WO2023226560A1 - 一种用于检测角速度的装置、方法和系统 - Google Patents

一种用于检测角速度的装置、方法和系统 Download PDF

Info

Publication number
WO2023226560A1
WO2023226560A1 PCT/CN2023/082664 CN2023082664W WO2023226560A1 WO 2023226560 A1 WO2023226560 A1 WO 2023226560A1 CN 2023082664 W CN2023082664 W CN 2023082664W WO 2023226560 A1 WO2023226560 A1 WO 2023226560A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
unit
detection
detection unit
mass block
Prior art date
Application number
PCT/CN2023/082664
Other languages
English (en)
French (fr)
Inventor
陈冬阳
胡启方
徐景辉
唐世豪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023226560A1 publication Critical patent/WO2023226560A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Definitions

  • the present application relates to the technical fields of microelectromechanical system (MEMS) sensors and inertial devices, and more specifically, to a device, method and system for detecting angular velocity.
  • MEMS microelectromechanical system
  • MEMS gyroscope as a typical miniature inertial sensor, can sense angular velocity or angle in space. Because it uses micromachining technology to achieve structural processing, it has the advantages of small size, low cost, and low power consumption. It has important application value in both military and civilian fields and is widely used in consumer electronics, medical equipment, automotive electronics, and mining. Equipment and port equipment and other fields.
  • multi-axis gyroscopes adopt a shared drive structure. Compared with the spliced type (that is, composed of multiple single-axis gyroscopes, each single-axis gyroscope requires a separate The advantages of the drive structure are high integration, small size and low cost.
  • the multi-axis gyroscope needs a good mechanical coupling structure to ensure the synchronous driving of the mass block. It also needs to have an independent detection mode and Coriolis force detection structure. Therefore, a good mechanical decoupling structure is needed to reduce the cross-axis error.
  • high-performance gyroscopes also require that the mechanical motion of the driving mode and detection mode must have high symmetry to ensure quality factor and structural stability, so as to achieve low angular velocity random walk, high bias stability and low Acceleration sensitivity and other performance parameters.
  • the above elements are often difficult to achieve simultaneously, which directly makes it difficult for the multi-axis gyroscope to achieve high performance, or the performance difference between axes is large.
  • This application provides a device, method and system for detecting angular velocity, which can detect the angular velocity of roll and pitch axes, while improving integration, sensitivity, consistency of horizontal dual axes, and reducing cross-axis coupling errors.
  • a device for detecting angular velocity includes: a first detection unit, a second detection unit, a third detection unit, a fourth detection unit, and an elastic coupling unit.
  • the elastic coupling unit is used to generate four antinode motions.
  • the elastic coupling unit includes a first connection end, a second connection end, a third connection end and a fourth connection end, where the first connection end, the second connection end, the third connection end The third connection end and the fourth connection end are on the first plane, the first detection unit is connected to the first connection end, the second detection unit is connected to the second connection end, the third detection unit is connected to the third connection end, and the third detection unit is connected to the third connection end.
  • the first and third detection units can perform anti-phase movement along the first axis
  • the second detection unit and the fourth detection unit can perform anti-phase movement along the second axis
  • the first axis is orthogonal to the second axis
  • the external angular velocity When inputting the device, at least one of the first detection unit, the second detection unit, the third detection unit and the fourth detection unit can output a first signal when a first displacement occurs along the third axis, and the third axis is connected to the first plane. Vertically, the first signal is used to indicate the size of the first displacement, and the first displacement is used to determine the size of the angular velocity.
  • the device disclosed in this application couples four detection units to realize linear motion in two orthogonal directions in the plane through the four antinode motions of the elastic coupling unit. It can realize the detection of the angular velocity of the roll and pitch axes, and helps to improve the integration The accuracy, sensitivity, and consistency of the horizontal dual axes reduce the cross-axis coupling error.
  • first axis and second axis can also be other axes besides the y-axis and x-axis, as long as the first axis and the second axis are orthogonal, which is not limited in this application.
  • the third axis can also be other than the z-axis.
  • the first plane can be other than the plane where the x-axis and the y-axis are located. It only needs to ensure that the third axis is consistent with the first plane.
  • the plane is vertical, which is not limited in this application.
  • the first detection unit and the third detection unit are centrally symmetrically configured about the elastic coupling unit, and the second detection unit and the fourth detection unit are centrally symmetrically configured about the elastic coupling unit.
  • the four detection units are symmetrically distributed in pairs, which helps to improve integration, sensitivity, and consistency of the horizontal dual axes, and reduce cross-axis coupling errors.
  • the above device further includes a central anchor point and a base, and the elastic structural unit is connected to the base through the central anchor point.
  • the above device further includes a central support unit, the central support unit is used to connect the elastic coupling unit and the central anchor point.
  • the first detection unit includes a first mass block, a first hinge unit, a first decoupling unit, a first support unit, and a first anchor point.
  • the first end of the block is connected to the first node of the elastic coupling unit through a first hinge unit and a first decoupling unit, the first hinge unit has a degree of freedom to twist about a second axis, and the first decoupling unit has a degree of freedom about a first decoupling unit.
  • the second end of the first mass block is connected to the base through the first support unit and the first anchor point, and the first support unit has the freedom to twist about the second axis.
  • the second detection unit includes a second mass block, a second hinge unit, a second decoupling unit, a second support unit, and a second anchor point.
  • the first end of the second mass block passes through the second hinge unit and the second decoupling unit.
  • the second hinge unit Connected to the second node of the elastic coupling unit, the second hinge unit has a degree of freedom to twist around the first axis, the second decoupling unit has a degree of freedom to twist around the second axis, and the second end of the second mass passes through the second node.
  • the two support units and the second anchor point are connected to the base, and the second support unit has a degree of freedom to twist around the first axis.
  • the third detection unit includes a third mass block, a third hinge unit, a third decoupling unit, a third support unit, and a third anchor point.
  • the first end of the third mass block passes through the third hinge unit and the third decoupling unit.
  • the third hinge unit Connected to the third node of the elastic coupling unit, the third hinge unit has a degree of freedom to twist around the second axis, the third decoupling unit has a degree of freedom to twist around the first axis, and the second end of the third mass block passes through the third node.
  • the three support units and the third anchor point are connected to the base, and the third support unit has a degree of freedom to twist around the second axis.
  • the fourth detection unit includes a fourth mass block, a fourth hinge unit, a fourth decoupling unit, a fourth support unit, and a fourth anchor point.
  • the first end of the fourth mass block passes through the fourth hinge unit and the fourth decoupling unit.
  • the fourth hinge unit Connected to the fourth node of the elastic coupling unit, the fourth hinge unit has a degree of freedom to twist around the first axis, the fourth decoupling unit has a degree of freedom to twist around the second axis, and the second end of the fourth mass passes through the
  • the four support units and the fourth anchor point are connected to the base, and the fourth support unit has a degree of freedom to twist around the first axis.
  • the differential torsional motion of the first-axis and second-axis detection units can detect the angular velocity of the roll and pitch axes, while improving the integration, sensitivity, and performance consistency of the horizontal two-axis.
  • the elastic coupling unit is respectively coupled to the first axis and the second axis detection unit to achieve good mechanical coupling in the torsional motion of the mass group of the first axis and the second axis detection unit respectively.
  • the four decoupling units have torsional degrees of freedom around the first and second axes, which can decouple the torsional motions of the first and second axis detection units from each other, thereby reducing cross-axis coupling errors.
  • the first detection unit includes a first driving capacitor
  • the second detection unit includes a second driving capacitor
  • the third detection unit includes a third driving capacitor
  • the fourth detection unit Includes fourth drive capacitor.
  • the first driving capacitor is used to generate a first driving force to drive the first detection unit to move along the first axis
  • the second driving capacitor is used to generate a second driving force to drive the second detection unit to move along the second axis
  • the third driving capacitor is used to generate a first driving force to drive the first detection unit to move along the first axis.
  • the third driving force is generated to drive the first detection unit to move along the first axis
  • the fourth driving capacitor is used to generate a fourth driving force to drive the second detection unit to move along the second axis, where the first driving force and the third driving force are opposite to each other.
  • the second driving force and the fourth driving force are in opposite phases
  • the elastic coupling unit performs four antinode motions under the joint action of the first detection unit, the second detection unit, the third detection unit and the fourth detection unit.
  • driving capacitors are respectively provided on the four detection units, which can generate driving forces in the positive and negative directions of the first axis and the positive and negative directions of the second axis respectively. Under the joint action of the four driving forces, the four detection units and the elasticity are realized.
  • the four-wave antinode motion of the coupling unit helps improve driving efficiency and reduce power consumption.
  • the first detection unit includes a first driving capacitor
  • the third detection unit includes a third driving capacitor.
  • the first driving capacitor is used to generate a first driving force to drive the first detection unit to move along the first axis
  • the third driving capacitor is used to generate a third driving force to drive the first detection unit to move along the first axis, where the first driving force In anti-phase with the third driving force
  • the first detection unit and the third detection unit drive the second detection unit and the fourth detection unit to move in anti-phase along the second axis through the four antinode movements of the elastic coupling unit.
  • the second detection unit includes a second driving capacitor
  • the fourth detection unit includes a fourth driving capacitor.
  • the second driving capacitor is used to generate a second driving force to drive the second detection unit to move along the second axis
  • the fourth driving capacitor is used to generate a fourth driving force to drive the second detection unit to move along the second axis, where the second driving force In anti-phase with the fourth driving force, the second detection unit and the fourth detection unit drive the first detection unit and the third detection unit to move in anti-phase along the first axis through the four antinode movements of the elastic coupling unit.
  • only driving capacitors are set on the two detection units, which can generate driving forces in the positive and negative directions of the first axis or the positive and negative directions of the second axis respectively. Under the action of the two driving forces, four detection units and elasticity can be realized.
  • the four-node motion of the coupling unit helps simplify the drive circuit and save costs.
  • the above device further includes a detection electrode, and the detection electrode and at least one of the first mass block and the third mass block form a roll detection capacitor, and the roll detection capacitor is for detecting the displacement of the first mass block or the third mass block along the third axis, and outputting a rolling electrical signal.
  • the rolling electrical signal is used to indicate the angular velocity of the device in the second axis direction; the detection electrode and the second mass block and At least one of the fourth mass blocks constitutes a pitch detection capacitor.
  • the pitch detection capacitor is used to detect the displacement of the second mass block or the fourth mass block along the third axis and output a pitch electrical signal.
  • the pitch electrical signal is used to indicate that the device is in the third axis. Angular velocity along one axis.
  • the elastic coupling unit when the external angular velocity is input to the above device, the elastic coupling unit performs four antinode movements, causing the first detection unit and the third detection unit to flip in anti-phase around the second axis. movement, the second detection unit and the fourth detection unit move in opposite phases along the first axis.
  • the elastic coupling unit when the external angular velocity is input to the above device, the elastic coupling unit performs four antinode movements, so that the first detection unit and the third detection unit move in phase around the first axis. , the second detection unit and the fourth detection unit move along the second axis in phase.
  • the above-mentioned elastic coupling unit includes one of the following structures: a circular ring, a multi-circular ring, a square frame, a multi-square frame, a square plate, an elliptical ring, a multi-elliptical ring, an ellipse Plate, rhombus frame, multi-rhombus frame, rhombus plate.
  • these structures can produce symmetrical four-node motion or can produce structures that are close to symmetrical four-node motion.
  • the central support unit can be omitted and directly connected to the central anchor point. connect.
  • the above device further includes a heading detection capacitor, the heading detection capacitor includes a fixed heading detection electrode and a movable heading detection electrode, and the movable heading detection electrode is in phase with the heading detection mass block.
  • the heading detection mass block is at least one of the first mass block, the second mass block, the third mass block and the fourth mass block, the heading detection capacitor is used to detect the displacement of the heading detection mass block along the third axis, and output Heading electrical signal.
  • the heading electrical signal is used to indicate the angular velocity in the third axis direction.
  • the heading detection mass block is at least one of the first mass block and the third mass block
  • the support unit connected to the heading detection mass block has a bending degree of freedom along the first axis
  • the solution connected to the heading detection mass block The coupling unit has a bending freedom along the second axis; alternatively, the heading detection mass is at least one of the second mass and the fourth mass, and the support unit connected to the heading detection mass has a bending freedom along the second axis.
  • Degree of freedom the decoupling unit connected to the heading detection mass has a bending degree of freedom along the first axis.
  • the device includes multiple heading detection capacitors, differential detection of displacement can be achieved.
  • heading detection capacitors are provided on all four mass blocks, it helps to improve the symmetry of the device and the sensitivity of detection.
  • the above device further includes a driving detection capacitor, the driving detection capacitor includes a fixed driving detection electrode and a movable driving detection electrode, and the movable driving detection electrode is in phase with the driving detection mass block.
  • the driving detection mass block is at least one of the first mass block, the second mass block, the third mass block and the fourth mass block, the driving detection capacitor is used to detect the displacement of the driving detection mass block, and output the driving detection electrical signal , the drive detection electrical signal is used for closed-loop feedback control of the vibration amplitude, frequency and phase of the drive mode. In this way, by setting the drive detection capacitor to output the drive detection signal, closed-loop control of the device can be realized.
  • the first detection unit and the second detection unit are configured symmetrically about a center of the elastic coupling unit. Doing so will help achieve good cross-axis decoupling, reduce inter-axis coupling errors, and improve measurement accuracy.
  • a system for detecting angular velocity includes: a drive detection circuit, a closed-loop control circuit, a drive circuit, and a device as in any one of the first aspects.
  • the drive detection circuit is used to amplify and phase-shift the drive modal mass block displacement electrical signal output by the device. , obtain the first electrical signal, the closed-loop control circuit performs calculation and processing on the first electrical signal to obtain the second electrical signal, the drive circuit outputs a drive signal according to the second electrical signal, and the drive signal is used for the elastic coupling unit of the drive device to perform four antinodes.
  • the movement causes the first mass block and the third mass block of the device to move in anti-phase along the first axis, and the second mass block and the fourth mass block of the device to move in anti-phase along the second axis. In doing so, the system can achieve closed-loop control.
  • a system for detecting angular velocity includes: at least one of a roll detection circuit, a pitch detection circuit and a sailing detection circuit, and a device according to any one of the first aspects of claims 1 to 15, where the roll detection circuit is used to detect the roll voltage output by the device.
  • the signal is processed to obtain the second-axis angular velocity;
  • the pitch detection circuit is used to process the pitch electrical signal output by the device to obtain the first-axis angular velocity;
  • the heading detection circuit is used to process the heading electrical signal output by the device to obtain the third-axis angular velocity.
  • the above-mentioned roll detection circuit is used to detect the output of the device.
  • the processing of the roll electrical signal includes: the roll detection circuit is used to perform at least one of differential processing, amplification processing and demodulation processing on the roll electrical signal output by the device.
  • the above-mentioned pitch detection circuit is used to process the pitch electrical signal output by the device, including: the pitch detection circuit is used to perform differential processing and amplification of the pitch electrical signal output by the device. At least one of processing and demodulation processing.
  • the above-mentioned heading detection circuit is used to process the heading electrical signal output by the device, including: the heading detection circuit is used to perform differential processing and amplification of the heading electrical signal output by the device. At least one of processing and demodulation processing.
  • a fourth aspect provides a method for detecting angular velocity.
  • the method is executed by the device of any one of the above-mentioned first aspects.
  • the method includes: when an external angular velocity is input to the device, a first detection unit and a second detection unit. , at least one of the third detection unit and the fourth detection unit outputs a first signal when the first displacement occurs along the third axis, the third axis is perpendicular to the first plane, and the first signal is used to indicate the size of the first displacement, The first displacement is used to determine the magnitude of the angular velocity.
  • the first signal includes at least one of a roll electrical signal, a pitch electrical signal and a heading circuit signal.
  • Figure 1 is a schematic structural diagram of the first device for detecting angular velocity provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a second device for detecting angular velocity provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of an elastic coupling unit provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a third device for detecting angular velocity provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of an example of movement of a device for detecting angular velocity provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of another example of movement of a device for detecting angular velocity provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a fourth device for detecting angular velocity provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a fifth device for detecting angular velocity provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the first system for detecting angular velocity provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of a second system for detecting angular velocity provided by an embodiment of the present application.
  • Figure 11 is a schematic flowchart of a method for detecting angular velocity provided by an embodiment of the present application.
  • MEMS gyroscope as a typical miniature inertial sensor, can sense angular velocity or angle in space. Because it uses micromachining technology to achieve structural processing, it has the advantages of small size, low cost, and low power consumption. It has important application value in both military and civilian fields and is widely used in consumer electronics, medical equipment, automotive electronics, and mining. Equipment and port equipment and other fields.
  • the MEMS gyroscope uses the physical principle of Coriolis force to sense angular velocity.
  • the angular velocity input in the direction of the orthogonal axis of the linear motion will be on the third orthogonal axis. direction produces the Coriolis force.
  • F, v, and ⁇ are all directional.
  • the " ⁇ " in the formula is the vector cross product, and F, v, and ⁇ are vertical in pairs. Therefore, by detecting the Coriolis force in a reasonable way, the angular velocity information can be obtained.
  • the bias stability of MEMS gyroscopes can be less than 1 degree per hour (dph), and its performance is comparable to low-end fiber optic gyroscopes.
  • Another advantage of the MEMS gyroscope is that it can integrate multiple axes on a single chip, so the 6-axis inertial navigation unit has the advantage of being small.
  • most multi-axis gyroscopes adopt a shared drive structure.
  • each single-axis gyroscope requires a separate The advantages of the drive structure are high integration, small size and low cost.
  • the multi-axis gyroscope needs a good mechanical coupling structure to ensure the synchronous driving of the mass block. It also needs to have an independent detection mode and Coriolis force detection structure. Therefore, a good mechanical decoupling structure is needed to reduce the cross-axis error.
  • high-performance gyroscopes also require that the mechanical motion of the driving mode and detection mode must have high symmetry to ensure quality factor and structural stability, so as to achieve low angular velocity random walk, high bias stability and low Acceleration sensitivity and other performance parameters.
  • the above elements are often difficult to achieve simultaneously, which directly makes it difficult for the multi-axis gyroscope to achieve high performance, or the performance difference between axes is large.
  • this application provides a device, method and system for detecting angular velocity, in order to achieve detection of angular velocity of roll and pitch axes, while improving integration, sensitivity, consistency of horizontal dual-axis performance, and reducing cross-over Axis coupling error.
  • Figure 1 is a schematic structural diagram of the first device for detecting angular velocity provided by an embodiment of the present application.
  • the device 200 includes a first detection unit 220 , a second detection unit 230 , a third detection unit 240 , a fourth detection unit 250 and an elastic coupling unit 210 .
  • the elastic coupling unit 210 is used to generate four antinode motions.
  • the elastic coupling unit 210 includes a first connecting end 211 , a second connecting end 212 , a third connecting end 213 and a fourth connecting end 214 .
  • the first connection end 211, the second connection end 212, the third connection end 213 and the fourth connection end 214 are on the first plane (the plane where the x-axis and the y-axis are located in the figure), the first detection unit 220, and the first The connection terminal 211 is connected, the second detection unit 230 is connected to the second connection terminal 212, the third detection unit 240 is connected to the third connection terminal 213, and the fourth detection unit 250 is connected to the fourth connection terminal 214.
  • the first detection unit 220 and the third detection unit 240 perform anti-phase linear motion along the first axis (y-axis as shown in the figure), and the second detection unit 230 and The fourth detection unit 250 performs anti-phase linear motion along a second axis (x-axis as shown in the figure), the first axis being orthogonal to the second axis.
  • the external angular velocity is input to the device 200
  • at least one of the first detection unit 220, the second detection unit 230, the third detection unit 240 and the fourth detection unit 250 can detect a signal along the third axis (z-axis as shown in the figure).
  • outputs a first signal when the first displacement occurs, the third axis is perpendicular to the first plane, the first signal is used to indicate the size of the first displacement, and the first displacement is used to determine the size of the angular velocity.
  • four antinodes motion means that the vibration shape of the elastic coupling unit has four symmetrical antinodes, two of which move away from the center at the same time, and the other two antinodes move close to the center at the same time.
  • the anti-phase line Movement means that the first detection unit 220 and the third detection unit 240 move away from the center at the same time or close to the center at the same time along the first axis (y-axis as shown in the figure).
  • the first detection unit 220 and the third detection unit 240 are configured symmetrically about the center of the elastic coupling unit 210
  • the second detection unit 230 and the fourth detection unit 250 are configured symmetrically about the center of the elastic coupling unit 210 .
  • the four detection units are symmetrically distributed in pairs, which helps to improve integration, sensitivity, and consistency of the horizontal dual axes, and reduce cross-axis coupling errors.
  • the first axis and the second axis can also be other axes besides the y-axis and the x-axis, and it is only necessary to ensure that the first axis and the second axis are orthogonal.
  • the third axis can also be an axis other than the z-axis.
  • the first plane can be another plane other than the plane where the x-axis and the y-axis are located, as long as It is sufficient to ensure that the third axis is perpendicular to the first plane, which is not limited in this application.
  • the above-mentioned first signal may be a collective name for multiple displacement signals.
  • the first detection unit 220 the second detection unit 230 , the third detection unit 240 and the fourth detection unit 250
  • a plurality of different first signals can be output. These different first signals are all signals that can determine the magnitude of the displacement, and the displacement determined according to these different first signals can be different.
  • the device disclosed in this application couples four detection units to realize linear motion in two orthogonal directions in the plane through the four antinode motions of the elastic coupling unit. It can realize the detection of the angular velocity of the roll and pitch axes, and helps to improve the integration The consistency of accuracy, sensitivity, and horizontal dual-axis performance reduces cross-axis coupling errors.
  • FIG. 2 is a schematic structural diagram of a second device for detecting angular velocity provided by an embodiment of the present application.
  • device 200 shows a detailed example of a device for detecting angular velocity.
  • the device 200 further includes a central anchor point (6) and a base (9), and the elastic coupling unit (4) is connected to the base (9) through the central anchor point (6).
  • the device 200 may also include a central support unit (5) for connecting the elastic coupling unit (4) and the central anchor point (6).
  • the structural schematic diagram of the elastic coupling unit (4) can be shown in Figure 3.
  • the elastic coupling unit (4) includes one of the following structures: ring, multiple rings, square frame, multiple square frames, square plate, elliptical ring, multiple Oval ring, oval plate, rhombus frame, multi-rhombus frame, rhombus plate.
  • these structures can all produce symmetrical four-node resonant motion or can produce structures that are close to symmetrical four-node resonant motion.
  • the elastic coupling unit (4) is a solid structure such as a disk or plate
  • the central support unit ( 5) connected directly to the central anchor point (6).
  • the first detection unit may include a first mass block (1), a first hinge unit (2), a first decoupling unit (3), and a first support unit (5 ), the first anchor point (6), the first end of the first mass block (1) is connected to the first node of the elastic coupling unit (4) through the first hinge unit (2) and the first decoupling unit (3).
  • the first hinge unit (2) has a degree of freedom to twist about a second axis (x-axis as shown in the figure), and the first decoupling unit has a degree of freedom to twist about a first axis (y-axis as shown in the figure) degree of freedom
  • the second end of the first mass block (1) is connected to the base (9) through the first support unit (5) and the first anchor point (6).
  • the first support unit (5) has a diameter around the second Degrees of freedom in axis torsion.
  • the third detection unit may include a third mass block, a third hinge unit, a third decoupling unit, a third support unit, and a third anchor point. The first end of the third mass block passes through the third hinge unit and the third anchor point.
  • the third decoupling unit is connected to the third node of the elastic coupling unit.
  • the third hinge unit has a degree of freedom to twist around the second axis.
  • the third decoupling unit has a degree of freedom to twist around the first axis.
  • the third mass block has a third degree of freedom.
  • the two ends are connected to the base through a third support unit and a third anchor point, and the third support unit has a degree of freedom to twist around the second axis.
  • the first detection unit and the third detection unit have the same structure, and the second detection unit and the fourth detection unit have the same structure, which will not be described again here.
  • the device 300 may include less than 4 anchor points.
  • the first anchor point, the second anchor point, the third anchor point, and the fourth anchor point may be common anchor points.
  • the differential torsional motion of the first axis and the second axis detection unit is realized, and the detection of the angular velocity of the roll and pitch axes can be realized.
  • the four decoupling units have torsional degrees of freedom around the first and second axes, which can decouple the torsional motions of the first and second axis detection units from each other, thereby reducing cross-axis coupling errors.
  • FIG 4 is a schematic structural diagram of a third device for detecting angular velocity provided by an embodiment of the present application.
  • device 400 shows a more detailed example of a device for detecting angular velocity.
  • the first detection unit, the second detection unit, the third detection unit and the fourth detection unit are arranged symmetrically about the center of the elastic coupling unit.
  • bomb The sexual coupling unit (3) has the degree of freedom of bending deformation in the first plane (such as the plane where the x-axis and the y-axis are located), and it has a four-wave antinode deformation mode structure, such as the ring structure shown in Figure 4, which can Alternatively, other structures shown in Figure 3 may also be used, which are not limited in this application.
  • the first mass (5a), the second mass (5b), the third mass (5c) and the fourth mass (5d) are distributed along the central circumference of the elastic coupling unit (3) of the annular structure.
  • the side of each mass near the center is decoupled by hinge units (i.e., the first hinge unit (11a), the second hinge unit (11b), the third hinge unit (11c) and the fourth hinge unit (11d)).
  • the units ie, the first decoupling unit (12a), the second decoupling unit (12b), the third decoupling unit (12c) and the fourth decoupling unit (12d)) are respectively connected to the elastic coupling unit (3).
  • the first hinge unit (11a) and the third hinge unit (11c) have a degree of freedom to twist around the second axis (such as the x-axis), and simultaneously along the first axis (such as the y-axis), the second axis (such as the x-axis) axis) direction;
  • the second hinge unit (11b) and the fourth hinge unit (11d) have the freedom to twist around the first axis (such as the y-axis), while also twisting along the first axis (such as the y-axis). ), and has greater bending stiffness in the second axis (such as x-axis) direction. Therefore, the articulated unit can be a short beam connected to a mass at both ends, with low torsional stiffness, while increasing the bending stiffness by reducing the length and increasing the thickness.
  • the first decoupling unit (12a) and the third decoupling unit (12c) have torsional degrees of freedom around a first axis (such as the y-axis), and have a stiffness greater than a first threshold along the first axis.
  • the A threshold can be infinite, which is not limited in this application;
  • the second decoupling unit (12b) and the fourth decoupling unit (12d) have torsional degrees of freedom around the second axis (such as the x-axis), along the second axis Having a stiffness greater than the second threshold, optionally, the second threshold may be infinite, which is not limited in this application. Therefore, decoupling elements can be elongated beam structures, arrays or folded forms thereof.
  • the four connection ends of the elastic coupling unit (3) are respectively connected to the middle parts of the first decoupling unit (12a), the second decoupling unit (12b), the third decoupling unit (12c) and the fourth decoupling unit (12d).
  • the other ends of the first decoupling unit (12a), the second decoupling unit (12b), the third decoupling unit (12c) and the fourth decoupling unit (12d) are respectively connected to the first central support unit (2a) , the second central support unit (2b), the third central support unit (2c) and the fourth central support unit (2d).
  • the first central support unit (2a) and the third central support unit (2c) have a bending degree of freedom along the first axis (such as the y-axis), and at the same time have a torsional degree of freedom around the second axis (such as the x-axis);
  • the second central support unit (2b) and the fourth central support unit (2d) have a bending degree of freedom along the second axis (such as the x-axis), and at the same time have a torsional degree of freedom about the first axis (such as the y-axis).
  • the other ends of the first central support unit (2a), the second central support unit (2b), the third central support unit (2c) and the fourth central support unit (2d) are respectively connected to the central anchor point (1). Therefore, the central support unit can be an elongated beam, array or folded form thereof.
  • a support unit ie, a first support unit (6a), a second support unit (6b), a third support unit (6c), and a fourth support unit (6d)
  • the first support unit (6a) and the third support unit (6c) have a bending degree of freedom along the first axis (such as the y-axis) and a torsional degree of freedom around the second axis (such as the x-axis);
  • the second support unit (6b) and the fourth support unit (6d) have a bending degree of freedom along the second axis (such as the x-axis) and a torsional degree of freedom around the first axis (such as the y-axis).
  • the support units may be elongated beam structures, arrays or folded forms thereof.
  • the other ends of the first support unit (6a), the second support unit (6b), the third support unit (6c) and the fourth support unit (6d) are connected to the first anchor point (13a) and the second anchor point (13b) respectively.
  • the third anchor point (13c) and the fourth anchor point (13d) are connected, the first anchor point (13a), the second anchor point (13b), the third anchor point (13c) and the fourth anchor point (13d) ) are respectively connected to the base (15).
  • Figure 5 is a schematic diagram of an example of movement of a device for detecting angular velocity provided by an embodiment of the present application.
  • the decoupling unit drives the mass blocks to move synchronously, so that the first mass block (5a) and the third mass block (5c) move in anti-phase, that is, they move synchronously toward the center or away from the center.
  • the second mass block (5b) and the fourth mass block (5d) can synchronously move toward the center.
  • the second mass block (5b) and the fourth mass block (5d) can also move in a direction away from the center synchronously.
  • the first support unit (6a), the third support unit (6c) and the first central support unit (2a) and the third central support unit (2c) provide translational freedom along the first axis direction (y-axis direction) , limiting the translational freedom along the second axis direction (x-axis direction);
  • the second support unit (6b), the fourth support unit (6d), the second central support unit (2b), the fourth central support unit (2d) provides the translational freedom along the second axis (such as the x-axis direction) and limits the translational freedom along the first axis (such as the y-axis direction).
  • the four mass blocks perform resonant motion in the form of four antinodes, and a single elastic coupling structure creates linear motion along the first and second axis directions to realize the driving mode of the device 400, so that the device 400 can be used for measurement.
  • Angular velocity at the same time, the device 400 has the following advantages: a group of mass blocks in the same axis realizes anti-phase, equal-proportional linear motion of displacement, and two groups of mass blocks on the orthogonal axis realize in-phase, equal-proportional linear motion of displacement, which is beneficial to differential processing of signals. and increased sensitivity.
  • Figure 6 is a schematic diagram of another example of movement of a device for detecting angular velocity provided by an embodiment of the present application.
  • the four-node motion form of the driving mode generates linear velocities along the first axis (such as the y-axis) and the second axis (such as the x-axis).
  • the angular velocity of the second axis (such as the y-axis) and the second axis (such as the x-axis) is input, a Coriolis force will be generated in the direction of the third axis (such as the z-axis), which will cause the mass block to generate a vertical first plane (x-axis and y-axis).
  • the first mass block (5a) and the third mass block (5c) that move along the first axis (such as the y-axis) line move between the first support unit (6a) and Under the torsional freedom of the third support unit (6c), the first mass block (5a) and the third mass block (5c) can achieve flipping motion around the second axis (such as the x-axis).
  • the second mass block (5b) and the fourth mass block (5d) that move along the second axis are in the second support unit (6b ) and the torsional degree of freedom of the fourth support unit (6d)
  • the second mass block (5b) and the fourth mass block (5d) can achieve flipping motion around the first axis (such as the y-axis).
  • the flipping motion is also a resonant motion.
  • the anti-phase flipping motion of a group of mass blocks realizes mechanical motion coupling through the hinge unit, the elastic coupling unit, and the central support unit, and at the same time, the mechanical motion decoupling is realized through the decoupling unit.
  • the first hinge unit (11a) and the third hinge unit ( 11c) are forced to twist respectively, and at the same time drive the elastic coupling unit (3) to twist around the second decoupling unit (12b) and the fourth decoupling unit (12d), thereby realizing the first mass block (5a) and the third mass
  • the flipping motion of the block (5c) is synchronized to achieve a strong mechanical coupling effect, achieve a high resonance quality factor, improve sensitivity, and at the same time avoid frequency fragmentation between mass blocks.
  • the torsional degrees of freedom of the second decoupling unit (12b) and the fourth decoupling unit (12d) prevent the flipping motion of the first mass block (5a) and the third mass block (5c) from being transmitted to the second mass. block (5b) and the fourth mass block (5d), thereby achieving mechanical decoupling and reducing cross-axis coupling errors.
  • the second mass block (5b) and the fourth mass block (5d) can achieve the same mechanical coupling of flipping motion and mechanical decoupling of cross-axis.
  • increasing the bending stiffness of the elastic coupling unit (3) along the third axis (z-axis) can improve the above-mentioned mechanical coupling and decoupling effect.
  • the bending stiffness can tend to infinity. This application applies It is not limited.
  • the first mass block (5a), the second mass block (5b), the third mass block (5c) and the fourth mass block (5d) are also connected to a first driving capacitor (501a), The second driving capacitor (501b), the third driving capacitor (501c) and the fourth driving capacitor (501d).
  • the first driving capacitor (501a) and the third driving capacitor (501c) can provide driving force along the first axis (such as the y-axis)
  • the second driving capacitor (501b) and the fourth driving capacitor (501d) can provide driving force along the first axis (such as the y-axis).
  • the driving force of the second axis (such as the x-axis) drives the four mass blocks to perform resonant motion.
  • driving capacitors are respectively provided on the four detection units, which can generate driving forces in the positive and negative directions of the first axis and the positive and negative directions of the second axis respectively.
  • the four detection units and the elasticity are realized.
  • the four-node motion of the coupling unit helps improve driving efficiency.
  • the first driving capacitor (501a) and the third driving capacitor (501c) can also be provided only on the first mass block (5a) and the third mass block (5c), or only on the first mass block (5a) and the third mass block (5c).
  • a second driving capacitor (501b) and a fourth driving capacitor (501d) are respectively provided on the second mass block (5b) and the fourth mass block (5d).
  • the first driving capacitor (501a) and the third driving capacitor (501c) are respectively provided on the first mass block (5a) and the third mass block (5c).
  • the capacitor (501c) generates driving forces along the positive and negative first axes (such as the y-axis) to drive the mass block to move in anti-phase.
  • the fourth mass block (5d) moves in opposite phases along the positive and negative second axes (such as the x-axis) respectively.
  • only driving capacitors are set on the two detection units, which can generate driving forces in the positive and negative directions of the first axis or the positive and negative directions of the second axis respectively.
  • four detection units and elasticity can be realized.
  • the four-node motion of the coupling unit helps simplify the drive circuit and save costs.
  • the first driving capacitor (501a), the second driving capacitor (501b), the third driving capacitor (501c) and the fourth driving capacitor (501d) have the same structure.
  • the first driving capacitor (501a) includes a fixed driving electrode (7a) and a movable driving electrode (8a), which can be in the form of flat electrodes or comb-tooth electrodes, and this application does not cover them. limited.
  • the movable driving electrode (8a) is connected to the first mass (5a); the fixed driving electrode (7a) forms a capacitive distance with the movable driving electrode (8a) and is connected to the substrate (15) at the same time.
  • the fixed driving electrode (7a) can be in a differential form, that is, distributed along both sides of the movable driving electrode (8a) to form a differential driving capacitor. This method is beneficial to eliminating the common mode error of the signal and improving the driving force. stability.
  • the first mass block (5a), the second mass block (5b), the third mass block (5c) and the fourth mass block (5d) are also respectively connected to first drive detection capacitors (502a) , the second drive detection capacitor (502b), the third drive detection capacitor (502c), and the fourth drive detection capacitor (502d).
  • These drive detection capacitors are used to detect the displacement of the drive detection mass block and output the drive detection electrical signal.
  • the drive detection electrical signal is used for closed-loop feedback control of the vibration amplitude, frequency and phase of the drive mode. In this way, by setting the drive detection capacitor to output the drive detection signal, closed-loop control of the device can be realized.
  • the first drive detection capacitor (502a) includes a fixed drive detection electrode (9a) and a movable drive detection electrode (10a), which may be in the form of a flat electrode or a comb-tooth electrode.
  • the movable drive detection electrode (10a) is connected to the first mass block (5a), and the fixed drive detection electrode (9a) forms a capacitive distance with the movable drive detection electrode (10a) and is connected to the substrate (15).
  • the fixed drive detection electrode (9a) may be in a differential form to form a differential drive detection capacitor. In doing so, the accuracy of detection can be improved.
  • the driving detection capacitor is connected to complete the control of the device. This is beneficial to simplifying the device and saving costs.
  • the device 500 also includes detection electrodes, and the detection electrodes are all located on the substrate (15), as shown in the first Detection electrode (14a), second detection electrode (14b), third detection electrode (14c) and fourth detection electrode (14d).
  • the first detection electrode (14a) and the third detection electrode (14c) form independent roll detection capacitors with the first mass block (5a) and the third mass block (5c) respectively, for detecting the first mass block (5a) Or the displacement of the third mass block (5c) along the third axis (z-axis), and outputs a rolling electrical signal.
  • the rolling electrical signal is used to indicate the angular velocity of the device in the direction of the second axis (x-axis); the second detection The electrode (14b) and the fourth detection electrode (14d) form independent pitch detection capacitors with the second mass block (5b) and the fourth mass block (5d) respectively, for detecting the second mass block (5b) or the fourth mass.
  • the block (5d) displaces along the third axis (z-axis) and outputs a pitch electrical signal.
  • the pitch electrical signal is used to indicate the angular velocity of the device in the direction of the first axis (y-axis).
  • the detection electrode can form an independent capacitor with a group of mass blocks, which serves as a differential detection capacitor, improving sensitivity and reducing common mode noise.
  • a single detection electrode and a mass block can be provided to form a detection capacitor.
  • the first detection electrode (14a) or the third detection electrode (14c) can be provided together with the first mass block (5a) or the third mass block.
  • Block (5c) forms an independent roll detection capacitor to complete the detection of angular velocity. In this way, the device can be simplified and costs can be saved. Correspondingly, the detection accuracy may be reduced.
  • FIG. 7 is a schematic structural diagram of a fourth device for detecting angular velocity provided by an embodiment of the present application.
  • the detection electrode can also be provided on the cover plate (16).
  • the detection electrode arranged on the base (15) and one or more mass blocks form a lower detection capacitor
  • the detection electrode arranged on the cover plate (16) and one or more mass blocks form an upper detection capacitor.
  • the upper detection capacitor and the lower detection capacitor form the upper and lower differential detection capacitors. In doing so, dual differential sense capacitors can be implemented, further improving sensitivity while reducing common-mode noise.
  • the device 400 can realize the detection of horizontal biaxial angular velocity.
  • the driving capacitor drives the mass block to oscillate in the form of four antinodes.
  • the first mass block ( 5a) and the third mass block (5c) flip and oscillate in anti-phase
  • the first detection electrode (14a) and the third detection electrode (14c) respectively output rolling electrical signals for determining the second axis (x-axis) angular velocity.
  • the first axis (y-axis) angular velocity is input, the second mass block (5b) and the fourth mass block (5d) flip and oscillate in reverse, and the second detection electrode (14b) and the fourth detection electrode (14d) respectively output pitch electrical signals.
  • the overall structure of the device has the characteristics of full center symmetry, and the motion modes of the four antinode driving modes and the anti-phase flipping detection mode of the mass block are also fully symmetrical, which is beneficial to improving the resistance to in-phase motion modes, reducing acceleration sensitivity, and improving resistance to linear vibration. , angular vibration and other environmental interference.
  • the full symmetry of the first and second axes helps achieve consistency in performance, including parameters such as sensitivity, nonlinearity, bias stability, and temperature stability.
  • FIG. 8 is a schematic structural diagram of a fifth device for detecting angular velocity provided by an embodiment of the present application.
  • the above device 400 can realize the angular velocity detection of the first axis and the second axis.
  • the device 400 further includes a heading detection capacitor (such as a first heading detection capacitor (503a), a second heading detection capacitor (503b),
  • a heading detection capacitor such as a first heading detection capacitor (503a), a second heading detection capacitor (503b)
  • the third heading detection capacitor (503c) and the fourth heading detection capacitor (503d) are used, the angular velocity detection of the third axis can be realized.
  • the first heading detection capacitor (503a) includes a fixed heading detection electrode (17a) and a movable heading detection electrode (18a), which can be in the form of a flat electrode or a comb-tooth electrode.
  • the movable heading detection electrode (18a) is connected to the first mass block (5a).
  • the first support unit (6a) and the third support unit (6c) have a degree of freedom in bending along the first axis (y-axis), and the direction along the second axis (x-axis) is the axial direction of the support unit, and the stiffness is far Much greater than the bending freedom along the first axis (y-axis);
  • the second support unit (6b) and the fourth support unit (6d) have a bending freedom along the second axis (x-axis), along the first axis (y-axis) axis) direction is the axial direction of the support unit, and the stiffness is Much greater than the bending freedom along the second axis (x-axis).
  • the first decoupling unit (12a) and the third decoupling unit (12c) have bending degrees of freedom along the second axis (x-axis), and the second decoupling unit (12b) and the fourth decoupling unit (12d) have bending degrees of freedom along the second axis (x-axis). Bending freedom in the direction of the first axis (y-axis). Therefore, based on the settings of the support unit and the decoupling unit, the four mass blocks each have a degree of freedom to twist around the third axis (z-axis).
  • the first mass block (5a), the second mass block (5b), the third mass block (5c) and the fourth mass block (5d) oscillate in the four antinode mode.
  • the first mass block (5a) and the third mass block (5d) The mass block (5c) moves linearly along the first axis (y-axis), and the external input angular velocity around the third axis (z-axis) generates along the first mass block (5a) and the third mass block (5c) respectively.
  • the second axis (x-axis) and the reverse Coriolis force drive the mass block to reverse the phase respectively; the second mass block (5b) and the fourth mass block (5d) move linearly along the second axis (x-axis) , the external input angular velocity around the third axis (z-axis) generates Coriolis forces along the first axis (y-axis) and in the opposite direction on the second mass block (5b) and the fourth mass block (5d), respectively.
  • the mass rotates in reverse.
  • the detection electrodes (17a ⁇ d) respectively output heading electrical signals, which are used to determine the third axis (z-axis) angular velocity.
  • the torsional motion is also resonant motion.
  • heading detection capacitors can be distributed on both sides of the mass block to form heading differential detection capacitors.
  • the torsional motion around the third axis (z-axis) generated by the third-axis (z-axis) angular velocity input is an anti-phase displacement on both sides of the mass block.
  • the heading detection capacitor can realize differential detection of displacement.
  • At least one of the four mass blocks has a heading detection capacitor.
  • FIG. 9 is a schematic diagram of the first system for detecting angular velocity provided by an embodiment of the present application.
  • the system 900 includes a drive detection circuit 1020, a closed-loop control circuit 1030, a drive circuit 1040, and a device 1010 for detecting angular velocity, which may be one of the above-described device 100, device 200, device 400, and device 800.
  • the drive detection circuit 1020 in the device 1010 is used to amplify and phase-shift the mass displacement signal output by the capacitor to obtain a first electrical signal.
  • the closed-loop control circuit 1030 calculates and processes the first electrical signal to obtain a second electrical signal.
  • the drive circuit 1040 outputs a drive signal according to the second electrical signal.
  • the output phase and frequency of the drive signal are controllable and can be used for elastic coupling of the drive device 1010
  • the unit performs four antinode motions, such that the first mass and the third mass of the device 1010 move in anti-phase along the first axis, and the second mass and the fourth mass of the device move in anti-phase along the second axis. In doing so, the system can achieve closed-loop control of mass movement.
  • Figure 10 is a schematic diagram of a second system for detecting angular velocity provided by an embodiment of the present application.
  • the system 1000 includes at least one of a roll detection circuit 1050 , a pitch detection circuit 1060 and a sailing detection circuit 1070 and a device 1010 for detecting angular velocity, which may be the above-mentioned device 100 , device 200 , device 400 and One of the devices 800.
  • the roll detection circuit 1050 is used to process the roll electrical signal output by the device 1010 to obtain the second axis angular velocity; the pitch detection circuit 1060 is used to process the pitch electrical signal output by the device 1010 to obtain the first axis angular velocity; the heading detection circuit 1070 It is used to process the heading electrical signal output by the device 1010 to obtain the third axis angular velocity.
  • the roll detection circuit 1050 processing the roll electrical signal output by the device 1010 includes: the roll detection circuit 1050 performing at least one of differential processing, amplification processing and demodulation processing on the roll electrical signal output by the device 1010.
  • the heading detection circuit 1070 processes the heading electrical signal can refer to the roll detection circuit 1050 processing the roll electrical signal, which will not be described again here.
  • Figure 11 is a schematic flowchart of a method for detecting angular velocity provided by an embodiment of the present application. The method may be performed by one of the above-described device 100, device 200, device 400, and device 800.
  • At least one of the first detection unit, the second detection unit, the third detection unit and the fourth detection unit outputs a first signal when a first displacement occurs along the third axis, and the third axis is perpendicular to the first plane.
  • a signal is used to indicate the The magnitude of a displacement, which is used to determine the magnitude of the angular velocity.
  • the first signal includes at least one of a roll electrical signal, a pitch electrical signal and a heading circuit signal.
  • the roll detection circuit is used to process the roll electrical signal output by the device to obtain the second axis angular velocity; the pitch detection circuit is used to process the pitch electrical signal output by the device to obtain the first axis angular velocity; the heading detection circuit is used to process the pitch electrical signal output by the device to obtain the first axis angular velocity; The heading electrical signal output by the device is processed to obtain the third-axis angular velocity.
  • the method disclosed in this application can detect the angular velocity of the roll and pitch axes, while improving the integration, sensitivity, and consistency of the horizontal dual axes, and reducing the cross-axis coupling error.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

一种用于检测角速度的装置(100)、方法(1100)和系统(900,1000),属于微机电系统MEMS传感器、惯性器件技术领域,以实现对多轴角速度的检测。该装置(100)包括:第一检测单元(220)、第二检测单元(230)、第三检测单元(240)、第四检测单元(250)和弹性耦合单元(210)。弹性耦合单元(210)用于产生四波腹运动,当外界角速度输入装置时,检测单元(220,230,240,250)能够在沿第三轴发生第一位移时输出第一信号,第一位移用于确定角速度的大小。该装置(100)通过弹性耦合单元(210)的四波腹运动,耦合四个检测单元(220,230,240,250)实现平面内正交两个方向的线运动,能够实现多轴角速度的检测,同时四个检测单元(220,230,240,250)两两中心对称分布,有助于提高集成度、灵敏度、水平双轴性能的一致性,降低交叉轴耦合误差。

Description

一种用于检测角速度的装置、方法和系统
本申请要求于2022年5月23日提交中国专利局、申请号为202210563646.5、申请名称为“一种用于检测角速度的装置、方法和系统”的中国专利申请的优先权。其全部内容通过引用结合在本申请中。
技术领域
本申请涉及微机电系统(micro electro mechanical system,MEMS)传感器、惯性器件技术领域,并且更具体地,涉及一种用于检测角速度的装置、方法和系统。
背景技术
MEMS陀螺仪作为一种典型的微型惯性传感器,可以进行空间中的角速度或者角度的感知。由于其采用了微机械加工技术实现结构加工,从而具有体积小、成本低、功耗低等优点,在军民两用领域有着重要的应用价值,广泛应用于消费电子、医疗器械、汽车电子、矿山设备和港口设备等领域。
目前成熟商用的消费级、工业级MEMS陀螺仪产品中,多数多轴陀螺仪采用共享驱动结构,相对于拼接式(即由多个单轴陀螺仪组成,每个单轴陀螺仪均需要单独的驱动结构)的优势是集成度高、体积小、成本低。但是,一方面,多轴陀螺仪需要良好的机械耦合结构保证质量块的同步驱动,同时需要具有独立的检测模态和科氏力检测结构,因此需要良好的机械解耦结构降低交叉轴误差。另一方面,高性能的陀螺仪同样要求驱动模态、检测模态的机械运动需要具有高对称性来保证品质因数和结构稳定性,以实现低角速度随机游走、高零偏稳定性和低加速度敏感性等性能参数。当前已有的多轴陀螺仪结构中,上述要素往往难以同时实现,因此直接造成多轴陀螺仪难以实现高性能、或者轴间的性能差异较大。
因此,亟需一种用于检测角速度的装置、方法和系统,能够实现横滚、俯仰轴多轴角速度的检测,同时提高集成度、灵敏度、水平双轴的一致性,降低交叉轴耦合误差。
发明内容
本申请提供一种用于检测角速度的装置、方法和系统,能够实现横滚、俯仰轴角速度的检测,同时提高集成度、灵敏度、水平双轴的一致性,降低交叉轴耦合误差。
第一方面,提供了一种用于检测角速度的装置。该装置包括:第一检测单元、第二检测单元、第三检测单元、第四检测单元、弹性耦合单元。其中:弹性耦合单元用于产生四波腹运动,弹性耦合单元包括第一连接端、第二连接端、第三连接端和第四连接端,其中,第一连接端、第二连接端、第三连接端和第四连接端处于第一平面,第一检测单元,与第一连接端连接,第二检测单元,与第二连接端连接,第三检测单元,与第三连接端连接,第四检测单元,与第四连接端连接;其中,弹性耦合单元进行四波腹运动时,第一检测单 元和第三检测单元能够沿第一轴进行反相线运动,第二检测单元和第四检测单元能够沿第二轴进行反相线运动,第一轴与第二轴正交;当外界角速度输入装置时,第一检测单元、第二检测单元、第三检测单元和第四检测单元中的至少一个能够在沿第三轴发生第一位移时输出第一信号,第三轴与第一平面垂直,第一信号用于指示第一位移的大小,第一位移用于确定角速度的大小。
本申请所揭示的装置,通过弹性耦合单元的四波腹运动,耦合四个检测单元实现平面内正交两个方向的线运动,能够实现横滚、俯仰轴角速度的检测,有助于提高集成度、灵敏度、水平双轴的一致性,降低交叉轴耦合误差。
应理解,上述第一轴和第二轴还可以是除y轴和x轴外的其他轴,只需要保证第一轴和第二轴正交即可,本申请对其不作限定。可选的,第三轴还可以是除z轴之外的其他轴,此时,第一平面可以是除x轴和y轴所在平面之外的其他平面,只需要保证第三轴与第一平面垂直即可,本申请对其不作限定。
结合第一方面,在第一方面的某些实现方式中,第一检测单元和第三检测单元关于弹性耦合单元中心对称配置,第二检测单元和第四检测单元关于弹性耦合单元中心对称配置。这样做,四个检测单元两两中心对称分布,有助于提高集成度、灵敏度、水平双轴的一致性,降低交叉轴耦合误差。
结合第一方面,在第一方面的某些实现方式中,上述装置还包括中心锚点和基底,弹性结构单元通过中心锚点与基底相连接。
结合第一方面,在第一方面的某些实现方式中,上述装置还包括中心支撑单元,中心支撑单元用于连接弹性耦合单元和中心锚点。
结合第一方面,在第一方面的某些实现方式中,第一检测单元包括第一质量块、第一铰链单元、第一解耦单元、第一支撑单元、第一锚点,第一质量块的第一端通过第一铰链单元、第一解耦单元与弹性耦合单元的第一节点相连接,第一铰链单元具有绕第二轴扭转的自由度,第一解耦单元具有绕第一轴扭转的自由度,第一质量块的第二端通过第一支撑单元和第一锚点与基底相连接,第一支撑单元具有绕第二轴扭转的自由度。第二检测单元包括第二质量块、第二铰链单元、第二解耦单元、第二支撑单元、第二锚点,第二质量块的第一端通过第二铰链单元、第二解耦单元与弹性耦合单元的第二节点相连接,第二铰链单元具有绕第一轴扭转的自由度,第二解耦单元具有绕第二轴扭转的自由度,第二质量块的第二端通过第二支撑单元和第二锚点与基底相连接,第二支撑单元具有绕第一轴扭转的自由度。第三检测单元包括第三质量块、第三铰链单元、第三解耦单元、第三支撑单元、第三锚点,第三质量块的第一端通过第三铰链单元、第三解耦单元与弹性耦合单元的第三节点相连接,第三铰链单元具有绕第二轴扭转的自由度,第三解耦单元具有绕第一轴扭转的自由度,第三质量块的第二端通过第三支撑单元和第三锚点与基底相连接,第三支撑单元具有绕第二轴扭转的自由度。第四检测单元包括第四质量块、第四铰链单元、第四解耦单元、第四支撑单元、第四锚点,第四质量块的第一端通过第四铰链单元、第四解耦单元与弹性耦合单元的第四节点相连接,第四铰链单元具有绕第一轴扭转的自由度,第四解耦单元具有绕第二轴扭转的自由度,第四质量块的第二端通过第四支撑单元和第四锚点与基底相连接,第四支撑单元具有绕第一轴扭转的自由度。
这样做,通过弹性耦合单元的连接以及铰链单元绕第一轴或第二轴的扭转自由度,实 现第一轴、第二轴检测单元的差分扭转运动,能够实现横滚、俯仰轴角速度的检测,同时提高集成度、灵敏度、水平双轴的性能一致性。弹性耦合单元分别耦合第一轴、第二轴检测单元,分别实现第一轴、第二轴检测单元的质量块组的扭转运动具有良好的机械耦合。此外,四个解耦单元具有绕第一轴、第二轴的扭转自由度,能够实现第一轴、第二轴检测单元的扭转运动相互解耦,从而降低交叉轴耦合误差。
结合第一方面,在第一方面的某些实现方式中,第一检测单元包括第一驱动电容,第二检测单元包括第二驱动电容,第三检测单元包括第三驱动电容,第四检测单元包括第四驱动电容。第一驱动电容用于产生第一驱动力带动第一检测单元沿第一轴运动,第二驱动电容用于产生第二驱动力带动第二检测单元沿第二轴运动,第三驱动电容用于产生第三驱动力带动第一检测单元沿第一轴运动,第四驱动电容用于产生第四驱动力带动第二检测单元沿第二轴运动,其中,第一驱动力和第三驱动力反相,第二驱动力和第四驱动力反相,弹性耦合单元在第一检测单元、第二检测单元、第三检测单元和第四检测单元共同作用下,进行四波腹运动。这样做,四个检测单元上分别设置驱动电容,可以在第一轴正负方向以及第二轴正负方向上分别产生驱动力,在四个驱动力的共同作用下实现四个检测单元以及弹性耦合单元的四波腹运动,有助于提升驱动效率,减小功耗。
结合第一方面,在第一方面的另一些实现方式中,第一检测单元包括第一驱动电容,第三检测单元包括第三驱动电容。第一驱动电容用于产生第一驱动力带动第一检测单元沿第一轴运动,第三驱动电容用于产生第三驱动力带动第一检测单元沿第一轴运动,其中,第一驱动力和第三驱动力反相,第一检测单元和第三检测单元通过弹性耦合单元的四波腹运动,带动第二检测单元和第四检测单元沿第二轴进行反相线运动。或者,第二检测单元包括第二驱动电容,第四检测单元包括第四驱动电容。第二驱动电容用于产生第二驱动力带动第二检测单元沿第二轴运动,第四驱动电容用于产生第四驱动力带动第二检测单元沿第二轴运动,其中,第二驱动力和第四驱动力反相,第二检测单元和第四检测单元通过弹性耦合单元的四波腹运动,带动第一检测单元和第三检测单元沿第一轴进行反相线运动。这样做,只在两个检测单元上设置驱动电容,可以在第一轴正负方向或第二轴正负方向上分别产生驱动力,在两个驱动力的作用下实现四个检测单元以及弹性耦合单元的四波腹运动,有助于简化驱动电路,节约成本。
结合第一方面,在第一方面的某些实现方式中,上述装置还包括检测电极,检测电极与第一质量块和第三质量块中的至少一个组成横滚检测电容,横滚检测电容用于检测第一质量块或第三质量块沿第三轴的位移,并输出横滚电信号,横滚电信号用于指示装置在第二轴方向上的角速度;检测电极与第二质量块和第四质量块中的至少一个组成俯仰检测电容,俯仰检测电容用于检测第二质量块或第四质量块沿第三轴的位移,并输出俯仰电信号,俯仰电信号用于指示装置在第一轴方向上的角速度。
结合第一方面,在第一方面的某些实现方式中,当外界角速度输入上述装置时,弹性耦合单元进行四波腹运动,使得第一检测单元和第三检测单元绕第二轴反相翻转运动,第二检测单元和第四检测单元沿第一轴反相翻转运动。
结合第一方面,在第一方面的某些实现方式中,当外界角速度输入上述装置时,弹性耦合单元进行四波腹运动,使得第一检测单元和第三检测单元绕第一轴同相线运动,第二检测单元和第四检测单元沿第二轴同相线运动。
结合第一方面,在第一方面的某些实现方式中,上述弹性耦合单元包括以下一种结构:圆环、多圆环、方框、多方框、方板、椭圆环、多椭圆环、椭圆盘、菱形框、多菱形框、菱形盘。其中,这些结构均可以产生对称四波腹运动或者可以产生接近对称四波腹运动的结构,当弹性耦合单元式盘、板等装实体结构时,可以省去中心支撑单元,直接与中心锚点连接。
结合第一方面,在第一方面的某些实现方式中,上述装置还包括航向检测电容,航向检测电容包括固定航向检测电极和可动航向检测电极,可动航向检测电极与航向检测质量块相连接,航向检测质量块为第一质量块、第二质量块、第三质量块和第四质量块中的至少一个,航向检测电容用于检测航向检测质量块沿第三轴的位移,并输出航向电信号,航向电信号用于指示第三轴方向上的角速度。其中,航向检测质量块为第一质量块和第三质量块中的至少一个,与航向检测质量块相连接的支撑单元具有沿第一轴的弯曲自由度,与航向检测质量块相连接的解耦单元具有沿第二轴的弯曲自由度;或者,航向检测质量块为第二质量块和第四质量块中的至少一个,与航向检测质量块相连接的支撑单元具有沿第二轴的弯曲自由度,与航向检测质量块相连接的解耦单元具有沿第一轴的弯曲自由度。这样做,通过设置航向检测电容,可以实现第三轴角速度的检测。可选的,当装置中包括多个航向检测电容时,可以实现位移的差分检测。进一步地,当四个质量块上均设置有航向检测电容时,有助于提升装置的对称性以及检测的灵敏度。
结合第一方面,在第一方面的某些实现方式中,上述装置还包括驱动检测电容,驱动检测电容包括固定驱动检测电极和可动驱动检测电极,可动驱动检测电极与驱动检测质量块相连接,驱动检测质量块为第一质量块、第二质量块、第三质量块和第四质量块中的至少一个,驱动检测电容用于检测驱动检测质量块的位移,并输出驱动检测电信号,驱动检测电信号用于闭环反馈控制驱动模态的振动幅值、频率和相位。这样做,通过设置驱动检测电容输出驱动检测信号,能够实现装置的闭环控制。
结合第一方面,在第一方面的某些实现方式中,第一检测单元和第二检测单元关于弹性耦合单元的中心中心对称配置。这样做,有助于实现良好的交叉轴解耦,降低轴间耦合误差,同时提升测量的准确性。
第二方面,提供了一种用于检测角速度的系统。该系统包括:包括驱动检测电路、闭环控制电路、驱动电路以及如第一方面中任一项的装置,驱动检测电路用于对装置输出的驱动模态质量块位移电信号进行放大和移相处理,得到第一电信号,闭环控制电路对第一电信号进行计算处理,得到第二电信号,驱动电路根据第二电信号输出驱动信号,驱动信号用于驱动装置的弹性耦合单元进行四波腹运动,使得装置的第一质量块和第三质量块沿第一轴反相运动,装置的第二质量块和第四质量块沿第二轴反相运动。这样做,使得该系统可以实现闭环控制。
第三方面,提供了一种用于检测角速度的系统。该系统包括:横滚检测电路、俯仰检测电路和航行检测电路中的至少一个以及如权利要求1至15第一方面中任一项的装置,横滚检测电路用于对装置输出的横滚电信号进行处理得到第二轴角速度;俯仰检测电路用于对装置输出的俯仰电信号进行处理得到第一轴角速度;航向检测电路用于对装置输出的航向电信号进行处理得到第三轴角速度。
结合第三方面,在第三方面的某些实现方式中,上述横滚检测电路用于对装置输出的 横滚电信号进行处理包括:横滚检测电路用于对装置输出的横滚电信号进行差分处理、放大处理和解调处理中的至少一种。
结合第三方面,在第三方面的某些实现方式中,上述俯仰检测电路用于对装置输出的俯仰电信号进行处理包括:俯仰检测电路用于对装置输出的俯仰电信号进行差分处理、放大处理和解调处理中的至少一种。
结合第三方面,在第三方面的某些实现方式中,上述航向检测电路用于对装置输出的航向电信号进行处理包括:航向检测电路用于对装置输出的航向电信号进行差分处理、放大处理和解调处理中的至少一种。
第四方面,提供了一种用于检测角速度的方法,该方法由上述第一方面中任一项的装置执行,该方法包括:当外界角速度输入装置时,第一检测单元、第二检测单元、第三检测单元和第四检测单元中的至少一个在沿第三轴发生第一位移时输出第一信号,第三轴与第一平面垂直,第一信号用于指示第一位移的大小,第一位移用于确定角速度的大小。其中,第一信号包括横滚电信号、俯仰电信号和航向电路信号中的至少一种。
附图说明
图1是本申请实施例提供的第一种用于检测角速度的装置的结构示意图。
图2是本申请实施例提供的第二种用于检测角速度的装置的结构示意图。
图3是本申请实施例提供的弹性耦合单元的结构示意图。
图4是本申请实施例提供的第三种用于检测角速度的装置的结构示意图。
图5是本申请实施例提供的用于检测角速度的装置的一例运动示意图。
图6是本申请实施例提供的用于检测角速度的装置的另一例运动示意图。
图7是本申请实施例提供的第四种用于检测角速度的装置的结构示意图。
图8是本申请实施例提供的第五种用于检测角速度的装置的结构示意图。
图9是本申请实施例提供的第一种用于检测角速度的系统的示意图。
图10是本申请实施例提供的第二种用于检测角速度的系统的示意图。
图11是本申请实施例提供的用于检测角速度的方法的流程示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
MEMS陀螺仪作为一种典型的微型惯性传感器,可以进行空间中的角速度或者角度的感知。由于其采用了微机械加工技术实现结构加工,从而具有体积小、成本低、功耗低等优点,在军民两用领域有着重要的应用价值,广泛应用于消费电子、医疗器械、汽车电子、矿山设备和港口设备等领域。
MEMS陀螺仪利用科氏力(Coriolis force)的物理原理进行角速度的感知,在控制物体做直线运动的基础上,在该直线运动的正交轴方向的角速度输入,会在第三个正交轴方向产生科氏力。科里奥利力的公式为:F=-2mΩ×v,其中,m为物体质量,v为物体的线速度,Ω是物体所受的旋转角速度。另外,F、v、Ω都是有方向的,公式中的“×”是向量叉乘,F、v、Ω三者两两垂直。因此,通过合理的方式检测出科氏力,即可得到角速度信息。
当前,MEMS陀螺仪的零偏稳定性可以做到小于1度/小时(degree per hour,dph),性能媲美低端的光纤陀螺。MEMS陀螺仪的另一个优势在于可以单芯片集成多轴,因此组成的6轴惯性导航单元具有体积小的优势。目前成熟商用的消费级、工业级MEMS陀螺仪产品中,多数多轴陀螺仪采用共享驱动结构,相对于拼接式(即由多个单轴陀螺仪组成,每个单轴陀螺仪均需要单独的驱动结构)的优势是集成度高、体积小、成本低。但是,一方面,多轴陀螺仪需要良好的机械耦合结构保证质量块的同步驱动,同时需要具有独立的检测模态和科氏力检测结构,因此需要良好的机械解耦结构降低交叉轴误差。另一方面,高性能的陀螺仪同样要求驱动模态、检测模态的机械运动需要具有高对称性来保证品质因数和结构稳定性,以实现低角速度随机游走、高零偏稳定性和低加速度敏感性等性能参数。当前已有的多轴陀螺仪结构中,上述要素往往难以同时实现,因此直接造成多轴陀螺仪难以实现高性能、或者轴间的性能差异较大。
基于此,本申请提供了一种用于检测角速度的装置、方法和系统,以期望能够实现横滚、俯仰轴角速度的检测,同时提高集成度、灵敏度、水平双轴性能的一致性,降低交叉轴耦合误差。
图1是本申请实施例提供的第一种用于检测角速度的装置的结构示意图。如图2所述,装置200包括第一检测单元220、第二检测单元230、第三检测单元240、第四检测单元250和弹性耦合单元210。其中,弹性耦合单元210用于产生四波腹运动,弹性耦合单元210包括第一连接端211、第二连接端212、第三连接端213和第四连接端214。第一连接端211、第二连接端212、第三连接端213和第四连接端214处于第一平面(如图中x轴和y轴所在的平面),第一检测单元220,与第一连接端211连接,第二检测单元230,与第二连接端212连接,第三检测单元240,与第三连接端213连接,第四检测单元250,与第四连接端214连接。其中,弹性耦合单元210进行四波腹运动时,第一检测单元220和第三检测单元240沿第一轴(如图中所示的y轴)进行反相线运动,第二检测单元230和第四检测单元250沿第二轴(如图中所示的x轴)进行反相线运动,第一轴与第二轴正交。当外界角速度输入装置200时,第一检测单元220、第二检测单元230、第三检测单元240和第四检测单元250中的至少一个能够在沿第三轴(如图中所示的z轴)发生第一位移时输出第一信号,第三轴与第一平面垂直,第一信号用于指示第一位移的大小,第一位移用于确定角速度的大小。
在本申请实施例中,四波腹运动是指弹性耦合单元的振形具有四个对称的波腹,其中两个波腹同时远离中心运动,另外两个波腹同时靠近中心运动,反相线运动是指第一检测单元220和第三检测单元240沿第一轴(如图中所示的y轴)同时远离中心或者同时靠近中心运动。
可选的,第一检测单元220和第三检测单元240关于弹性耦合单元210的中心对称配置,第二检测单元230和第四检测单元250关于弹性耦合单元210的中心对称配置。这样做,四个检测单元两两中心对称分布,有助于提高集成度、灵敏度、水平双轴的一致性,降低交叉轴耦合误差。
应理解,在本申请实施例中,第一轴和第二轴还可以是除y轴和x轴外的其他轴,只需要保证第一轴和第二轴正交即可,本申请对其不作限定。可选的,第三轴还可以是除z轴之外的其他轴,此时,第一平面可以是除x轴和y轴所在平面之外的其他平面,只需要 保证第三轴与第一平面垂直即可,本申请对其不作限定。
还应理解,在本申请实施例中,上述第一信号可以是多个位移信号的总称,当第一检测单元220、第二检测单元230、第三检测单元240和第四检测单元250中多个在沿第三轴发生位移时,可以输出多个不同的第一信号,这些不同的第一信号均为可以确定位移大小的信号,且根据这些不同的第一信号确定的位移可以不同。
本申请所揭示的装置,通过弹性耦合单元的四波腹运动,耦合四个检测单元实现平面内正交两个方向的线运动,能够实现横滚、俯仰轴角速度的检测,有助于提高集成度、灵敏度、水平双轴性能的一致性,降低交叉轴耦合误差。
图2是本申请实施例提供的第二种用于检测角速度的装置的结构示意图。如图2所示,装置200示出了一例详细的用于检测角速度的装置。其中,装置200还包括中心锚点(6)和基底(9),弹性耦合单元(4)通过中心锚点(6)与基底(9)相连接。装置200还可以包括中心支撑单元(5),中心支撑单元(5)用于连接弹性耦合单元(4)和中心锚点(6)。其中,弹性耦合单元(4)的结构示意图可以如图3所示,弹性耦合单元(4)包括以下一种结构:圆环、多圆环、方框、多方框、方板、椭圆环、多椭圆环、椭圆盘、菱形框、多菱形框、菱形盘。其中,这些结构均可以产生对称四波腹谐振运动或者可以产生接近对称四波腹谐振运动的结构,当弹性耦合单元(4)是盘、板等装实体结构时,可以省去中心支撑单元(5),直接与中心锚点(6)连接。
以第一检测单元为例,在装置200中,第一检测单元可以包括第一质量块(1)、第一铰链单元(2)、第一解耦单元(3)、第一支撑单元(5)、第一锚点(6),第一质量块(1)的第一端通过第一铰链单元(2)、第一解耦单元(3)与弹性耦合单元(4)的第一节点相连接,第一铰链单元(2)具有绕第二轴(如图中所示的x轴)扭转的自由度,第一解耦单元具有绕第一轴(如图中所示的y轴)扭转的自由度,第一质量块(1)的第二端通过第一支撑单元(5)和第一锚点(6)与基底(9)相连接,第一支撑单元(5)具有绕第二轴扭转的自由度。类似的,第三检测单元可以包括第三质量块、第三铰链单元、第三解耦单元、第三支撑单元、第三锚点,第三质量块的第一端通过第三铰链单元、第三解耦单元与弹性耦合单元的第三节点相连接,第三铰链单元具有绕第二轴扭转的自由度,第三解耦单元具有绕第一轴扭转的自由度,第三质量块的第二端通过第三支撑单元和第三锚点与基底相连接,第三支撑单元具有绕第二轴扭转的自由度。其中,第一检测单元和第三检测单元的结构相同,第二检测单元和第四检测单元的结构相同,在此不再赘述。
可选的,装置300可以包括的锚点个数可以少于4个,例如,第一锚点、第二锚点、第三锚点、第四锚点可以是共用的锚点。
这样做,通过弹性耦合单元的连接以及铰链单元绕第一轴或第二轴的扭转自由度,实现第一轴、第二轴检测单元的差分扭转运动,能够实现横滚、俯仰轴角速度的检测,同时提高集成度、灵敏度、水平双轴性能的一致性。此外,四个解耦单元具有绕第一轴、第二轴的扭转自由度,能够实现第一轴、第二轴检测单元的扭转运动相互解耦,从而降低交叉轴耦合误差。
图4是本申请实施例提供的第三种用于检测角速度的装置的结构示意图。如图4所示,装置400示出了一例更为详细的用于检测角速度的装置。在装置400中,第一检测单元、第二检测单元、第三检测单元和第四检测单元关于弹性耦合单元中心对称配置。其中,弹 性耦合单元(3)具有第一平面(如x轴和y轴所在的平面)内弯曲变形的自由度,其具有四波腹形变模态的结构,例如图4中所示的环形结构,可选的,还可以是图3中所示的其他结构,本申请对其不作限定。
第一质量块(5a)、第二质量块(5b)、第三质量块(5c)和第四质量块(5d)沿着环形结构的弹性耦合单元(3)的中心圆周分布。每个质量块靠近中心的一侧均通过铰接单元(即第一铰接单元(11a)、第二铰接单元(11b)、第三铰接单元(11c)和第四铰接单元(11d))和解耦单元(即第一解耦单元(12a)、第二解耦单元(12b)、第三解耦单元(12c)和第四解耦单元(12d))分别与弹性耦合单元(3)连接。其中,第一铰接单元(11a)和第三铰接单元(11c)具有绕第二轴(如x轴)扭转的自由度,同时沿着第一轴(如y轴)、第二轴(如x轴)方向具有较大的弯曲刚度;第二铰接单元(11b)和第四铰接单元(11d)具有绕第一轴(如y轴)扭转的自由度,同时沿着第一轴(如y轴)、第二轴(如x轴)方向具有较大的弯曲刚度。因此,铰接单元可以是双端与质量块连接的短梁,具有低扭转刚度,同时通过减小长度和增加厚度,提高弯曲刚度。
第一解耦单元(12a)和第三解耦单元(12c)具有绕第一轴(如y轴)的扭转自由度,沿第一轴具有大于第一阈值的刚度,可选的,该第一阈值可以是无限大,本申请对其不作限定;第二解耦单元(12b)和第四解耦单元(12d)具有绕第二轴(如x轴)的扭转自由度,沿第二轴具有大于第二阈值的刚度,可选的,该第二阈值可以是无限大,本申请对其不作限定。因此,解耦单元可以是细长梁结构,及其阵列或者折叠形式。
弹性耦合单元(3)的四个连接端分别与第一解耦单元(12a)、第二解耦单元(12b)、第三解耦单元(12c)和第四解耦单元(12d)的中部连接,第一解耦单元(12a)、第二解耦单元(12b)、第三解耦单元(12c)和第四解耦单元(12d)的另一端分别连接第一中心支撑单元(2a)、第二中心支撑单元(2b)、第三中心支撑单元(2c)和第四中心支撑单元(2d)。其中,第一中心支撑单元(2a)和第三中心支撑单元(2c)具有沿第一轴(如y轴)的弯曲自由度,同时具有绕第二轴(如x轴)的扭转自由度;第二中心支撑单元(2b)和第四中心支撑单元(2d)具有沿第二轴(如x轴)的弯曲自由度,同时具有绕第一轴(如y轴)的扭转自由度。第一中心支撑单元(2a)、第二中心支撑单元(2b)、第三中心支撑单元(2c)和第四中心支撑单元(2d)的另一端分别与中心锚点(1)相连接。因此,中心支撑单元可以是细长梁,及其阵列或者折叠形式。
每个质量块远离中心的一侧连接有支撑单元(即第一支撑单元(6a)、第二支撑单元(6b)、第三支撑单元(6c)和第四支撑单元(6d))。其中,第一支撑单元(6a)和第三支撑单元(6c)具有沿第一轴(如y轴)的弯曲自由度,绕第二轴(如x轴)的扭转自由度;第二支撑单元(6b)和第四支撑单元(6d)具有沿第二轴(如x轴)的弯曲自由度,绕第一轴(如y轴)的扭转自由度。因此,支撑单元可以是细长梁结构,及其阵列或者折叠形式。第一支撑单元(6a)、第二支撑单元(6b)、第三支撑单元(6c)和第四支撑单元(6d)的另一端分别与第一锚点(13a)、第二锚点(13b)、第三锚点(13c)和第四锚点(13d)相连接,第一锚点(13a)、第二锚点(13b)、第三锚点(13c)和第四锚点(13d)分别与基底(15)连接。
图5是本申请实施例提供的用于检测角速度的装置的一例运动示意图。如图5所示,在装置400中,当主动驱动弹性耦合单元(3)以四波腹形式进行谐振运动时,解耦单元、 铰接单元带动质量块同步运动,使得第一质量块(5a)和第三质量块(5c)反相运动,即同步朝着靠近中心的方向、或者远离中心的方向运动。对应的,当第一质量块(5a)和第三质量块(5c)同步朝着靠近中心的方向运动时,第二质量块(5b)和第四质量块(5d)可以同步朝着靠近中心的方向运动,可选的,此时,第二质量块(5b)和第四质量块(5d)还可以同步朝着远离中心的方向运动。其中,第一支撑单元(6a)、第三支撑单元(6c)以及第一中心支撑单元(2a)、第三中心支撑单元(2c)提供沿第一轴方向(y轴方向)的平移自由度,限制了沿第二轴方向(x轴方向)的平移自由度;第二支撑单元(6b)、第四支撑单元(6d)以及第二中心支撑单元(2b)、第四中心支撑单元(2d)提供沿第二轴方向(如x轴方向)的平移自由度,限制了沿第一轴方向(如y轴方向)的平移自由度。四个质量块以四波腹形式进行谐振运动,单个弹性耦合结构创造了沿着第一轴方向、第二轴方向的线运动,实现装置400的驱动模态,从而使得装置400可以用于测量角速度,同时装置400具有如下优势:同一轴向的一组质量块实现反相、位移等比的线运动,正交轴的两组质量块实现同相、位移等比线运动,有利信号的差分处理和灵敏度提高。
图6是本申请实施例提供的用于检测角速度的装置的另一例运动示意图。如图6所示,在装置400中,驱动模态的四波腹运动形式产生沿着第一轴(如y轴)、第二轴(如x轴)的线速度,在有绕第一轴(如y轴)、第二轴(如x轴)的角速度输入时,会在第三轴(如z轴)方向上产生科氏力,进而使质量块产生垂直第一平面(x轴和y轴所在的平面)方向的运动。第二轴(如x轴)角速度输入时,沿着第一轴(如y轴)线运动的第一质量块(5a)和第三质量块(5c),在第一支撑单元(6a)和第三支撑单元(6c)的扭转自由度下,使第一质量块(5a)和第三质量块(5c)实现绕第二轴(如x轴)方向的翻转运动。当第一质量块(5a)和第三质量块(5c)之间是反相的线运动,他们的翻转运动方向也是反相的;同理,尽管图中未示出,当第一质量块(5a)和第三质量块(5c)之间是同相的线运动,他们的翻转运动方向也是同相的。对应的,第一轴(y轴)角速度输入时,沿着第二轴(如x轴)线运动的第二质量块(5b)和第四质量块(5d),在第二支撑单元(6b)和第四支撑单元(6d)的扭转自由度下,使第二质量块(5b)和第四质量块(5d)实现绕第一轴(如y轴)方向的翻转运动。其中,当四波腹运动为谐振运动时,该翻转运动也为谐振运动。
在本申请实施例中,一组质量块的反相翻转运动通过铰接单元、弹性耦合单元、中心支撑单元实现机械运动耦合,同时,通过解耦单元实现机械运动解耦。以第一质量块(5a)和第三质量块(5c)为例,在进行绕第二轴(如x轴)的反相翻转运动时,第一铰接单元(11a)和第三铰接单元(11c)分别受力扭转,同时带动弹性耦合单元(3)绕着第二解耦单元(12b)和第四解耦单元(12d)扭转,由此实现第一质量块(5a)和第三质量块(5c)的翻转运动同步,实现强机械耦合效果,实现高谐振品质因数,提高灵敏度,同时避免质量块间的频率裂解现象。同时,第二解耦单元(12b)和第四解耦单元(12d)的扭转自由度,使得第一质量块(5a)和第三质量块(5c)的翻转运动不会传递至第二质量块(5b)和第四质量块(5d),从而实现机械解耦,降低交叉轴耦合误差。同理,第二质量块(5b)和第四质量块(5d)可以实现相同的翻转运动机械耦合以及交叉轴机械解耦特性。
作为一种可能的实现方式,提高弹性耦合单元(3)沿第三轴(z轴)方向的弯曲刚度,可以提高上述机械耦合和解耦的效果,该弯曲刚度可以趋于无穷大,本申请对其不作限定。
如图4中所示,第一质量块(5a)、第二质量块(5b)、第三质量块(5c)和第四质量块(5d)还分别连接有第一驱动电容(501a)、第二驱动电容(501b)、第三驱动电容(501c)和第四驱动电容(501d)。第一驱动电容(501a)和第三驱动电容(501c)能够提供沿着第一轴(如y轴)的驱动力,第二驱动电容(501b)和第四驱动电容(501d)能够提供沿着第二轴(如x轴)的驱动力,驱动四个质量块进行谐振运动。这样做,四个检测单元上分别设置驱动电容,可以在第一轴正负方向以及第二轴正负方向上分别产生驱动力,在四个驱动力的共同作用下实现四个检测单元以及弹性耦合单元的四波腹运动,有助于提升驱动效率。
作为一种可能的实现方式,还可以只在第一质量块(5a)和第三质量块(5c)上分别设置第一驱动电容(501a)和第三驱动电容(501c),或者,只在第二质量块(5b)和第四质量块(5d)上分别设置第二驱动电容(501b)和第四驱动电容(501d)。以只在第一质量块(5a)和第三质量块(5c)上分别设置第一驱动电容(501a)和第三驱动电容(501c)为例,第一驱动电容(501a)和第三驱动电容(501c)分别产生沿正、负第一轴(如y轴)的驱动力带动质量块反相运动,通过弹性耦合单元(3)的四波腹形变,带动第二质量块(5b)和第四质量块(5d)分别沿着正、负第二轴(如x轴)反相运动。这样做,只在两个检测单元上设置驱动电容,可以在第一轴正负方向或第二轴正负方向上分别产生驱动力,在两个驱动力的作用下实现四个检测单元以及弹性耦合单元的四波腹运动,有助于简化驱动电路,节约成本。
在本申请实施例中,第一驱动电容(501a)、第二驱动电容(501b)、第三驱动电容(501c)和第四驱动电容(501d)的结构相同。以第一驱动电容(501a)为例,第一驱动电容(501a)包括固定驱动电极(7a)和可动驱动电极(8a),其可以是平板电极或者梳齿电极形式,本申请对其不作限定。可动驱动电极(8a)与第一质量块(5a)连接;固定驱动电极(7a)与可动驱动电极(8a)形成电容间距,同时与基底(15)连接。可选的,固定驱动电极可(7a)以是差分形式,即沿着可动驱动电极(8a)两侧分布,形成差分驱动电容,这种方式有利于消除信号的共模误差,提高驱动力的稳定性。
如图4中所示,第一质量块(5a)、第二质量块(5b)、第三质量块(5c)和第四质量块(5d)还分别连接有第一驱动检测电容(502a)、第二驱动检测电容(502b)、第三驱动检测电容(502c)、第四驱动检测电容(502d)。这些驱动检测电容用于检测驱动检测质量块的位移,并输出驱动检测电信号,驱动检测电信号用于闭环反馈控制驱动模态的振动幅值、频率和相位。这样做,通过设置驱动检测电容输出驱动检测信号,能够实现装置的闭环控制。以第一驱动检测电容(502a)为例,第一驱动检测电容(502a)包括固定驱动检测电极(9a)和可动驱动检测电极(10a),其可以是平板电极或者梳齿电极形式。可动驱动检测电极(10a)与第一质量块(5a)连接,固定驱动检测电极(9a)与可动驱动检测电极(10a)形成电容间距,同时与基底(15)连接。固定驱动检测电极(9a)可以是差分形式,形成差分驱动检测电容。这样做,可以提升检测的准确性。可选的,还可以只在第一质量块(5a)、第二质量块(5b)、第三质量块(5c)和第四质量块(5d)中的一个质量块或多个质量块上连接有驱动检测电容,从而完成对装置的控制,这样做,有利于简化装置,节约成本。
如图4中所示,装置500中还包括检测电极,检测电极均位于基底(15)上,如第一 检测电极(14a)、第二检测电极(14b)、第三检测电极(14c)和第四检测电极(14d)。第一检测电极(14a)和第三检测电极(14c)分别与第一质量块(5a)和第三质量块(5c)形成独立的横滚检测电容,用于检测第一质量块(5a)或第三质量块(5c)沿第三轴(z轴)的位移,并输出横滚电信号,横滚电信号用于指示装置在第二轴(x轴)方向上的角速度;第二检测电极(14b)和第四检测电极(14d)分别与第二质量块(5b)和第四质量块(5d)形成独立的俯仰检测电容,用于检测第二质量块(5b)或第四质量块(5d)沿第三轴(z轴)的位移,并输出俯仰电信号,俯仰电信号用于指示装置在第一轴(y轴)方向上的角速度。这样,由于一组质量块进行反相运动,检测电极可以与一组质量块分别形成独立电容,作为差分检测电容,提高灵敏度的同时可以降低共模噪声。可选的,还可以只设置单个检测电极与质量块形成检测电容,例如,只设置第一检测电极(14a)或者第三检测电极(14c),与第一质量块(5a)或者第三质量块(5c)形成独立的横滚检测电容,从而完成对角速度的检测,这样做,可以简化装置,节约成本,对应的,检测精度可能有所降低。
图7是本申请实施例提供的第四种用于检测角速度的装置的结构示意图。如图8所示,在基底(15)上设置检测电极的同时还可以在盖板(16)上设置检测电极。此时,设置于基底(15)上的检测电极与一个或多个质量块形成下检测电容,设置于盖板(16)上的检测电极与一个或多个质量块形成上检测电容,在质量块进行翻转运动时,上检测电容与下检测电容构成上下差分检测电容。这样做,可以实现双差分检测电容,进一步提高灵敏度,同时降低共模噪声。
在本申请实施例中,装置400可以实现水平双轴角速度的检测,工作时,驱动电容驱动质量块以四波腹形式振荡,当第二轴(x轴)角速度输入时,第一质量块(5a)和第三质量块(5c)反相翻转振荡,第一检测电极(14a)和第三检测电极(14c)分别输出横滚电信号,用于确定第二轴(x轴)角速度。第一轴(y轴)角速度输入,第二质量块(5b)和第四质量块(5d)反相翻转振荡,第二检测电极(14b)和第四检测电极(14d)分别输出俯仰电信号,用于确定第一轴(y轴)角速度。这样做,装置整体结构具有中心全对称特点,四波腹驱动模态、质量块反相翻转检测模态的运动模式也全对称,有利提高抗同相运动模式,降低加速度敏感性、提高抗线振动、角振动等环境干扰。第一轴、第二轴的全对称,有利实现其性能的一致性,包括灵敏度、非线性、零偏稳定性以及温度稳定性等参数。
图8是本申请实施例提供的第五种用于检测角速度的装置的结构示意图。上述装置400可以实现第一轴、第二轴的角速度检测,如图8所示,当装置400进一步包括航向检测电容(如第一航向检测电容(503a)、第二航向检测电容(503b)、第三航向检测电容(503c)和第四航向检测电容(503d))时,可以实现对第三轴的角速度检测。
以第一航向检测电容(503a)为例,第一航向检测电容(503a)包括固定航向检测电极(17a)和可动航向检测电极(18a),其可以是平板电极或者梳齿电极形式。可动航向检测电极(18a)与第一质量块(5a)连接。此时,第一支撑单元(6a)和第三支撑单元(6c)具有沿第一轴(y轴)的弯曲自由度,沿第二轴(x轴)方向是支撑单元的轴向,刚度远远大于沿第一轴(y轴)的弯曲自由度;第二支撑单元(6b)和第四支撑单元(6d)具有沿第二轴(x轴)的弯曲自由度,沿第一轴(y轴)方向是支撑单元的轴向,刚度远 远大于沿第二轴(x轴)的弯曲自由度。第一解耦单元(12a)和第三解耦单元(12c)具有沿第二轴(x轴)的弯曲自由度,第二解耦单元(12b)和第四解耦单元(12d)具有沿第一轴(y轴)方向的弯曲自由度。因此,综合支撑单元与解耦单元的设置,四质量块分别具有绕第三轴(z轴)扭转的自由度。第一质量块(5a)、第二质量块(5b)、第三质量块(5c)和第四质量块(5d)以四波腹模态进行振荡,第一质量块(5a)和第三质量块(5c)沿着第一轴(y轴)方向线运动,外部输入绕第三轴(z轴)的角速度在第一质量块(5a)和第三质量块(5c)上分别产生沿第二轴(x轴)、反向的科氏力,分别带动质量块反相扭转;第二质量块(5b)和第四质量块(5d)沿着第二轴(x轴)方向线运动,外部输入绕第三轴(z轴)的角速度在第二质量块(5b)和第四质量块(5d)上分别产生沿第一轴(y轴)、反向的科氏力,分别带动质量块反相扭转。此时,检测电极(17a~d)分别输出航向电信号,用于确定第三轴(z轴)角速度。
可选的,当四波腹为谐振运动时,该扭转运动也为谐振运动。
可选的,航向检测电容可以分布在质量块的两侧,构成航向差分检测电容。第三轴(z轴)角速度输入产生的绕第三轴(z轴)的扭转运动,在质量块的两侧分别是反相的位移,航向检测电容可以实现位移的差分检测。四质量块至少一个质量块上有航向检测电容,当四个质量块均设置有航向检测电容时,可以提高陀螺仪结构的对称性,以及提高灵敏度。
图9是本申请实施例提供的第一种用于检测角速度的系统的示意图。如图9所示,系统900包括驱动检测电路1020、闭环控制电路1030、驱动电路1040以及用于检测角速度的装置1010,其可以是上述装置100、装置200、装置400和装置800中的一个。装置1010中的驱动检测电容输出的质量块位移信号,驱动检测电路1020用于对装置1010输出的质量块位移信号进行放大和移相处理,得到第一电信号。闭环控制电路1030对第一电信号进行计算处理,得到第二电信号,驱动电路1040根据第二电信号输出驱动信号,该驱动信号输出相位和频率可控,可以用于驱动装置1010的弹性耦合单元进行四波腹运动,使得装置1010的第一质量块和第三质量块沿第一轴反相运动,装置的第二质量块和第四质量块沿第二轴反相运动。这样做,使得该系统可以实现质量块运动的闭环控制。
图10是本申请实施例提供的第二种用于检测角速度的系统的示意图。如图10所示,系统1000包括横滚检测电路1050、俯仰检测电路1060和航行检测电路1070中的至少一个以及用于检测角速度的装置1010,其可以是上述装置100、装置200、装置400和装置800中的一个。横滚检测电路1050用于对装置1010输出的横滚电信号进行处理得到第二轴角速度;俯仰检测电路1060用于对装置1010输出的俯仰电信号进行处理得到第一轴角速度;航向检测电路1070用于对装置1010输出的航向电信号进行处理得到第三轴角速度。
可选的,上述横滚检测电路1050对装置1010输出的横滚电信号进行处理包括:横滚检测电路1050对装置1010输出的横滚电信号进行差分处理、放大处理和解调处理中的至少一种。俯仰检测电路1060对俯仰电信号进行处理,以及航向检测电路1070对航向电信号进行处理可以参照横滚检测电路1050对横滚电信号进行处理的方式,在此不再赘述。
图11是本申请实施例提供的用于检测角速度的方法的流程示意图。该方法可由上述装置100、装置200、装置400和装置800中的一个执行。
S1110,第一检测单元、第二检测单元、第三检测单元和第四检测单元中的至少一个在沿第三轴发生第一位移时输出第一信号,第三轴与第一平面垂直,第一信号用于指示第 一位移的大小,第一位移用于确定角速度的大小。其中,第一信号包括横滚电信号、俯仰电信号和航向电路信号中的至少一种。
S1120,横滚检测电路用于对装置输出的横滚电信号进行处理得到第二轴角速度;俯仰检测电路用于对装置输出的俯仰电信号进行处理得到第一轴角速度;航向检测电路用于对装置输出的航向电信号进行处理得到第三轴角速度。
本申请所揭示的方法,能够实现横滚、俯仰轴角速度的检测,同时提高集成度、灵敏度、水平双轴的一致性,降低交叉轴耦合误差。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种用于检测角速度的装置,其特征在于,包括第一检测单元、第二检测单元、第三检测单元、第四检测单元和弹性耦合单元,其中:
    所述弹性耦合单元用于产生四波腹运动,包括第一连接端、第二连接端、第三连接端和第四连接端,其中,所述第一连接端、所述第二连接端、所述第三连接端和所述第四连接端处于第一平面,所述第一检测单元与所述第一连接端连接,所述第二检测单元与所述第二连接端连接,所述第三检测单元与所述第三连接端连接,所述第四检测单元与所述第四连接端连接;
    所述弹性耦合单元进行四波腹运动时,所述第一检测单元和所述第三检测单元沿第一轴进行反相线运动,所述第二检测单元和所述第四检测单元沿第二轴进行反相线运动,所述第一轴与所述第二轴正交;
    当外界角速度输入所述装置时,所述第一检测单元、所述第二检测单元、所述第三检测单元和所述第四检测单元中的至少一个在沿第三轴发生第一位移时输出第一信号,所述第三轴与所述第一平面垂直,所述第一信号用于指示所述第一位移的大小,所述第一位移用于确定所述角速度的大小。
  2. 根据权利要求1所述的装置,其特征在于,所述第一检测单元和所述第三检测单元关于所述弹性耦合单元中心对称配置,所述第二检测单元和所述第四检测单元关于弹性耦合单元中心对称配置。
  3. 根据权利要求1或2所述的装置,其特征在于,所述装置还包括中心锚点和基底,所述弹性结构单元通过所述中心锚点与所述基底相连接。
  4. 根据权利要求1至3中任一项所述的装置,其特征在于,所述装置还包括中心支撑单元,所述中心支撑单元用于连接所述弹性耦合单元和所述中心锚点。
  5. 根据权利要求1至4中任一项所述的装置,其特征在于,所述第一检测单元包括第一质量块、第一铰链单元、第一解耦单元、第一支撑单元、第一锚点,所述第一质量块的第一端通过所述第一铰链单元、所述第一解耦单元与所述弹性耦合单元的第一节点相连接,所述第一铰链单元具有绕第二轴扭转的自由度,所述第一解耦单元具有绕第一轴扭转的自由度,所述第一质量块的第二端通过所述第一支撑单元和所述第一锚点与所述基底相连接,所述第一支撑单元具有绕所述第二轴扭转的自由度,
    所述第二检测单元包括第二质量块、第二铰链单元、第二解耦单元、第二支撑单元、第二锚点,所述第二质量块的第一端通过所述第二铰链单元、所述第二解耦单元与所述弹性耦合单元的第二节点相连接,所述第二铰链单元具有绕所述第一轴扭转的自由度,所述第二解耦单元具有绕所述第二轴扭转的自由度,所述第二质量块的第二端通过所述第二支撑单元和所述第二锚点与所述基底相连接,所述第二支撑单元具有绕所述第一轴扭转的自由度,
    所述第三检测单元包括第三质量块、第三铰链单元、第三解耦单元、第三支撑单元、第三锚点,所述第三质量块的第一端通过所述第三铰链单元、所述第三解耦单元与所述弹性耦合单元的第三节点相连接,所述第三铰链单元具有绕所述第二轴扭转的自由度,所述 第三解耦单元具有绕所述第一轴扭转的自由度,所述第三质量块的第二端通过所述第三支撑单元和所述第三锚点与所述基底相连接,所述第三支撑单元具有绕所述第二轴扭转的自由度,
    所述第四检测单元包括第四质量块、第四铰链单元、第四解耦单元、第四支撑单元、第四锚点,所述第四质量块的第一端通过所述第四铰链单元、所述第四解耦单元与所述弹性耦合单元的第四节点相连接,所述第四铰链单元具有绕所述第一轴扭转的自由度,所述第四解耦单元具有绕所述第二轴扭转的自由度,所述第四质量块的第二端通过所述第四支撑单元和所述第四锚点与所述基底相连接,所述第四支撑单元具有绕所述第一轴扭转的自由度。
  6. 根据权利要求1至5中任一项所述的装置,其特征在于,所述第一检测单元包括第一驱动电容,所述第二检测单元包括第二驱动电容,所述第三检测单元包括第三驱动电容,所述第四检测单元包括第四驱动电容,
    所述第一驱动电容用于产生第一驱动力带动所述第一检测单元沿第一轴运动,
    所述第二驱动电容用于产生第二驱动力带动所述第二检测单元沿第二轴运动,
    所述第三驱动电容用于产生第三驱动力带动所述第一检测单元沿第一轴运动,
    所述第四驱动电容用于产生第四驱动力带动所述第二检测单元沿第二轴运动,
    其中,所述第一驱动力和所述第三驱动力反相,所述第二驱动力和所述第四驱动力反相,
    所述弹性耦合单元在所述第一检测单元、所述第二检测单元、所述第三检测单元和所述第四检测单元共同作用下,进行四波腹运动。
  7. 根据权利要求1至5中任一项所述的装置,其特征在于,所述第一检测单元包括第一驱动电容,所述第三检测单元包括第三驱动电容,
    所述第一驱动电容用于产生第一驱动力带动所述第一检测单元沿第一轴运动,
    所述第三驱动电容用于产生第三驱动力带动所述第一检测单元沿第一轴运动,
    其中,所述第一驱动力和所述第三驱动力反相,
    所述第一检测单元和所述第三检测单元通过所述弹性耦合单元的四波腹运动,带动所述第二检测单元和所述第四检测单元沿第二轴进行反相线运动。
  8. 根据权利要求1至5中任一项所述的装置,其特征在于,所述第二检测单元包括第二驱动电容,所述第四检测单元包括第四驱动电容,
    所述第二驱动电容用于产生第二驱动力带动所述第二检测单元沿第二轴运动,
    所述第四驱动电容用于产生第四驱动力带动所述第二检测单元沿第二轴运动,
    其中,所述第二驱动力和所述第四驱动力反相,
    所述第二检测单元和所述第四检测单元通过所述弹性耦合单元的四波腹运动,带动所述第一检测单元和所述第三检测单元沿第一轴进行反相线运动。
  9. 根据权利要求1至8中任一项所述的装置,其特征在于,所述装置还包括检测电极,
    所述检测电极与所述第一质量块和所述第三质量块中的至少一个组成横滚检测电容,所述横滚检测电容用于检测所述第一质量块或所述第三质量块沿第三轴的位移,并输出横滚电信号,所述横滚电信号用于指示所述装置在所述第二轴方向上的角速度;
    所述检测电极与所述第二质量块和所述第四质量块中的至少一个组成俯仰检测电容,所述俯仰检测电容用于检测所述第二质量块或所述第四质量块沿第三轴的位移,并输出俯仰电信号,所述俯仰电信号用于指示所述装置在所述第一轴方向上的角速度。
  10. 根据权利要求1至9中任一项所述的装置,其特征在于,当外界角速度输入所述装置时,所述弹性耦合单元进行四波腹运动,使得所述第一检测单元和所述第三检测单元绕所述第二轴反相翻转运动,所述第二检测单元和所述第四检测单元沿所述第一轴反相翻转运动。
  11. 根据权利要求1至9中任一项所述的装置,其特征在于,当外界角速度输入所述装置时,所述弹性耦合单元进行四波腹运动,使得所述第一检测单元和所述第三检测单元绕所述第一轴同相线运动,所述第二检测单元和所述第四检测单元沿所述第二轴同相线运动。
  12. 根据权利要求1至11中任一项所述的装置,其特征在于,所述弹性耦合单元包括以下一种结构:
    圆环、多圆环、方框、多方框、方板、椭圆环、多椭圆环、椭圆盘、菱形框、多菱形框、菱形盘。
  13. 根据权利要求1至12中任一项所述的装置,其特征在于,所述装置还包括航向检测电容,所述航向检测电容包括固定航向检测电极和可动航向检测电极,所述可动航向检测电极与航向检测质量块相连接,所述航向检测质量块为所述第一质量块、所述第二质量块、所述第三质量块和所述第四质量块中的至少一个,
    所述航向检测电容用于检测所述航向检测质量块沿第三轴的位移,并输出航向电信号,所述航向电信号用于指示所述第三轴方向上的角速度。
  14. 根据权利要求13所述的装置,其特征在于,所述航向检测质量块为所述第一质量块和所述第三质量块中的至少一个,与所述航向检测质量块相连接的支撑单元具有沿所述第一轴的弯曲自由度,与所述航向检测质量块相连接的解耦单元具有沿所述第二轴的弯曲自由度;或者,
    所述航向检测质量块为所述第二质量块和所述第四质量块中的至少一个,与所述航向检测质量块相连接的支撑单元具有沿所述第二轴的弯曲自由度,与所述航向检测质量块相连接的解耦单元具有沿所述第一轴的弯曲自由度。
  15. 根据权利要求1至14中任一项所述的装置,其特征在于,所述装置还包括驱动检测电容,所述驱动检测电容包括固定驱动检测电极和可动驱动检测电极,所述可动驱动检测电极与驱动检测质量块相连接,所述驱动检测质量块为所述第一质量块、所述第二质量块、所述第三质量块和所述第四质量块中的至少一个,
    所述驱动检测电容用于检测所述驱动检测质量块的位移,并输出驱动检测电信号,所述驱动检测电信号用于闭环反馈控制所述驱动模态的振动幅值、频率和相位。
  16. 根据权利要求1至15中任一项所述的装置,其特征在于,所述第一检测单元和所述第二检测单元关于所述弹性耦合单元中心对称配置。
  17. 一种用于检测角速度的系统,其特征在于,包括驱动检测电路、闭环控制电路、驱动电路以及如权利要求1至16中任一项所述的装置,
    所述驱动检测电路用于对所述装置输出的驱动模态的质量块位移信号进行放大和移 相处理,得到第一电信号,
    所述闭环控制电路对所述第一电信号进行计算处理,得到第二电信号,
    所述驱动电路根据所述第二电信号输出驱动信号,所述驱动信号用于驱动所述装置的弹性耦合单元进行四波腹运动,使得所述装置的第一质量块和第三质量块沿所述第一轴反相运动,所述装置的第二质量块和第四质量块沿所述第二轴反相运动。
  18. 一种用于检测角速度的系统,其特征在于,包括横滚检测电路、俯仰检测电路和航行检测电路中的至少一个以及如权利要求1至16中任一项所述的装置,
    所述横滚检测电路用于对所述装置输出的横滚电信号进行处理得到所述第二轴角速度;
    所述俯仰检测电路用于对所述装置输出的俯仰电信号进行处理得到所述第一轴角速度;
    所述航向检测电路用于对所述装置输出的航向电信号进行处理得到所述第三轴角速度。
  19. 根据权利要求18所述的系统,其特征在于,所述横滚检测电路用于对所述装置输出的横滚电信号进行处理,包括:
    所述横滚检测电路用于对所述装置输出的横滚电信号进行差分处理、放大处理和解调处理中的至少一种。
  20. 一种用于检测角速度的方法,其特征在于,所述方法由用于检测角速度的装置执行,所述装置包括第一检测单元、第二检测单元、第三检测单元、第四检测单元和弹性耦合单元,所述弹性耦合单元用于产生四波腹运动,所述弹性耦合单元包括第一连接端、第二连接端、第三连接端和第四连接端,其中,所述第一连接端,所述第二连接端,所述第三连接端和所述第四连接端处于第一平面,所述第一检测单元与所述第一连接端连接,所述第二检测单元与所述第二连接端连接,所述第三检测单元与所述第三连接端连接,所述第四检测单元与所述第四连接端连接,其中,所述弹性耦合单元进行四波腹运动时,所述第一检测单元和所述第三检测单元沿第一轴进行反相线运动,所述第二检测单元和所述第四检测单元沿第二轴进行反相线运动,所述第一轴与所述第二轴正交,所述方法包括:
    当外界角速度输入所述装置时,所述第一检测单元、所述第二检测单元、所述第三检测单元和所述第四检测单元中的至少一个在沿第三轴发生第一位移时输出第一信号,所述第三轴与所述第一平面垂直,所述第一信号用于指示所述第一位移的大小,所述第一位移用于确定所述角速度的大小。
PCT/CN2023/082664 2022-05-23 2023-03-21 一种用于检测角速度的装置、方法和系统 WO2023226560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210563646.5A CN117146789A (zh) 2022-05-23 2022-05-23 一种用于检测角速度的装置、方法和系统
CN202210563646.5 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023226560A1 true WO2023226560A1 (zh) 2023-11-30

Family

ID=88899332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082664 WO2023226560A1 (zh) 2022-05-23 2023-03-21 一种用于检测角速度的装置、方法和系统

Country Status (2)

Country Link
CN (1) CN117146789A (zh)
WO (1) WO2023226560A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117490673A (zh) * 2024-01-02 2024-02-02 南京元感微电子有限公司 一种抑制交叉轴耦合的三轴mems陀螺仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100223996A1 (en) * 2006-06-16 2010-09-09 Sony Corporation Inertial sensor
CN102183246A (zh) * 2009-12-24 2011-09-14 意法半导体股份有限公司 具有改进的驱动结构的集成微机电陀螺仪
WO2016206152A1 (zh) * 2015-06-26 2016-12-29 清华大学 一种单锚定点四质量块mems谐振式陀螺仪
US20180306580A1 (en) * 2017-04-19 2018-10-25 Stmicroelectronics S.R.L. Mems gyroscope with improved rejection of a quadrature error
CN111578921A (zh) * 2019-02-15 2020-08-25 株式会社村田制作所 具有同步框架的多轴陀螺仪
US10823569B1 (en) * 2019-08-22 2020-11-03 Nxp Usa, Inc. Multiple axis sensing device based on frequency modulation and method of operation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100223996A1 (en) * 2006-06-16 2010-09-09 Sony Corporation Inertial sensor
CN102183246A (zh) * 2009-12-24 2011-09-14 意法半导体股份有限公司 具有改进的驱动结构的集成微机电陀螺仪
WO2016206152A1 (zh) * 2015-06-26 2016-12-29 清华大学 一种单锚定点四质量块mems谐振式陀螺仪
US20180306580A1 (en) * 2017-04-19 2018-10-25 Stmicroelectronics S.R.L. Mems gyroscope with improved rejection of a quadrature error
CN111578921A (zh) * 2019-02-15 2020-08-25 株式会社村田制作所 具有同步框架的多轴陀螺仪
US10823569B1 (en) * 2019-08-22 2020-11-03 Nxp Usa, Inc. Multiple axis sensing device based on frequency modulation and method of operation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117490673A (zh) * 2024-01-02 2024-02-02 南京元感微电子有限公司 一种抑制交叉轴耦合的三轴mems陀螺仪
CN117490673B (zh) * 2024-01-02 2024-03-12 南京元感微电子有限公司 一种抑制交叉轴耦合的三轴mems陀螺仪

Also Published As

Publication number Publication date
CN117146789A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
US20140116135A1 (en) Integrated microelectromechanical gyroscope with improved driving structure
CN108507555A (zh) 一种mems微机械全解耦闭环陀螺仪
CN101038299A (zh) 基于单质量块的单轴集成惯性测量器件
CN220153593U (zh) 一种可实现干扰模态隔离的解耦型音叉硅微机械陀螺仪
CN108955663B (zh) 一种谐振式双轴微机械轮式陀螺
WO2023226560A1 (zh) 一种用于检测角速度的装置、方法和系统
US20230314139A1 (en) Three-axis mems gyroscope
CN208140130U (zh) 一种mems微机械全解耦闭环陀螺仪结构
JP2017535784A (ja) 3軸memsジャイロ
TWM575099U (zh) 一種mems三軸陀螺儀
CN112284368A (zh) 一种全差分高精度x轴硅微陀螺仪
CN116147599B (zh) 一种四质量全差分双轴mems陀螺仪
US11585659B2 (en) MEMS wave gyroscope
US11885618B2 (en) Three-axis micromachined gyroscope
CN110702088B (zh) 一种轮式双轴微机械陀螺
CN111780737B (zh) 一种基于音叉驱动效应的高精度水平轴硅微陀螺仪
CN107167123B (zh) 一种微机电两轴陀螺仪
CN111693036A (zh) 三轴mems陀螺仪
CN116124110A (zh) 一种面内扭摆式四质量块mems陀螺仪
CN209446068U (zh) 一种抗高过载的双质量块音叉式角速率陀螺仪
CN116222531A (zh) 微电子机械系统陀螺仪
CN212320730U (zh) 三轴mems陀螺仪
CN112212849B (zh) 一种环形三轴解耦微陀螺仪
CN114964193A (zh) 一种三轴微机械陀螺仪
CN109668550B (zh) 一种全解耦的三自由度微机械陀螺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810635

Country of ref document: EP

Kind code of ref document: A1