度变化的通道,需要时刻保持该通道气流顺畅,本发明实施例中,所述传感器内垂直于进气口平面的方向内置一对光电式传感器,该对光电传感器包括远红外光电式发送器和远红外光电式接收器,所述传感器的第二微控制单元采集远红外光电式接收器接收到的远红外光电式发送器的电信号,当采集到的电信号与预设的电信号固定值相同,说明所述通道气流顺畅;当采集到的电信号与预设的电信号固定值不同,说明所述通道发生遮挡或堵塞等情况影响气流顺畅,第二微控制单元发送故障报警数据指令给所述变送器的第一微控制单元,所述第一微控制单元接收到所述故障报警数据指令后,驱动所述故障报警单元进行报警。
步骤207,当所述电压监视单元监视到所述传感器返回的电压低于预设电压值时,触发所述变送器的第一微控制单元驱动所述故障报警单元进行报警。
这里,所述变送器的电压监视单元监视所述传感器返回的电压,当所述传感器返回的电压低于预设电压值时,说明所述传感器失电,触发所述变送器的第一微控制单元驱动所述故障报警单元进行报警,提示所述传感器供电异常,所述传感器和变送器之间的线路可能发生破坏等等。
步骤208,当所述校准设备检测单元接收到的数字信号不是来自所述探测器配对的校准工具时,触发所述变送器的第一微控制单元驱动所述故障报警单元进行报警;
所述变送器的校准设备检测单元接收与所述探测器配对的校准工具发送的数字信号,当所述校准设备检测单元接收到的数字信号不是来自所述校准工具时,触发所述第一微控制单元驱动所述故障报警单元进行报警,提示探测器接收到非法指令,可能存在蓄意破坏等情形;
步骤209,当所述校准设备检测单元接收到与所述气体探测器配对的校准工具发送的数字信号时,将所述数字信号发送至第一微控制单元进行分析,若分析确定该数字信号是0点校准指令时,进行0点校准;不是0点校准指令时,执行步骤202;
其中,进行0点校准具体为第一微控制单元将该0点校准指令发送至第二微控制单元,所述第二微控制单元采集气体传感器的浓度信号,并将采集到的浓度信号存贮到第二微控制单元内部存贮器的0点数据存储位置;
步骤210,当所述探测器完成0点校准,所述校准设备检测单元再次接收到与所述探测器配对的校准工具发送的数字信号时,将所述数字信号发送至第一微控制单元进行分析;当分析确定所述数字信号不是SPAN点校准指令时,驱动所述故障报警单元进行报警;当是SPAN点校准指令时,进行SPAN点校准;
当所述探测器完成0点校准后,所述校准设备检测单元再次接收到与所述气体探测器配对的校准工具发送的数字信号时,将所述数字信号发送至第一微控制单元进行分析,当所述第一微控制单元分析确定所述数字信号不是SPAN点校准指令时,说明当前的校准操作不规范,所述第一微控制单元驱动所述故障报警单元进行报警,提示所述气体探测器校准异常。
当所述第一微控制单元分析确定所述数字信号时SPAN点校准指令时,进行SPAN点校准,具体为第一微控制单元将该SPAN点校准指令发送至第二微控制单元,所述第二微控制单元采集气体传感器的浓度信号,将采集到的浓度信号存贮到第二微控制单元内部存贮器的SPAN点数据存储位置。
步骤211,第二微控制单元根据0点数据存储位置的0点浓度信号和SPAN点数据存储位置的SPAN点浓度信号确定报警预设阈值,并将确定出的报警预设阈值存贮到第二微控制单元内部存贮器的报警预设阈值存储位置,执行步骤202。
本发明实施例还提供的一种气体探测器,该气体探测器的各功能模块可用于上述方法实施例的流程,具体可参考图3,包括:变送器和传感器,所述变送器包括震动感应器、电压监视单元、校准设备检测单元以及故障报警单元,所述传感器包括光电传感器;其中,
所述震动感应器,用于当满足自身预设的故障报警条件时,驱动所述故障报警单元报警;和/或,
所述电压监视单元,用于当满足自身预设的故障报警条件时,驱动所述故障报警单元报警;和/或,
所述校准设备检测单元,用于当满足自身预设的故障报警条件时,驱动所述故障报警单元报警;和/或,
所述光电传感器,用于当满足自身预设的故障报警条件时,驱动所述故障报警单元报警。
进一步地,所述变送器,还包括第一微控制单元;
所述震动感应器,具体用于感应到震动时,输出数字信号至所述第一微控制单元;
所述第一微控制单元,用于接收到所述数字信号后,驱动所述故障报警单元进行报警。
其中,所述电压监视单元,具体用于监视到所述传感器返回的电压低于预设电压值时,触发所述第一微控制单元驱动所述故障报警单元进行报警。
其中,所述校准设备检测单元,具体用于当接收到的数字信号不是来自所述探测器配对的校准工具时,触发所述第一微控制单元驱动所述故障报警单元进行报警;或当所述探测器完成0点校准,再次接收到与所述探测器配对的校准工具发送的数字信号时 ,将所述数字信号发送至第一微控制单元;
所述第一微控制单元,用于分析确定所述数字信号不是量程点校准指令时,驱动所述故障报警单元进行报警。
进一步地,所述传感器,还包括:第二微控制单元,用于采集所述光电传感器的远红外光电式接收器接收到的电信号,当所述电信号与预设的电信号固定值不同时,发送故障报警数据指令给所述第一微控制单元;
所述第一微控制单元,用于接收到所述故障报警数据指令后,驱动所述故障报警单元进行报警。
进一步地,所述传感器还包括气体感应器及存贮器;
所述第二微控制单元,还用于采集气体传感器的浓度信号,并将采集到的浓度信号与第二微控制单元内部的存贮器存贮的报警预设阈值进行比较;当采集到的浓度信号大于或等于报警预设阈值时,所述第二微控制单元发送报警数据指令给第一微控制单元,当采集到的浓度信号小于报警预设阈值时,所述第二微控制单元发送报警取消数据指令给第一微控制单元。
其中,所述校准设备检测单元,具体用于当所述校准设备检测单元接收到与所述气体探测器配对的校准工具发送的数字信号时,将所述数字信号发送至第一微控制单元进行分析;
所述第一微控制单元,具体用于分析确定该数字信号是0点校准指令时,将该0点校准指令发送至第二微控制单元;
所述第二微控制单元,具体用于采集气体传感器的浓度信号,并将采集到的浓度信号存贮到第二微控制单元内部存贮器的0点数据存储位置。
其中,所述第一微控制单元,用于分析确定接收到的数字信号是量程点校准指令时,将该量程点校准指令发送给第二微控制单元;
所述第二微控制单元,采集气体传感器的浓度信号,将采集到的浓度信号存贮到第二微控制单元内部存贮器的SPAN点数据存储位置。
本发明提供的气体探测器,各模块工作过程与上述方法实施例类似,在此不再赘述。
本发明实施例提供的气体探测器及其报警方法,能够通过震动感应器、电压监视单元、校准设备检测单元及光点传感器对变动器、传感器进气口、变送器和传感器之间的连接线、非规范性校准等等可能出现的异常情况进行实施监测,防止各种原因对气体探测器准确性、稳定性进行破坏,提高了气体探测器的运行稳定性,有效保证了用户安全。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种气体探测器报警方法,所述气体探测器包括变送器和传感器,其特征在于,所述方法包括:
    当所述变送器中的震动感应器、电压监视单元、校准设备检测单元及所述传感器中的光电传感器的至少一个满足自身预设的故障报警条件时,驱动所述变送器的故障报警单元报警。
  2. 根据权利要求1所述的方法,其特征在于,当所述变送器中的震动感应器满足自身预设的故障报警条件时,驱动所述变送器的故障报警单元报警,具体为:
    当所述变送器的震动感应器感应到震动时,输出数字信号至所述变送器的第一微控制单元;
    所述第一微控制单元接收到所述数字信号后,驱动所述故障报警单元进行报警。
  3. 根据权利要求1所述的方法,其特征在于,当所述变送器中的电压监视单元满足自身预设的故障报警条件时,驱动所述变送器的故障报警单元报警,具体为:
    当所述电压监视单元监视到所述传感器返回的电压低于预设电压值时,触发所述变送器的第一微控制单元驱动所述故障报警单元进行报警。
  4. 根据权利要求1所述的方法,其特征在于,当所述变送器中的校准设备检测单元满足自身预设的故障报警条件时,驱动所述变送器的故障报警单元报警,具体为:
    当所述校准设备检测单元接收到的数字信号不是来自所述探测器配对的校准工具时,触发所述变送器的第一微控制单元驱动所述故障报警单元进行报警;或,
    当所述探测器完成0点校准,所述校准设备检测单元再次接收到与所述探测器配对的校准工具发送的数字信号时,将所述数字信号发送至第一微控制单元进行分析;
    当所述第一微控制单元分析确定所述数字信号不是量程点校准指令时,驱动所述故障报警单元进行报警。
  5. 根据权利要求1所述的方法,其特征在于,当所述传感器中的光电传感器满足自身预设的故障报警条件时,驱动所述变送器的故障报警单元报警,具体为:
    所述传感器的第二微控制单元采集所述光电传感器的远红外光电式接收器接收到的电信号;
    当所述电信号与预设的电信号固定值不同时,所述第二微控制单元发送故障报警数据指令给所述变送器的第一微控制单元;
    所述第一微控制单元接收到所述故障报警数据指令后,驱动所述故障报警单元进行报警。
  6. 一种气体探测器,所述气体探测器包括变送器和传感器,其特征在于,所述变送器包括震动感应器、电压监视单元、校准设备检测单元以及故障报警单元,所述传感器包括光电传感器;其中,
    所述震动感应器,用于当满足自身预设的故障报警条件时,驱动所述故障报警单元报警;和/或,
    所述电压监视单元,用于当满足自身预设的故障报警条件时,驱动所述故障报警单元报警;和/或,
    所述校准设备检测单元,用于当满足自身预设的故障报警条件时,驱动所述故障报警单元报警;和/或,
    所述光电传感器,用于当满足自身预设的故障报警条件时,驱动所述故障报警单元报警。
  7. 根据权利要求6所述的气体探测器,其特征在于,所述变送器,还包括第一微控制单元;
    所述震动感应器,具体用于感应到震动时,输出数字信号至所述第一微控制单元;
    所述第一微控制单元,用于接收到所述数字信号后,驱动所述故障报警单元进行报警。
  8. 根据权利要求6所述的气体探测器,其特征在于,所述变送器,还包括第一微控制单元;
    所述电压监视单元,具体用于监视到所述传感器返回的电压低于预设电压值时,触发所述第一微控制单元驱动所述故障报警单元进行报警。
  9. 根据权利要求6所述的气体探测器,其特征在于,所述变送器,还包括第一微控制单元;
    所述校准设备检测单元,具体用于当接收到的数字信号不是来自所述探测器配对的校准工具时,触发所述第一微控制单元驱动所述故障报警单元进行报警;或当所述探测器完成0点校准,再次接收到与所述探测器配对的校准工具发送的数字信号时 ,将所述数字信号发送至第一微控制单元;
    所述第一微控制单元,用于分析确定所述数字信号不是量程点校准指令时,驱动所述故障报警单元进行报警。
  10. 根据权利要求6所述的气体探测器,其特征在于,所述变送器,还包括第一微控制单元;
    所述传感器,还包括:第二微控制单元,用于采集所述光电传感器的远红外光电式接收器接收到的电信号,当所述电信号与预设的电信号固定值不同时,发送故障报警数据指令给所述第一微控制单元;
    所述第一微控制单元,用于接收到所述故障报警数据指令后,驱动所述故障报警单元进行报警。
PCT/CN2016/073239 2015-06-26 2016-02-03 一种气体探测器及其报警方法 WO2016206383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510362630.8 2015-06-26
CN201510362630.8A CN104900016B (zh) 2015-06-26 2015-06-26 一种气体探测器及其报警方法

Publications (1)

Publication Number Publication Date
WO2016206383A1 true WO2016206383A1 (zh) 2016-12-29

Family

ID=54032657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073239 WO2016206383A1 (zh) 2015-06-26 2016-02-03 一种气体探测器及其报警方法

Country Status (2)

Country Link
CN (1) CN104900016B (zh)
WO (1) WO2016206383A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918788A (zh) * 2018-09-06 2018-11-30 汉威科技集团股份有限公司 探测器的成品标检装置及标检系统
CN113671120A (zh) * 2021-08-02 2021-11-19 德尔格安全设备(中国)有限公司 一种气体探测装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900016B (zh) * 2015-06-26 2019-01-15 中航泰德(深圳)海洋工程有限公司 一种气体探测器及其报警方法
CN111089849A (zh) * 2020-01-21 2020-05-01 成都千嘉科技有限公司 一种防止ndir报警器误报警的系统与方法
CN113850093B (zh) * 2021-09-08 2024-05-14 中国原子能科学研究院 定位方法、探测设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201163436Y (zh) * 2008-01-24 2008-12-10 北京金智慧畅想科技有限公司 变压器防盗报警监测系统
CN101841697A (zh) * 2010-04-12 2010-09-22 无锡中星微电子有限公司 监控系统及其监控设备
CN202584344U (zh) * 2012-04-18 2012-12-05 汕头市鼎和星达电子科技有限公司 安防监控系统的烟雾感应器
JP5198403B2 (ja) * 2009-10-14 2013-05-15 矢崎エナジーシステム株式会社 警報器
CN103257157A (zh) * 2013-04-27 2013-08-21 镇江恒驰科技有限公司 一种可燃气体探测器及其标定方法
CN104464171A (zh) * 2013-09-20 2015-03-25 生命安全销售股份公司 具有集成传感器平台的检测器
CN204360508U (zh) * 2014-12-31 2015-05-27 广州瀚润计算机信息科技有限公司 无线感烟火灾探测报警器
CN104900016A (zh) * 2015-06-26 2015-09-09 中航泰德(深圳)海洋工程有限公司 一种气体探测器及其报警方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018404B (zh) * 2012-12-03 2015-04-15 深圳市南油诺安电子有限公司 气体探测器的故障监测系统
CN203355518U (zh) * 2013-06-21 2013-12-25 大亚木业(江西)有限公司 一种布袋除尘防堵装置
CN104567973A (zh) * 2013-10-25 2015-04-29 王明军 传感器故障检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201163436Y (zh) * 2008-01-24 2008-12-10 北京金智慧畅想科技有限公司 变压器防盗报警监测系统
JP5198403B2 (ja) * 2009-10-14 2013-05-15 矢崎エナジーシステム株式会社 警報器
CN101841697A (zh) * 2010-04-12 2010-09-22 无锡中星微电子有限公司 监控系统及其监控设备
CN202584344U (zh) * 2012-04-18 2012-12-05 汕头市鼎和星达电子科技有限公司 安防监控系统的烟雾感应器
CN103257157A (zh) * 2013-04-27 2013-08-21 镇江恒驰科技有限公司 一种可燃气体探测器及其标定方法
CN104464171A (zh) * 2013-09-20 2015-03-25 生命安全销售股份公司 具有集成传感器平台的检测器
CN204360508U (zh) * 2014-12-31 2015-05-27 广州瀚润计算机信息科技有限公司 无线感烟火灾探测报警器
CN104900016A (zh) * 2015-06-26 2015-09-09 中航泰德(深圳)海洋工程有限公司 一种气体探测器及其报警方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918788A (zh) * 2018-09-06 2018-11-30 汉威科技集团股份有限公司 探测器的成品标检装置及标检系统
CN113671120A (zh) * 2021-08-02 2021-11-19 德尔格安全设备(中国)有限公司 一种气体探测装置

Also Published As

Publication number Publication date
CN104900016B (zh) 2019-01-15
CN104900016A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
WO2016206383A1 (zh) 一种气体探测器及其报警方法
KR101785998B1 (ko) 안전사고예방을 위한 출입감지시스템
KR101880864B1 (ko) 배전반 화재 관리시스템
KR101104519B1 (ko) 비접촉식 통합 화재 감지 시스템
KR101696753B1 (ko) 원격 소방 모니터링 시스템
US20170171243A1 (en) Integrated industrial system and control method thereof
KR101817940B1 (ko) 듀얼 영상 카메라를 이용한 이상징후 모니터링 시스템 및 방법
KR102128676B1 (ko) 복합 센서 모듈
CN104533525A (zh) 基于图像的煤矿掘进工作面煤与瓦斯突出报警方法
KR101919074B1 (ko) 스마트 전기 화재 예방 시스템
CN102974063A (zh) 智能型电缆沟实时防火监测及自动灭火系统
CN105933055A (zh) 光纤在线监测系统
KR101364813B1 (ko) 스마트형 소방 방재시스템
CN106781199A (zh) 一种电气火灾监控器
JP4715587B2 (ja) 遮断器監視装置および遮断器監視方法
KR20130118680A (ko) 화재 감시 시스템
CN106932022A (zh) 一种用于电厂的自动化控制系统
CN107860426A (zh) 环境监测系统及方法
KR102072985B1 (ko) 재난감지 및 재난방재 장치와 이의 동작 방법
KR101626452B1 (ko) 침입감지를 위한 자기장 신호분리 및 제어 방법
CN110886968B (zh) 一种基于光纤传感的天然气立管预警系统
KR20090082800A (ko) 화재 감지 시스템
EP3452998B1 (en) Automatic cover detection system and method
JP2023134692A (ja) 防災システム及び火災検知器
KR20210027000A (ko) 공동구 자동관제 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16813499

Country of ref document: EP

Kind code of ref document: A1