WO2016203980A1 - 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法 - Google Patents

圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法 Download PDF

Info

Publication number
WO2016203980A1
WO2016203980A1 PCT/JP2016/066487 JP2016066487W WO2016203980A1 WO 2016203980 A1 WO2016203980 A1 WO 2016203980A1 JP 2016066487 W JP2016066487 W JP 2016066487W WO 2016203980 A1 WO2016203980 A1 WO 2016203980A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
air
expander
exhaust
heat
Prior art date
Application number
PCT/JP2016/066487
Other languages
English (en)
French (fr)
Inventor
正剛 戸島
洋平 久保
正樹 松隈
浩樹 猿田
佳直美 坂本
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2016203980A1 publication Critical patent/WO2016203980A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a compressed air storage power generation apparatus and a compressed air storage power generation method.
  • CAES compressed air storage
  • Conventional compressed air storage power generators store electrical energy in the accumulator tank as compressed air during off-peak hours of the power plant, operate the generator by driving the expander with compressed air during high power demand time, and Is generally generated.
  • Patent Document 1 discloses such a CAES power generator.
  • the CAES power generator of Patent Document 1 uses a heat exchanger to exchange heat between the heat medium and air, collects the compression heat generated by the compressor into the heat medium, Heat is returned to the air before it expands.
  • An object of the present invention is to provide a compressed air storage power generation apparatus that can suppress exhaust heat from an expander to the atmosphere to the minimum and improve system efficiency.
  • the temperature of the exhaust air exhausted from the expander When the compressed air supplied to the expander is heated using compression heat or the like, the temperature of the exhaust air exhausted from the expander also rises.
  • the temperature of exhaust air may be higher than that of compressed air supplied to individual expander bodies, and in this case, system efficiency can be improved by heat exchange.
  • the first aspect of the present invention includes an electric motor driven by fluctuating input power, a compressor mechanically connected to the electric motor, compressing air, and fluidly connected to the compressor, An accumulator tank that stores compressed air compressed by the compressor, and a multistage expansion fluidly connected to the accumulator tank and driven by compressed air supplied from the accumulator tank and having a plurality of expander bodies
  • a heat generator a generator mechanically connected to the expander, a heat medium tank for storing a heat medium, a heat medium supplied from the heat medium tank, and compressed air supplied to the expander. Heat is exchanged between the expansion side heat exchanging unit for heating the compressed air, the exhaust air exhausted from the expander and the compressed air supplied to one of the expander bodies, and the compressed air is heated.
  • Exhaust side heat exchanger Providing compressed air storage power generation apparatus equipped.
  • the compressed air heated by the expansion-side heat exchange unit is expanded and exhausted by the expander, and the exhaust heat of the exhaust air is used for heating the compressed air before expansion.
  • System efficiency can be improved by minimizing exhaust heat to the atmosphere. Specifically, heat is exchanged between the exhaust air exhausted from the expander and the compressed air supplied to one of the expander main bodies having a temperature lower than that, and the compressed air is heated, so that the air before the expansion is heated. The temperature of compressed air can be raised and the expansion efficiency can be improved.
  • the exhaust-side heat exchanging unit heats compressed air supplied to the expander body provided on the most downstream side in the air flow path in the expander body.
  • the expander body provided at the most downstream side in the air flow path has a larger work of expansion than the other expander bodies, so the compressed air supplied to the most downstream expander body is heated to a temperature. Raising is particularly effective for improving the expansion efficiency.
  • the expander body provided on the most downstream side has an isentropic curve in the expansion stroke that assumes the isentropic change in the ph diagram compared to the expansion stroke of other expander bodies. The slope is small. Therefore, in the expansion stroke in which the slope of the isentropic line is small, the enthalpy is greatly reduced even when the pressure is reduced. Therefore, the expansion work can be increased by supplying larger heat energy.
  • An exhaust air temperature detection unit for detecting the temperature of exhaust air exhausted from the expander, a compressed air temperature detection unit for detecting the temperature of compressed air supplied to the exhaust side heat exchange unit, and exhaust from the expander
  • the switching unit for switching whether to exhaust the exhaust air to be exhausted or to supply to the exhaust side heat exchange unit, and the temperature detected by the exhaust air temperature detection unit from the temperature detected by the compressed air temperature detection unit It is preferable to further include a control device that switches the switching unit to supply exhaust air to the exhaust-side heat exchange unit when it is higher than a predetermined margin value.
  • the compressed air can be heated by exchanging heat between the exhaust air and the compressed air. Therefore, when heat exchange is necessary in this way, the heat exchange is performed by allowing the supply of exhaust air to the exhaust side heat exchange section. By doing in this way, the fall of expansion efficiency can be prevented.
  • the compression heat in the compressor can be recovered in the heat medium and stored in the heat medium tank in the compression side heat exchange section, and the temperature of the compressed air stored in the pressure accumulation tank can be brought close to the atmospheric temperature. For this reason, heat release in the pressure accumulation tank can be prevented, and system efficiency can be improved.
  • an electric motor is driven by fluctuating input electric power, air is compressed by a compressor driven by the electric motor, compressed air compressed by the compressor is stored in an accumulator tank,
  • a multi-stage type expander having a plurality of expander bodies is driven by compressed air supplied from an accumulator tank, generated by a generator driven by the expander, and compressed by the compressor by a compression side heat exchange unit.
  • the heat medium is heated to exchange heat between the heated air and the heat medium, the heat medium heated by the compression side heat exchange unit is heated and stored in the heat medium tank, and the heat medium is expanded by the expansion side heat exchange unit.
  • Heat is exchanged between the heat medium supplied from the tank and the compressed air supplied to the expander to heat the compressed air, and the temperature of the exhaust air exhausted from the expander is provided on the most downstream side in the air flow path. Supplied to the expander body The exhaust air exhausted from the expander by the exhaust side heat exchange unit and the compressed air supplied to the expander body provided on the most downstream side.
  • a compressed air storage power generation method including heat exchange to heat compressed air is provided.
  • exhaust heat from the expander to the atmosphere can be suppressed to the minimum, and the system efficiency can be improved.
  • FIG. 2 is a ph diagram showing a relationship between pressure and enthalpy in an expansion stroke of the compressed air storage power generation apparatus of FIG. 1.
  • the schematic block diagram of the compressed air storage power generation apparatus which concerns on 2nd Embodiment of this invention.
  • FIG. 1 shows a schematic configuration diagram of a compressed air energy storage (CAES) power generator 2 according to a first embodiment of the present invention.
  • CAES compressed air energy storage
  • the CAES power generator 2 includes an air flow path and a heat medium flow path.
  • the air flow path is mainly provided with a compressor 4, a pressure accumulating tank 6, and an expander 8, which are fluidly connected by air pipes 10a and 10b, in which air flows. (See solid arrows).
  • the heat medium flow path is mainly provided with a compression side heat exchange unit 12, a heat medium tank 14, and an expansion side heat exchange unit 16, and these are fluidly connected by heat medium pipes 18a and 18b. In the interior, a heat medium flows (see broken line arrows).
  • the air flow path will be described with reference to FIG.
  • the sucked air is compressed by the compressor 4, stored in the pressure accumulating tank 6, supplied to the expander 8 as necessary, and used for power generation by the generators 20a and 20b.
  • the air in the air flow path is cooled in the compression side heat exchange unit 12 and heated in the expansion side heat exchange unit 16, the exhaust side heat exchange unit 22, and the sub heat exchange unit 24.
  • the compressor 4 of this embodiment is a two-stage screw type having a low-pressure stage compressor body 4a and a high-pressure stage compressor body 4b.
  • the screw-type compressor 4 By using the screw-type compressor 4, it is possible to quickly follow the fluctuating input and to quickly change the power generation output.
  • the low-pressure stage compressor body 4a and the high-pressure stage compressor body 4b include motors 26a and 26b, respectively.
  • the motors 26a and 26b are mechanically connected to the screws inside the low-pressure stage compressor body 4a and the high-pressure stage compressor body 4b.
  • the motors 26a and 26b When input power generated by renewable energy from a power generation facility (not shown) is supplied to the motors 26a and 26b, the motors 26a and 26b are driven by this power, and the screw rotates to rotate the low-pressure stage compressor body 4a and the high-pressure unit.
  • the stage compressor body 4b operates.
  • the low-pressure stage compressor body 4a When operated by the motors 26a and 26b, the low-pressure stage compressor body 4a sucks air from the intake port 4c through the air pipe 10a, compresses it, and discharges it from the discharge port 4d, and then passes through the air pipe 10a and the high-pressure stage compressor body 4b.
  • the high-pressure compressor main body 4b sucks air from the intake port 4e through the air pipe 10a, compresses it and discharges it from the discharge port 4f, and pumps the compressed air to the pressure accumulation tank 6 through the air pipe 10a.
  • the compressor 4 is not limited to a two-stage type, and may be a three-stage type or more, and a plurality of compressors may be installed.
  • the kind of the compressor 4 is not specifically limited, For example, a turbo type, a scroll type, a reciprocating type, etc. may be sufficient.
  • a valve 28 a is provided in the air pipe 10 a extending from the compressor 4 to the pressure accumulating tank 6, and the valve 28 a can be opened and closed as necessary to allow or block the supply of compressed air to the pressure accumulating tank 6.
  • the pressure accumulating tank 6 stores the compressed air fed from the compressor 4. Therefore, energy can be stored in the pressure accumulation tank 6 as compressed air. Accumulated pressure is determined based on a balance with the required power storage capacity, installation space, and legal regulations.
  • the accumulator tank 6 is fluidly connected to the expander 8 via the expansion side heat exchange unit 16 through the air pipe 10b. The compressed air stored in the pressure accumulating tank 6 is supplied to the expander 8.
  • the air pipe 10b extending from the pressure accumulation tank 6 to the expander 8 is provided with a valve 28b.
  • the valve 28b can be opened and closed as necessary to allow or block the supply of compressed air to the expander 8.
  • the expander 8 is a two-stage screw type having a low-pressure stage expander body 8a and a high-pressure stage expander body 8b.
  • the low-pressure stage expander body 8a and the high-pressure stage expander body 8b include generators 20a and 20b.
  • the generators 20a and 20b are mechanically connected to the screws inside the low-pressure stage expander body 8a and the high-pressure stage expander body 8b.
  • the high-pressure stage expander body 8b is fluidly connected to the pressure accumulation tank 6 through the air pipe 10b at the air supply port 8c, and is supplied with compressed air from the air supply port 8c.
  • the high-pressure stage expander body 8b is operated by the supplied compressed air and drives the generator 20b.
  • the high-pressure stage expander body 8b supplies compressed air from the exhaust port 8d to the air supply port 8e of the low-pressure stage expander body 8a through the air pipe 10b.
  • the low-pressure stage expander main body 8a is similarly operated by the supplied compressed air, and drives the generator 20a.
  • the low-pressure stage expander body 8a exhausts the air (exhaust air) expanded to the outside through the air pipe 10b from the exhaust port 8f.
  • the electric power generated by the generators 20a and 20b is supplied to an external power system (not shown).
  • the expander 8 is not limited to the two-stage type, and may be a three-stage type or more, and a plurality of units may be installed.
  • the kind of expander 8 is not specifically limited, For example, a turbo type, a scroll type, a reciprocating type etc. may be sufficient.
  • an air pipe 10c leading to the exhaust side heat exchanging portion 22 is branched from the air pipe 10b leading to the outside.
  • Valves (switching portions) 30a and 30b are provided in the air pipes 10b and 10c.
  • the valves 30a and 30b are connected to the air pipe 10b. Allow or block the air flow in 10c, respectively. Therefore, the flow path of the exhaust air from the low-pressure expander main body 8a can be switched by the valves 30a and 30b. For this reason, the exhaust air from the low-pressure stage expander main body 8a can be supplied to the exhaust-side heat exchanging unit 22 through the air pipe 10c without exhausting to the outside.
  • the exhaust-side heat exchanging unit 22 exchanges heat between upstream air and downstream air in the air flow path. That is, heat is exchanged upstream and downstream of the air flowing in the same flow path.
  • the exhaust-side heat exchange unit 22 is provided in the air pipe 10b extending from the high-pressure stage expander body 8b to a sub heat exchange unit 24 described later. Moreover, it is provided in the air piping 10c to which the exhaust air from the low-pressure stage expander main body 8a is supplied. Therefore, the exhaust-side heat exchanging unit 22 exchanges heat between the compressed air expanded in the high-pressure stage expander body 8b and the exhaust air from the low-pressure stage expander body 8a, and is supplied to the low-pressure stage expander body 8a. Compressed air is heated. After the heat exchange, the exhaust air supplied to the exhaust-side heat exchange unit 22 through the air pipe 10c is exhausted to the outside through the air pipe 10c.
  • the sub heat exchange unit 24 is provided in the air pipe 10b extending from the exhaust side heat exchange unit 22 to the expansion side heat exchange unit 16 (interheater 16b) in the air flow path.
  • the CAES power generation device 2 of the present embodiment includes a flow path through which lubricating oil used for lubricating a bearing (not shown) accompanying rotation of the screws of the compressor 4 and the expander 8 (see a one-dot chain line arrow). .
  • the lubricating oil lubricates a bearing (not shown) and collects frictional heat generated in the bearing to increase the temperature.
  • the sub heat exchanging section 24 is provided in the lubricating oil flow path (see the dashed line arrow) so as to use the heat of the lubricating oil.
  • the sub heat exchanging unit 24 collects the compressed air supplied to the expansion side heat exchanging unit 16 (interheater 16b) after the heat exchanging in the exhaust side heat exchanging unit 22 and the frictional heat generated in the bearing, and the temperature is increased. Heat is exchanged with the raised lubricating oil, and the compressed air supplied to the expansion side heat exchange unit 16 (interheater 16b) is heated.
  • the heat exchange target in the sub heat exchanging unit 24 is not limited to the lubricating oil whose frictional heat has been recovered by the bearings of the compressor 4 and the expander 8, and the type thereof is not limited.
  • the target may be another heat medium that recovers heat generated by electric loss of the motors 26a and 26b and the generators 20a and 20b.
  • a compressed air temperature sensor (compressed air temperature detector) 32 is provided in the air pipe 10b extending from the high-pressure stage expander body 8b to the exhaust-side heat exchange unit 22.
  • the compressed air temperature sensor 32 detects the temperature of the compressed air supplied to the exhaust-side heat exchange unit 22.
  • An exhaust air temperature sensor (exhaust air temperature detection unit) 34 is provided in the air pipe 10b extending from the low-pressure expander body 8a to the outside.
  • the exhaust air temperature sensor 34 detects the temperature of the exhaust air from the low-pressure stage expander body 8a.
  • the temperature values detected by these temperature sensors 32 and 34 are output to the control device 36.
  • the control device 36 includes the CAES power generation device 2 and the control device 36.
  • the control device 36 is constructed by hardware including a sequencer and software installed therein. As will be described later, the control device 36 switches the valves 30a and 30b based on these temperature values to switch the air flow path for the exhaust air.
  • the heat medium flow path In the heat medium flow path, the heat generated in the compressor 4 is recovered into the heat medium by the compression side heat exchange unit 12, the heat medium heated in the heat medium tank 14 is stored, and the expansion side heat exchange unit 16 expands the expander. Heat is returned to the compressed air before expansion at 8.
  • Pumps 38a and 38b are installed in the heat medium pipes 18a and 18b constituting the heat medium flow path, and the heat medium flows through the pumps 38a and 38b and circulates in the respective heat medium pipes 18a and 18b. Yes.
  • the type of the heat medium is not particularly limited, and for example, a mineral oil or glycol heat medium may be used.
  • the compression-side heat exchange unit 12 includes an intercooler 12a and an aftercooler 12b.
  • the intercooler 12a and the aftercooler 12b collect the heat generated by the compressor 4 in a heat medium. Therefore, in the intercooler 12a and the aftercooler 12b, the temperature of the compressed air decreases and the temperature of the heat medium increases.
  • the intercooler 12a is provided in an air pipe 10a extending from the low pressure stage compressor body 4a to the high pressure stage compressor body 4b in the air flow path. Moreover, it is provided in the downstream of the expansion side heat exchange part 16 (inter heater 16b) in the heat medium flow path. Accordingly, the intercooler 12a exchanges heat between the compressed air that has been heated after being compressed by the low-pressure stage compressor body 4a and the heat medium that has been cooled and cooled by the expansion-side heat exchanging unit 16 (interheater 16b), The compression heat generated in the low-pressure stage compressor body 4a is recovered in the heat medium. The heat medium whose temperature has been increased is supplied to the first heat medium tank 14a through the heat medium pipe 18a.
  • the aftercooler 12b is provided in an air pipe 10a extending from the high-pressure compressor main body 4b to the accumulator tank 6 in the air flow path. Moreover, it is provided in the downstream of the expansion side heat exchange part 16 (preheater 16a) in the heat medium flow path. Therefore, the aftercooler 12b exchanges heat between the compressed air compressed by the high-pressure stage compressor body 4b and the heat medium having cooled the temperature by exchanging heat at the expansion side heat exchanging section 16 (preheater 16a). The compression heat generated in the main body 4a and the high-pressure compressor main body 4b is recovered in a heat medium. The heating medium whose temperature has been raised here is supplied to the second heating medium tank 14b through the heating medium pipe 18b.
  • the first heat medium tank 14a and the second heat medium tank 14b constitute the heat medium tank 14 of the present invention.
  • the first heat medium tank 14a and the second heat medium tank 14b are preferably insulated so as not to release the heat of the stored heat medium to the outside.
  • the heat medium tank 14 of this embodiment is provided with two tanks, the 1st heat medium tank 14a and the 2nd heat medium tank 14b, the structure of the heat medium tank 14 is not limited to this, One or three More than one tank may be provided.
  • the heat medium stored in the first heat medium tank 14a and the second heat medium tank 14b is supplied to the expansion side heat exchange unit 16 (preheater 16a, interheater 16b) through the heat medium pipes 18a and 18b, respectively.
  • the expansion-side heat exchange unit 16 includes a preheater 16a and an interheater 16b.
  • the preheater 16a and the interheater 16b heat the compressed air supplied to the expander 8 with a heat medium. Accordingly, in the pre-heater 16a and the inter-heater 16b, the temperature of the compressed air increases and the temperature of the heat medium decreases.
  • the pre-heater 16a is provided in an air pipe 10b extending from the pressure accumulation tank 6 to the high-pressure stage expander body 8b in the air flow path. Further, it is provided downstream of the first heat medium tank 14a in the heat medium flow path. Therefore, the pre-heater 16a exchanges heat between the compressed air supplied from the accumulator tank 6 to the high-pressure stage expander body 8b and the heat medium supplied from the first heat medium tank 14a, and supplies the heat to the high-pressure stage expander body 8b. The compressed air is heated. The heat medium having lowered the temperature is supplied to the compression side heat exchange unit 12 (intercooler 12a) through the heat medium pipe 18a.
  • the inter-heater 16b is provided in the air pipe 10b extending from the sub heat exchange unit 24 to the low-pressure stage expander main body 8a in the air flow path. Further, it is provided downstream of the second heat medium tank 14b in the heat medium flow path. Therefore, the interheater 16b exchanges heat between the compressed air after heat exchange in the sub heat exchange unit 24 and the heat medium supplied from the second heat medium tank 14b, and is supplied to the low-pressure stage expander body 8a. Is heating up. The heat medium having cooled down is supplied to the compression-side heat exchange unit 12 (aftercooler 12b) through the heat medium pipe 18b.
  • the heat medium circulates between the compression side heat exchange unit 12, the heat medium tank 14, and the expansion side heat exchange unit 16 through the heat medium pipes 18a and 18b.
  • the heat medium can be stored according to temperature.
  • the heat medium stored in the second heat medium tank 14b that collects the compression heat on the high-pressure stage side out of the two stages of compression. The temperature is higher.
  • the expansion side heat exchanging section 16 the compressed air flowing into the low-pressure stage expander main body 8a is heated by the high-temperature heat medium in the second heat medium tank 14b, so that it will be described later with reference to FIG. High system efficiency can be maintained.
  • FIG. 2 is a graph showing the temperature change of air until it is exhausted from the pressure accumulation tank 6 to the outside in the air flow path of the CAES power generator 2 of the present embodiment.
  • the vertical axis represents the air temperature
  • the horizontal axis represents the corresponding points P1 to P8 (see FIG. 1) of the air flow path.
  • the temperature T1 at the point P1 indicates the temperature of the compressed air supplied from the pressure accumulating tank 6. From the point P1 to the point P2, it is heated by the preheater 16a and rises from the temperature T1 to the temperature T2. From the point P2 to the point P3, it is expanded by the low-pressure stage expander body 8a, and decreases from the temperature T2 to the temperature T3 due to expansion heat absorption. From the point P3 to the point P4, it is heated by the exhaust side heat exchanging unit 22 and rises from the temperature T3 to the temperature T4. From the point P4 to the point P5, it is heated by the sub heat exchanging unit 24 and rises from the temperature T4 to the temperature T5.
  • the control device 36 switches between opening and closing of the valves 30a and 30b.
  • the valve 30a When the operation is started, when the temperature T7 of the exhaust air from the expander 8 is higher than the temperature T7 of the compressed air supplied to the exhaust-side heat exchanging unit 22 by a predetermined margin value Td or more, the valve 30a is closed, Open 30b. Then, exhaust air is supplied to the exhaust-side heat exchange unit 22 through the air pipe 10c. Therefore, in this case, heat exchange is performed in the exhaust-side heat exchanging section 22, and the expansion efficiency can be improved by heating the compressed air supplied to the low-pressure stage expander body 8a.
  • the predetermined margin value Td is a margin value provided in order to take into account the measurement error of the individual temperature sensors 32 and 34, the temperature change of the air when flowing in the air pipes 10b and 10c, and the like. Therefore, the margin value Td is individually determined from the performance of each heat exchange unit 12, 16, 22, 24, system operation, and the like. However, this margin value Td is not necessarily set, and may be set to zero, for example.
  • the system efficiency can be improved by using the exhaust heat of the exhaust air exhausted from the expander 8 for heating the compressed air before expansion. Specifically, heat is exchanged between the exhaust air exhausted from the expander 8 and the compressed air supplied to the low-pressure stage expander body 8a having a temperature lower than that before heating the compressed air. The temperature of the compressed air can be increased, and the expansion efficiency can be improved.
  • the expander body provided at the most downstream side in the air flow path has a larger work of expansion than other expander bodies, the compressed air supplied to the most downstream expander body is heated. Increasing the temperature is particularly effective for improving the expansion efficiency.
  • points P1 to P8 correspond to points P1 to P8 in FIGS.
  • the description of the state transition from the point P1 to the point P8 is the same as in the case of FIG.
  • the low-pressure stage expander body 8a provided on the most downstream side of the present embodiment has another low-pressure stage expander body 8a in the expansion stroke (point P6 to point P7) assuming an isentropic change in the ph diagram.
  • the slope of the isentropic line is smaller than the expansion stroke (from point P2 to point P3). Therefore, in the expansion stroke in which the slope of the isentropic line is small, the enthalpy is greatly reduced even when the pressure is reduced. Therefore, the expansion work can be increased by supplying larger heat energy.
  • the supply of air can be shut off, and the supply of air can be allowed when necessary.
  • the temperature of the exhaust air exhausted from the expander 8 is lower than the temperature of the compressed air supplied to the exhaust-side heat exchange unit 22, the compressed air can be heated even if heat is exchanged between the two airs. Rather, cool. Therefore, when heat exchange is not necessary in this way, the supply of exhaust air to the exhaust-side heat exchange unit 22 is shut off to prevent a decrease in system efficiency.
  • FIG. 5 shows a schematic configuration diagram of the CAES power generator 2 of the second embodiment.
  • the CAES power generation device 2 of the present embodiment is substantially the same as the first embodiment of FIG. 1 except that the order of the exhaust side heat exchange unit 22 and the sub heat exchange unit 24 is switched in the air flow path. . Therefore, description of the same parts as those shown in FIG. 1 may be omitted.
  • the exhaust-side heat exchanging unit 22 heat is exchanged between upstream air and downstream air in the same air flow path, as in the first embodiment.
  • the exhaust-side heat exchange unit 22 is provided in the air pipe 10b extending from the sub heat exchange unit 24 to the interheater 16b. Moreover, it is provided in the air piping 10c to which the air exhausted from the low-pressure stage expander body 8a is supplied. Therefore, the exhaust-side heat exchanging unit 22 exchanges heat between the compressed air after heat exchange in the sub heat exchanging unit 24 and the exhaust air discharged from the low-pressure stage expander body 8a, and is supplied to the interheater 16b. The air is heated. The exhaust air supplied to the exhaust-side heat exchange unit 22 through the air pipe 10c is exhausted to the outside after heat exchange.
  • a compressed air temperature sensor 32 is provided in the air pipe 10b extending from the sub heat exchange unit 24 to the exhaust side heat exchange unit 22.
  • the compressed air temperature sensor 32 detects the temperature of the air supplied to the exhaust-side heat exchange unit 22.
  • An exhaust air temperature sensor 34 is provided in the air pipe 10b extending from the low-pressure stage expander body 8a to the outside.
  • the exhaust air temperature sensor 34 detects the temperature of the exhaust air exhausted from the low-pressure stage expander body 8a.
  • the temperature values detected by these temperature sensors 32 and 34 are output to the control device 36.
  • the control device 36 switches the flow destination of the exhaust air by switching the valves 30a and 30b based on these temperature values as in the first embodiment.
  • the sub heat exchange unit 24 is provided in the air pipe 10b extending from the high-pressure stage expander body 8b to the exhaust side heat exchange unit 22 in the air flow path. Further, similarly to the first embodiment, the lubricating oil flow path is provided so as to utilize heat of lubricating oil (not shown). Therefore, the sub heat exchanging section 24 recovers the compressed air supplied to the exhaust side heat exchanging section 22 after expansion in the high-pressure stage expander main body 8b and the frictional heat generated in a bearing (not shown) to raise the temperature. Heat is exchanged with oil, and the compressed air supplied to the exhaust-side heat exchange unit 22 is heated. As in the first embodiment, the heat exchange target in the sub heat exchange unit 24 is not limited to the lubricating oil.
  • This embodiment is employed when the temperature of the exhaust air from the expander 8 is lower than the temperature of the lubricating oil supplied to the sub heat exchange unit 24.
  • the temperature of the compressed air supplied to the low pressure stage expander main body 8a in an air flow path can be raised in order. Therefore, the heat from the low-temperature heat source can be contributed to the temperature rise without being wasted, and the efficiency of the system can be further improved.
  • the temperature of the exhaust air from the expander 8 is the lubricating oil supplied to the sub heat exchange unit 24. When it is higher than the temperature, the first embodiment is adopted.
  • the opening and closing of the valves 30a and 30b may be controlled based on values other than those detected by the temperature sensors 32 and 34.
  • a pressure sensor that detects the pressure of the internal compressed air may be installed in the accumulator tank 6 and the opening and closing of the valves 30a and 30b may be controlled based on the pressure value detected by the pressure sensor. This is because there is a correlation between the pressure value in the pressure accumulating tank 6 and the temperature value detected by the temperature sensors 32 and 34.
  • a pressure sensor (not shown) installed in the pressure accumulating tank 6 constitutes the compressed air temperature detector and the exhaust air temperature detector of the present invention.
  • the “fluctuating input power” of the present invention is not limited to renewable energy, and may be one that smoothes or cuts the peak demand power of factory equipment.
  • Compressed air storage generator (CAES generator) 4 Compressor 4a Low Pressure Stage Compressor Body 4b High Pressure Stage Compressor Body 4c, 4e Inlet 4d, 4f Discharge Port 6 Accumulation Tank 8 Expander 8a Low Pressure Stage Expander Body (Expander Body) 8b High-pressure stage expander body (expander body) 8c, 8e Air supply port 8d, 8f Exhaust port 10a, 10b, 10c Air piping 12 Compression side heat exchanger 12a Intercooler 12b After cooler 14 Heat medium tank 14a First heat medium tank 14b Second heat medium tank 16 Expansion side heat Exchanger 16a Preheater 16b Interheater 18a, 18b Heat medium pipe 20a, 20b Generator 22 Exhaust side heat exchange 24 Sub heat exchange 26a, 26b Motor (electric motor) 28a, 28b Valve 30a, 30b Valve (switching part) 32 Compressed air temperature sensor (Compressed air temperature detector) 34 Exhaust air temperature sensor (exhaust air temperature detector) 36 Controller 38a, 38b Pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

圧縮空気貯蔵発電装置2は、変動する入力電力により駆動されるモータ26a,26bと、モータ26a,26bと機械的に接続され、空気を圧縮する圧縮機4と、圧縮機4と流体的に接続され、圧縮機4により圧縮された圧縮空気を貯蔵する蓄圧タンク6と、蓄圧タンク6と流体的に接続され、蓄圧タンク6から供給される圧縮空気によって駆動され、複数の膨張機本体8a,8bを有する多段型の膨張機8と、膨張機8と機械的に接続された発電機20a,20bとを備える。また、装置2は、熱媒を貯蔵する熱媒タンク14と、熱媒タンク14から供給される熱媒と膨張機8に供給される圧縮空気とで熱交換し、圧縮空気を加熱するための膨張側熱交換部16と、膨張機8から排気される排気空気と低圧段膨張機本体8bに供給される圧縮空気とで熱交換し、圧縮空気を加熱するための排気側熱交換部22とを備える。これにより、システム効率を向上できる圧縮空気貯蔵発電装置2を提供する。

Description

圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
 本発明は、圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法に関する。
 風力発電や太陽光発電などの再生可能エネルギーを利用した発電は、気象条件に依存するため、出力が安定しないことがある。このため、圧縮空気貯蔵(CAES:compressed air energy storage)発電システム等のエネルギー貯蔵システムを使用して出力を平準化する必要がある。
 従来の圧縮空気貯蔵発電装置は、電力プラントのオフピーク時間中に電気エネルギーを圧縮空気として蓄圧タンクに蓄え、高電力需要時間中に圧縮空気により膨張機を駆動して発電機を作動させて電気エネルギーを生成するのが一般的である。
 特許文献1には、このようなCAES発電装置が開示されている。特許文献1のCAES発電装置は、システムの効率を向上させるため、熱交換器を使用して熱媒と空気を熱交換させ、圧縮機で発生する圧縮熱を熱媒に回収し、膨張機で膨張する前の空気に熱を戻している。
特表2013-509530号公報
 特許文献1のCAES発電装置では、圧縮熱を回収してシステム効率を向上させる工夫はあるものの、膨張機から大気へ排気される空気の排熱を有効利用することについては考慮されていない。
 本発明は、膨張機から大気への排熱を最小限に抑制し、システム効率を向上できる圧縮空気貯蔵発電装置を提供することを課題とする。
 圧縮熱等を利用して膨張機に供給される圧縮空気を加熱した場合、膨張機から排気される排気空気の温度も上昇する。特に、多段型の膨張機においては、排気空気の温度が個々の膨張機本体に供給される圧縮空気よりも温度が高くなる場合があり、その場合、これらの熱交換によりシステム効率を向上できる。
 具体的に本発明の第1の態様は、変動する入力電力により駆動される電動機と、前記電動機と機械的に接続され、空気を圧縮する圧縮機と、前記圧縮機と流体的に接続され、前記圧縮機により圧縮された圧縮空気を貯蔵する蓄圧タンクと、前記蓄圧タンクと流体的に接続され、前記蓄圧タンクから供給される圧縮空気によって駆動され、複数の膨張機本体を有する多段型の膨張機と、前記膨張機と機械的に接続された発電機と、熱媒を貯蔵する熱媒タンクと、前記熱媒タンクから供給される熱媒と前記膨張機に供給される圧縮空気とで熱交換し、圧縮空気を加熱するための膨張側熱交換部と、前記膨張機から排気される排気空気と前記膨張機本体のいずれかに供給される圧縮空気とで熱交換し、圧縮空気を加熱するための排気側熱交換部とを備える圧縮空気貯蔵発電装置を提供する。
 この構成によれば、膨張側熱交換部により加熱された圧縮空気が膨張機により膨張されて排気され、その排気空気の排熱を膨張前の圧縮空気の加熱に利用することで、膨張機から大気への排熱を最小限に抑制し、システム効率を向上できる。具体的には、膨張機から排気される排気空気と、これよりも温度が低い膨張機本体のいずれかに供給される圧縮空気とで熱交換して圧縮空気を加熱することで、膨張前の圧縮空気の温度を上昇でき、膨張効率を向上できる。
 前記排気側熱交換部は、前記膨張機本体のうち、空気流路おいて最下流に設けられている前記膨張機本体に供給される圧縮空気を加熱することが好ましい。
 空気流路おいて最下流に設けられている膨張機本体は、他の膨張機本体に比べて膨張仕事量が大きいため、この最下流の膨張機本体に供給される圧縮空気を加熱して温度上昇させることは、膨張効率を向上させるために特に有効である。p-h線図では、最下流に設けられている膨張機本体は、p-h線図の等エントロピー変化を想定した膨張行程において、他の膨張機本体の膨張行程に比べて等エントロピー線の傾斜が小さい。従って、この等エントロピー線の傾斜が小さい膨張行程の方が同じ圧力の低下に対してもエンタルピーの減少が大きいため、より大きな熱エネルギーを供給することで膨張仕事量を増大できる。
 前記膨張機から排気される排気空気の温度を検出する排気空気温度検出部と、前記排気側熱交換部に供給される圧縮空気の温度を検出する圧縮空気温度検出部と、前記膨張機から排気される排気空気を排気するか、又は前記排気側熱交換部に供給するかを切り替えるための切替部と、前記排気空気温度検出部で検出した温度が前記圧縮空気温度検出部で検出した温度よりも所定の余裕値以上高い場合、前記切替部を切り替えて前記排気側熱交換部に排気空気を供給する制御装置とをさらに備えることが好ましい。
 これにより、温度等の条件により、排気側熱交換部における熱交換が不要な場合は、空気の供給を遮断し、必要な場合は空気の供給を許容することができる。具体的には、膨張機から排気される排気空気の温度が排気側熱交換部に供給される圧縮空気の温度よりも低い場合、排気空気と圧縮空気の間で熱交換しても圧縮空気を加熱できず、むしろ冷却する。従って、このように熱交換が不要な場合は、排気側熱交換部への排気空気の供給を遮断して熱交換を停止し、システム効率の低下を防止する。反対に、膨張機から排気される排気空気の温度が排気側熱交換部に供給される圧縮空気の温度よりも高い場合、排気空気と圧縮空気の間で熱交換して圧縮空気を加熱できる。従って、このように熱交換が必要な場合は、排気側熱交換部への排気空気の供給を許容して熱交換させる。このようにすることで、膨張効率の低下を防止できる。
 前記圧縮機で圧縮された空気と熱媒とで熱交換し、熱媒を加熱する圧縮側熱交換部をさらに備え、前記熱媒タンクは、前記圧縮側熱交換部で熱交換して昇温した熱媒を貯蔵することが好ましい。
 これにより、圧縮側熱交換部で圧縮機における圧縮熱を熱媒に回収して熱媒タンクに貯蔵できると共に、蓄圧タンクに貯蔵される圧縮空気の温度を大気温度に近づけることができる。このため、蓄圧タンクにおける熱放出を防止でき、システム効率を向上できる。
 本発明の第2の態様は、変動する入力電力により電動機を駆動し、前記電動機により駆動される圧縮機により空気を圧縮し、前記圧縮機により圧縮された圧縮空気を蓄圧タンクに貯蔵し、前記蓄圧タンクから供給される圧縮空気によって複数の膨張機本体を有する多段型の膨張機を駆動し、前記膨張機により駆動される発電機により発電し、圧縮側熱交換部により前記圧縮機で圧縮された空気と熱媒とで熱交換して熱媒を加熱し、前記圧縮側熱交換部で熱交換して昇温した熱媒を熱媒タンクに貯蔵し、膨張側熱交換部により前記熱媒タンクから供給される熱媒と前記膨張機に供給される圧縮空気とで熱交換して圧縮空気を加熱し、前記膨張機から排気される排気空気の温度が空気流路おいて最下流に設けられている前記膨張機本体に供給される圧縮空気の温度よりも所定の余裕値以上高い場合、排気側熱交換部により前記膨張機から排気される排気空気と最下流に設けられている前記膨張機本体に供給される圧縮空気とで熱交換して圧縮空気を加熱することを含む圧縮空気貯蔵発電方法を提供する。
 本発明によれば、圧縮空気貯蔵発電装置において、膨張機から大気への排熱を最小限に抑制し、システム効率を向上できる。
本発明の第1実施形態に係る圧縮空気貯蔵発電装置の概略構成図。 図1の圧縮空気貯蔵発電装置の空気流路における蓄圧タンクから外部へ排気するまで空気の温度変化を示すグラフ。 切替部の切り替え制御を示すフローチャート。 図1の圧縮空気貯蔵発電装置の膨張行程における圧力とエンタルピーの関係を示すp-h線図。 本発明の第2実施形態に係る圧縮空気貯蔵発電装置の概略構成図。
 以下、添付図面を参照して本発明の実施形態を説明する。
(第1実施形態)
 図1は、本発明の第1実施形態に係る圧縮空気貯蔵(CAES:compressed air energy storage)発電装置2の概略構成図を示している。このCAES発電装置2は、図示しない発電設備で再生可能エネルギーを利用して発電する場合に、図示しない電力系統への出力変動を平準化するとともに、この電力系統における需要電力の変動に合わせた電力を出力する。
 図1を参照して、CAES発電装置2の構成を説明する。
 CAES発電装置2は、空気流路と熱媒流路を備える。空気流路には、主に圧縮機4と、蓄圧タンク6と、膨張機8とが設けられており、これらが空気配管10a,10bにより流体的に接続され、その内部には空気が流れている(実線矢印参照)。熱媒流路には、主に圧縮側熱交換部12と、熱媒タンク14と、膨張側熱交換部16とが設けられており、これらが熱媒配管18a,18bにより流体的に接続され、その内部には熱媒が流れている(破線矢印参照)。
 まず、図1を参照して空気流路について説明する。空気流路では、吸い込まれた空気は、圧縮機4で圧縮され、蓄圧タンク6に貯蔵され、必要に応じて膨張機8に供給され、発電機20a,20bの発電に使用される。また、これらの間に空気流路内の空気は、圧縮側熱交換部12において冷却され、膨張側熱交換部16、排気側熱交換部22、及びサブ熱交換部24において加熱される。
 本実施形態の圧縮機4は、低圧段圧縮機本体4a及び高圧段圧縮機本体4bを有する2段型のスクリュ式である。スクリュ式の圧縮機4を使用することで、変動する入力に速やかに追従でき、発電出力も速やかに変更できる。低圧段圧縮機本体4a及び高圧段圧縮機本体4bは、それぞれモータ26a,26bを備える。モータ26a,26bは、低圧段圧縮機本体4a及び高圧段圧縮機本体4bの内部のスクリュに機械的に接続されている。図示しない発電設備からの再生可能エネルギーにより発電された入力電力がモータ26a,26bに供給されると、この電力によりモータ26a,26bが駆動され、スクリュが回転して低圧段圧縮機本体4a及び高圧段圧縮機本体4bが作動する。モータ26a,26bにより作動されると、空気配管10aを通じて低圧段圧縮機本体4aが吸気口4cより空気を吸気し、圧縮して吐出口4dより吐出し、空気配管10aを通じて高圧段圧縮機本体4bに圧縮空気を圧送する。高圧段圧縮機本体4bは、空気配管10aを通じて吸気口4eより空気を吸気し、圧縮して吐出口4fより吐出し、空気配管10aを通じて蓄圧タンク6に圧縮空気を圧送する。また、圧縮機4は2段型に限定されず3段型以上であってもよく、複数台設置されてもよい。圧縮機4の種類は特に限定されず、例えばターボ式、スクロール式、及びレシプロ式等であってもよい。
 圧縮機4から蓄圧タンク6に延びる空気配管10aには、バルブ28aが設けられており、必要に応じてバルブ28aを開閉し、蓄圧タンク6への圧縮空気の供給を許容又は遮断できる。
 蓄圧タンク6は、圧縮機4から圧送された圧縮空気を貯蔵する。従って、蓄圧タンク6には、圧縮空気としてエネルギーを蓄積できる。蓄圧圧力は必要蓄電量や設置スペース、法規制などとの兼ね合いから決定される。蓄圧タンク6は、空気配管10bを通じて膨張側熱交換部16を介して膨張機8と流体的に接続されている。蓄圧タンク6で貯蔵された圧縮空気は、膨張機8に供給される。
 蓄圧タンク6から膨張機8に延びる空気配管10bには、バルブ28bが設けられており、必要に応じてバルブ28bを開閉し、膨張機8への圧縮空気の供給を許容又は遮断できる。
 膨張機8は、低圧段膨張機本体8a及び高圧段膨張機本体8bを有する2段型のスクリュ式である。スクリュ式の膨張機8を使用することで、圧縮機4と同様に変動する入力に速やかに追従でき、発電出力も速やかに変更できる。低圧段膨張機本体8a及び高圧段膨張機本体8bは、発電機20a,20bを備える。発電機20a,20bは、低圧段膨張機本体8a及び高圧段膨張機本体8bの内部のスクリュと機械的に接続されている。高圧段膨張機本体8bは、給気口8cにおいて空気配管10bを通じて蓄圧タンク6と流体的に接続され、給気口8cから圧縮空気を供給される。高圧段膨張機本体8bは、供給された圧縮空気により作動し、発電機20bを駆動する。高圧段膨張機本体8bは、排気口8dから空気配管10bを通じて圧縮空気を低圧段膨張機本体8aの給気口8eに供給する。低圧段膨張機本体8aは、同様に供給された圧縮空気により作動し、発電機20aを駆動する。低圧段膨張機本体8aは排気口8fから空気配管10bを通じて外部に膨張した空気(排気空気)を排気する。発電機20a,20bで発電した電力は、図示しない外部の電力系統に供給される。また、膨張機8は2段型に限定されず3段型以上であってもよく、複数台設置されてもよい。膨張機8の種類は特に限定されず、例えばターボ式、スクロール式、及びレシプロ式等であってもよい。
 低圧段膨張機本体8aの下流では、外部に通じる空気配管10bから排気側熱交換部22に通じる空気配管10cが分岐している。空気配管10b,10cには、バルブ(切替部)30a,30bが設けられている。バルブ30a,30bは、空気配管10b.10c内の空気の流れをそれぞれ許容又は遮断する。従って、低圧段膨張機本体8aからの排気空気は、バルブ30a,30bにより流路を切り替え可能である。このため、低圧段膨張機本体8aからの排気空気を外部に排気することなく、空気配管10cを通じて排気側熱交換部22に供給することもできる。
 排気側熱交換部22は、空気流路における上流の空気と下流の空気とで熱交換する。即ち、同じ流路内を流れる空気の上流と下流で熱交換する。排気側熱交換部22は、高圧段膨張機本体8bから後述するサブ熱交換部24に延びる空気配管10bに設けられている。また、低圧段膨張機本体8aからの排気空気が供給される空気配管10cに設けられている。従って、排気側熱交換部22は、高圧段膨張機本体8bで膨張後の圧縮空気と、低圧段膨張機本体8aからの排気空気とで熱交換し、低圧段膨張機本体8aに供給される圧縮空気を加熱している。熱交換後、空気配管10cを通じて排気側熱交換部22に供給された排気空気は、空気配管10cを通じて外部へ排気される。
 サブ熱交換部24は、空気流路において排気側熱交換部22から膨張側熱交換部16(インターヒータ16b)に延びる空気配管10bに設けられている。また、本実施形態のCAES発電装置2は、圧縮機4及び膨張機8のスクリュ等の回転に伴う図示しない軸受の潤滑に使用される潤滑油が流動する流路を備える(一点鎖線矢印参照)。この潤滑油は、図示しない軸受を潤滑するとともに、この軸受で発生する摩擦熱を回収して温度が上昇している。サブ熱交換部24は、この潤滑油の熱を利用するように潤滑油流路(一点鎖線矢印参照)に設けられている。従って、サブ熱交換部24は、排気側熱交換部22で熱交換後に膨張側熱交換部16(インターヒータ16b)に供給される圧縮空気と、軸受で発生する摩擦熱を回収して温度が上昇した潤滑油とで熱交換し、膨張側熱交換部16(インターヒータ16b)に供給される圧縮空気を加熱している。サブ熱交換部24での熱交換対象は、圧縮機4や膨張機8の軸受で摩擦熱を回収した潤滑油に限らず、その種類は限定されない。例えば、その対象は、モータ26a,26bや発電機20a,20bの電気ロスによる発熱を回収したその他の熱媒であってもよい。
 高圧段膨張機本体8bから排気側熱交換部22に延びる空気配管10bには、圧縮空気温度センサ(圧縮空気温度検出部)32が設けられている。圧縮空気温度センサ32は、排気側熱交換部22に供給される圧縮空気の温度を検出する。また、低圧段膨張機本体8aから外部へ延びる空気配管10bには、排気空気温度センサ(排気空気温度検出部)34が設けられている。排気空気温度センサ34は、低圧段膨張機本体8aからの排気空気の温度を検出する。これらの温度センサ32,34で検出された温度値は、制御装置36に出力される。制御装置36は、CAES発電装置2は、制御装置36を備える。制御装置36は、シーケンサ等を含むハードウェアと、それに実装されたソフトウェアにより構築されている。制御装置36は、後述するように、これらの温度値に基づいてバルブ30a,30bを切り替えて、排気空気に対する空気流路の切り替えを行う。
 次に、図1を参照して熱媒流路について説明する。熱媒流路では、圧縮機4で発生した熱を圧縮側熱交換部12で熱媒に回収し、熱媒タンク14で昇温した熱媒を貯蔵し、膨張側熱交換部16において膨張機8で膨張する前の圧縮空気に熱を戻している。熱媒流路を構成する熱媒配管18a,18bには、ポンプ38a,38bが設置されており、熱媒はポンプ38a,38bにより流され、それぞれの熱媒配管18a,18b内を循環している。熱媒の種類は特に限定されておらず、例えば鉱物油やグリコール系の熱媒を使用してもよい。
 圧縮側熱交換部12は、インタークーラ12aと、アフタークーラ12bとを備える。インタークーラ12a及びアフタークーラ12bは、圧縮機4で発生した熱を熱媒に回収している。従って、インタークーラ12a及びアフタークーラ12bでは、圧縮空気の温度は低下し、熱媒の温度は上昇する。
 インタークーラ12aは、空気流路において低圧段圧縮機本体4aから高圧段圧縮機本体4bに延びる空気配管10aに設けられている。また、熱媒流路において膨張側熱交換部16(インターヒータ16b)の下流に設けられている。従って、インタークーラ12aは、低圧段圧縮機本体4aで圧縮後の昇温した圧縮空気と、膨張側熱交換部16(インターヒータ16b)で熱交換して降温した熱媒とで熱交換し、低圧段圧縮機本体4aで発生した圧縮熱を熱媒に回収している。ここで昇温した熱媒は、熱媒配管18aを通じて第1熱媒タンク14aに供給される。
 アフタークーラ12bは、空気流路において高圧段圧縮機本体4bから蓄圧タンク6に延びる空気配管10aに設けられている。また、熱媒流路において膨張側熱交換部16(プレヒータ16a)の下流に設けられている。従って、アフタークーラ12bは、高圧段圧縮機本体4bで圧縮後の圧縮空気と、膨張側熱交換部16(プレヒータ16a)で熱交換して降温した熱媒とで熱交換し、低圧段圧縮機本体4a及び高圧段圧縮機本体4bで発生した圧縮熱を熱媒に回収している。ここで昇温した熱媒は、熱媒配管18bを通じて第2熱媒タンク14bに供給される。
 第1熱媒タンク14a及び第2熱媒タンク14bは、本発明の熱媒タンク14を構成している。第1熱媒タンク14a及び第2熱媒タンク14bは、貯蔵している熱媒の熱を外部に放出しないように断熱されていることが好ましい。また、本実施形態の熱媒タンク14は、第1熱媒タンク14a及び第2熱媒タンク14bの2つのタンクを備えるが、熱媒タンク14の構成はこれに限定されず、1つ又は3つ以上のタンクを備えてもよい。第1熱媒タンク14a及び第2熱媒タンク14bに貯蔵された熱媒は、熱媒配管18a,18bを通じてそれぞれ膨張側熱交換部16(プレヒータ16a、インターヒータ16b)に供給される。
 膨張側熱交換部16は、プレヒータ16aと、インターヒータ16bとを備える。プレヒータ16a及びインターヒータ16bは、膨張機8に供給される圧縮空気を熱媒により加熱している。従って、プレヒータ16a及びインターヒータ16bでは、圧縮空気の温度は上昇し、熱媒の温度は低下する。
 プレヒータ16aは、空気流路において蓄圧タンク6から高圧段膨張機本体8bに延びる空気配管10bに設けられている。また、熱媒流路において第1熱媒タンク14aの下流に設けられている。従って、プレヒータ16aは、蓄圧タンク6から高圧段膨張機本体8bに供給される圧縮空気と、第1熱媒タンク14aから供給される熱媒とで熱交換し、高圧段膨張機本体8bに供給される圧縮空気を加熱している。ここで降温した熱媒は、熱媒配管18aを通じて圧縮側熱交換部12(インタークーラ12a)に供給される。
 インターヒータ16bは、空気流路においてサブ熱交換部24から低圧段膨張機本体8aに延びる空気配管10bに設けられている。また、熱媒流路において第2熱媒タンク14bの下流に設けられている。従って、インターヒータ16bは、サブ熱交換部24で熱交換後の圧縮空気と、第2熱媒タンク14bから供給される熱媒とで熱交換し、低圧段膨張機本体8aに供給される空気を加熱している。ここで降温した熱媒は、熱媒配管18bを通じて圧縮側熱交換部12(アフタークーラ12b)に供給される。
 このように、熱媒は、熱媒配管18a,18bを通じて、圧縮側熱交換部12、熱媒タンク14、及び膨張側熱交換部16の間を循環している。第1熱媒タンク14aと第2熱媒タンク14bを分けて設けていることで温度別に熱媒を貯蔵できる。本実施形態では、第1熱媒タンク14aと第2熱媒タンク14bでは、2段階の圧縮のうち高圧段側の圧縮熱を回収している第2熱媒タンク14bに貯蔵された熱媒の方が温度が高い。膨張側熱交換部16において、第2熱媒タンク14b内の高温の熱媒で低圧段膨張機本体8aに流入する圧縮空気を加熱しているため、図4を使用して後に説明するように、システム効率を高く維持できる。
 図2は、本実施形態のCAES発電装置2の空気流路における蓄圧タンク6から外部へ排気されるまでの空気の温度変化を示すグラフである。縦軸は空気温度、横軸は空気流路の対応する点P1から点P8(図1参照)を示している。
 図1及び図2を参照して、点P1における温度T1は、蓄圧タンク6から供給された圧縮空気の温度を示している。点P1から点P2では、プレヒータ16aで加熱され、温度T1から温度T2に上昇する。点P2から点P3では、低圧段膨張機本体8aで膨張され、膨張吸熱により温度T2から温度T3に低下する。点P3から点P4では、排気側熱交換部22で加熱され、温度T3から温度T4に上昇する。点P4から点P5では、サブ熱交換部24で加熱され、温度T4から温度T5に上昇する。点P5から点P6では、インターヒータ16bで加熱され、温度T5から温度T6に上昇する。点P6から点P7では、低圧段膨張機本体8aで膨張され、膨張吸熱により、温度T6から温度T7に低下する。そして温度T7の空気が外部に排出されるか、又は排気側熱交換部22で冷却され、温度T7から温度T8に低下する。
 図3に示すように、制御装置36により、バルブ30a,30bの開閉の切り替えが行われる。運転が開始されると、膨張機8からの排気空気の温度T7が排気側熱交換部22に供給される圧縮空気の温度T7よりも所定の余裕値Td以上高い場合、バルブ30aを閉じ、バルブ30bを開く。そして、排気側熱交換部22に空気配管10cを通じて排気空気を供給する。従って、この場合、排気側熱交換部22で熱交換が行われ、低圧段膨張機本体8aに供給される圧縮空気を加熱して膨張効率を向上できる。そうでない場合、排気側熱交換部22で熱交換すると、低圧段膨張機本体8aに供給される圧縮空気を冷却し、膨張効率が低下する。従って、膨張効率の低下を防止するため、バルブ30bを閉じ、バルブ30aを開き、排気側熱交換部22に膨張機8からの排気空気を供給せず、空気配管10bを通じて外部に排気空気を排気する。ここで所定の余裕値Tdは、個々の温度センサ32,34の測定誤差や空気配管10b,10c内を流動する際の空気の温度変化等を考慮するために設けた余裕値である。従って、この余裕値Tdは、個々の熱交換部12,16,22,24の性能やシステム運用などから個別に決定される。ただし、この余裕値Tdは必ずしも設定する必要はなく、例えばゼロとしてもよい。
 以上の構成により、膨張機8から排気される排気空気の排熱を膨張前の圧縮空気の加熱に利用することでシステム効率を向上できる。具体的には、膨張機8から排気される排気空気と、これよりも温度が低い低圧段膨張機本体8aに供給される圧縮空気とで熱交換して圧縮空気を加熱することで、膨張前の圧縮空気の温度を上昇でき、膨張効率を向上できる。
 また、空気流路おいて最下流に設けられている膨張機本体は、他の膨張機本体に比べて膨張仕事量が大きいため、この最下流の膨張機本体に供給される圧縮空気を加熱して温度上昇させることは、膨張効率を向上させるために特に有効である。
 図4を参照して、p-h線図において、点P1から点P8は図1及び図2の点P1から点P8に対応している。点P1から点P8までの状態移行の説明については図2の場合と同様である。本実施形態の最下流に設けられている低圧段膨張機本体8aは、p-h線図の等エントロピー変化を想定した膨張行程(点P6から点P7)において、他の低圧段膨張機本体8aの膨張行程(点P2から点P3)に比べて等エントロピー線の傾斜が小さい。従って、この等エントロピー線の傾斜が小さい膨張行程の方が同じ圧力の低下に対してもエンタルピーの減少が大きいため、より大きな熱エネルギーを供給することで膨張仕事量を増大できる。
 また、温度等の条件により、排気側熱交換部22における熱交換が不要な場合は、空気の供給を遮断し、必要な場合は空気の供給を許容することができる。具体的には、膨張機8から排気される排気空気の温度が排気側熱交換部22に供給される圧縮空気の温度よりも低い場合、両空気間で熱交換しても圧縮空気を加熱できず、むしろ冷却する。従って、このように熱交換が不要な場合は、排気側熱交換部22への排気空気の供給を遮断してシステム効率の低下を防止する。反対に、膨張機8から排気される排気空気の温度が排気側熱交換部22に供給される圧縮空気の温度よりも高い場合、両空気間で熱交換して圧縮空気を加熱できる。従って、このように熱交換が必要な場合は、排気側熱交換部22への排気空気の供給を許容する。このようにすることで、膨張効率の低下を防止できる。
(第2実施形態)
 図5は、第2実施形態のCAES発電装置2の概略構成図を示している。本実施形態のCAES発電装置2は、空気流路において排気側熱交換部22とサブ熱交換部24の順序が入れ替わっていることに関する以外は図1の第1実施形態と実質的に同様である。従って、図1に示した構成と同様の部分については説明を省略する場合がある。
 排気側熱交換部22では、第1実施形態と同様に、同じ空気流路における上流の空気と下流の空気とで熱交換する。排気側熱交換部22は、サブ熱交換部24からインターヒータ16bに延びる空気配管10bに設けられている。また、低圧段膨張機本体8aから排気された空気が供給される空気配管10cに設けられている。従って、排気側熱交換部22は、サブ熱交換部24で熱交換後の圧縮空気と、低圧段膨張機本体8aから吐出された排気空気とで熱交換し、インターヒータ16bに供給される圧縮空気を加熱している。空気配管10cを通じて排気側熱交換部22に供給された排気空気は、熱交換後に外部へ排気される。
 サブ熱交換部24から排気側熱交換部22に延びる空気配管10bには、圧縮空気温度センサ32が設けられている。圧縮空気温度センサ32は、排気側熱交換部22に供給される空気の温度を検出する。また、低圧段膨張機本体8aから外部へ延びる空気配管10bには、排気空気温度センサ34が設けられている。排気空気温度センサ34は、低圧段膨張機本体8aから排気される排気空気の温度を検出する。これらの温度センサ32,34で検出された温度値は、制御装置36に出力される。制御装置36は、これらの温度値に基づいて第1実施形態と同様にバルブ30a,30bを切り替えて、排気空気の流動先を切り替える。
 サブ熱交換部24は、空気流路において高圧段膨張機本体8bから排気側熱交換部22に延びる空気配管10bに設けられている。また、第1実施形態と同様に、図示しない潤滑油の熱を利用するように潤滑油流路に設けられている。従って、サブ熱交換部24は、高圧段膨張機本体8bでの膨張後に排気側熱交換部22に供給される圧縮空気と、図示しない軸受で発生する摩擦熱を回収して温度が上昇した潤滑油とで熱交換し、排気側熱交換部22に供給される圧縮空気を加熱している。第1実施形態と同様に、サブ熱交換部24での熱交換対象は潤滑油に限定されない。
 本実施形態は、膨張機8からの排気空気の温度がサブ熱交換部24に供給される潤滑油の温度よりも低い場合に採用される。本実施形態の構成とすることで、空気流路において低圧段膨張機本体8aに供給される圧縮空気の温度を順に昇温させることができる。従って、低温の熱源からの熱も無駄にすることなく温度上昇に寄与させることができ、システムの効率をより向上できる。また、空気流路において低圧段膨張機本体8aに供給される圧縮空気の温度を順に昇温させる観点から、膨張機8からの排気空気の温度がサブ熱交換部24に供給される潤滑油の温度よりも高い場合、第1実施形態を採用する。
 全実施形態を通じて、バルブ30a,30bの開閉は、温度センサ32,34での検出値以外に基づいて制御されてもよい。例えば、蓄圧タンク6に内部の圧縮空気の圧力を検出する圧力センサを設置し、この圧力センサで検出した圧力値に基づいてバルブ30a,30bの開閉を制御してもよい。これは蓄圧タンク6内の圧力値と、温度センサ32,34で検出する温度値には相関があるためである。この場合、蓄圧タンク6に設置した図示しない圧力センサが本発明の圧縮空気温度検出部及び排気空気温度検出部を構成する。
 また、本発明の「変動する入力電力」は再生可能エネルギーに限定されることなく、工場設備の需要電力を平滑化したりピークカットをしたりするものであってもよい。
  2 圧縮空気貯蔵発電装置(CAES発電装置)
  4 圧縮機
  4a 低圧段圧縮機本体
  4b 高圧段圧縮機本体
  4c,4e 吸気口
  4d,4f 吐出口
  6 蓄圧タンク
  8 膨張機
  8a 低圧段膨張機本体(膨張機本体)
  8b 高圧段膨張機本体(膨張機本体)
  8c,8e 給気口
  8d,8f 排気口
  10a,10b,10c 空気配管
  12 圧縮側熱交換部
  12a インタークーラ
  12b アフタークーラ
  14 熱媒タンク
  14a 第1熱媒タンク
  14b 第2熱媒タンク
  16 膨張側熱交換部
  16a プレヒータ
  16b インターヒータ
  18a,18b 熱媒配管
  20a,20b 発電機
  22 排気側熱交換部
  24 サブ熱交換部
  26a,26b モータ(電動機)
  28a,28b バルブ
  30a,30b バルブ(切替部)
  32 圧縮空気温度センサ(圧縮空気温度検出部)
  34 排気空気温度センサ(排気空気温度検出部)
  36 制御装置
  38a,38b ポンプ

Claims (5)

  1.  変動する入力電力により駆動される電動機と、
     前記電動機と機械的に接続され、空気を圧縮する圧縮機と、
     前記圧縮機と流体的に接続され、前記圧縮機により圧縮された圧縮空気を貯蔵する蓄圧タンクと、
     前記蓄圧タンクと流体的に接続され、前記蓄圧タンクから供給される圧縮空気によって駆動され、複数の膨張機本体を有する多段型の膨張機と、
     前記膨張機と機械的に接続された発電機と、
     熱媒を貯蔵する熱媒タンクと、
     前記熱媒タンクから供給される熱媒と前記膨張機に供給される圧縮空気とで熱交換し、圧縮空気を加熱するための膨張側熱交換部と、
     前記膨張機から排気される排気空気と前記膨張機本体のいずれかに供給される圧縮空気とで熱交換し、圧縮空気を加熱するための排気側熱交換部と
     を備える圧縮空気貯蔵発電装置。
  2.  前記排気側熱交換部は、前記膨張機本体のうち、空気流路おいて最下流に設けられている前記膨張機本体に供給される圧縮空気を加熱する、請求項1に記載の圧縮空気貯蔵発電装置。
  3.  前記膨張機から吐出される排気空気の温度を検出する排気空気温度検出部と、
     前記排気側熱交換部に供給される圧縮空気の温度を検出する圧縮空気温度検出部と、
     前記膨張機から排気される排気空気を排気するか、又は前記排気側熱交換部に供給するかを切り替えるための切替部と、
     前記排気空気温度検出部で検出した温度が前記圧縮空気温度検出部で検出した温度よりも所定の余裕値以上高い場合、前記切替部を切り替えて前記排気側熱交換部に排気空気を供給する制御装置と
    をさらに備える、請求項1又は請求項2に記載の圧縮空気貯蔵発電装置。
  4.  前記圧縮機で圧縮された空気と熱媒とで熱交換し、熱媒を加熱する圧縮側熱交換部をさらに備え、
     前記熱媒タンクは、前記圧縮側熱交換部で熱交換して昇温した熱媒を貯蔵する、請求項1または請求項2に記載の圧縮空気貯蔵発電装置。
  5.  変動する入力電力により空気を圧縮し、
     圧縮した空気を貯蔵し、
     貯蔵した圧縮空気を複数段階に分けて膨張させることにより発電し、
     前記圧縮の工程で発生する圧縮熱を回収し、
     回収した圧縮熱を蓄熱し、
     前記膨張の工程前に膨張させる圧縮空気を蓄熱した圧縮熱により加熱し、
     前記全ての膨張の工程後に排気される排気空気の温度が、前記複数段階の膨張のうち、最後の膨張前の圧縮空気の温度よりも所定の余裕値以上高い場合、前記全ての膨張の工程後の排気空気と前記最後の膨張前の圧縮空気とで熱交換して圧縮空気を加熱する
     ことを含む圧縮空気貯蔵発電方法。
PCT/JP2016/066487 2015-06-16 2016-06-02 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法 WO2016203980A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015121333A JP2017008727A (ja) 2015-06-16 2015-06-16 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP2015-121333 2015-06-16

Publications (1)

Publication Number Publication Date
WO2016203980A1 true WO2016203980A1 (ja) 2016-12-22

Family

ID=57545065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066487 WO2016203980A1 (ja) 2015-06-16 2016-06-02 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法

Country Status (2)

Country Link
JP (1) JP2017008727A (ja)
WO (1) WO2016203980A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074846A1 (fr) * 2017-12-11 2019-06-14 IFP Energies Nouvelles Procede de stockage et de production d'energie par air comprime avec recuperation d'energie supplementaire
CN111173579A (zh) * 2020-03-02 2020-05-19 贵州电网有限责任公司 一种电加热装置为负载的膨胀发电实验系统和方法
CN112780409A (zh) * 2021-03-18 2021-05-11 西安热工研究院有限公司 一种采用连续爆轰的燃机与液态压缩空气储能耦合系统及方法
WO2022111577A1 (zh) * 2020-11-26 2022-06-02 中国核电工程有限公司 用于闭式布雷顿循环热机系统的旁路辅助系统、热机装置及其调节方法
US11591957B2 (en) 2017-10-24 2023-02-28 Tes Caes Technology Limited Energy storage apparatus and method
CN116804381A (zh) * 2023-06-29 2023-09-26 米奇科技(北京)有限公司 一种液态空气储能发电系统及设备
US20240133321A1 (en) * 2019-11-04 2024-04-25 Siemens Energy Global GmbH & Co. KG Pressure control for closed brayton cycles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108979762B (zh) * 2017-06-01 2020-12-15 中国科学院工程热物理研究所 分级蓄冷式超临界压缩空气储能系统及方法
CN108224535B (zh) * 2018-01-18 2020-03-24 中国科学院工程热物理研究所 一种火电厂热电联产与压缩空气储能互补集成系统
JP6913045B2 (ja) * 2018-02-26 2021-08-04 株式会社神戸製鋼所 圧縮空気貯蔵発電装置
KR102308531B1 (ko) * 2019-11-14 2021-10-07 한국기계연구원 신재생에너지 이용 수전해 시스템 및 신재생에너지를 수전해 시스템에 공급하는 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643236A (en) * 1987-06-24 1989-01-09 Mitsubishi Heavy Ind Ltd Compressed air generator
JPH09324656A (ja) * 1996-06-04 1997-12-16 Mitsubishi Heavy Ind Ltd 運転制御装置
JP2013509528A (ja) * 2009-10-28 2013-03-14 ゼネラル・エレクトリック・カンパニイ 多段熱エネルギー貯蔵設備を備えた断熱圧縮空気エネルギー貯蔵システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643236A (en) * 1987-06-24 1989-01-09 Mitsubishi Heavy Ind Ltd Compressed air generator
JPH09324656A (ja) * 1996-06-04 1997-12-16 Mitsubishi Heavy Ind Ltd 運転制御装置
JP2013509528A (ja) * 2009-10-28 2013-03-14 ゼネラル・エレクトリック・カンパニイ 多段熱エネルギー貯蔵設備を備えた断熱圧縮空気エネルギー貯蔵システム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11591957B2 (en) 2017-10-24 2023-02-28 Tes Caes Technology Limited Energy storage apparatus and method
FR3074846A1 (fr) * 2017-12-11 2019-06-14 IFP Energies Nouvelles Procede de stockage et de production d'energie par air comprime avec recuperation d'energie supplementaire
WO2019115120A1 (fr) * 2017-12-11 2019-06-20 IFP Energies Nouvelles Procede de stockage et de production d' energie par air comprime avec recuperation d' energie supplementaire
CN111448368A (zh) * 2017-12-11 2020-07-24 Ifp新能源公司 借助压缩空气具有附加能量回收的能量存储和产生方法
US20240133321A1 (en) * 2019-11-04 2024-04-25 Siemens Energy Global GmbH & Co. KG Pressure control for closed brayton cycles
CN111173579A (zh) * 2020-03-02 2020-05-19 贵州电网有限责任公司 一种电加热装置为负载的膨胀发电实验系统和方法
WO2022111577A1 (zh) * 2020-11-26 2022-06-02 中国核电工程有限公司 用于闭式布雷顿循环热机系统的旁路辅助系统、热机装置及其调节方法
CN112780409A (zh) * 2021-03-18 2021-05-11 西安热工研究院有限公司 一种采用连续爆轰的燃机与液态压缩空气储能耦合系统及方法
CN112780409B (zh) * 2021-03-18 2023-08-11 西安热工研究院有限公司 一种采用连续爆轰的燃机与液态压缩空气储能耦合系统及方法
CN116804381A (zh) * 2023-06-29 2023-09-26 米奇科技(北京)有限公司 一种液态空气储能发电系统及设备

Also Published As

Publication number Publication date
JP2017008727A (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2016203980A1 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
US8955323B2 (en) Compressor
US10358975B2 (en) Compressed air energy storage and power generation device
JP6571491B2 (ja) ヒートポンプ
JP6614878B2 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
WO2016178358A1 (ja) 圧縮空気貯蔵発電方法および圧縮空気貯蔵発電装置
WO2016203979A1 (ja) 圧縮空気貯蔵発電装置
JP6605348B2 (ja) 圧縮空気貯蔵発電装置
JP6621348B2 (ja) 圧縮空気貯蔵発電装置
WO2016181884A1 (ja) 圧縮空気貯蔵発電装置
JP2016211436A (ja) 圧縮空気貯蔵発電装置
JP2017141992A (ja) 圧縮空気貯蔵発電装置および圧縮空気貯蔵発電方法
CN110892139A (zh) 压缩空气贮藏发电装置
JP5747058B2 (ja) 圧縮機
WO2016104222A1 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
WO2018198724A1 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP2018182996A (ja) 圧縮空気貯蔵発電装置
JP6793616B2 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP2021096043A (ja) 排熱回収システム、及び、それに用いる気体圧縮機
JP6906013B2 (ja) ヒートポンプ
JP6577384B2 (ja) 圧縮空気貯蔵発電装置
KR20120034421A (ko) 압축 가스 저장 동력 발생 시스템 및 이를 이용한 압축 가스 저장 발전 시스템
JP2023166928A (ja) 圧縮機システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811455

Country of ref document: EP

Kind code of ref document: A1