WO2016206152A1 - 一种单锚定点四质量块mems谐振式陀螺仪 - Google Patents

一种单锚定点四质量块mems谐振式陀螺仪 Download PDF

Info

Publication number
WO2016206152A1
WO2016206152A1 PCT/CN2015/084935 CN2015084935W WO2016206152A1 WO 2016206152 A1 WO2016206152 A1 WO 2016206152A1 CN 2015084935 W CN2015084935 W CN 2015084935W WO 2016206152 A1 WO2016206152 A1 WO 2016206152A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
vibration
mode
support frame
masses
Prior art date
Application number
PCT/CN2015/084935
Other languages
English (en)
French (fr)
Inventor
周斌
张嵘
张天
陈志勇
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2016206152A1 publication Critical patent/WO2016206152A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion

Definitions

  • the invention relates to a sensor, in particular to a single anchor fixed point four mass MEMS resonant gyroscope.
  • MEMS Micro Electromechanical System
  • Coriolis vibrating gyroscope has broad application prospects in the field of national defense due to its pure solid state, high reliability, small size and low cost.
  • the internal structure of a typical MEMS Coriolis vibrating gyroscope head can be simplified into a "sensitive mass-spring-damping system" that can vibrate in the x and y directions.
  • the direction of movement of the drive shaft is defined as the x-axis
  • the direction of motion of the detection axis is defined as the y-axis
  • the direction of the angular velocity applied by the outside is defined by the z-axis
  • the three axes of x, y, and z are orthogonal to each other.
  • the drive device When an alternating drive shaft drive voltage is applied to the drive device, the drive device can generate an alternating drive shaft drive force along the x-axis direction that will force the sensitive mass M to vibrate in the x-axis direction, the sensitive mass M
  • the vibration along the x-axis is called the driving motion; in order to make the amplitude of the sensitive mass M as large as possible in the x-axis direction, the frequency of the driving voltage is usually adjusted to be equal to the mechanical resonance frequency of the sensitive mass M vibrating in the x direction, so that the sensitive mass M Resonating in the x-axis direction; in order to ensure the stability of the driving motion amplitude, the displacement of the driving motion is detected by the detecting component, converted into a driving motion detecting voltage, and the driving shaft driving voltage is adjusted according to the magnitude of the driving motion detecting voltage to drive The amplitude of motion is constant.
  • the sensitive mass M will be subjected to Coriolis forces along the y-axis, forcing the sensitive mass M along The y-axis vibrates, and the size of the Coriolis force is proportional to the magnitude of the external input angle.
  • the vibration of the sensitive mass M along the y-axis is called the detection motion; the magnitude of the detected motion displacement is measured by the detecting component, which can be reflected The outside world enters the angular velocity.
  • the working mode of directly obtaining the angular velocity of the external input by detecting the magnitude of the moving output voltage is called an open loop working mode; if a driving force of the detecting shaft is applied by the driving device in the detecting moving direction, the detecting motion of the sensitive mass M is cancelled, and the detection motion is detected by calculation.
  • the way in which the magnitude of the shaft driving force reflects the magnitude of the external input angular velocity is called the force balance working mode.
  • the force balance mode of operation the second-order model error of the sensitive mass M detection axis motion can be effectively suppressed, thereby improving the output stability of the gyro.
  • the environmental adaptability of MEMS Coriolis vibratory gyroscopes directly affects the usability of the device.
  • the traditional MEMS wire vibrating gyroscope supports the resonator structure by using multiple bonding points, and the silicon gyro structure is fixed on the glass substrate.
  • the x and y axis vibrations of the gyroscope are affected by mechanical structure, gas damping and environmental temperature changes. Therefore, although the detection capacitance of the line vibrating gyroscope is large and the signal-to-noise ratio is reliable, since the vibration energy is dissipated and the quality factor is low, it is difficult to further improve the gyro performance.
  • MEMS vibrating ring gyroscope is a new type of gyroscope structure, which is connected to the pedestal by a single support anchor column. Even, the energy dissipation can only be transmitted through the anchoring column and the package atmosphere. Compared with the traditional MEMS vibrating gyroscope, the MEMS vibrating ring gyroscope inherits the characteristics of the high-precision hemisphere gyro, and the angular velocity detection is established in two identical forms of modal energy. On the basis of the conversion, the modal frequency characteristics are consistent with temperature, with high precision and strong anti-interference.
  • the British Space Agency, the University of Michigan, Boeing and other institutions have proposed the design of the ring micromachined gyroscope.
  • the vibration ring gyro has the disadvantages of lighter harmonic mass, high resonance frequency, small amplitude, and capacitance change is not conducive to detection.
  • it is technically difficult to further improve the signal-to-noise ratio.
  • an object of the present invention is to provide a single-anchor fixed-point four-mass MEMS resonant gyroscope that utilizes both the advantages of the conventional MEMS line vibrating gyroscope and the vibrating ring gyroscope while overcoming the respective technical disadvantages of the two.
  • the present invention adopts the following technical solution: a single-anchor fixed-point four-mass MEMS resonant gyroscope characterized in that the gyroscope comprises a substrate layer and a structural layer located above the substrate layer, the structure
  • the layer comprises: a support frame with a central symmetrical structure, an anchor support column fixed at one end to the substrate layer and fixed at the other end to the symmetrical center of the support frame, and symmetrically centered on the anchor support column Distributed around the support frame and connected to the four masses on the support frame by cantilever beams respectively, the mass block can generate "main mode” vibration in the plane of the support frame, or generate "times” Modal "vibration” or simultaneous generation of "main mode” and "sub-mode” vibration; the substrate layer is further provided with a fixed capacitor plate, and the mass is internally provided with a movable capacitor plate, the fixing The capacitor plates are combined with the movable capacitor plates to form a drive capacitor, a drive detection capacitor, a
  • the “main mode” vibration refers to: the vibration generated by the mass by the driving capacitor actively; the “sub-modal” vibration means: when there is an angular velocity input perpendicular to the plane of the support frame The mass is subjected to a coercive force to generate a vibration perpendicular to the "main mode” vibration direction in the plane of the support frame.
  • the mass is a central symmetrical structure, and there are two mutually perpendicular symmetry axes; the working mode of the gyroscope includes “symmetric mode” and “decoupling mode”, and the stiffness configuration of the cantilever beam can be adjusted to change The working mode of the gyroscope; the "symmetric mode” can work under the "rate mode” or the "rate integration mode”; wherein the "main mode” vibration of the "symmetric mode” is Four of the masses vibrate in a radial direction along a circle centered on the anchoring support column, and two adjacent masses have opposite movement directions at the same time; their "sub-modal” vibrations are four The mass moves tangentially along a circle centered on the anchoring support column, and adjacent two of the masses move in opposite directions at the same time; the "decoupling mode
  • the "main mode” vibration of the formula is the radial vibration of two symmetrical cylinders centered on the anchoring support column, and the direction of motion is opposite at the same time, while the other two
  • Two stop mechanisms are respectively disposed on the substrate layer near the two ends of the mass, and the stop mechanism or the mass is respectively provided with a "main mode” and a “secondary” respectively with the mass
  • the modal "vibration direction corresponds to the first limiting protrusion and the second limiting protrusion.
  • the cantilever beam has a "several" shape, and one ends of the two “several” shaped cantilever beams are respectively fixedly connected with the two ends of the mass, and the two cantilevers are fixedly connected to the ends of the adjacent two masses.
  • the other end of the beam is first connected, and then fixedly connected to a corner of the support frame through a small short beam to form a "Y" shaped connecting portion.
  • the middle of the support frame is provided with a "field" shaped weight reduction hole centered symmetrically with the anchor support column.
  • the invention adopts the above technical solutions, and has the following advantages: 1.
  • the single-anchor fixed-point four-mass MEMS resonant gyroscope of the invention retains the large detecting capacitance of the line vibrating gyroscope due to the electrode structure arranged by the comb-tooth arrangement.
  • the invention adopts a centrally symmetric four-mass resonator structure, the differential detection method can be used for noise reduction processing, and the detection sensitivity is high and the quality factor is high. 3.
  • the invention is connected to the substrate layer by using a separate anchoring support column, so that the energy dissipation can only be transmitted through the anchoring support column and the package atmosphere, the modal frequency characteristics are consistent with the temperature change, and the gyroscope energy dissipation is small, High precision, strong anti-interference and strong environmental adaptability. 4.
  • the "symmetric mode" of the present invention can operate under either “rate mode” or “rate integration mode”. 5.
  • the "decoupling mode” of the present invention can reduce the coupling amount of the gyroscope, greatly improve the detection accuracy, and improve the performance of the gyroscope. 6.
  • the invention has high application value in the field of angular velocity sensors.
  • FIG. 1 is a schematic diagram of the principle of a typical MEMS resonator
  • FIG. 2 is a schematic structural view of a single anchor fixed point four mass MEMS resonant gyroscope according to the present invention
  • Figure 3 is a schematic enlarged view of the mass of the present invention.
  • FIG. 4 is a schematic diagram of a main mode of the present invention operating in a "symmetric mode"
  • Figure 5 is a schematic diagram of a sub-modality of the present invention operating in "symmetric mode"
  • Figure 6 is a schematic diagram of the main mode of the present invention operating in "decoupled mode".
  • the single anchor fixed-point four-mass MEMS resonant gyroscope includes a glass (only by way of example, and not limited thereto) a substrate layer (not shown) and
  • the structural layer and the structural layer comprise: an anchor support column 1, a support frame 2 and four mass blocks 3.
  • the substrate layer is located below the structural layer, and one end of the anchor support column 1 is bonded to the substrate layer, and the support frame 2 is a central symmetric structure.
  • the other end of the anchoring support column 1 is fixedly connected to the symmetrical center of the support frame 2; the four masses 3 are symmetrically distributed uniformly around the support frame 2 along the circumference centered on the anchor support column 1, and pass through the cantilever beam 4, respectively.
  • each of the mass blocks 3 can be moved relative to the support frame 2 in the plane of the support frame 2; the comb-tooth arrangement (only for this example)
  • the fixed capacitor plate bonding is fixed on the substrate layer (the bonding points are indicated by grid lines in FIG. 3), and each of the masses 3 is internally provided with a comb-shaped arrangement
  • One or more types of movable capacitor plates, fixed capacitor plates and movable capacitor plates are correspondingly combined, To 3 and each mass corresponding to the driving capacitor, the capacitance drive detection, the detection capacitance and / or capacitive force balance.
  • Applying a driving voltage to the driving capacitor can drive the mass 3 to move toward or away from the support frame 2 in the plane of the support frame 2.
  • the driving voltage is an alternating voltage
  • the mass 3 is in the plane of the support frame 2 with respect to The support frame 2 generates vibration, and the frequency of the alternating voltage is adjusted to be consistent with the mechanical resonance frequency of the mass 3, so that the mass 3 can be resonated.
  • the vibration generated by the mass of the mass by the driving capacitor is called “main mode” vibration; the four masses are operated under the “main mode", when there is angular velocity input perpendicular to the plane of the support frame, according to According to the Coriolis force principle, the mass 3 will be subjected to a coercive force perpendicular to the "main mode” vibration direction, and the mass 3 will be forced to generate a vibration perpendicular to the "main mode” direction in the plane of the support frame, which is called “Second mode” vibration.
  • the working mode of the single-anchor fixed-point four-mass MEMS resonant gyroscope of the present invention has two modes:
  • One is a "symmetric mode" whose "main mode” is the radial vibration of four masses along a circle centered on the anchoring support column, ie away from or near the anchoring support column, and the adjacent two masses are At the same time, the direction of motion is opposite, that is, when one mass moves closer to the anchoring support column, the other mass moves away from the anchoring support column; its “submodal” is four masses along the anchoring support column.
  • the tangential vibration of the center circle, and the adjacent two masses move in opposite directions at the same time, that is, close to each other or away from each other.
  • the other is the “decoupling mode”, where the “main mode” is two symmetrical masses along the anchoring support column.
  • the radial vibration of the center circle, and the direction of motion at the same time is opposite, that is, away from or close to the anchoring support column, while the other two masses are stationary;
  • the "submodal” is four masses along the anchor.
  • the tangential vibration of the circle centered on the support column that is, the circumferential vibration that maintains the distance from the anchor support column, and the adjacent two masses move in opposite directions at the same time, that is, close to each other or away from each other.
  • the "symmetric mode” can work under the “rate mode”, that is, the excitation force is artificially applied by the driving capacitor, so that the mass 3 vibrates under the "main mode", and when there is an external angular velocity input, the detection is performed.
  • the "sub-mode” motion displacement size reflects the external input angular velocity; it can also work in the "rate integration mode", that is, the "main mode” and “sub-mode” resonant frequencies of the gyroscope are configured to be the same, and the quality Block 3 works in the free vibration mode, and its vibration frequency is the resonance frequency.
  • the angle of the external input is reflected by measuring the angle between the free vibration mode of the mass 3 and the reference direction of the substrate layer.
  • each of the masses 3 has a central symmetrical structure, and there are two mutually perpendicular symmetry axes to ensure that the "main mode" and "submodal" vibration frequencies of the gyroscope in the respective working states are the same.
  • the first limiting protrusion 51 and the second limiting protrusion 52 corresponding to the "main mode” and “sub-modal" vibration directions of the mass 3 are respectively disposed on the stopper mechanism 5.
  • the mass 3 will contact the first limiting protrusion 51 or the second limiting protrusion 52 of the stopping mechanism 5, thereby protecting the internal structure of the mass 3 from damage, and the mass 3
  • the fixed capacitor plate and the movable capacitor plate do not stick during movement; or, the mass 3 is provided with a corresponding portion corresponding to the "main mode” and "submode” vibration directions of the mass 3, respectively.
  • the stopping mechanism 5 contacts the first limiting protrusion 51 or the second limiting protrusion 52 of the mass 3, thereby protecting The internal structure of the mass 3 is not damaged, and the fixed capacitor plate and the movable capacitor plate do not stick when the mass 3 is moved.
  • the cantilever beam 4 has a "several" shape, and one ends of the two “several” shaped cantilever beams 4 are fixedly connected to the two ends of the mass 3, respectively, and the connection points are at the mass 3
  • the other end of the cantilever beam 4 connected to the end portions of the adjacent two masses 3 is first connected, and then fixedly connected to a corner of the support frame 2 through a small short beam 6 to form a "Y"-shaped connecting portion.
  • the middle of the support frame 2 is provided with a "field" shaped weight reducing hole 21 which is centrally symmetrical with the anchoring support column 1 to reduce the overall quality of the support frame and the stress concentration under the working state; four of the support frame 2 The outer sides are all circular and the four corners are chamfered.
  • adjusting the stiffness of the cantilever beam 4 can realize the adjustment of the resonant frequency of the gyroscope by adjusting The stiffness configuration of the cantilever beam 4 allows the gyroscope to operate in a "symmetric mode" or "decoupled mode".

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

一种单锚定点四质量块MEMS谐振式陀螺仪,包括基板层和位于基板层上方的结构层,结构层包括:中心对称结构的支撑架(2),一端键合到基板层上、另一端固定连接于支撑架(2)对称中心的锚定支撑柱(1)和以锚定支撑柱(1)为中心对称均匀分布在支撑架(2)四周、并分别通过悬臂梁(4)连接到支撑架(2)上的四个质量块(3),每个质量块(3)均能够在支撑架(2)平面内产生"主模态"振动,或"次模态"振动,或同时产生"主模态"和"次模态"振动;基板层上还设置有固定电容极板,每个质量块(3)内部设置有可动电容极板,固定电容极板与可动电容极板对应组合,形成与每个质量块(3)相对应的驱动电容、驱动检测电容、检测电容和/或力平衡电容。

Description

一种单锚定点四质量块MEMS谐振式陀螺仪 技术领域
本发明涉及一种传感器,尤其涉及一种单锚定点四质量块MEMS谐振式陀螺仪。
背景技术
MEMS(Micro Electromechanical System,微机电系统)科氏振动陀螺因其纯固态、高可靠性、小尺寸及低成本等特点,在国防领域有着广阔的应用前景。
如图1所示,一个典型的MEMS科氏振动陀螺表头内部结构可简化成一个能沿x、y方向振动的“敏感质量-弹簧-阻尼系统”。其中,将驱动轴运动方向定义为x轴,检测轴运动方向定义为y轴,定义z轴为外界施加的角速度方向,x、y、z三轴互相正交。当向驱动装置施加交变的驱动轴驱动电压后,驱动装置可产生沿x轴方向的交变驱动轴驱动力,该驱动轴驱动力将迫使敏感质量M沿x轴方向振动,将敏感质量M沿x轴的振动称为驱动运动;为使敏感质量M在x轴方向上的振幅尽可能大,通常调节驱动电压的频率等于敏感质量M在x方向振动的机械谐振频率,以使敏感质量M在x轴方向谐振;为保证驱动运动振幅稳定,通过检测部件将驱动运动的位移检测出来,转换为驱动运动检测电压,根据驱动运动检测电压的大小来调节驱动轴驱动电压的大小,以使驱动运动振幅恒定。如果此时整个系统绕z轴旋转(即沿z轴有角速度输入),则根据科里奥利力原理,敏感质量M将受到沿y轴的科里奥利力作用,从而迫使敏感质量M沿y轴振动,且该科里奥利力的大小与外界输入角度大小成正比,将敏感质量M沿y轴的振动称为检测运动;通过检测部件测量出检测运动位移的大小,即可反映出外界输入角速度的大小。直接由检测运动输出电压大小得到外界输入角速度大小的工作方式称为开环工作方式;如果在检测运动方向上通过驱动装置施加一个检测轴驱动力,来抵消敏感质量M的检测运动,通过计算检测轴驱动力的大小来反映外界输入角速度大小的方式被称为力平衡工作方式。在力平衡工作方式下,敏感质量M检测轴运动的二阶模型误差可以被有效抑制,从而提高陀螺的输出稳定性。MEMS科氏振动陀螺的环境适应性直接影响器件的实用性。
传统MEMS线振动陀螺使用多键合点对谐振子结构进行支撑,将硅陀螺结构固定在玻璃基板上,在工作状态下陀螺的x、y轴振动会受到机械结构、气体阻尼及环境温度变化的影响,因此虽然线振动陀螺的检测电容较大,信噪比可靠,但由于振动能量耗散,品质因数低,很难进一步提高陀螺性能。
MEMS振动环陀螺是一种新型陀螺仪结构形式,它通过单支撑锚定柱与基座相 连,能量耗散只能通过锚定柱和封装氛围进行传递,与传统MEMS线振动陀螺相比,MEMS振动环陀螺继承了高精度半球陀螺的特性,其角速度检测建立在两相同形式模态能量转换的基础上,模态频率特性随温度变化一致,精度高、抗干扰性强。近年来,英国宇航局、密歇根大学、波音公司等机构相继提出了环形微机械陀螺的设计。但同时,振动环陀螺由于其工作原理限制,存在谐振子质量较轻,谐振频率高,振幅小,电容变化不利于检测等弊端,在目前的工艺水平下,进一步提升信噪比存在技术难度。
发明内容
针对上述问题,本发明的目的是提供一种既同时利用传统MEMS线振动陀螺和振动环陀螺的优点,又克服两者各自技术缺点的单锚定点四质量块MEMS谐振式陀螺仪。
为实现上述目的,本发明采取以下技术方案:一种单锚定点四质量块MEMS谐振式陀螺仪,其特征在于,该陀螺仪包括基板层和位于所述基板层上方的结构层,所述结构层包括:中心对称结构的支撑架,一端键合到所述基板层上、另一端固定连接于所述支撑架的对称中心的锚定支撑柱,和以所述锚定支撑柱为中心对称均匀分布在所述支撑架四周,并分别通过悬臂梁连接到所述支撑架上的四个质量块,所述质量块能够在所述支撑架平面内产生“主模态”振动,或者产生“次模态”振动,或者同时产生“主模态”和“次模态”振动;所述基板层上还设置有固定电容极板,所述质量块内部设置有可动电容极板,所述固定电容极板与所述可动电容极板相对应组合,形成与所述质量块相对应的驱动电容、驱动检测电容、检测电容和/或力平衡电容。
所述“主模态”振动是指:通过所述驱动电容主动使所述质量块产生的振动;所述“次模态”振动是指:当垂直于所述支撑架平面方向有角速度输入时,所述质量块受到科式力的作用,在所述支撑架平面内产生垂直于所述“主模态”振动方向的振动。
所述质量块为中心对称结构,存在两个互相垂直的对称轴;所述陀螺仪的工作模式包括“对称模式”和“解耦模式”,通过调整所述悬臂梁的刚度配置,能改变所述陀螺仪的工作模式;所述“对称模式”既可工作在“速率模式”下,也可工作在“速率积分模式”下;其中,所述“对称模式”的“主模态”振动为四个所述质量块沿以所述锚定支撑柱为中心的圆的径向振动,并且相邻两所述质量块同一时刻的运动方向相反;其“次模态”振动为四个所述质量块沿以所述锚定支撑柱为中心的圆的切向振动,并且相邻两所述质量块在同一时刻运动方向相反;所述“解耦模 式”的“主模态”振动为两个相对称的所述质量块沿所述锚定支撑柱为中心的圆的径向振动,且同一时刻的运动方向相反,而另两个所述质量块静止不动;其“次模态”振动为四个所述质量块沿以所述锚定支撑柱为中心的圆的切向振动,并且相邻两所述质量块在同一时刻运动方向相反;所述“速率模式”是通过所述驱动电容施加激励力,使所述质量块在“主模态”下振动,当有外界角速度输入时,通过检测所述质量块的“次模态”运动位移大小来反映外界输入角速度大小;所述“速率积分模式”是将所述陀螺仪的“主模态”和“次模态”谐振频率配置为相同,所述质量块自由振动,振动频率为谐振频率,当有外界角度输入时,通过测量所述质量块自由振动振型与所述基板层基准方向的夹角来反映外界输入的角度。
所述基板层上、靠近所述质量块两端分别设置有两个止挡机构,所述止挡机构或者所述质量块上设置有分别与所述质量块的“主模态”和“次模态”振动方向相对应的第一限位凸起和第二限位凸起。
所述悬臂梁为“几”字形结构,两个所述“几”字形悬臂梁的一端分别与所述质量块的两端固定连接,与相邻两质量块端部固定连接的两所述悬臂梁的另一端先连接,再通过一段小短梁与所述支撑架的一角固定连接,形成“Y”字形连接部分。
所述支撑架中部开设有中心对称于所述锚定支撑柱的“田”字形减重孔。
本发明由于采取以上技术方案,其具有以下优点:1、本发明的单锚定点四质量块MEMS谐振式陀螺仪,由于采用梳齿状排布的电极结构,保留了线振动陀螺仪大检测电容、信噪比高的优点。2、本发明由于采用中心对称的四质量块谐振子结构,可以使用差分方式对检测信号进行降噪处理,检测灵敏度高、品质因数高。3、本发明由于采用单独的锚定支撑柱与基板层相连,使能量耗散只能通过锚定支撑柱和封装氛围进行传递,模态频率特性随温度变化一致,陀螺仪能量耗散小、精度高、抗干扰性强、环境适应性强。4、本发明的“对称模式”既可工作在“速率模式”下,也可工作在“速率积分模式”下。5、本发明的“解耦模式”能够降低陀螺仪耦合量,大幅提升检测精度,提高陀螺仪性能。6、本发明在角速度传感器领域有很高的应用价值。
附图说明
以下结合附图来对本发明进行详细的描绘。然而应当理解,附图的提供仅为了更好地理解本发明,它们不应该理解成对本发明的限制。
图1是典型MEMS谐振器的原理示意图;
图2是本发明单锚定点四质量块MEMS谐振式陀螺仪的结构示意图;
图3是本发明质量块的放大结构示意图;
图4是本发明工作在“对称模式”下的主模态示意图;
图5是本发明工作在“对称模式”下的次模态示意图;
图6是本发明工作在“解耦模式”下的主模态示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
如图2、图3所示,本发明提供的单锚定点四质量块MEMS谐振式陀螺仪,其包括玻璃(仅以此为例,并不限于此)基板层(图中未示出)与结构层,结构层包括:锚定支撑柱1、支撑架2和四个质量块3,基板层位于结构层下方,锚定支撑柱1一端键合到基板层上,支撑架2为中心对称结构,锚定支撑柱1另一端固定连接到支撑架2的对称中心;四个质量块3沿以锚定支撑柱1为中心的圆周对称均匀分布在支撑架2的四周,并分别通过悬臂梁4连接到支撑架2上,且相互对称的两个质量块3完全相同,每个质量块3均可在支撑架2平面内相对于支撑架2运动;梳齿状排布(仅以此为例,并不限于此)的固定电容极板键合固定在基板层上(键合点在附图3中以网格线标示出),每个质量块3内部均设置有梳齿状排布的一种或多种可动电容极板,固定电容极板和可动电容极板相对应组合,可以形成与每个质量块3相对应的驱动电容、驱动检测电容、检测电容和/或力平衡电容。
在驱动电容上施加驱动电压,可以驱动质量块3在支撑架2平面内相对于支撑架2靠近或者远离运动,当驱动电压为交变电压时,则质量块3在支撑架2平面内相对于支撑架2产生振动,调整交变电压频率与质量块3机械谐振频率一致,可以使质量块3谐振。通过驱动电容人为主动使质量块3产生的振动,称为“主模态”振动;使四个质量块在“主模态”下工作,当在垂直于支撑架平面方向有角速度输入时,根据科氏力原理,质量块3将受到垂直于“主模态”振动方向的科式力,质量块3将被迫在支撑架平面内产生垂直于“主模态”方向的振动,称其为“次模态”振动。
上述实施例中,如图4、图5、图6所示,本发明单锚定点四质量块MEMS谐振式陀螺仪的工作模式有两种:
一种为“对称模式”,其“主模态”为四个质量块沿以锚定支撑柱为中心的圆的径向振动,即远离或靠近锚定支撑柱,并且相邻两质量块在同一时刻的运动方向相反,即一个质量块做靠近锚定支撑柱运动时,另一个质量块做远离锚定支撑柱的运动;其“次模态”为四个质量块沿以锚定支撑柱为中心的圆的切向振动,并且相邻两质量块在同一时刻运动方向相反,即同时相互靠近或远离。
另一种为“解耦模式”,其“主模态”为两个相对称的质量块沿锚定支撑柱为 中心的圆的径向振动,且同一时刻的运动方向相反,即同时远离或靠近锚定支撑柱,而另外两个质量块静止不动;其“次模态”为四个质量块沿以锚定支撑柱为中心的圆的切向振动,即保持与锚定支撑柱距离不变的圆周振动,并且相邻两质量块在同一时刻运动方向相反,即同时相互靠近或远离。
上述实施例中,“对称模式”既可工作在“速率模式”下,即通过驱动电容人为施加激励力,使质量块3在“主模态”下振动,当有外界角速度输入时,通过检测“次模态”的运动位移大小来反映外界输入角速度大小;也可工作在“速率积分模式”下,即将陀螺仪的“主模态”和“次模态”谐振频率配置为相同,而质量块3工作在自由振动模式,其振动频率为谐振频率,当有外界角度输入时,通过测量质量块3自由振动振型与基板层基准方向的夹角来反映外界输入的角度。
上述实施例中,每个质量块3均为中心对称结构,存在两个互相垂直的对称轴,以保证陀螺仪在各个工作状态下的“主模态”和“次模态”振动频率相同。
上述实施例中,如图3所示,在基板层上、靠近每个质量块3的两端分别设置有两个“L”形(仅以此为例,并不限于此)止挡机构5,且位于质量块3一端部的两止挡机构5对称布置在质量块3对称轴的两侧
上述实施例中,在止挡机构5上设置有分别与质量块3的“主模态”和“次模态”振动方向相对应的第一限位凸起51和第二限位凸起52,当陀螺仪过载时,质量块3会和止挡机构5的第一限位凸起51或第二限位凸起52接触,从而保护质量块3的内部结构不受损坏,同时质量块3在运动时固定电容极板和可动电容极板不会发生粘连;或者,在质量块3上设置有分别与质量块3的“主模态”和“次模态”振动方向相对应的第一限位凸起51和第二限位凸起52,当陀螺仪过载时,止挡机构5会和质量块3的第一限位凸起51或第二限位凸起52接触,从而保护质量块3的内部结构不受损坏,同时质量块3在运动时固定电容极板和可动电容极板不会发生粘连。
上述实施例中,如图2所示,悬臂梁4为“几”字形结构,两个“几”字形悬臂梁4的一端分别与质量块3的两端固定连接,且连接点在质量块3的对称轴上,与相邻两质量块3端部连接的悬臂梁4的另一端先连接,再通过一段小短梁6与支撑架2的一角固定连接,从而形成“Y”字形连接部分,以保证相邻质量块3的振动耦合性。
上述实施例中,支撑架2中部开设有中心对称于锚定支撑柱1的“田”字形减重孔21,以减小支撑架的整体质量和工作状态下的应力集中;支撑架2的四条外边均为圆弧形,四角均倒角。
上述实施例中,调整悬臂梁4刚度,可实现陀螺仪谐振频率的调节,通过调整 悬臂梁4的刚度配置,可使陀螺仪的工作状态在“对称模式”或“解耦模式”下。
上述各实施例仅用于说明本发明,其中各部件的结构、设置位置、及其连接方式等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (10)

  1. 一种单锚定点四质量块MEMS谐振式陀螺仪,其特征在于,该陀螺仪包括基板层和位于所述基板层上方的结构层,所述结构层包括:
    中心对称结构的支撑架,
    一端键合到所述基板层上、另一端固定连接于所述支撑架的对称中心的锚定支撑柱,和
    以所述锚定支撑柱为中心对称均匀分布在所述支撑架四周,并分别通过悬臂梁连接到所述支撑架上的四个质量块,所述质量块能够在所述支撑架平面内产生“主模态”振动,或者产生“次模态”振动,或者同时产生“主模态”和“次模态”振动;
    所述基板层上还设置有固定电容极板,所述质量块内部设置有可动电容极板,所述固定电容极板与所述可动电容极板相对应组合,形成与所述质量块相对应的驱动电容、驱动检测电容、检测电容和/或力平衡电容。
  2. 如权利要求1所述的一种单锚定点四质量块MEMS谐振式陀螺仪,其特征在于,
    所述“主模态”振动是指:通过所述驱动电容主动使所述质量块产生的振动;
    所述“次模态”振动是指:当垂直于所述支撑架平面方向有角速度输入时,所述质量块受到科式力的作用,在所述支撑架平面内产生垂直于所述“主模态”振动方向的振动。
  3. 如权利要求1或2所述的一种单锚定点四质量块MEMS谐振式陀螺仪,其特征在于,所述质量块为中心对称结构,存在两个互相垂直的对称轴;所述陀螺仪的工作模式包括“对称模式”和“解耦模式”,通过调整所述悬臂梁的刚度配置,能改变所述陀螺仪的工作模式;所述“对称模式”既可工作在“速率模式”下,也可工作在“速率积分模式”下;其中,
    所述“对称模式”的“主模态”振动为四个所述质量块沿以所述锚定支撑柱为中心的圆的径向振动,并且相邻两所述质量块同一时刻的运动方向相反;其“次模态”振动为四个所述质量块沿以所述锚定支撑柱为中心的圆的切向振动,并且相邻两所述质量块在同一时刻运动方向相反;
    所述“解耦模式”的“主模态”振动为两个相对称的所述质量块沿所述锚定支撑柱为中心的圆的径向振动,且同一时刻的运动方向相反,而另两个所述质量块静止不动;其“次模态”振动为四个所述质量块沿以所述锚定支撑柱为中心的圆的切 向振动,并且相邻两所述质量块在同一时刻运动方向相反;
    所述“速率模式”是通过所述驱动电容施加激励力,使所述质量块在“主模态”下振动,当有外界角速度输入时,通过检测所述质量块的“次模态”运动位移大小来反映外界输入角速度大小;
    所述“速率积分模式”是将所述陀螺仪的“主模态”和“次模态”谐振频率配置为相同,所述质量块自由振动,振动频率为谐振频率,当有外界角度输入时,通过测量所述质量块自由振动振型与所述基板层基准方向的夹角来反映外界输入的角度。
  4. 如权利要求1或2所述的一种单锚定点四质量块MEMS谐振式陀螺仪,其特征在于,所述基板层上、靠近所述质量块两端分别设置有两个止挡机构,所述止挡机构或者所述质量块上设置有分别与所述质量块的“主模态”和“次模态”振动方向相对应的第一限位凸起和第二限位凸起。
  5. 如权利要求3所述的一种单锚定点四质量块MEMS谐振式陀螺仪,其特征在于,所述基板层上、靠近所述质量块两端分别设置有两个止挡机构,所述止挡机构或者所述质量块上设置有分别与所述质量块的“主模态”和“次模态”振动方向相对应的第一限位凸起和第二限位凸起。
  6. 如权利要求1或2或5所述的一种单锚定点四质量块MEMS谐振式陀螺仪,其特征在于,所述悬臂梁为“几”字形结构,两个所述“几”字形悬臂梁的一端分别与所述质量块的两端固定连接,与相邻两质量块端部固定连接的两所述悬臂梁的另一端先连接,再通过一段小短梁与所述支撑架的一角固定连接,形成“Y”字形连接部分。
  7. 如权利要求3所述的一种单锚定点四质量块MEMS谐振式陀螺仪,其特征在于,所述悬臂梁为“几”字形结构,两个所述“几”字形悬臂梁的一端分别与所述质量块的两端固定连接,与相邻两质量块端部固定连接的两所述悬臂梁的另一端先连接,再通过一段小短梁与所述支撑架的一角固定连接,形成“Y”字形连接部分。
  8. 如权利要求4所述的一种单锚定点四质量块MEMS谐振式陀螺仪,其特征在于,所述悬臂梁为“几”字形结构,两个所述“几”字形悬臂梁的一端分别与所述质量块的两端固定连接,与相邻两质量块端部固定连接的两所述悬臂梁的另一端先连接,再通过一段小短梁与所述支撑架的一角固定连接,形成“Y”字形连接部分。
  9. 如权利要求1或2或5或7或8所述的一种单锚定点四质量块MEMS谐振式陀螺仪,其特征在于,所述支撑架中部开设有中心对称于所述锚定支撑柱的“田”字形减重孔。
  10. 如权利要求6所述的一种单锚定点四质量块MEMS谐振式陀螺仪,其特征在于,所述支撑架中部开设有中心对称于所述锚定支撑柱的“田”字形减重孔。
PCT/CN2015/084935 2015-06-26 2015-07-23 一种单锚定点四质量块mems谐振式陀螺仪 WO2016206152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510362795.5A CN104931032B (zh) 2015-06-26 2015-06-26 一种单锚定点四质量块mems谐振式陀螺仪
CN201510362795.5 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016206152A1 true WO2016206152A1 (zh) 2016-12-29

Family

ID=54118310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084935 WO2016206152A1 (zh) 2015-06-26 2015-07-23 一种单锚定点四质量块mems谐振式陀螺仪

Country Status (2)

Country Link
CN (1) CN104931032B (zh)
WO (1) WO2016206152A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174772A (zh) * 2020-01-13 2020-05-19 无锡莱斯能特科技有限公司 一种三轴mems陀螺仪
CN112857350A (zh) * 2021-02-25 2021-05-28 瑞声科技(南京)有限公司 Mems陀螺仪
CN113091722A (zh) * 2021-04-02 2021-07-09 瑞声开泰科技(武汉)有限公司 三轴微机械陀螺仪及角速度的测量方法
CN113297707A (zh) * 2021-06-21 2021-08-24 上海交通大学 基于联合仿真的谐振陀螺优化方法和系统
CN113390402A (zh) * 2020-03-12 2021-09-14 北京微元时代科技有限公司 一种微机械音叉陀螺
CN113405541A (zh) * 2021-06-23 2021-09-17 南京工程学院 一种低温度敏感性谐振式加速度计结构
CN114659522A (zh) * 2022-05-23 2022-06-24 苏州敏芯微电子技术股份有限公司 级联止挡装置、mems传感器
CN114689088A (zh) * 2022-06-02 2022-07-01 中国人民解放军国防科技大学 一种用于振动陀螺不平衡质量检测的弹性支撑电极结构
WO2023065834A1 (zh) * 2021-06-21 2023-04-27 西北工业大学 一种适用于mems模态局部化传感器的环状耦合系统
WO2023226560A1 (zh) * 2022-05-23 2023-11-30 华为技术有限公司 一种用于检测角速度的装置、方法和系统
CN117537794A (zh) * 2024-01-09 2024-02-09 南京理工大学 一种带有驱动放大耦合结构的四质量微机械陀螺仪
CN117606459A (zh) * 2024-01-24 2024-02-27 南京元感微电子有限公司 一种单锚点mems陀螺仪

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10914584B2 (en) 2011-09-16 2021-02-09 Invensense, Inc. Drive and sense balanced, semi-coupled 3-axis gyroscope
CN105606841B (zh) * 2015-12-18 2018-10-30 浙江日雅摩托车有限公司 一种速度传感器
CN105606083B (zh) * 2016-03-08 2018-04-10 清华大学 一种外支撑四质量块mems谐振式陀螺仪
JP6562878B2 (ja) * 2016-06-30 2019-08-21 株式会社東芝 角速度取得装置
US10627235B2 (en) * 2016-12-19 2020-04-21 Analog Devices, Inc. Flexural couplers for microelectromechanical systems (MEMS) devices
JP6640176B2 (ja) * 2016-12-19 2020-02-05 アナログ ディヴァイスィズ インク 同期化マスジャイロスコープ
CN106932609B (zh) * 2017-03-02 2019-05-21 清华大学 一种单锚定点四质量块mems六轴惯性传感器
EP3649432B1 (en) * 2017-07-06 2022-07-27 InvenSense, Inc. Drive and sense balanced, semi-coupled 3-axis gyroscope
CN109798886B (zh) * 2017-11-16 2024-05-07 上海矽睿科技股份有限公司 一种陀螺仪结构
CN108061546A (zh) * 2017-12-04 2018-05-22 成都振芯科技股份有限公司 四质量双解耦陀螺仪
CN109387191B (zh) * 2018-09-28 2020-07-14 清华大学 一种高温度适应性mems平面谐振陀螺结构
CN109211216B (zh) * 2018-11-15 2022-03-18 成都振芯科技股份有限公司 带过载保护机构的微机电陀螺仪
CN110260851B (zh) * 2019-05-17 2021-07-02 北京航空航天大学 一种基于双亚波长光栅腔检测的光力学微机械陀螺
WO2021217667A1 (zh) * 2020-04-30 2021-11-04 瑞声声学科技(深圳)有限公司 陀螺仪
CN111998840B (zh) * 2020-08-28 2022-08-12 中电科技集团重庆声光电有限公司 一种mems多轴振动传感器结构
CN113237621B (zh) * 2021-04-29 2023-01-24 瑞声开泰科技(武汉)有限公司 一种基于体振动的翻转倾斜检测结构
CN116295319B (zh) * 2023-05-25 2023-08-04 清华大学 一种角速度检测装置和微机械陀螺仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868692A (zh) * 2007-11-15 2010-10-20 罗伯特·博世有限公司 偏航率传感器
US20110061460A1 (en) * 2009-09-11 2011-03-17 Invensense, Inc Extension -mode angular velocity sensor
CN102077054A (zh) * 2008-06-27 2011-05-25 感应动力股份公司 微陀螺仪
CN102183246A (zh) * 2009-12-24 2011-09-14 意法半导体股份有限公司 具有改进的驱动结构的集成微机电陀螺仪
CN102305626A (zh) * 2011-07-07 2012-01-04 西北工业大学 一种新型mems离心式陀螺
CN103438878A (zh) * 2013-09-15 2013-12-11 滕金燕 一种三轴微机械陀螺仪

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590383C (zh) * 2006-06-13 2010-02-17 北京航空航天大学 一种谐振式微机械陀螺
CN101324434A (zh) * 2008-08-01 2008-12-17 北京航空航天大学 一种高性能谐振硅微机械陀螺
US8322213B2 (en) * 2009-06-12 2012-12-04 The Regents Of The University Of California Micromachined tuning fork gyroscopes with ultra-high sensitivity and shock rejection
CN102062604A (zh) * 2009-11-17 2011-05-18 北京大学 一种电容式微机械音叉陀螺仪
CN102278982B (zh) * 2011-07-13 2013-07-24 中国人民解放军国防科学技术大学 四质量块硅微机械陀螺耦合误差的抑制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868692A (zh) * 2007-11-15 2010-10-20 罗伯特·博世有限公司 偏航率传感器
CN102077054A (zh) * 2008-06-27 2011-05-25 感应动力股份公司 微陀螺仪
US20110061460A1 (en) * 2009-09-11 2011-03-17 Invensense, Inc Extension -mode angular velocity sensor
CN102183246A (zh) * 2009-12-24 2011-09-14 意法半导体股份有限公司 具有改进的驱动结构的集成微机电陀螺仪
CN102305626A (zh) * 2011-07-07 2012-01-04 西北工业大学 一种新型mems离心式陀螺
CN103438878A (zh) * 2013-09-15 2013-12-11 滕金燕 一种三轴微机械陀螺仪

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174772B (zh) * 2020-01-13 2023-05-02 无锡莱斯能特科技有限公司 一种三轴mems陀螺仪
CN111174772A (zh) * 2020-01-13 2020-05-19 无锡莱斯能特科技有限公司 一种三轴mems陀螺仪
CN113390402A (zh) * 2020-03-12 2021-09-14 北京微元时代科技有限公司 一种微机械音叉陀螺
CN112857350A (zh) * 2021-02-25 2021-05-28 瑞声科技(南京)有限公司 Mems陀螺仪
CN113091722A (zh) * 2021-04-02 2021-07-09 瑞声开泰科技(武汉)有限公司 三轴微机械陀螺仪及角速度的测量方法
CN113297707A (zh) * 2021-06-21 2021-08-24 上海交通大学 基于联合仿真的谐振陀螺优化方法和系统
GB2625464A (en) * 2021-06-21 2024-06-19 Univ Northwestern Polytechnical Annular coupling system suitable for MEMS modal localization sensor
CN113297707B (zh) * 2021-06-21 2023-09-05 上海交通大学 基于联合仿真的谐振陀螺优化方法和系统
WO2023065834A1 (zh) * 2021-06-21 2023-04-27 西北工业大学 一种适用于mems模态局部化传感器的环状耦合系统
CN113405541A (zh) * 2021-06-23 2021-09-17 南京工程学院 一种低温度敏感性谐振式加速度计结构
WO2023226560A1 (zh) * 2022-05-23 2023-11-30 华为技术有限公司 一种用于检测角速度的装置、方法和系统
CN114659522A (zh) * 2022-05-23 2022-06-24 苏州敏芯微电子技术股份有限公司 级联止挡装置、mems传感器
CN114689088B (zh) * 2022-06-02 2022-08-02 中国人民解放军国防科技大学 一种用于振动陀螺不平衡质量检测的弹性支撑电极结构
CN114689088A (zh) * 2022-06-02 2022-07-01 中国人民解放军国防科技大学 一种用于振动陀螺不平衡质量检测的弹性支撑电极结构
US11885641B2 (en) 2022-06-02 2024-01-30 National University Of Defense Technology Elastically supported electrode substrate for detecting unbalanced mass of resonant gyroscope
CN117537794A (zh) * 2024-01-09 2024-02-09 南京理工大学 一种带有驱动放大耦合结构的四质量微机械陀螺仪
CN117537794B (zh) * 2024-01-09 2024-04-23 南京理工大学 一种带有驱动放大耦合结构的四质量微机械陀螺仪
CN117606459A (zh) * 2024-01-24 2024-02-27 南京元感微电子有限公司 一种单锚点mems陀螺仪
CN117606459B (zh) * 2024-01-24 2024-03-22 南京元感微电子有限公司 一种单锚点mems陀螺仪

Also Published As

Publication number Publication date
CN104931032B (zh) 2018-04-10
CN104931032A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2016206152A1 (zh) 一种单锚定点四质量块mems谐振式陀螺仪
CN105606083B (zh) 一种外支撑四质量块mems谐振式陀螺仪
TWI647425B (zh) 改良的陀螺儀結構與陀螺儀
CA2586707C (en) Oscillating micro-mechanical sensor of angular velocity
JP6514790B2 (ja) ジャイロスコープ
US9689678B2 (en) MEMS balanced inertial angular sensor and method for balancing such a sensor
JP4620364B2 (ja) 駆動および感知プレートを有する分離された共振子ジャイロスコープ
CN109883602B (zh) 一种基于soi的自补偿硅微谐振式压力敏感芯片
KR101927647B1 (ko) 3축 mems 자이로스코프
US20100089157A1 (en) Micro-Machined Accelerometer
FI126070B (en) Improved ring gyroscope structure and gyroscope
CN109839104A (zh) 单芯片多敏感单元的中心轴对称mems陀螺仪
JP6527235B2 (ja) ジャイロスコープ
CN109883603B (zh) 一种基于soi的硅微谐振式压力敏感芯片谐振器
CN106441261B (zh) 一种微机械陀螺仪
JP2001508537A (ja) ソリッドステート多軸ジャイロスコープ
CN205449087U (zh) 外支撑四质量块mems谐振式陀螺仪
Ruan et al. A mode-localized tilt sensor with resolution of 2.4 e-5 degrees within the range of 50 degrees
CN116124110A (zh) 一种面内扭摆式四质量块mems陀螺仪
Wang et al. Micro-machined resonant out-of-plane accelerometer with a differential structure fabricated by silicon-on-insulator–MEMS technology
CN105737810A (zh) 高灵敏度盘状体声波硅微陀螺仪
CN116940804A (zh) 具有平面结构的振动陀螺仪
CN204255365U (zh) 一种双轴分体式差分硅微谐振式加速度计
JP2012202799A (ja) バイアス安定性に優れた振動型ジャイロ
Thakur et al. Analysis of acceleration sensitivity in MEMS tuning fork gyroscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896047

Country of ref document: EP

Kind code of ref document: A1