WO2016206340A1 - 面向矿井运动目标的双标签高精度定位方法 - Google Patents

面向矿井运动目标的双标签高精度定位方法 Download PDF

Info

Publication number
WO2016206340A1
WO2016206340A1 PCT/CN2015/099317 CN2015099317W WO2016206340A1 WO 2016206340 A1 WO2016206340 A1 WO 2016206340A1 CN 2015099317 W CN2015099317 W CN 2015099317W WO 2016206340 A1 WO2016206340 A1 WO 2016206340A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
iteration
target
mine
opt
Prior art date
Application number
PCT/CN2015/099317
Other languages
English (en)
French (fr)
Inventor
胡青松
丁一珊
曹灿
张申
吴立新
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to RU2016149818A priority Critical patent/RU2642522C1/ru
Publication of WO2016206340A1 publication Critical patent/WO2016206340A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals

Definitions

  • the invention relates to a double label high precision positioning method, in particular to a double label high precision positioning method for a mine moving target.
  • the distance between the positioning target and the positioning base station is generally measured by the RSSI method, and then the target position is obtained by a geometric method (such as the trilateral positioning method).
  • a geometric method such as the trilateral positioning method.
  • the accuracy of the RSSI ranging accuracy is very obvious, resulting in a small accuracy of the ranging, resulting in low accuracy of the single-label mine positioning system, unstable positioning results, and serious positional drift.
  • Mine moving targets can be divided into two categories according to their shape.
  • the first type of mine moving target is a long strip object parallel to the roadway (such as mine car and shearer); the second type of mine moving target is a long strip perpendicular to the roadway.
  • Object such as a person.
  • the object of the present invention is to provide a dual-label high-precision positioning method for a mine moving target, which solves the problem that the single-label mine positioning system has low precision, unstable positioning results, and serious positional drift.
  • the dual-label high-precision positioning method comprises: a first type of mine moving target positioning method and a second type of mine moving target positioning method; the method installs two positions horizontally or vertically on the moving target Labeling and communicating with two positioning base stations installed along the roof of the roadway, and constructing a position of the moving target in real time by constructing an optimization function between the tag and the positioning base station RSSI distance and the estimated distance and solving the minimum value;
  • the first type of mine moving target positioning method one positioning label U 1 and U 2 are installed on each of the head and the tail of the target to be positioned, and the distance between the positioning labels U 1 and U 2 is represented by L; tab to know the location of the target in the roadway; each tag can be mounted simultaneously with the two tunnel roof line positioning station B 1 and B 2 communication, the positioning station B 1 and B is connected to the straight line constituting the two points B 1 2 B 2 , the positioning feet U 1 and U 2 to the straight line B 1 B 2 are respectively P 1 and P 2 ,
  • H is the height of the label to the center of the top plate;
  • the target is neglected in the width dimension of the roadway, and is modeled as one-dimensional positioning.
  • the two points of the positioning labels U 1 and U 2 are connected to form a straight line U 1 U 2 , with the straight line U 1 U 2 as the horizontal axis and the abscissa of U 1 .
  • the abscissa of U 2 is x+L;
  • the vertical axis is the direction upward with the sub-plane in the longitudinal direction of the roadway;
  • the x opt value under the condition to achieve the target's positioning is the x opt value under the condition to achieve the target's positioning.
  • the positioning result is an unbiased estimate, then
  • the position x opt can be obtained by solving the x value that minimizes f(x):
  • the iteration encounters the following conditions: (1) the number of iterations exceeds the threshold N, and the entire iterative process terminates; (2) if but Then the rightward iteration ends, only the leftward iteration; if but Then the left iteration ends and only the right iteration is performed; (3) And The entire iterative process terminates; (4) When f(x) ⁇ f th , the entire iterative process terminates, where f th is the given distance error threshold.
  • the second type of mine moving target the steps are as follows:
  • the method installs two positioning tags horizontally or vertically on a moving target, and communicates with two positioning base stations installed along the roof of the roadway, by constructing a tag and positioning the base station RSSI distance from the estimated distance
  • the optimization function solves the minimum value and obtains the position of the moving target in real time.
  • the optimization function is solved in an iterative manner, which includes two steps: iterative initial value determination and left/right iteration.
  • Overcoming the single-label positioning is affected by the large environmental factors of the mine, significantly improving the positioning accuracy.
  • These equipment and personnel can fully install two or more positioning tags, and use the space constraints between multiple tags to improve positioning accuracy.
  • the invention solves the problem that the single-label mine positioning system has low precision, the positioning result is unstable, and there is a serious position drift problem, and the object of the invention is achieved.
  • the invention adopts the double label method for positioning the mine moving target, and only needs to add a positioning label on the target to be positioned to greatly improve the positioning accuracy, the upgrade cost is low, the deployment is easy, and the long strip object parallel to the roadway is suitable. (such as mine cars, shearers), also applies to long strips (such as personnel) perpendicular to the roadway.
  • 1 is a double label positioning map of a first type of mine moving target of the present invention.
  • FIG. 2 is a double label positioning map of a second type of mine moving target of the present invention.
  • the dual-label high-precision positioning method includes: a first type of mine moving target positioning method and a second type of mine moving target positioning method; the method installs two positioning labels horizontally or vertically on the moving target, and The two positioning base stations installed in the roof of the roadway communicate, and the position of the moving target is obtained in real time by constructing an optimization function between the tag and the positioning base station RSSI distance and the estimated distance and solving the minimum value;
  • the first type of mine moving target positioning method one positioning label U 1 and U 2 are installed on the head and the tail of the target to be positioned, and the distance between the positioning labels U 1 and U 2 is represented by L; and any one of the labels is positioned. to know the location of the target in the roadway; each tag can communicate simultaneously mounting two midline positioning tunnel roof and the base station B 1 and B 2, the positioning station B 1 and B 2 are attached to two points constitute a straight line B 1 B 2 , the positioning feet U 1 and U 2 to the straight line B 1 B 2 are respectively P 1 and P 2 ,
  • H is the height of the label to the center of the top plate; The dimension dimension in the roadway is neglected, and is modeled as one-dimensional positioning.
  • the two points of the positioning labels U 1 and U 2 are connected to form a straight line U 1 U 2 , with the straight line U 1 U 2 as the horizontal axis and the abscissa of U 1 as the x coordinate.
  • the horizontal coordinate of U 2 is x+L;
  • the vertical axis is the upward direction with the dividing plane in the longitudinal direction of the roadway;
  • the x opt value under the condition to achieve the target's positioning is the x opt value under the condition to achieve the target's positioning.
  • the positioning result is an unbiased estimate, then
  • the position x opt can be obtained by solving the x value that minimizes f(x):
  • the iteration encounters the following conditions: (1) the number of iterations exceeds the threshold N, and the entire iterative process terminates; (2) if but Then the rightward iteration ends, only the leftward iteration; if but Then the left iteration ends and only the right iteration is performed; (3) And The entire iterative process terminates; (4) When f(x) ⁇ f th , the entire iterative process terminates, where f th is the given distance error threshold.
  • the second type of mine moving target the steps are as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

一种面向矿井运动目标的双标签高精度定位方法,属于双标签高精度定位方法。该双标签高精度定位方法包括:第一类矿井运动目标定位方法和第二类矿井运动目标定位方法;所述方法在运动目标上水平或垂直安装两个定位标签(U 1 ,U 2),并与沿巷道顶板安装的两个定位基站(B 1,B 2)通信,通过构造标签(U 1 ,U 2)与定位基站(B 1,B 2)RSSI距离与估计距离之间的优化函数并求解其最小值,实时得到运动目标的位置;优化函数的求解通过迭代的方式完成,它包括迭代初值确定、左/右迭代两个主要步骤。仅需在待定位目标上添加一个定位标签即可大幅提高定位精度,升级成本低,部署容易,适合于与巷道平行的长条状对象(如矿车、采煤机),也适用于与巷道垂直的长条状对象(如人员)。

Description

面向矿井运动目标的双标签高精度定位方法 技术领域
本发明涉及一种双标签高精度定位方法,特别是一种面向矿井运动目标的双标签高精度定位方法。
背景技术
在现有矿井定位系统中,一般通过RSSI的方式测得定位目标与定位基站之间的距离,然后通过几何的方法(如三边定位法)求得目标位置。然而,RSSI测距的精确度后衰落效应的影响非常明显,致使测距精度很小,致使采用单标签的矿井定位系统的精度低下,定位结果不稳定,存在严重的位置漂移。
矿井运动目标可根据其外形分成两类,第一类矿井运动目标是与巷道平行的长条状对象,(如矿车、采煤机);第二类矿井运动目标是与巷道垂直的长条状对象,(如人员)。
发明内容
本发明的目的是要提供一种面向矿井运动目标的双标签高精度定位方法,解决单标签的矿井定位系统的精度低下,定位结果不稳定,存在严重的位置漂移的问题。
本发明的目的是这样实现的:该双标签高精度定位方法包括:第一类矿井运动目标定位方法和第二类矿井运动目标定位方法;所述方法在运动目标上水平或垂直安装两个定位标签,并与沿巷道顶板安装的两个定位基站通信,通过构造标签与定位基站RSSI距离与估计距离之间的优化函数并求解其最小值,实时得到运动目标的位置;
所述第一类矿井运动目标定位方法:在待定位目标的头部和尾部各安装一个定位标签U1和U2,定位标签U1和U2之间的距离用L表示;定位出任何一个标签,即可知道目标在巷道中的位置;每个标签都能同时与两个安装巷道顶板中线的定位基站B1和B2通信,将定位基站B1和B2二点相连构成直线B1B2,定位标签U1和U2到直线B1B2的垂足分别为P1和P2,|U1P1|=|U2P2|=H为标签到顶板中心的高度;目标在巷道中宽度维上忽略不计,建模为一维定位,将定位标签U1和U2二点相连构成直线U1U2,以直线U1U2为横轴,U1的横坐标为x,则U2的横坐标为x+L;纵轴为与巷道纵向中分平面向上的方向;求解出x在满足
xopt=min f(x)
条件下的xopt值,实现目标的定位。
所述第一类矿井运动目标定位方法的具体定位过程:
1)在待定位目标的头部和尾部各安装一个定位标签U1和U2
2)构造优化函数
定位基站的坐标(xB,H)和(xB+LB,H)、基站之间的距离|B1B2|=LB是已知的;当定位标 签U1和U2的坐标分别为(x,0)和(x+L,0);xB≤x≤xB+LB;设B1与定位标签U1和U2的距离分别为d11和d12,B2与定位标签U1和U2的距离分别为d21和d22,∠B1U1P1=θ,∠P1U1B2=α;
构造优化函数f(x):
Figure PCTCN2015099317-appb-000001
(1)式右边先平方再开方的目的是为了保证每一项都为正,以免求和的时候正负抵消;其中,
Figure PCTCN2015099317-appb-000002
为标签Ui,i=1,2的坐标,且
Figure PCTCN2015099317-appb-000003
Figure PCTCN2015099317-appb-000004
为定位基站Bj,j=1,2的坐标,且
Figure PCTCN2015099317-appb-000005
这些量中,
Figure PCTCN2015099317-appb-000006
是已知条件,dij可用RSSI的方式得到;节点i、j之间的RSS值遵循对数正态阴影模型:
Figure PCTCN2015099317-appb-000007
其中,PdBm是收发节点之间以dB为单位的功率路径损耗,
Figure PCTCN2015099317-appb-000008
是参考距离d0处测量到的功率,通常d0=1m;χ为阴影效应导致的零均值高斯随机变量,在实际计算中可以将其忽略;η是路径损耗因子;因此,
Figure PCTCN2015099317-appb-000009
于是,(1)式只有x未知。将U1、U2、B1、B2和dij代入(1)式,得:
Figure PCTCN2015099317-appb-000010
如果定位结果是无偏估计,则|UiBj|=dij,从而使得f(x)=0;如果是有偏估计,应取能够使得f(x)最小的x,即待定位目标位置xopt可以通过求解使得f(x)最小的x值获得:
xopt=min f(x)        (5)
3)优化函数的求解
(1)通过单标签矿井目标定位方法获得迭代初值x0
sinθ=(x-xB)/d11,cosθ=H/d11,sinα=(xB+LB-x)/d21,cosα=H/d21
Figure PCTCN2015099317-appb-000011
cosα=H/d21,sinα=(xB+LB-x)/d21,因此,
Figure PCTCN2015099317-appb-000012
针对ΔB1U1B2,根据余弦定理,有:
Figure PCTCN2015099317-appb-000013
利用一元二次方程求根公式解方程(7),并令其为迭代初值x0,得:
Figure PCTCN2015099317-appb-000014
其中a=1,b=-(2xB+LB),
Figure PCTCN2015099317-appb-000015
根据xB≤x≤xB+LB,可以消除一个解,得到唯一的迭代初值;
(2)通过双向迭代法获得最优解
以x0为起始点,令xi+1=xi±Δx,i=0,1,2,…,N,代入(4)式求得第i+1次迭代的f(x)值fi+1(xi);其中,N为预设的最大迭代次数,Δx为迭代步长,若Δx取正号,则向B2的方向迭代(右向迭代),反之则向B1的方向迭代即左向迭代;迭代起始的时候,xopt=x0;在迭代过程中,若fi+1(xi)>fi(xi),则令xopt=xi+1,否则保持不变;为了加快迭代速度,这里同时进行双向迭代;令
Figure PCTCN2015099317-appb-000016
分别对应右向迭代和左向迭代;
迭代遇到下列条件结束:(1)超过迭代次数超过阈值N,整个迭代过程终止;(2)若
Figure PCTCN2015099317-appb-000017
Figure PCTCN2015099317-appb-000018
则右向迭代结束,只进行左向迭代;若
Figure PCTCN2015099317-appb-000019
Figure PCTCN2015099317-appb-000020
则左向迭代结束,只进行右向迭代;(3)
Figure PCTCN2015099317-appb-000021
Figure PCTCN2015099317-appb-000022
整个迭代过程终止;(4)当f(x)≤fth的时候,整个迭代过程终止,其中fth是给定的距离误差阈值。
所述第二类矿井运动目标,步骤如下:
1)分别在待定位目标的头部、中部各安装一个定位标签U1和U2,并令|U1U2|=L,U1到B1B2的垂足P的距离|U1P|=H,|B1B2|=LB
2)构造优化函数,待定位目标位置xopt=min f(x);
3)最优解的求解:
(1)利用
Figure PCTCN2015099317-appb-000023
获得迭代初值;
其中a=1,b=-(2xB+LB),
Figure PCTCN2015099317-appb-000024
根据xB≤x≤xB+LB,可以消除一个解,得到唯一的迭代初值;
(2)通过双向迭代法获得最优解xopt
有益效果,由于采用了上述方案,该方法在运动目标上水平或垂直安装两个定位标签,并与沿巷道顶板安装的两个定位基站通信,通过构造标签与定位基站RSSI距离与估计距离之间的优化函数并求解其最小值,实时得到运动目标的位置。优化函数的求解通过迭代的方式完成,它包括迭代初值确定、左/右迭代两个步骤。克服单标签定位受矿井环境因素较大的缺陷,显著提高定位精度。这些装备和人员完全可以安装两个甚至多个定位标签,利用多个标签之间的空间约束提高定位精度。解决了单标签的矿井定位系统的精度低下,定位结果不稳定,存在严重的位置漂移的问题,达到了本发明的目的。
优点:本发明采用双标签的方法进行矿井运动目标定位,仅需在待定位目标上添加一个定位标签即可大幅提高定位精度,升级成本低,部署容易,适合于与巷道平行的长条状对象(如矿车、采煤机),也适用于与巷道垂直的长条状对象(如人员)。
附图说明:
图1是本发明的第一类矿井运动目标双标签定位图。
图2是本发明的第二类矿井运动目标双标签定位图。
具体实施方式
实施例1:该双标签高精度定位方法包括:第一类矿井运动目标定位方法和第二类矿井运动目标定位方法;所述方法在运动目标上水平或垂直安装两个定位标签,并与沿巷道顶板安装的两个定位基站通信,通过构造标签与定位基站RSSI距离与估计距离之间的优化函数并求解其最小值,实时得到运动目标的位置;
第一类矿井运动目标定位方法:在待定位目标的头部和尾部各安装一个定位标签U1和U2,定位标签U1和U2之间的距离用L表示;定位出任何一个标签,即可知道目标在巷道中的位置;每个标签都能同时与两个安装巷道顶板中线的定位基站B1和B2通信,将定位基站B1和B2二点相连构成直线B1B2,定位标签U1和U2到直线B1B2的垂足分别为P1和P2,|U1P1|=|U2P2|=H为标签到顶板中心的高度;目标在巷道中宽度维上忽略不计,建模为一维定位,将定位标签U1和U2二点相连构成直线U1U2,以直线U1U2为横轴,U1的横坐标为x,则U2的横坐标为x+L;纵轴为与巷道纵向中分平面向上的方向;求解出x在满足
xopt=min f(x)
条件下的xopt值,实现目标的定位。
所述第一类矿井运动目标定位方法的具体定位过程:
1)在待定位目标的头部和尾部各安装一个定位标签U1和U2
2)构造优化函数
定位基站的坐标(xB,H)和(xB+LB,H)、基站之间的距离|B1B2|=LB是已知的;当定位标签U1和U2的坐标分别为(x,0)和(x+L,0);xB≤x≤xB+LB;设B1与定位标签U1和U2的距离分别为d11和d12,B2与定位标签U1和U2的距离分别为d21和d22,∠B1U1P1=θ,∠P1U1B2=α;
构造优化函数f(x):
Figure PCTCN2015099317-appb-000025
(1)式右边先平方再开方的目的是为了保证每一项都为正,以免求和的时候正负抵消;其中,
Figure PCTCN2015099317-appb-000026
为标签Ui,i=1,2的坐标,且
Figure PCTCN2015099317-appb-000027
Figure PCTCN2015099317-appb-000028
为定位基站Bj,j=1,2的坐标,且
Figure PCTCN2015099317-appb-000029
这些量中,
Figure PCTCN2015099317-appb-000030
是已知条件,dij可用RSSI的方式得到;节点i、j之间的RSS值遵循对数正态阴影模型:
Figure PCTCN2015099317-appb-000031
其中,PdBm是收发节点之间以dB为单位的功率路径损耗,
Figure PCTCN2015099317-appb-000032
是参考距离d0处测量到的功率,通常d0=1m;χ为阴影效应导致的零均值高斯随机变量,在实际计算中可以将其忽略;η是路径损耗因子;因此,
Figure PCTCN2015099317-appb-000033
于是,(1)式只有x未知。将U1、U2、B1、B2和dij代入(1)式,得:
Figure PCTCN2015099317-appb-000034
如果定位结果是无偏估计,则|UiBj|=dij,从而使得f(x)=0;如果是有偏估计,应取能够使得f(x)最小的x,即待定位目标位置xopt可以通过求解使得f(x)最小的x值获得:
xopt=min f(x)       (5)
3)优化函数的求解
(1)通过单标签目标定位方法获得迭代初值x0
在图1中,sinθ=(x-xB)/d11,cosθ=H/d11,sinα=(xB+LB-x)/d21,cosα=H/d21,因此,
Figure PCTCN2015099317-appb-000035
cosα=H/d21,sinα=(xB+LB-x)/d21,因此,
Figure PCTCN2015099317-appb-000036
针对ΔB1U1B2,根据余弦定理,有:
Figure PCTCN2015099317-appb-000037
利用一元二次方程求根公式解方程(7),并令其为迭代初值x0,得:
Figure PCTCN2015099317-appb-000038
其中a=1,b=-(2xB+LB),
Figure PCTCN2015099317-appb-000039
根据xB≤x≤xB+LB,可以消除一个解,得到唯一的迭代初值;
(2)通过双向迭代法获得最优解
以x0为起始点,令xi+1=xi±Δx,i=0,1,2,…,N,代入(4)式求得第i+1次迭代的f(x)值fi+1(xi);其中,N为预设的最大迭代次数,Δx为迭代步长,若Δx取正号,则向B2的方向迭代(右向迭代),反之则向B1的方向迭代即左向迭代;迭代起始的时候,xopt=x0;在迭代过程中,若fi+1(xi)>fi(xi),则令xopt=xi+1,否则保持不变;为了加快迭代速度,这里同时进行双向迭代;令
Figure PCTCN2015099317-appb-000040
分别对应右向迭代和左向迭代;
迭代遇到下列条件结束:(1)超过迭代次数超过阈值N,整个迭代过程终止;(2)若
Figure PCTCN2015099317-appb-000041
Figure PCTCN2015099317-appb-000042
则右向迭代结束,只进行左向迭代;若
Figure PCTCN2015099317-appb-000043
Figure PCTCN2015099317-appb-000044
则左向迭代结束,只进行右向迭代;(3)
Figure PCTCN2015099317-appb-000045
Figure PCTCN2015099317-appb-000046
整个迭代过程终止;(4)当f(x)≤fth的时候,整个迭代过程终止,其中fth是给定的距离误差阈值。
所述第二类矿井运动目标,步骤如下:
1)分别在待定位目标的头部、中部各安装一个定位标签U1和U2,并令|U1U2|=L,U1到B1B2的垂足P的距离|U1P|=H,|B1B2|=LB
2)构造优化函数,待定位目标位置xopt=min f(x);
3)最优解的求解:
(1)利用
Figure PCTCN2015099317-appb-000047
获得迭代初值;
其中a=1,b=-(2xB+LB),
Figure PCTCN2015099317-appb-000048
根据xB≤x≤xB+LB,可以消除一个解,得到唯一的迭代初值;
(2)通过双向迭代法获得最优解xopt

Claims (2)

  1. 一种面向矿井运动目标的双标签高精度定位方法,其特征是:该双标签高精度定位方法包括:第一类矿井运动目标定位方法和第二类矿井运动目标定位方法;所述方法在运动目标上水平或垂直安装两个定位标签,并与沿巷道顶板安装的两个定位基站通信,通过构造标签与定位基站RSSI距离与估计距离之间的优化函数并求解其最小值,实时得到运动目标的位置;
    所述第一类矿井运动目标定位方法:在待定位目标的头部和尾部各安装一个定位标签U1和U2,定位标签U1和U2之间的距离用L表示;定位出任何一个标签,即可知道目标在巷道中的位置;每个标签都能同时与两个安装巷道顶板中线的定位基站B1和B2通信,将定位基站B1和B2二点相连构成直线B1B2,定位标签U1和U2到直线B1B2的垂足分别为P1和P2,|U1P1|=|U2P2|=H为标签到顶板中心的高度;目标在巷道中宽度维上忽略不计,建模为一维定位,将定位标签U1和U2二点相连构成直线U1U2,以直线U1U2为横轴,U1的横坐标为x,则U2的横坐标为x+L;纵轴为与巷道纵向中分平面向上的方向;求解出x在满足
    xopt=min f(x)
    条件下的xopt值,实现目标的定位;
    所述第二类矿井运动目标,步骤如下:
    1)分别在待定位目标的头部、中部各安装一个定位标签U1和U2,并令|U1U2|=L,U1到B1B2的垂足P的距离|U1P|=H,|B1B2|=LB
    2)构造优化函数,待定位目标位置xopt=min f(x);
    3)最优解的求解:
    (1)利用
    Figure PCTCN2015099317-appb-100001
    获得迭代初值;
    其中a=1,b=-(2xB+LB),
    Figure PCTCN2015099317-appb-100002
    根据xB≤x≤xB+LB,可以消除一个解,得到唯一的迭代初值;
    (2)通过双向迭代法获得最优解xopt
  2. 根据权利要求1所述的面向矿井运动目标的双标签高精度定位方法,其特征是:所述第一类矿井运动目标定位方法的具体定位过程:
    1)在待定位目标的头部和尾部各安装一个定位标签U1和U2
    2)构造优化函数
    定位基站的坐标(xB,H)和(xB+LB,H)、基站之间的距离|B1B2|=LB是已知的;当定位标签U1和U2的坐标分别为(x,0)和(x+L,0);xB≤x≤xB+LB;设B1与定位标签U1和U2的距离分别为d11和d12,B2与定位标签U1和U2的距离分别为d21和d22,∠B1U1P1=θ,∠P1U1B2=α;
    构造优化函数f(x):
    Figure PCTCN2015099317-appb-100003
    (1)式右边先平方再开方的目的是为了保证每一项都为正,以免求和的时候正负抵消;其中,
    Figure PCTCN2015099317-appb-100004
    为标签Ui,i=1,2的坐标,且
    Figure PCTCN2015099317-appb-100005
    Figure PCTCN2015099317-appb-100006
    为定位基站 Bj,j=1,2的坐标,且
    Figure PCTCN2015099317-appb-100007
    这些量中,
    Figure PCTCN2015099317-appb-100008
    是已知条件,dij可用RSSI的方式得到;节点i、j之间的RSS值遵循对数正态阴影模型:
    Figure PCTCN2015099317-appb-100009
    其中,PdBm是收发节点之间以dB为单位的功率路径损耗,
    Figure PCTCN2015099317-appb-100010
    是参考距离d0处测量到的功率,通常d0=1m;χ为阴影效应导致的零均值高斯随机变量,在实际计算中可以将其忽略;η是路径损耗因子;因此,
    Figure PCTCN2015099317-appb-100011
    于是,(1)式只有x未知。将U1、U2、B1、B2和dij代入(1)式,得:
    Figure PCTCN2015099317-appb-100012
    如果定位结果是无偏估计,则|UiBj|=dij,从而使得f(x)=0;如果是有偏估计,应取能够使得f(x)最小的x,即待定位目标位置xopt可以通过求解使得f(x)最小的x值获得:
    xopt=min f(x)        (5)
    3)优化函数的求解
    (1)通过单标签矿井目标定位方法获得迭代初值x0
    sinθ=(x-xB)/d11,cosθ=H/d11,sinα=(xB+LB-x)/d21,cosα=H/d21
    Figure PCTCN2015099317-appb-100013
    cosα=H/d21,sinα=(xB+LB-x)/d21,因此,
    Figure PCTCN2015099317-appb-100014
    针对ΔB1U1B2,根据余弦定理,有:
    Figure PCTCN2015099317-appb-100015
    利用一元二次方程求根公式解方程(7),并令其为迭代初值x0,得:
    Figure PCTCN2015099317-appb-100016
    其中a=1,b=-(2xB+LB),
    Figure PCTCN2015099317-appb-100017
    根据xB≤x≤xB+LB,可以消除一个解,得到唯一的迭代初值;
    (2)通过双向迭代法获得最优解
    以x0为起始点,令xi+1=xi±Δx,i=0,1,2,…,N,代入(4)式求得第i+1次迭代的f(x)值fi+1(xi);其中,N为预设的最大迭代次数,Δx为迭代步长,若Δx取正号,则向B2的方向迭代(右向迭代),反之则向B1的方向迭代即左向迭代;迭代起始的时候,xopt=x0;在迭代过程中,若fi+1(xi)>fi(xi),则令xopt=xi+1,否则保持不变;为了加快迭代速度,这里同时进行双向迭代;令
    Figure PCTCN2015099317-appb-100018
    分别对应右向迭代和左向迭代;
    迭代遇到下列条件结束:(1)超过迭代次数超过阈值N,整个迭代过程终止;(2)若
    Figure PCTCN2015099317-appb-100019
    Figure PCTCN2015099317-appb-100020
    则右向迭代结束,只进行左向迭代;若
    Figure PCTCN2015099317-appb-100021
    Figure PCTCN2015099317-appb-100022
    则左 向迭代结束,只进行右向迭代;(3)
    Figure PCTCN2015099317-appb-100023
    Figure PCTCN2015099317-appb-100024
    整个迭代过程终止;(4)当f(x)≤fth的时候,整个迭代过程终止,其中fth是给定的距离误差阈值。
PCT/CN2015/099317 2015-06-26 2015-12-29 面向矿井运动目标的双标签高精度定位方法 WO2016206340A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016149818A RU2642522C1 (ru) 2015-06-26 2015-12-29 Высокоточный способ с использованием двойной метки для определения местоположения движущихся объектов в шахте

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510364753.5 2015-06-26
CN201510364753.5A CN105044666B (zh) 2015-06-26 2015-06-26 面向矿井运动目标的双标签高精度定位方法

Publications (1)

Publication Number Publication Date
WO2016206340A1 true WO2016206340A1 (zh) 2016-12-29

Family

ID=54451343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099317 WO2016206340A1 (zh) 2015-06-26 2015-12-29 面向矿井运动目标的双标签高精度定位方法

Country Status (3)

Country Link
CN (1) CN105044666B (zh)
RU (1) RU2642522C1 (zh)
WO (1) WO2016206340A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872938A (zh) * 2017-02-28 2017-06-20 深圳万发创新进出口贸易有限公司 一种室内定位系统
CN109212474A (zh) * 2018-09-21 2019-01-15 华北理工大学 基于eiel电子标签的井下定位方法
CN112881978A (zh) * 2021-01-13 2021-06-01 深圳市翌日科技有限公司 定位系统精度测量方法、装置及存储介质
CN114245310A (zh) * 2021-09-24 2022-03-25 上海欣子信息科技有限公司 一种基于超宽带技术的矿井下多标签协同定位方法及便携设备
CN114994600A (zh) * 2022-05-31 2022-09-02 西北工业大学 基于高度辅助的大规模矿井下用户三维实时定位方法
CN115022800A (zh) * 2022-05-27 2022-09-06 国网江苏省电力有限公司电力科学研究院 一种变电站室内人员自适应定位方法及系统
CN117241214A (zh) * 2023-11-10 2023-12-15 煤炭科学研究总院有限公司 一种井下人员位置实时计算和展示方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044666B (zh) * 2015-06-26 2018-03-20 中国矿业大学 面向矿井运动目标的双标签高精度定位方法
CN108550234B (zh) * 2018-04-24 2023-04-07 成都四相致新科技有限公司 双基站的标签匹配、围栏边界管理方法、装置及存储介质
CN110109057B (zh) * 2019-04-24 2021-04-20 广州市慧建科技有限公司 一种激光定位系统
CN110113712B (zh) * 2019-05-16 2020-12-04 成都精位科技有限公司 定位处理方法及装置
CN110596640B (zh) * 2019-08-23 2022-06-10 华清科盛(北京)信息技术有限公司 一种基于单基站双标签测距的一维定位系统及方法
CN110646761B (zh) * 2019-09-25 2021-02-26 南京沃旭通讯科技有限公司 基于一维地图的煤矿隧道定位方法
CN110764051B (zh) * 2019-12-19 2020-04-07 湖南数格信息科技有限公司 一种基于uwb的轨道交通车辆定位方法、服务器及系统
CN113791383A (zh) * 2021-10-15 2021-12-14 郑州轻工业大学 一种基于超宽带测距的组合双锚点定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070264967A1 (en) * 2006-03-30 2007-11-15 Collins Charles K Personal Locator Beacon
WO2012154153A1 (en) * 2011-05-06 2012-11-15 Innovative Wireless Technologies, Inc. Wireless network compass
CN102947544A (zh) * 2010-04-01 2013-02-27 卡特彼勒环球矿业欧洲有限公司 使用rfid技术在矿洞中定位个人和/或移动机器的方法,和用于实现该方法的长壁工作面开采设备
CN103582120A (zh) * 2013-11-19 2014-02-12 中国矿业大学 一种适用于煤矿井下目标的定位方法
CN104360311A (zh) * 2014-11-13 2015-02-18 三一重型装备有限公司 煤矿机械的定位监控系统
CN105044666A (zh) * 2015-06-26 2015-11-11 中国矿业大学 面向矿井运动目标的双标签高精度定位方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3941290A1 (de) * 1989-12-14 1991-06-20 Bochumer Eisen Heintzmann Verfahren fuer die ueberwachung und steuerung von betriebsablaeufen in einem bergmaennischen untertagebetrieb und ueberwachungs- und steuereinrichtung dazu
US5161857A (en) * 1991-04-29 1992-11-10 The United States Of America, As Represented By The Secretary Of The Interior Teleoperated control system for underground room and pillar mining
RU2180941C2 (ru) * 2000-02-25 2002-03-27 Баранов Андрей Михайлович Автоматизированная система управления и контроля производственных процессов, окружающей среды и местоположения горнорабочих в подземных выработках
RU2265531C2 (ru) * 2003-08-07 2005-12-10 Закрытое акционерное общество "ЭЛВИИС" Система обеспечения безопасности и мониторинга мобильных объектов
RU2401947C2 (ru) * 2009-01-16 2010-10-20 Андрей Викторович Демидюк Шахтная система мониторинга, оповещения и определения местоположения горнорабочих
RU2422641C1 (ru) * 2010-01-11 2011-06-27 Общество с ограниченной ответственностью "УралТехИс" Система мониторинга подвижных объектов

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070264967A1 (en) * 2006-03-30 2007-11-15 Collins Charles K Personal Locator Beacon
CN102947544A (zh) * 2010-04-01 2013-02-27 卡特彼勒环球矿业欧洲有限公司 使用rfid技术在矿洞中定位个人和/或移动机器的方法,和用于实现该方法的长壁工作面开采设备
WO2012154153A1 (en) * 2011-05-06 2012-11-15 Innovative Wireless Technologies, Inc. Wireless network compass
CN103582120A (zh) * 2013-11-19 2014-02-12 中国矿业大学 一种适用于煤矿井下目标的定位方法
CN104360311A (zh) * 2014-11-13 2015-02-18 三一重型装备有限公司 煤矿机械的定位监控系统
CN105044666A (zh) * 2015-06-26 2015-11-11 中国矿业大学 面向矿井运动目标的双标签高精度定位方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872938A (zh) * 2017-02-28 2017-06-20 深圳万发创新进出口贸易有限公司 一种室内定位系统
CN106872938B (zh) * 2017-02-28 2018-12-07 南京七宝机器人技术有限公司 一种室内定位系统
CN109212474A (zh) * 2018-09-21 2019-01-15 华北理工大学 基于eiel电子标签的井下定位方法
CN112881978A (zh) * 2021-01-13 2021-06-01 深圳市翌日科技有限公司 定位系统精度测量方法、装置及存储介质
CN114245310A (zh) * 2021-09-24 2022-03-25 上海欣子信息科技有限公司 一种基于超宽带技术的矿井下多标签协同定位方法及便携设备
CN114245310B (zh) * 2021-09-24 2024-01-19 上海欣子信息科技有限公司 一种基于超宽带技术的矿井下多标签协同定位方法及便携设备
CN115022800A (zh) * 2022-05-27 2022-09-06 国网江苏省电力有限公司电力科学研究院 一种变电站室内人员自适应定位方法及系统
CN115022800B (zh) * 2022-05-27 2024-02-20 国网江苏省电力有限公司电力科学研究院 一种变电站室内人员自适应定位方法及系统
CN114994600A (zh) * 2022-05-31 2022-09-02 西北工业大学 基于高度辅助的大规模矿井下用户三维实时定位方法
CN114994600B (zh) * 2022-05-31 2024-04-26 西北工业大学 基于高度辅助的大规模矿井下用户三维实时定位方法
CN117241214A (zh) * 2023-11-10 2023-12-15 煤炭科学研究总院有限公司 一种井下人员位置实时计算和展示方法
CN117241214B (zh) * 2023-11-10 2024-02-02 煤炭科学研究总院有限公司 一种井下人员位置实时计算和展示方法

Also Published As

Publication number Publication date
CN105044666B (zh) 2018-03-20
RU2642522C1 (ru) 2018-01-25
CN105044666A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
WO2016206340A1 (zh) 面向矿井运动目标的双标签高精度定位方法
CN103199923B (zh) 一种基于可见光通信的井下移动目标光指纹定位跟踪方法
CN109115209B (zh) 一种管廊内人员定位方法及装置
CN110764051B (zh) 一种基于uwb的轨道交通车辆定位方法、服务器及系统
CN109613584B (zh) 基于uwb的无人集卡的定位定向方法
CN104159291A (zh) 一种被动式tdoa定位方法
CN112664270B (zh) 基于多目标活动轨迹实现煤矿巷道分布图重构的方法
CN102395193B (zh) 一种用于无线传感器网络的定位方法
CN103499828A (zh) 浮动车轨迹地图匹配的方法及装置
CN108872934B (zh) 一种基于非视距误差抑制的室内三维定位方法
CN102427602B (zh) 稀疏直接定位方法
CN111751785B (zh) 一种隧道环境下车辆可见光定位方法
CN104950288B (zh) 巷道环境定位方法、装置、系统以及定位标签卡
CN110045329A (zh) 一种两基站二维定位方法
CN107071896A (zh) 一种利用非视距信号实现煤矿弯曲巷道目标定位方法
CN103207388A (zh) 一种斜视条件下的机载干涉sar定标方法
CN103616664A (zh) 一种无参概率密度估计的无源交叉定位方法及系统
CN205373721U (zh) 地下线型空间三维动态定位系统
CN102707268A (zh) 机动雷达组网批处理式误差配准器
CN110596640B (zh) 一种基于单基站双标签测距的一维定位系统及方法
CN102393211A (zh) 一种悬臂式掘进机断面监视系统性能检验方法
CN103796165B (zh) 确定井下人员位置的概率方法
CN117452333A (zh) 一种基于双测量站的方位时差组合的定位方法
CN104457757B (zh) 一种基于前项反馈修正的井下动目标定位方法
CN204115737U (zh) 一种基于惯性制导和射频识别的室内定位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016149818

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896223

Country of ref document: EP

Kind code of ref document: A1