WO2016181884A1 - 圧縮空気貯蔵発電装置 - Google Patents

圧縮空気貯蔵発電装置 Download PDF

Info

Publication number
WO2016181884A1
WO2016181884A1 PCT/JP2016/063577 JP2016063577W WO2016181884A1 WO 2016181884 A1 WO2016181884 A1 WO 2016181884A1 JP 2016063577 W JP2016063577 W JP 2016063577W WO 2016181884 A1 WO2016181884 A1 WO 2016181884A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
temperature
compressed air
heat medium
storage tank
Prior art date
Application number
PCT/JP2016/063577
Other languages
English (en)
French (fr)
Inventor
正樹 松隈
浩樹 猿田
佳直美 坂本
正剛 戸島
洋平 久保
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2016181884A1 publication Critical patent/WO2016181884A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Definitions

  • the present invention relates to a compressed air storage power generator.
  • the power generation output fluctuates greatly due to the influence of sunshine on the day. For example, power generation cannot be performed at night, and power generation output greatly decreases on rainy or cloudy days. In addition, in the case of a sunshine situation from dawn to sunset or a sunshine situation such as sunny and cloudy, the power output greatly fluctuates during the day.
  • the power generation output fluctuates greatly due to changes in wind direction and wind power on the day.
  • power generation fluctuations in a short cycle can be smoothed by adding the power generation output of each wind turbine. Is inevitable.
  • a typical technique for smoothing or leveling such fluctuating unstable power generation output is a storage battery that stores electricity when surplus generated power is generated and supplements electricity when power is insufficient. It is called compressed air storage (CAES) that stores air pressure converted into electricity instead of electricity when surplus generated power is generated, and reconverts it into electricity with an air turbine generator when necessary.
  • CAES compressed air storage
  • Technology is known.
  • smoothing the fluctuations of a relatively short period is called smoothing
  • smoothing the fluctuations of a relatively long period is called leveling.
  • both are collectively expressed as smoothing. .
  • Patent Documents 1 to 3 Representative conventional techniques using the CAES technique are disclosed in Patent Documents 1 to 3. In any of Patent Documents 1 to 3, energy storage efficiency is enhanced by recovering heat generated in the compression process by the compressor.
  • a two-stage screw compressor and a two-stage screw expander having two sets of screws, a high pressure stage and a low pressure stage are known.
  • the two-stage screw compressor cools the compressed air compressed in the low-pressure stage before introducing it into the high-pressure stage, and the two-stage screw expander compresses the compressed air expanded in the high-pressure stage. Heat before introducing. For this reason, compared with a single stage type compressor or expander, there exists the characteristic that the operation
  • JP 2012-97737 A Special table 2013-512410 gazette Special table 2013-536357 gazette
  • An object of the present invention is to provide a compressed air storage power generation apparatus that can maintain high charge / discharge efficiency by maximizing the thermal efficiency of the entire system.
  • the present invention includes an electric motor driven by fluctuating input power, a multistage compressor that is mechanically connected to the electric motor, includes a low pressure stage compressor body and a high pressure stage compressor body, and compresses air.
  • a pressure accumulator tank that is fluidly connected to the compressor and stores compressed air compressed by the compressor; and a fluid accumulator tank that is fluidly connected to the pressure accumulator tank and includes a low pressure stage expander body and a high pressure stage expander body.
  • a first heat exchange unit for exchanging and raising the temperature of the heat medium a high-temperature heat storage tank that is fluidly connected to the first heat exchange unit and stores the heat medium, and the first heat exchange unit and the fluid Connected to the high-temperature heat storage tank.
  • the low-temperature heat storage tank that stores the low-temperature heat medium, and the heat medium that is fluidly connected to the high-temperature heat storage tank and supplied from the high-temperature heat storage tank and the compressed air supplied to the low-pressure stage expander body
  • An inter-heater for exchanging and raising the temperature of the compressed air a heat medium fluidly connected to the low-temperature heat storage tank, supplied from the low-temperature heat storage tank, and compressed air supplied to the high-pressure stage expander body
  • a compressed air storage power generator is provided that includes a second heat exchanging unit that includes a preheater for exchanging heat and raising the temperature of the compressed air.
  • the thermal efficiency of the entire system can be maximized by heating the compressed air flowing into the multistage expander represented by the two-stage type with a heat medium stored according to temperature, and charging and discharging High efficiency can be maintained. This is because the amount of work can be increased by heating the compressed air flowing into the low-pressure expander body to a higher temperature.
  • a screw type compressor or expander it is possible to quickly follow a fluctuating input and to quickly change the power generation output.
  • the amount of power generation can be further increased without overheating or overcooling.
  • the first heat exchange unit includes an intercooler and an aftercooler, and the intercooler is fluidly connected to the low-temperature heat storage tank, and is compressed by a heat medium and the low-pressure stage compressor body.
  • the heat medium is heated to raise the temperature of the heat medium and supplied to the low-temperature heat storage tank, and the aftercooler exchanges heat between the heat medium and the compressed air compressed by the high-pressure stage compressor body.
  • the temperature may be raised and supplied to the high-temperature heat storage tank.
  • the first heat exchange unit includes an intercooler and a first aftercooler connected in series with the intercooler through a heat medium path, and the intercooler is compressed by the heat medium and the low-pressure stage compressor body. Heat exchange is performed with the compressed air thus heated to raise the temperature of the heating medium and supply it to the first aftercooler.
  • the first aftercooler includes the heating medium heated by the intercooler and the high-pressure stage compressor. The heat medium may be further heated by exchanging heat with compressed air compressed by the main body and supplied to the high-temperature heat storage tank.
  • the first heat exchange unit further includes a second aftercooler disposed downstream of the first aftercooler in the air flow path, and the second aftercooler is supplied from a heat medium and the first aftercooler.
  • the heat medium may be exchanged with the compressed air to raise the temperature of the heat medium and be supplied to the low-temperature heat storage tank.
  • the heat medium in the second aftercooler, by heating the heat medium with compressed air after being used for heating the first aftercooler, the heat medium can be efficiently heated and stored in the low-temperature heat storage tank as a low-temperature heat medium. Therefore, by using this heat medium and heating the compressed air flowing into the main body of the high-pressure stage expander of the two-stage screw expander with a preheater, the heat medium can be used more effectively and the discharge efficiency can be increased. it can.
  • the thermal efficiency of the entire system can be maximized, and the charge / discharge efficiency is increased. Can be maintained.
  • the schematic structure figure of the compressed air storage power generator concerning a 1st embodiment of the present invention.
  • the schematic block diagram of the compressed air storage power generation apparatus which concerns on 2nd Embodiment of this invention.
  • the schematic block diagram of the compressed air storage power generator which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a schematic configuration diagram of a compressed air energy storage (CAES) power generator 2.
  • the CAES power generation device 2 of the present embodiment smoothes output fluctuations to the demand destination equipment 4 and generates power that matches the fluctuations in demand power in the demand destination equipment 4 when generating power using renewable energy. Output.
  • the CAES power generation device 2 of the present embodiment smoothes the power supplied from the power generation facility 6 using renewable energy such as solar panels and windmills installed in factories, shopping centers, smart villages, etc. Output power.
  • the demand facility 4 may be the above-described facility where the power generation facility 6 is installed, the power generation facility 6 itself in the case of private power generation, or other external power system. Good.
  • the CAES power generation device 2 includes four types of fluid paths.
  • the four types of fluid paths are an air path, a heat medium path, a cooling water path, and a lubricating oil path.
  • the air path is mainly provided with a compressor 8, an accumulator tank 12, and an expander 14, which are fluidly connected by air pipes 18 and 19, and air flows inside thereof. (See broken line in FIG. 1).
  • the heat medium path is mainly provided with a first heat exchanging unit 20, a heat storage tank 24, and a second heat exchanging unit 26, which are fluidly connected by a heat medium pipe 30 and inside thereof. Is flowing through the heating medium (see the solid line in FIG. 1).
  • the cooling water path is mainly provided with a water supply section 32, a third heat exchange section 34, fourth heat exchange sections 36a and 36b, and a hot water outlet (hot water extraction mechanism) 38, which are cooled. It is fluidly connected by a water pipe 40, and water flows through the inside (see the one-dot chain line in FIG. 1).
  • the lubricating oil path is mainly provided with a fourth heat exchanging part 36a or 36b, and a compressor 8 or an expander 14, which are fluidly connected by lubricating oil pipes 42a and 42b, and inside thereof. Is flowing lubricating oil (see the two-dot chain line in FIG. 1).
  • the air path will be described with reference to FIG.
  • the sucked air is compressed by the compressor 8 and stored in the pressure accumulation tank 12.
  • the compressed air stored in the pressure accumulating tank 12 is supplied to the expander 14 and used for power generation by the generator 46.
  • the compressor 8 is a two-stage screw type having a low-pressure stage compressor body 9 and a high-pressure stage compressor body 10. By using the screw-type compressor 8, it is possible to quickly follow the fluctuating input and to quickly change the power generation output.
  • the compressor 8 includes a motor (electric motor) 44.
  • the motor 44 is mechanically connected to the biaxial screws 9 a and 10 a inside the low-pressure stage compressor body 9 and the high-pressure stage compressor body 10.
  • the electric power (input electric power) generated by the power generation facility 6 is supplied to the motor 44 (see the thick arrow in FIG. 1), and the motor 44 is driven by this electric power, and the screws 9a and 10a rotate to operate the compressor 8. .
  • the low-pressure stage compressor body 9 sucks air from the suction port 9 b through the air pipe 18, compresses it and discharges it from the discharge port 9 c, and compresses the high-pressure stage through the air pipe 18. Compressed air is pumped to the machine body 10.
  • the high-pressure stage compressor body 10 sucks air from the suction port 10b through the air pipe 18, compresses it, discharges it from the discharge port 10c, and pumps the compressed air to the pressure accumulation tank 12 through the air pipe 18a.
  • the number of the compressors 8 is one, but a plurality of compressors may be installed in parallel.
  • the pressure accumulating tank 12 stores the compressed air fed from the compressor 8. Therefore, energy can be stored in the pressure accumulation tank 12 as compressed air.
  • the pressure accumulation tank 12 is fluidly connected to the expander 14 through the air pipe 19. Therefore, the compressed air stored in the pressure accumulation tank 12 is supplied to the expander 14. In addition, you may supply the compressed air stored in the pressure accumulation tank 12 as air directly utilized for a factory etc.
  • the expander 14 is a two-stage screw type having a low-pressure stage expander body 15 and a high-pressure stage expander body 16. By using the screw type expander 14, it is possible to quickly follow the fluctuating input, and the power generation output can also be changed quickly.
  • the expander 14 includes a generator 46.
  • the generator 46 is mechanically connected to the biaxial screws 15 a and 16 a inside the low-pressure expander body 15 and the high-pressure expander body 16.
  • the high-pressure stage expander main body 16 is.
  • the suction port 16b is fluidly connected to the pressure accumulation tank 12 through the air pipe 19, and is supplied with compressed air from the suction port 16b.
  • the high-pressure stage expander body 16 is operated by the supplied compressed air and drives the generator 46.
  • the high-pressure stage expander body 16 supplies compressed air from the discharge port 16 c to the suction port 15 b of the low-pressure stage expander body 15 through the air pipe 19.
  • the low-pressure stage expander body 15 is similarly activated by the supplied compressed air and drives the generator 46.
  • the low-pressure stage expander body 15 exhausts the air expanded outside through the air pipe 19 from the discharge port 15c.
  • the electric power generated by the generator 46 is supplied to the customer facility 4 (see the thick arrow in FIG. 1).
  • the number of expanders 14 is one, but a plurality of expanders may be installed in parallel.
  • the heat medium path the heat generated by the compressor 8 in the first heat exchanging unit 20 is recovered in the heat medium.
  • the heat recovery heat medium is stored in the heat storage tank 24 (the high-temperature heat storage tank 24a and the low-temperature heat storage tank 24b), and heat is returned to the compressed air before being expanded by the expander 14 in the second heat exchange unit 26.
  • the heat medium having undergone heat exchange in the second heat exchange unit 26 and having been cooled is supplied to the heat medium return tank 48. Then, the heat medium is supplied again from the heat medium return tank 48 to the first heat exchange unit 20, and the heat medium is thus circulated.
  • the kind of the heat medium is not particularly limited, and for example, mineral oil or glycol-based heat medium can be used.
  • the first heat exchange unit 20 of the present embodiment includes an intercooler 21, a first aftercooler 22a, and a second aftercooler 22b.
  • the intercooler 21, the first aftercooler 22a, and the second aftercooler 22b all recover the heat generated by the compressor 8 in the heat medium. Therefore, in the intercooler 21, the first aftercooler 22a, and the second aftercooler 22b, the temperature of the compressed air is lowered and the temperature of the heat medium is raised.
  • the intercooler 21 is provided in an air pipe 18 extending from the low-pressure stage compressor body 9 to the high-pressure stage compressor body 10 in the air path. Further, the heat medium pipes 30a and 30b extending from the heat medium return tank 48 to the first aftercooler 22a in the heat medium path are provided. Accordingly, the intercooler 21 exchanges heat between the compressed air compressed by the low-pressure stage compressor body 9 and the heat medium supplied to the first aftercooler 22a, and the compression heat generated in the low-pressure stage compressor body 9 is exchanged. It is recovered in the heat medium. The heat medium whose temperature has been increased is supplied to the first aftercooler 22a through the heat medium pipe 30b. Thus, since it cools between the low pressure stage compressor main body 9 and the high pressure stage compressor main body 10, it can collect
  • the first aftercooler 22a is provided in an air pipe 18a extending from the high-pressure compressor body 10 to the second aftercooler 22b in the air path. Moreover, it is provided in the heat medium piping 30b and 30c extended from the intercooler 21 to the high temperature thermal storage tank 24a in a heat medium path
  • the second aftercooler 22b is provided in an air pipe 18a extending from the first aftercooler 22a to the pressure accumulating tank 12 in the air path. Further, in the heat medium path, the heat medium pipes 30d and 30e are branched from the heat medium return tank 48 in front of the intercooler 21 and extend to the low temperature heat storage tank 24b. Accordingly, the second aftercooler 22b exchanges heat between the compressed air after heat exchange by the first aftercooler 22a and the heat medium supplied to the low-temperature heat storage tank 24b, and the low-pressure stage compressor body 9 and the high-pressure stage compression. The compression heat generated in the machine body 10 is recovered in the heat medium. The heat medium whose temperature has been increased is supplied to the low-temperature heat storage tank 24b through the heat medium pipe 30e.
  • the heat storage tank 24 of this embodiment includes a high temperature heat storage tank 24a and a low temperature heat storage tank 24b.
  • the high-temperature heat storage tank 24a and the low-temperature heat storage tank 24b are steel tanks that are covered with a heat insulating material that is insulated from the atmosphere. If heat insulation is performed as a double container instead of covering with a heat insulating material, the heat insulation effect can be further enhanced.
  • the heat storage tank 24 (the high-temperature heat storage tank 24a and the low-temperature heat storage tank 24b) stores the heat medium heated by the first heat exchange unit 20. For example, a 240 ° C. heat medium is stored in the high-temperature heat storage tank 24a, and a 140 ° C.
  • heat medium is stored in the low-temperature heat storage tank 24b.
  • the heat medium stored in the high-temperature heat storage tank 24a is supplied to the interheater 28 through the heat medium pipe 30f.
  • the heat medium stored in the low-temperature heat storage tank 24b is supplied to the preheater 27 through the heat medium pipe 30g.
  • two types of heat storage tanks 24 (a high temperature heat storage tank 24a and a low temperature heat storage tank 24b) are provided, but three or more types may be used, and one or both of the high temperature heat storage tank 24a and the low temperature heat storage tank 24b may be two. Two or more may be provided.
  • the inside of one heat storage tank 24 may be physically partitioned, and the heat medium for high temperature and low temperature may be divided and stored.
  • Heating the compressed air flowing into the two-stage screw expander 14 with a heat medium stored for each temperature can maximize the thermal efficiency of the entire system and maintain high charge / discharge efficiency. This is because, as will be described later, more work can be performed by heating the compressed air flowing into the low-pressure stage expander main body 15 to a higher temperature.
  • the second heat exchange unit 26 of the present embodiment includes a preheater 27 and an interheater 28.
  • the preheater 27 and the interheater 28 heat the compressed air before expansion by the expander 14. Accordingly, in the pre-heater 27 and the inter-heater 28, the temperature of the compressed air increases and the temperature of the heat medium decreases.
  • the preheater 27 is provided in an air pipe 19 that extends from the pressure accumulation tank 12 to the high-pressure stage expander body 16 in the air path. Further, in the heat medium path, the heat medium pipes 30g and 30h extending from the low temperature heat storage tank 24b to the heat medium return tank 48 are provided. Accordingly, the preheater 27 exchanges heat between the compressed air before expansion in the high-pressure stage expander body 16 and the heat medium supplied from the low-temperature heat storage tank 24b, and the compressed air before expansion in the high-pressure stage expander body 16 is exchanged. Heating. The heat medium having cooled down is supplied to the heat medium return tank 48 through the heat medium pipe 30h.
  • the interheater 28 is provided in an air pipe 19 extending from the high-pressure stage expander body 16 to the low-pressure stage expander body 15 in the air path. Further, the heat medium pipes 30 f and 30 i are provided extending from the high temperature heat storage tank 24 a to the heat medium return tank 48 in the heat medium path. Accordingly, the interheater 28 exchanges heat between the compressed air before expansion in the low-pressure stage expander body 15 and the heat medium supplied from the high-temperature heat storage tank 24a, and the compressed air before expansion in the low-pressure stage expander body 15. Is heating up. Since the heating is performed between the high-pressure stage expander body 16 and the low-pressure stage expander body 15 in this way, the amount of power generation can be further increased without overcooling. The heat medium having cooled down is collected in the heat medium return tank 48 through the heat medium pipe 30i.
  • the heat medium return tank 48 stores the heat medium that has been cooled by the heat exchange performed by the second heat exchange unit 26 (the preheater 27 and the interheater 28). Therefore, the temperature of the heat medium in the heat medium return tank 48 is usually lower than that of the heat medium in the heat storage tank 24.
  • the heat medium stored in the heat medium return tank 48 is supplied to the first heat exchange unit 20 through the heat medium pipe 30j.
  • the tanks 24a, 24b, and 48 for storing the three heat media are provided. Comparing the temperature T1 of the high-temperature heat storage tank 24a, the temperature T2 of the low-temperature heat storage tank 24b, and the temperature T3 of the heat medium return tank 48, T1 is the highest, and then T2 and T3 are the lowest. That is, the relationship of T1> T2> T3 is established.
  • a third heat exchanging section 34 is provided in the heat medium pipe 30 j extending from the heat medium returning tank 48 to the first heat exchanging section 20.
  • heat exchange is carried out between the heat medium supplied to the 1st heat exchange part 20, and cooling water, and the temperature of a heat medium is reduced to predetermined temperature.
  • the third heat exchanging unit 34 may be disposed between the first heat exchanging unit 20 and the second heat exchanging unit 26, and is not limited to the downstream position of the heat medium return tank 48. The temperature of the hot water that can be supplied can be changed depending on the arrangement position.
  • the heat medium pipes 30j, 30f, and 30g are provided with pumps 50a to 50c for flowing the heat medium, respectively.
  • the pump 50a is disposed downstream of the heat medium return tank 48
  • the pump 50b is disposed downstream of the high-temperature heat storage tank 24a
  • the pump 50c is disposed downstream of the low-temperature heat storage tank 24b.
  • the arrangement of the pumps 50a to 50c is not particularly limited, and the pumps 50a to 50c may be arranged at any position of the heat medium pipe 30.
  • the cooling water path will be described with reference to FIG.
  • the heat of the heat medium supplied from the heat medium return tank 48 is collected in the cooling water in the third heat exchange unit 34.
  • the heat of the lubricating oil is recovered in the cooling water in the fourth heat exchange units 36a and 36b. Then, the heat-recovered water can be taken out from the hot water outlet 38 as hot water and used.
  • a water supply unit 32 is provided in the cooling water path, and cooling water having a predetermined temperature is supplied to the cooling water path.
  • the third heat exchange unit 34 is provided in the cooling water pipe 40 extending from the water supply unit 32 to the fourth heat exchange units 36a and 36b in the cooling water path. Further, it is provided in a heat medium pipe 30j extending from the heat medium return tank 48 to the first heat exchange unit 20 in the heat medium path. Therefore, the third heat exchanging unit 34 exchanges heat between the cooling water supplied from the water supply unit 32 and the heat medium supplied from the heat medium return tank 48 to heat the cooling water.
  • the cooling water whose temperature has been increased here is supplied to the fourth heat exchange units 36 a and 36 b through the cooling water pipe 40 branched toward both the compressor 8 and the expander 14.
  • the third heat exchanging unit 34 uses the heat of the heat medium in the heat medium return tank 48 to heat the cooling water. However, if the hot water or a large amount of hot water is required, the third heat exchange unit 34 stores heat. It is good also as a structure which can utilize the heat of the heat medium of the tank 24. FIG.
  • the fourth heat exchanging parts 36a and 36b are provided in the cooling water pipe 40 extending from the third heat exchanging part 34 to the hot water outlet 38 in the cooling water path. Further, it is provided in the lubricating oil pipes 42a and 42b fluidly connected to the compressor 8 or the expander 14 in the lubricating oil path. Therefore, the fourth heat exchanging parts 36a and 36b exchange heat with the cooling water supplied from the third heat exchanging part 34 and the lubricating oil in the lubricating oil pipes 42a and 42b to heat the cooling water, Is cooling.
  • the cooling water whose temperature has been increased here is supplied to the hot water outlet 38 through the cooling water pipe 40.
  • the hot water outlet 38 is for taking out the cooling water heated by the third heat exchanging part 34 and the fourth heat exchanging parts 36a, 36b, that is, hot water, through the cooling water pipe 40 and using it.
  • it may be supplied as hot water to facilities such as factories, shopping centers and smart villages.
  • the lubricating oil path will be described with reference to FIG.
  • the lubricating oil used for lubricating the bearings 9d, 10d or 15d, 16d of the screws 9a, 10a or 15a, 16a of the compressor 8 or the expander 14 circulates. As described above, the lubricating oil is cooled in the fourth heat exchange portions 36a and 36b.
  • a heat exchange unit is newly provided to collect electrical heat loss, mechanical heat loss, etc. of the motor 44 and the generator 46 in the compressor 8 and the expander 14 and further exchange heat with the cooling water.
  • the cooling water may be heated.
  • Lubricating oil pipes 42a and 42b are respectively provided with pumps 50d and 50e for flowing lubricating oil.
  • the pump 50d is disposed downstream of the compressor 8, and the pump 50e is disposed downstream of the expander 14.
  • the arrangement of the pumps 50d and 50e is not particularly limited, and the pumps 50d and 50e may be arranged at arbitrary positions of the lubricating oil pipes 42a and 42b, respectively.
  • the container 52a accommodates the compressor 8, the 1st heat exchange part 20, and the 4th heat exchange part 36a, and the installation regarding a compression function is put together.
  • the container 52b houses the expander 14, the second heat exchanging unit 26, and the fourth heat exchanging unit 36b, and facilities related to the expansion function are collected.
  • the container 52c accommodates the high-temperature heat storage tank 24a, the low-temperature heat storage tank 24b, the heat medium return tank 48, and the third heat exchange unit 34, and the facilities related to the heat storage function are collected.
  • the construction cost for installing the CAES power generator 2 can be greatly reduced, and transportation can be easily performed.
  • Three containers 52a to 52c are not necessarily required, and may be one or two of them. Two or more containers may be collected, for example, all the components to be stored may be stored together in one container. In the present invention, the containers 52a to 52c are not essential, and the containers 52a to 52c may not be provided.
  • the four types of fluid paths of the CAES power generator 2 of the present embodiment are configured.
  • FIG. 2 is a ph diagram of the two-stage screw compressor 8 during charging. Mainly, the vertical axis represents pressure, and the horizontal axis represents specific enthalpy and temperature.
  • states C1 to C2 indicate the compression work process in the low-pressure stage compressor body 9
  • states C2 to C3 indicate the cooling process in the intercooler 21.
  • State C3 to state C4 show the compression work process in the high-pressure stage compressor body 10
  • state C4 to state C5 show the cooling process in the first aftercooler 22a
  • state C5 to state C6 show the second aftercooler 22b. Shows the cooling process.
  • the state C1 to the state C2 and the state C3 to the state C4 are isentropic changes assuming an adiabatic process.
  • the transition of the temperature of the compressed air from the state C1 to the state C5 illustrated is about 30 ° C in the state C1, about 150 ° C in the state C2, about 110 ° C in the state C3, about 250 ° C in the state C4, and in the state C5.
  • the conditions such as pressure and temperature in the states C1 to C6 are merely examples, and the present invention is not limited to these.
  • the intercooler 21 and the first aftercooler 22a are connected in series, and the heat medium heated and heated by these is stored.
  • the heat medium heated by the second aftercooler 22b is stored in the low-temperature heat storage tank 24b of the present embodiment.
  • the low temperature heat storage tank 24b stores a heat medium having a temperature lower than that of the heat medium stored in the high temperature heat storage tank 24a.
  • the heating medium is heated with the compressed air after being used to heat the first aftercooler 22a, so that the compression heat that could not be recovered by the first aftercooler 22a is reduced to low temperature heat.
  • the heat medium can be efficiently recovered and stored in the low-temperature heat storage tank 24b.
  • FIG. 3 is a ph diagram of the two-stage screw expander during discharge. Mainly, the vertical axis represents pressure, and the horizontal axis represents specific enthalpy and temperature.
  • states E1 to E2 indicate the heating process in the preheater 27, and states E2 to E3 indicate the expansion work process in the high-pressure stage expander body 16.
  • States E3 to E4 indicate the heating process in the interheater 28, and States E4 to E5 indicate the expansion work process in the low-pressure stage expander main body 15.
  • states E2 to E3 and states E4 to E5 are isentropic changes assuming an adiabatic process.
  • the amount of inclination of the isentropic line from the state E4 to the state E5 is smaller than the amount of inclination of the isentropic line from the state E2 to the state E3. Therefore, the amount of work being done outside is larger. Therefore, the heating amount of the air supplied to the low-pressure stage expander body 15 in the state E3 to the state E4 is set to be larger than the heating amount of air supplied to the high-pressure stage expander body 16 in the state E1 to the state E2. It is preferable from the viewpoint of efficiency improvement. Looking at the transition of the temperature of the compressed air from the state E1 to the state E5 illustrated, it is about 70 ° C.
  • the compressed air before flowing into the low-pressure stage expander main body 15 is heated by the interheater 28 using the heat medium of the high-temperature heat storage tank 24a, and the preheater 27 is used using the heat medium of the low-temperature heat storage tank 24b.
  • the compressed air before flowing into the low-pressure expander main body 15 is heated. Therefore, the discharge efficiency is further enhanced by greatly heating the compressed air supplied to the low-pressure stage expander body 15 with a high-temperature heat medium.
  • FIG. 4 shows a schematic configuration diagram of the CAES power generator 2 of the second embodiment.
  • the CAES power generator 2 of the present embodiment is substantially the same as the first embodiment of FIG. 1 except for the number of compressors 8 and expanders 14. Therefore, the same parts as those shown in FIG.
  • FIG. 1 The second embodiment of the present invention will be described with reference to FIG.
  • three compressors 8 and four expanders 14 are provided in the container 52a and the container 52b, respectively.
  • Three compressors 8 are fluidly connected in parallel, and four expanders 14 are fluidly connected in parallel.
  • the number of driven compressors 8 and expanders 14 can be changed in accordance with the input power and demand power, so a wide and efficient smoothing is possible. is there. Further, even when a plurality of compressors 8 and expanders 14 are provided, they are housed in the containers 52a and 52b, so that the construction cost when installing the CAES power generation device 2 is greatly reduced and transportation is facilitated. be able to.
  • FIG. 5 shows a schematic configuration diagram of the CAES power generator 2 of the third embodiment.
  • the configuration of the CAES power generation device 2 of the present embodiment is the same as that of the first embodiment of FIG. 1 except for the portion related to the first heat exchange unit 20. Therefore, the same parts as those shown in FIG.
  • the first heat exchange unit 20 includes an intercooler 21 and an aftercooler 22.
  • the intercooler 21 and the aftercooler 22 collect the heat generated in the compressor 8 in a heat medium. Therefore, in the intercooler 21 and the aftercooler 22, the temperature of the compressed air decreases and the temperature of the heat medium increases.
  • the intercooler 21 is provided in an air pipe 18 extending from the low-pressure stage compressor body 9 to the high-pressure stage compressor body 10 in the air path. Further, in the heat medium path, the heat medium pipes 30a and 30e are provided extending from the heat medium return tank 48 to the low temperature heat storage tank 24b. Accordingly, the intercooler 21 exchanges heat between the compressed air compressed by the low-pressure stage compressor body 9 and the heat medium supplied to the low-temperature heat storage tank 24b, and heats the compression heat generated in the low-pressure stage compressor body 9 to heat. It is recovered in the medium. The heat medium whose temperature has been increased is supplied to the low-temperature heat storage tank 24b through the heat medium pipe 30e.
  • the aftercooler 22 is provided in an air pipe 18a extending from the high-pressure compressor main body 10 to the accumulator tank 12 in the air path. Further, in the heat medium path, the heat medium pipes 30d and 30c extending from the heat medium return tank 48 to the high-temperature heat storage tank 24a are provided. Therefore, the aftercooler 22 exchanges heat between the compressed air compressed by the high-pressure stage compressor body 10 and the heat medium supplied to the high-temperature heat storage tank 24a, and the low-pressure stage compressor body 9 and the high-pressure stage compressor body 10 The heat of compression generated in is recovered in a heat medium. The heat medium whose temperature has been increased is supplied to the high-temperature heat storage tank 24a through the heat medium pipe 30c.
  • a high temperature heat medium can be stored in the high temperature heat storage tank 24a, and a lower temperature heat medium can be stored in the low temperature heat storage tank 24b, that is, the heat medium can be stored according to temperature. Therefore, the compressed air flowing into the two-stage screw expander 14 can be heated with the heat medium stored at high and low temperatures, and the charge / discharge efficiency can be maintained high.
  • the “fluctuating input power” of the present invention is not limited to renewable energy, and may smooth or cut the demand power of factory equipment.
  • the compressor 8 and the expander 14 are not limited to the two-stage type, and may be a multi-stage type having three or more stages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

圧縮空気貯蔵発電装置2は、圧縮機8と、蓄圧タンク12と、膨張機14とを備える。圧縮機8は、2段型であり、再生可能エネルギーによりモータ44を駆動されて空気を圧縮する。蓄圧タンク12は、圧縮空気を貯蔵する。膨張機14は、2段型であり、圧縮空気によって駆動される。膨張機14には発電機46が機械的に接続されており、電力を発電する。また、装置2は、圧縮熱を回収する第1熱交換部20と、熱媒を温度別に貯蔵する高温蓄熱タンク24a及び低温蓄熱タンク24bと、第2熱交換部26とを備える。第2熱交換部26は、高温蓄熱タンク24aからの熱媒と低圧段膨張機本体15への圧縮空気とで熱交換して圧縮空気を昇温させるインターヒータ28と、低温蓄熱タンク24bからの熱媒と高圧段膨張機本体16への圧縮空気とで熱交換して圧縮空気を昇温させるプレヒータ27とを備える。このようにして、充放電効率を高く維持できる圧縮空気貯蔵発電2装置を提供する。

Description

圧縮空気貯蔵発電装置
 本発明は、圧縮空気貯蔵発電装置に関する。
 太陽光発電や太陽熱発電などの太陽エネルギーを利用した発電においては、当日の日照状況に影響されて、その発電出力が大きく変動する。例えば、夜間には発電できないし、雨天や曇天の日には発電出力が大きく減少する。また、夜明けから日暮れまでの日照状況や、晴れのち曇りといった日照状況の場合、発電出力が一日のうちで大きく変動する。
 また、風車を用いた風力発電においては、当日の風向や風力の変化によって、その発電出力が大きく変動する。複数の風車をまとめたウインドファームのような発電設備においては、各風車の発電出力を加算することで、短周期の発電変動は平滑化することができるが、全体としてみてもその発電出力の変動は避けることができない。
 このような変動する不安定な発電出力を平滑化又は平準化する技術としては、余剰発電電力が生じた際に電気を蓄えておき電力不足時に電気を補う蓄電池がその代表的なものであるが、余剰発電電力が生じた際に電気の代わりに変換した空気圧力として蓄えておき、必要なときに空気タービン発電機等で電気に再変換する圧縮空気貯蔵(CAES:compressed air energy storage)と呼ばれる技術が知られている。一般に、比較的短周期の変動を均す場合を平滑化と呼び、比較的長周期の変動を均す場合を平準化と呼んでいるが、ここでは両者をまとめて平滑化と表すものとする。
 このCAESの技術を利用した代表的な従来技術が特許文献1から特許文献3に開示されている。特許文献1から特許文献3のいずれにおいても、圧縮機による圧縮工程で発生する熱を回収することで、エネルギー貯蔵効率を高めている。
 また、従来から、スクリュを高圧段と低圧段の2セット備えた2段型のスクリュ式圧縮機及び2段型のスクリュ式膨張機が知られている。2段型のスクリュ式圧縮機は、低圧段で圧縮された圧縮空気を高圧段に導入する前に冷却し、2段型のスクリュ式膨張機は、高圧段で膨張された圧縮空気を低圧段に導入する前に加熱する。このため、単段型の圧縮機又は膨張機に比べて、過昇温または過冷却になることなく圧縮または膨張できる動作範囲が広いという特徴がある。
特開2012-97737号公報 特表2013-512410号公報 特表2013-536357号公報
 いずれの従来技術においても、基本的には遠心圧縮機を使用することを前提としたものである。従って、圧縮機にて発生する圧縮熱を回収する場合、単一の熱貯蔵ユニットに貯蔵することしか記載されておらず、貯蔵温度の異なる複数の蓄熱タンクを使用することについては何ら開示されていない。また、圧縮熱の貯蔵に関しては、複数の熱交換器を利用して貯蔵することを開示しているものはあるが、膨張機側(発電)での利用に関しては、単に膨張機に導入される圧縮空気を加熱することしか開示されていない。
 圧縮空気貯蔵発電装置においては、充電工程と放電工程におけるエネルギー損失をできるだけ小さくする(充放電効率を高くする)ことが非常に重要である。充放電効率を低下させる主な原因として、空気の圧縮・膨張に伴って発生・吸収する熱による損失がある。この熱損失を小さくするためには、システム全体での熱効率を最大限高めることができるように、熱交換器を配置する必要がある。
 本発明は、システム全体での熱効率を最大限高めることによって、充放電効率を高く維持できる圧縮空気貯蔵発電装置を提供することを課題とする。
 本発明は、変動する入力電力により駆動される電動機と、前記電動機と機械的に接続され、低圧段圧縮機本体及び高圧段圧縮機本体を有し、空気を圧縮する多段型の圧縮機と、前記圧縮機と流体的に接続され、前記圧縮機により圧縮された圧縮空気を貯蔵する蓄圧タンクと、前記蓄圧タンクと流体的に接続され、低圧段膨張機本体及び高圧段膨張機本体を有し、前記蓄圧タンクから供給される圧縮空気によって駆動される多段型の膨張機と、前記膨張機と機械的に接続された発電機と、前記圧縮機で圧縮された圧縮空気と熱媒とで熱交換し、熱媒を昇温させるための第1熱交換部と、前記第1熱交換部と流体的に接続され、熱媒を貯蔵する高温蓄熱タンクと、前記第1熱交換部と流体的に接続され、前記高温蓄熱タンクに貯蔵される熱媒よりも低温の熱媒を貯蔵する低温蓄熱タンクと、前記高温蓄熱タンクと流体的に接続され、前記高温蓄熱タンクから供給される熱媒と前記低圧段膨張機本体に供給される圧縮空気とで熱交換し、圧縮空気を昇温させるためのインターヒータと、前記低温蓄熱タンクと流体的に接続され、前記低温蓄熱タンクから供給される熱媒と前記高圧段膨張機本体に供給される圧縮空気とで熱交換し、圧縮空気を昇温させるためのプレヒータとを備える第2熱交換部とを備える圧縮空気貯蔵発電装置を提供する。
 この構成により、温度別に貯蔵された熱媒で2段型に代表される多段型の膨張機に流入する圧縮空気を加熱することで、システム全体での熱効率を最大限高めることができ、充放電効率を高く維持できる。これは、低圧段膨張機本体に流入する圧縮空気を、より高い温度に加熱した方が、より多くの仕事量をさせることができるためである。また、スクリュ式の圧縮機又は膨張機を使用することで、変動する入力に速やかに追従することができ、発電出力も速やかに変更することができる。また、2段型のスクリュ式圧縮機と膨張機を使用し、高圧段と低圧段の間で冷却又は加熱することで、過昇温や過冷却になることなく、発電量をより増大できる。
 前記第1熱交換部は、インタークーラと、アフタークーラとを備え、前記インタークーラは、前記低温蓄熱タンクと流体的に接続され、熱媒と、前記低圧段圧縮機本体で圧縮された圧縮空気とで熱交換して熱媒を昇温させて前記低温蓄熱タンクに供給し、前記アフタークーラは、熱媒と、前記高圧段圧縮機本体で圧縮された圧縮空気とで熱交換して熱媒を昇温させて前記高温蓄熱タンクに供給してもよい。
 これにより、高温蓄熱タンクに高温の熱媒を貯蔵し、これより低温の熱媒を低温蓄熱タンクに貯蔵でき、即ち温度別に熱媒を貯蔵できる。従って、高温と低温で貯蔵された熱媒で2段型のスクリュ式膨張機に流入する圧縮空気を加熱可能であり、充放電効率を高く維持できる。
 前記第1熱交換部は、インタークーラと、前記インタークーラと熱媒経路で直列に接続された第1アフタークーラとを備え、前記インタークーラは、熱媒と、前記低圧段圧縮機本体で圧縮された圧縮空気とで熱交換して熱媒を昇温させて前記第1アフタークーラに供給し、前記第1アフタークーラは、前記インタークーラで昇温された熱媒と、前記高圧段圧縮機本体で圧縮された圧縮空気とで熱交換して熱媒をさらに昇温させて前記高温蓄熱タンクに供給してもよい。
 これにより、インタークーラと第1アフタークーラとを直列接続したもので熱媒を加熱することで、熱媒をより高温に加熱することが容易で、かつ高温に加熱された熱媒の流量を増加できる。より高温に加熱された熱媒の方が、放電効率を向上するのに有利であるため、インターヒータで低圧段膨張機本体に流入する前の圧縮空気を加熱することで、放電効率を一層高めることができる。
 前記第1熱交換部は、空気流路において前記第1アフタークーラの下流に配置された第2アフタークーラをさらに備え、前記第2アフタークーラは、熱媒と、前記第1アフタークーラから供給される圧縮空気とで熱交換して熱媒を昇温させて前記低温蓄熱タンクに供給してもよい。
 これにより、第2アフタークーラにおいて、第1アフタークーラの加熱に使用した後の圧縮空気で熱媒を加熱することで、効率よく熱媒を加熱して低温熱媒として低温蓄熱タンクに貯蔵できる。従って、この熱媒を使用してプレヒータで2段型スクリュ式膨張機の高圧段膨張機本体に流入する圧縮空気を加熱することで、より有効に熱媒を使用でき、放電効率を高めることができる。
 前記第1熱交換部及び前記第2熱交換部と流体的に接続され、前記第2熱交換部で熱交換して降温した熱媒と、冷却水とで熱交換して熱媒を降温させる第3熱交換部と、前記第3熱交換部で熱媒と熱交換して昇温した冷却水を取り出す温水取出機構とを備えてもよい。
 これにより、第3熱交換部で熱交換して昇温した冷却水を温水として取り出して利用することで、発電だけでなく温水利用もすることができる。従って、充放電効率に加えて温水利用による効率も加えることができ、システム全体の効率を高めることができる。
 本発明によれば、温度別に貯蔵された熱媒で2段型スクリュ式膨張機に流入する圧縮空気を加熱することで、システム全体での熱効率を最大限高めることができ、充放電効率を高く維持できる。
本発明の第1実施形態に係る圧縮空気貯蔵発電装置の概略構成図。 充電時の2段型スクリュ式圧縮機のp-h線図。 放電時の2段型スクリュ式膨張機のp-h線図。 本発明の第2実施形態に係る圧縮空気貯蔵発電装置の概略構成図。 本発明の第3実施形態に係る圧縮空気貯蔵発電装置の概略構成図。
 以下、添付図面を参照して本発明の実施形態を説明する。
(第1実施形態)
 図1は、圧縮空気貯蔵(CAES:compressed air energy storage)発電装置2の概略構成図を示している。本実施形態のCAES発電装置2は、再生可能エネルギーを利用して発電する場合に、需要先設備4への出力変動を平滑化するとともに、需要先設備4における需要電力の変動に合わせた電力を出力する。本実施形態のCAES発電装置2は、工場、ショッピングセンター、スマートビレッジ等に設置された太陽光パネルや風車などの再生可能エネルギーによる発電設備6から供給された電力を平滑化し、需要先設備4に電力を出力する。需要先設備4は、発電設備6が設置された上記施設等であってもよいし、自家発電の場合の発電設備6自体であってもよいし、それ以外の外部の電力系統であってもよい。
 図1を参照して、本発明の第1実施形態を説明する。CAES発電装置2は、4種類の流体経路を備える。4種類の流体経路とは、空気経路、熱媒経路、冷却水経路、及び潤滑油経路である。空気経路には、主に圧縮機8と、蓄圧タンク12と、膨張機14とが設けられており、これらが空気配管18,19により流体的に接続され、その内部には空気が流れている(図1の破線参照)。熱媒経路には、主に第1熱交換部20と、蓄熱タンク24と、第2熱交換部26とが設けられており、これらが熱媒配管30により流体的に接続され、その内部には熱媒が流れている(図1の実線参照)。冷却水経路には、主に給水部32と、第3熱交換部34と、第4熱交換部36a,36bと、温水取出口(温水取出機構)38とが設けられており、これらが冷却水配管40により流体的に接続され、その内部には水が流れている(図1の一点鎖線参照)。潤滑油経路には、主に第4熱交換部36a又は36bと、圧縮機8又は膨張機14とが設けられており、これらが潤滑油配管42a,42bにより流体的に接続され、その内部には潤滑油が流れている(図1の二点鎖線参照)。
 第1に、図1を参照して空気経路について説明する。空気経路では、吸い込まれた空気は、圧縮機8で圧縮され、蓄圧タンク12に貯蔵される。蓄圧タンク12に貯蔵された圧縮空気は膨張機14に供給され、発電機46の発電に使用される。
 圧縮機8は、低圧段圧縮機本体9及び高圧段圧縮機本体10を有する2段型のスクリュ式である。スクリュ式の圧縮機8を使用することで、変動する入力に速やかに追従でき、発電出力も速やかに変更できる。圧縮機8は、モータ(電動機)44を備える。モータ44は、低圧段圧縮機本体9及び高圧段圧縮機本体10の内部の二軸式のスクリュ9a,10aに機械的に接続されている。発電設備6で発電された電力(入力電力)はモータ44に供給され(図1の太線矢印参照)、この電力によりモータ44が駆動され、スクリュ9a,10aが回転して圧縮機8が作動する。圧縮機8は、モータ44により駆動されると、空気配管18を通じて低圧段圧縮機本体9が吸込口9bより空気を吸引し、圧縮して吐出口9cより吐出し、空気配管18を通じて高圧段圧縮機本体10に圧縮空気を圧送する。高圧段圧縮機本体10は、空気配管18を通じて吸込口10bより空気を吸引し、圧縮して吐出口10cより吐出し、空気配管18aを通じて蓄圧タンク12に圧縮空気を圧送する。また、本実施形態では圧縮機8の数は1台であるが、並列に複数台を設置してもよい。
 蓄圧タンク12は、圧縮機8から圧送された圧縮空気を貯蔵する。従って、蓄圧タンク12には、圧縮空気としてエネルギーを蓄積できる。蓄圧タンク12は、空気配管19を通じて、膨張機14に流体的に接続されている。従って、蓄圧タンク12で貯蔵された圧縮空気は、膨張機14に供給される。なお、蓄圧タンク12に貯蔵された圧縮空気は、工場等に直接利用するエアとして供給してもよい。
 膨張機14は、低圧段膨張機本体15及び高圧段膨張機本体16を有する2段型のスクリュ式である。スクリュ式の膨張機14を使用することで、変動する入力に速やかに追従でき、発電出力も速やかに変更できる。膨張機14は、発電機46を備える。発電機46は、低圧段膨張機本体15及び高圧段膨張機本体16の内部の二軸式のスクリュ15a,16aと機械的に接続されている。高圧段膨張機本体16は。吸込口16bにおいて空気配管19を通じて蓄圧タンク12と流体的に接続され、吸込口16bから圧縮空気を供給される。高圧段膨張機本体16は、供給された圧縮空気により作動し、発電機46を駆動する。高圧段膨張機本体16は、吐出口16cから空気配管19を通じて圧縮空気を低圧段膨張機本体15の吸込口15bに供給する。低圧段膨張機本体15は、同様に供給された圧縮空気により作動し、発電機46を駆動する。低圧段膨張機本体15は吐出口15cから空気配管19を通じて外部に膨張した空気を排気する。発電機46で発電した電力は、需要先設備4に供給される(図1の太線矢印参照)。また、本実施形態では膨張機14の数は1台であるが、並列に複数台を設置してもよい。
 第2に、図1を参照して熱媒経路について説明する。熱媒経路では、第1熱交換部20において圧縮機8で発生した熱を熱媒に回収している。そして、熱回収した熱媒を蓄熱タンク24(高温蓄熱タンク24a及び低温蓄熱タンク24b)に貯蔵し、第2熱交換部26において膨張機14で膨張する前の圧縮空気に熱を戻している。第2熱交換部26において熱交換して降温した熱媒は、熱媒戻りタンク48に供給される。そして、熱媒戻りタンク48から第1熱交換部20に再び熱媒が供給され、このように熱媒は循環している。ここで、熱媒の種類は特に限定されておらず、例えば鉱物油やグリコール系の熱媒を使用できる。
 本実施形態の第1熱交換部20は、インタークーラ21と、第1アフタークーラ22aと、第2アフタークーラ22bとを備える。インタークーラ21、第1アフタークーラ22a、及び第2アフタークーラ22bは全て、圧縮機8で発生した熱を熱媒に回収している。従って、インタークーラ21、第1アフタークーラ22a、及び第2アフタークーラ22bでは全て、圧縮空気の温度は低下し、熱媒の温度は上昇する。
 インタークーラ21は、空気経路において低圧段圧縮機本体9から高圧段圧縮機本体10に延びる空気配管18に設けられている。また、熱媒経路において熱媒戻りタンク48から第1アフタークーラ22aに延びる熱媒配管30a,30bに設けられている。従って、インタークーラ21は、低圧段圧縮機本体9で圧縮後の圧縮空気と、第1アフタークーラ22aに供給される熱媒とで熱交換し、低圧段圧縮機本体9で発生した圧縮熱を熱媒に回収している。ここで昇温した熱媒は、熱媒配管30bを通じて第1アフタークーラ22aに供給される。このように低圧段圧縮機本体9と高圧段圧縮機本体10の間で冷却しているので、過昇温になることなく、より圧縮熱を回収できる。
 第1アフタークーラ22aは、空気経路において高圧段圧縮機本体10から第2アフタークーラ22bに延びる空気配管18aに設けられている。また、熱媒経路においてインタークーラ21から高温蓄熱タンク24aに延びる熱媒配管30b,30cに設けられている。従って、第1アフタークーラ22aは、高圧段圧縮機本体10で圧縮後の圧縮空気と、高温蓄熱タンク24aに供給される熱媒とで熱交換し、低圧段圧縮機本体9及び高圧段圧縮機本体10で発生した圧縮熱を熱媒に回収している。ここで昇温した熱媒は、熱媒配管30cを通じて高温蓄熱タンク24aに供給される。
 第2アフタークーラ22bは、空気経路において第1アフタークーラ22aから蓄圧タンク12に延びる空気配管18aに設けられている。また、熱媒経路において熱媒戻りタンク48からインタークーラ21の前で分岐して低温蓄熱タンク24bに延びる熱媒配管30d,30eに設けられている。従って、第2アフタークーラ22bは、第1アフタークーラ22aで熱交換した後の圧縮空気と、低温蓄熱タンク24bに供給される熱媒とで熱交換し、低圧段圧縮機本体9及び高圧段圧縮機本体10で発生した圧縮熱を熱媒に回収している。ここで昇温した熱媒は、熱媒配管30eを通じて低温蓄熱タンク24bに供給される。
 本実施形態の蓄熱タンク24は、高温蓄熱タンク24a及び低温蓄熱タンク24bを備える。高温蓄熱タンク24a及び低温蓄熱タンク24bは、大気と断熱された断熱材で周囲が覆われた鋼製タンクである。断熱材で覆う代わりに二重容器として真空断熱すれば、さらに断熱効果を高めることもできる。蓄熱タンク24(高温蓄熱タンク24a及び低温蓄熱タンク24b)には、第1熱交換部20で昇温した熱媒が貯蔵されている。高温蓄熱タンク24aには、例えば、240℃の熱媒が貯蔵され、低温蓄熱タンク24bには140℃の熱媒が貯蔵されている。高温蓄熱タンク24aに貯蔵された熱媒は、熱媒配管30fを通じてインターヒータ28に供給される。低温蓄熱タンク24bに貯蔵された熱媒は、熱媒配管30gを通じてプレヒータ27に供給される。本実施形態では2種の蓄熱タンク24(高温蓄熱タンク24a及び低温蓄熱タンク24b)を設けたが、3種以上にしてもよいし、高温蓄熱タンク24a又は低温蓄熱タンク24bの一方又は両方を2つ以上設けてもよい。さらに、物理的に1つの蓄熱タンク24の内部を仕切って高温用と低温用の熱媒を分けて貯蔵してもよい。
 温度別に貯蔵された熱媒で2段型のスクリュ式膨張機14に流入する圧縮空気を加熱することで、システム全体での熱効率を最大限高めることができ、充放電効率を高く維持できる。これは、後述するように、低圧段膨張機本体15に流入する圧縮空気を、より高い温度に加熱した方が、より多くの仕事量をさせることができるためである。
 本実施形態の第2熱交換部26は、プレヒータ27と、インターヒータ28とを備える。プレヒータ27及びインターヒータ28は、膨張機14で膨張前の圧縮空気を加熱する。従って、プレヒータ27及びインターヒータ28では、圧縮空気の温度は上昇し、熱媒の温度は低下する。
 プレヒータ27は、空気経路において蓄圧タンク12から高圧段膨張機本体16に延びる空気配管19に設けられている。また、熱媒経路において低温蓄熱タンク24bから熱媒戻りタンク48に延びる熱媒配管30g,30hに設けられている。従って、プレヒータ27は、高圧段膨張機本体16で膨張前の圧縮空気と、低温蓄熱タンク24bから供給される熱媒とで熱交換し、高圧段膨張機本体16での膨張前の圧縮空気を加熱している。ここで降温した熱媒は、熱媒配管30hを通じて熱媒戻りタンク48に供給される。
 インターヒータ28は、空気経路において高圧段膨張機本体16から低圧段膨張機本体15に延びる空気配管19に設けられている。また、熱媒経路において高温蓄熱タンク24aから熱媒戻りタンク48に延びる熱媒配管30f,30iに設けられている。従って、インターヒータ28は、低圧段膨張機本体15で膨張前の圧縮空気と、高温蓄熱タンク24aから供給される熱媒とで熱交換し、低圧段膨張機本体15での膨張前の圧縮空気を加熱している。このように高圧段膨張機本体16と低圧段膨張機本体15の間で加熱しているので、過冷却になることなく、より発電量も増大できる。ここで降温した熱媒は、熱媒配管30iを通じて熱媒戻りタンク48に回収される。
 熱媒戻りタンク48は、第2熱交換部26(プレヒータ27及びインターヒータ28)で熱交換して降温した熱媒を貯蔵する。従って、熱媒戻りタンク48内の熱媒は、通常、蓄熱タンク24内の熱媒よりも温度が低い。熱媒戻りタンク48に貯蔵されている熱媒は、熱媒配管30jを通じて第1熱交換部20にそれぞれ供給される。
 このように本実施形態では3つの熱媒を貯蔵するタンク24a,24b,48を設けている。高温蓄熱タンク24aの温度T1、低温蓄熱タンク24bの温度T2、及び熱媒戻りタンク48の温度T3を比べると、T1が最も高く、次いでT2、そしてT3が最も低い。即ち、T1>T2>T3の関係が成立している。
 熱媒戻りタンク48から第1熱交換部20に延びる熱媒配管30jには、第3熱交換部34が設けられている。第3熱交換部34では、第1熱交換部20に供給される熱媒と、冷却水との間で熱交換して熱媒の温度を所定の温度まで低下させている。ここで、第3熱交換部34は、第1熱交換部20と第2熱交換部26との間に配置すればよく、熱媒戻りタンク48の下流側の位置に限定されない。配置位置によって、供給できる温水の温度を変更することができる。
 第1熱交換部20の上流側に配置すれば、第3熱交換部34によって第1熱交換部20に流入する熱媒の温度を所定の温度に維持できるので、第1熱交換部20における熱交換を安定的に行うことができ、充放電効率を向上できる。
 熱媒配管30j,30f,30gには、熱媒を流動させるためのポンプ50a~50cがそれぞれ設けられている。ポンプ50aは熱媒戻りタンク48下流に配置され、ポンプ50bは高温蓄熱タンク24a下流に配置され、ポンプ50cは低温蓄熱タンク24b下流に配置されている。ただし、ポンプ50a~50cの配置は特に限定されず、熱媒配管30の任意の位置に配置してよい。
 第3に、図1を参照して冷却水経路について説明する。冷却水経路では、第3熱交換部34において熱媒戻りタンク48から供給される熱媒の熱を冷却水に回収している。また、第4熱交換部36a,36bにおいて潤滑油の熱を冷却水に回収している。そして、熱回収した水を温水として温水取出口38から取り出して利用できる。冷却水経路には給水部32が設けられており、所定の温度の冷却水が冷却水経路に供給されている。
 第3熱交換部34は、冷却水経路において給水部32から第4熱交換部36a,36bに延びる冷却水配管40に設けられている。また、熱媒経路において熱媒戻りタンク48から第1熱交換部20に延びる熱媒配管30jに設けられている。従って、第3熱交換部34は、給水部32から供給される冷却水と、熱媒戻りタンク48から供給される熱媒とで熱交換し、冷却水を加熱している。ここで昇温した冷却水は、圧縮機8及び膨張機14の両方に向かって分岐した冷却水配管40を通じて第4熱交換部36a,36bに供給される。本実施形態では、第3熱交換部34は熱媒戻りタンク48の熱媒の熱を利用して冷却水を加熱しているが、さらに高温の温水や多量の温水を必要とする場合は蓄熱タンク24の熱媒の熱を利用できる構成としてもよい。
 第4熱交換部36a,36bは、冷却水経路において第3熱交換部34から温水取出口38に延びる冷却水配管40に設けられている。また、潤滑油経路において圧縮機8又は膨張機14と流体的に接続されている潤滑油配管42a,42bに設けられている。従って、第4熱交換部36a,36bは、第3熱交換部34から供給される冷却水と、潤滑油配管42a,42b内の潤滑油とで熱交換し、冷却水を加熱し、潤滑油を冷却している。ここで昇温した冷却水は、冷却水配管40を通じて温水取出口38に供給される。
 温水取出口38は、冷却水配管40を流れ、第3熱交換部34及び第4熱交換部36a,36bで加熱された冷却水、即ち温水を取り出して利用するためのものである。温水利用としては、工場、ショッピングセンター、スマートビレッジ等の設備に温水として供給すればよい。
 このように、第3熱交換部34で熱交換して昇温した冷却水を温水として取り出して利用することで、発電だけでなく温水利用もすることができる。従って、充放電効率に加えて温水利用による効率も加えることができ、システム全体の効率を高めることができる。
 第4に、図1を参照して潤滑油経路について説明する。潤滑油経路では、圧縮機8又は膨張機14のスクリュ9a,10a又は15a,16aの軸受9d,10d又は15d,16d等の潤滑に使用する潤滑油が循環している。そして、上述のように第4熱交換部36a,36bでは潤滑油が冷却されている。
 また、熱交換部を新たに設け、圧縮機8及び膨張機14におけるモータ44及び発電機46等の電気的な熱損失や機械的な熱損失等を回収して、さらに冷却水と熱交換し、冷却水を加熱してもよい。
 潤滑油配管42a,42bには、潤滑油を流動させるためのポンプ50d,50eがそれぞれ設けられている。ポンプ50dは圧縮機8下流に配置され、ポンプ50eは膨張機14下流に配置されている。ただし、ポンプ50d,50eの配置は特に限定されず、潤滑油配管42a,42bの任意の位置にそれぞれ配置してよい。
 また、本実施形態のCAES発電装置2は、多くの構成要素がコンテナ52a~52cに収納されている。コンテナ52aは、圧縮機8と、第1熱交換部20と、第4熱交換部36aとを収納し、圧縮機能に関する設備がまとめられている。コンテナ52bは、膨張機14と、第2熱交換部26と、第4熱交換部36bとを収納し、膨張機能に関する設備がまとめられている。コンテナ52cは、高温蓄熱タンク24aと、低温蓄熱タンク24bと、熱媒戻りタンク48と、第3熱交換部34とを収納し、蓄熱機能に関する設備がまとめられている。
 このように、構成要素をコンテナ52a~52cに収納することにより、CAES発電装置2の設置の際の工事費を大幅に抑え、運搬も容易に行うことができる。コンテナ52a~52cは、必ずしも3つ必要ではなく、これらの内1つ又は2つであってもよい。また、2つ以上のコンテナがまとめられてもよく、例えば収納する構成要素を全てまとめて1つのコンテナに収納してもよい。また、本発明にコンテナ52a~52cは必須ではなく、コンテナ52a~52cは設けられていなくてもよい。
 以上のように、本実施形態のCAES発電装置2の4種類の流体経路は、構成されている。
 図2は、充電時の2段型のスクリュ式圧縮機8のp-h線図である。主に、縦軸は圧力、横軸は比エンタルピー及び温度を表す。図中、状態C1から状態C2は低圧段圧縮機本体9での圧縮仕事過程を示し、状態C2から状態C3はインタークーラ21での冷却過程を示している。状態C3から状態C4は高圧段圧縮機本体10での圧縮仕事過程を示し、状態C4から状態C5は第1アフタークーラ22aでの冷却過程を示し、状態C5から状態C6は第2アフタークーラ22bでの冷却過程を示している。図2では、状態C1から状態C2及び状態C3から状態C4は断熱過程を想定した等エントロピー変化である。例示した状態C1から状態C5までの圧縮空気の温度の遷移を見ると、状態C1で約30℃、状態C2で約150℃、状態C3で約110℃、状態C4で約250℃、状態C5で約150℃、そして状態C6で約70℃である。従って、高圧段圧縮機本体10での圧縮後(状態C4)の方が低圧段圧縮機本体9での圧縮後(状態C2)よりも圧縮空気の温度が高くなっている。なお、状態C1~C6の圧力・温度等の条件は一例であって、これに限定されるものではない。
 本実施形態の高温蓄熱タンク24aには、インタークーラ21と第1アフタークーラ22aとを直列接続し、これらで加熱されて昇温した熱媒が貯蔵される。これは、図2の状態C2から状態C3及び状態C4から状態C5で圧縮空気と熱交換した熱媒に対応し、熱媒温度は例えば240℃である。従って、状態C4から状態C5の1段階で熱媒を加熱するよりも、2段階の加熱で、状態C2から状態C3で予熱を与える分、より高温の熱媒にして貯蔵でき、より高温に加熱された熱媒の流量を増加できる。
 また、本実施形態の低温蓄熱タンク24bには、第2アフタークーラ22bで加熱された熱媒が貯蔵される。これは、図2の状態C5から状態C6で熱交換した熱媒に対応し、熱媒温度は例えば140℃である。状態C5は状態C4よりも温度が低いため、低温蓄熱タンク24bには高温蓄熱タンク24aに貯蔵される熱媒より温度が低い熱媒が貯蔵される。このように、第2アフタークーラ22bにおいて、第1アフタークーラ22aの加熱に使用した後の圧縮空気で熱媒を加熱することで、第1アフタークーラ22aで回収しきれなかった圧縮熱を低温熱媒として回収でき、効率よく熱媒を加熱して低温蓄熱タンク24bに貯蔵できる。
 図3は、放電時の2段型スクリュ式膨張機のp-h線図である。主に、縦軸は圧力、横軸は比エンタルピー及び温度を表す。図中、状態E1から状態E2はプレヒータ27での加熱過程を示し、状態E2から状態E3は高圧段膨張機本体16での膨張仕事過程を示している。また、状態E3から状態E4はインターヒータ28での加熱過程を示し、状態E4から状態E5は低圧段膨張機本体15での膨張仕事過程を示している。図3では、状態E2から状態E3及び状態E4から状態E5は断熱過程を想定した等エントロピー変化である。高圧段膨張機本体16及び低圧段膨張機本体15における膨張仕事過程を比較すると、状態E4から状態E5の等エントロピー線の傾斜量が状態E2から状態E3の等エントロピー線の傾斜量よりも小さいことから、より外部にしている仕事量が大きい。従って、状態E3から状態E4における低圧段膨張機本体15に供給される空気の加熱量を状態E1から状態E2における高圧段膨張機本体16に供給される空気の加熱量よりも大きくすることが系の効率化の観点からは好ましい。例示した状態E1から状態E5までの圧縮空気の温度の遷移を見ると、状態E1で約70℃、状態E2で約130℃、状態E3で約30℃、状態E4で約230℃、状態E5で約100℃である。なお、状態E1~E6の圧力・温度等の条件は一例であって、これに限定されるものではない。
 本実施形態では、高温蓄熱タンク24aの熱媒を使用してインターヒータ28で低圧段膨張機本体15に流入する前の圧縮空気を加熱し、低温蓄熱タンク24bの熱媒を使用してプレヒータ27で低圧段膨張機本体15に流入する前の圧縮空気を加熱している。従って、低圧段膨張機本体15に供給される圧縮空気を高温の熱媒で大きく加熱することで、放電効率を一層高めている。
(第2実施形態)
 図4は、第2実施形態のCAES発電装置2の概略構成図を示している。本実施形態のCAES発電装置2は、圧縮機8及び膨張機14の台数以外の構成は図1の第1実施形態と実質的に同様である。従って、図1に示した構成と同様の部分については同様の符号を付して説明を省略する。
 図4を参照して、本発明の第2実施形態を説明する。本実施形態では、圧縮機8が3台及び膨張機14が4台、それぞれコンテナ52a及びコンテナ52b内に設けられている。3台の圧縮機8は並列に流体的に接続され、4台の膨張機14も並列に流体的に接続されている。
 このように複数台の圧縮機8及び膨張機14を備えることで、入力電力や需要電力に応じて圧縮機8及び膨張機14の駆動台数を変更できるため、幅広く効率的な平滑化が可能である。また、複数台の圧縮機8及び膨張機14を設けた場合でもコンテナ52a,52b内に収納しているため、CAES発電装置2の設置の際の工事費を大幅に抑え、運搬も容易に行うことができる。
(第3実施形態)
 図5は、第3実施形態のCAES発電装置2の概略構成図を示している。本実施形態のCAES発電装置2も、第1熱交換部20に関する部分以外の構成は図1の第1実施形態と同様である。従って、図1に示した構成と同様の部分については同様の符号を付して説明を省略する。
 図5を参照して、本発明の第3実施形態を説明する。本実施形態では、第1熱交換部20は、インタークーラ21と、アフタークーラ22とを備える。インタークーラ21、及びアフタークーラ22は、圧縮機8で発生した熱を熱媒に回収している。従って、インタークーラ21及びアフタークーラ22では、圧縮空気の温度は低下し、熱媒の温度は上昇する。
 インタークーラ21は、空気経路において低圧段圧縮機本体9から高圧段圧縮機本体10に延びる空気配管18に設けられている。また、熱媒経路において熱媒戻りタンク48から低温蓄熱タンク24bに延びる熱媒配管30a,30eに設けられている。従って、インタークーラ21は、低圧段圧縮機本体9で圧縮後の圧縮空気と、低温蓄熱タンク24bに供給される熱媒とで熱交換し、低圧段圧縮機本体9で発生した圧縮熱を熱媒に回収している。ここで昇温した熱媒は、熱媒配管30eを通じて低温蓄熱タンク24bに供給される。
 アフタークーラ22は、空気経路において高圧段圧縮機本体10から蓄圧タンク12に延びる空気配管18aに設けられている。また、熱媒経路において熱媒戻りタンク48から高温蓄熱タンク24aに延びる熱媒配管30d,30cに設けられている。従って、アフタークーラ22は、高圧段圧縮機本体10で圧縮後の圧縮空気と、高温蓄熱タンク24aに供給される熱媒とで熱交換し、低圧段圧縮機本体9及び高圧段圧縮機本体10で発生した圧縮熱を熱媒に回収している。ここで昇温した熱媒は、熱媒配管30cを通じて高温蓄熱タンク24aに供給される。
 これにより、高温蓄熱タンク24aに高温の熱媒を貯蔵し、これより低温の熱媒を低温蓄熱タンク24bに貯蔵でき、即ち温度別に熱媒を貯蔵できる。従って、高温と低温で貯蔵された熱媒で2段型のスクリュ式膨張機14に流入する圧縮空気を加熱可能であり、充放電効率を高く維持できる。
 第1から第3実施形態を通じて、本発明の「変動する入力電力」は再生可能エネルギーに限定されることなく、工場設備の需要電力を平滑化したりピークカットをしたりするものであってもよい。また、圧縮機8及び膨張機14は、2段型に限定されず、3段以上の多段型であってもよい。
  2 圧縮空気貯蔵発電装置(CAES発電装置)
  4 需要先設備
  6 発電設備
  8 圧縮機
  9 低圧段圧縮機本体
  9a スクリュ
  9b 吸込口
  9c 吐出口
  9d 軸受
  10 高圧段圧縮機本体
  10a スクリュ
  10b 吸込口
  10c 吐出口
  10d 軸受
  12 蓄圧タンク
  14 膨張機
  15 低圧段膨張機本体
  15a スクリュ
  15b 吸込口
  15c 吐出口
  15d 軸受
  16 高圧段膨張機本体
  16a スクリュ
  16b 吸込口
  16c 吐出口
  16d 軸受
  18,18a,19 空気配管
  20 第1熱交換部
  21 インタークーラ
  22 アフタークーラ
  22a 第1アフタークーラ
  22b 第2アフタークーラ
  24 蓄熱タンク
  24a 高温蓄熱タンク
  24b 低温蓄熱タンク
  26 第2熱交換部
  27 プレヒータ
  28 インターヒータ
  30a,30b,30c,30d,30e,30f,30g,30h,30i,30j 熱媒配管
  32 給水部
  34 第3熱交換部
  36a,36b 第4熱交換部
  38 温水取出口(温水取出機構)
  40 冷却水配管
  42a,42b 潤滑油配管
  44 モータ(電動機)
  46 発電機
  48 熱媒戻りタンク
  50a,50b,50c,50d,50e ポンプ
  52a,52b,52c コンテナ

Claims (5)

  1.  変動する入力電力により駆動される電動機と、
     前記電動機と機械的に接続され、低圧段圧縮機本体及び高圧段圧縮機本体を有し、空気を圧縮する多段型の圧縮機と、
     前記圧縮機と流体的に接続され、前記圧縮機により圧縮された圧縮空気を貯蔵する蓄圧タンクと、
     前記蓄圧タンクと流体的に接続され、低圧段膨張機本体及び高圧段膨張機本体を有し、前記蓄圧タンクから供給される圧縮空気によって駆動される多段型の膨張機と、
     前記膨張機と機械的に接続された発電機と、
     前記圧縮機で圧縮された圧縮空気と熱媒とで熱交換し、熱媒を昇温させるための第1熱交換部と、
     前記第1熱交換部と流体的に接続され、熱媒を貯蔵する高温蓄熱タンクと、
     前記第1熱交換部と流体的に接続され、前記高温蓄熱タンクに貯蔵される熱媒よりも低温の熱媒を貯蔵する低温蓄熱タンクと、
     前記高温蓄熱タンクと流体的に接続され、前記高温蓄熱タンクから供給される熱媒と前記低圧段膨張機本体に供給される圧縮空気とで熱交換し、圧縮空気を昇温させるためのインターヒータと、前記低温蓄熱タンクと流体的に接続され、前記低温蓄熱タンクから供給される熱媒と前記高圧段膨張機本体に供給される圧縮空気とで熱交換し、圧縮空気を昇温させるためのプレヒータとを備える第2熱交換部と
     を備える圧縮空気貯蔵発電装置。
  2.  前記第1熱交換部は、インタークーラと、アフタークーラとを備え、
     前記インタークーラは、前記低温蓄熱タンクと流体的に接続され、熱媒と、前記低圧段圧縮機本体で圧縮された圧縮空気とで熱交換して熱媒を昇温させて前記低温蓄熱タンクに供給し、
     前記アフタークーラは、前記高温蓄熱タンクと流体的に接続され、熱媒と、前記高圧段圧縮機本体で圧縮された圧縮空気とで熱交換して熱媒を昇温させて前記高温蓄熱タンクに供給する、請求項1に記載の圧縮空気貯蔵発電装置。
  3.  前記第1熱交換部は、インタークーラと、前記インタークーラと熱媒経路で直列に接続された第1アフタークーラとを備え、
     前記インタークーラは、熱媒と、前記低圧段圧縮機本体で圧縮された圧縮空気とで熱交換して熱媒を昇温させて前記第1アフタークーラに供給し、
     前記第1アフタークーラは、前記インタークーラで昇温された熱媒と、前記高圧段圧縮機本体で圧縮された圧縮空気とで熱交換して熱媒をさらに昇温させて前記高温蓄熱タンクに供給する、請求項1に記載の圧縮空気貯蔵発電装置。
  4.  前記第1熱交換部は、空気流路において前記第1アフタークーラの下流に配置された第2アフタークーラをさらに備え、
     前記第2アフタークーラは、熱媒と、前記第1アフタークーラから供給される圧縮空気とで熱交換して熱媒を昇温させて前記低温蓄熱タンクに供給する、請求項3に記載の圧縮空気貯蔵発電装置。
  5.  前記第1熱交換部及び前記第2熱交換部と流体的に接続され、前記第2熱交換部で熱交換して降温した熱媒と、冷却水とで熱交換して熱媒を降温させる第3熱交換部と、
     前記第3熱交換部で熱媒と熱交換して昇温した冷却水を取り出す温水取出機構と
     を備える、請求項1から請求項4のいずれか1項に記載の圧縮空気貯蔵発電装置。
PCT/JP2016/063577 2015-05-11 2016-05-02 圧縮空気貯蔵発電装置 WO2016181884A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-096774 2015-05-11
JP2015096774A JP2016211465A (ja) 2015-05-11 2015-05-11 圧縮空気貯蔵発電装置

Publications (1)

Publication Number Publication Date
WO2016181884A1 true WO2016181884A1 (ja) 2016-11-17

Family

ID=57249596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063577 WO2016181884A1 (ja) 2015-05-11 2016-05-02 圧縮空気貯蔵発電装置

Country Status (2)

Country Link
JP (1) JP2016211465A (ja)
WO (1) WO2016181884A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520610A (zh) * 2017-04-21 2019-11-29 株式会社神户制钢所 压缩空气储能发电装置
CN111742463A (zh) * 2018-02-26 2020-10-02 株式会社神户制钢所 压缩空气储存发电装置
CN114592939A (zh) * 2022-01-11 2022-06-07 中国长江三峡集团有限公司 一种光热压缩空气储能系统及方法
WO2022217758A1 (zh) * 2021-04-16 2022-10-20 浙江大学 一种基于高低温蓄热介质的热电联产系统
CN117663873A (zh) * 2023-10-19 2024-03-08 国电投重庆能源研究院有限公司 能量梯级利用的热电联产系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930844B2 (ja) * 2017-03-29 2021-09-01 株式会社神戸製鋼所 圧縮空気貯蔵発電装置
JP6944262B2 (ja) * 2017-03-29 2021-10-06 株式会社神戸製鋼所 圧縮空気貯蔵発電装置
JP7181690B2 (ja) 2018-01-12 2022-12-01 株式会社神戸製鋼所 冷熱発電装置
JP6913044B2 (ja) * 2018-02-23 2021-08-04 株式会社神戸製鋼所 圧縮空気貯蔵発電装置
JP2019210595A (ja) * 2018-05-31 2019-12-12 ジャパンパイル株式会社 地下貯蔵庫、それを備える圧縮気体発電システム、ヒートポンプシステム、蓄電システム、燃料発電システム及び地下貯蔵システム。

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170788A (ja) * 1987-12-25 1989-07-05 Hitachi Ltd 廃熱回収装置を有する乾式スクリュー圧縮機
JP2013509528A (ja) * 2009-10-28 2013-03-14 ゼネラル・エレクトリック・カンパニイ 多段熱エネルギー貯蔵設備を備えた断熱圧縮空気エネルギー貯蔵システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170788A (ja) * 1987-12-25 1989-07-05 Hitachi Ltd 廃熱回収装置を有する乾式スクリュー圧縮機
JP2013509528A (ja) * 2009-10-28 2013-03-14 ゼネラル・エレクトリック・カンパニイ 多段熱エネルギー貯蔵設備を備えた断熱圧縮空気エネルギー貯蔵システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520610A (zh) * 2017-04-21 2019-11-29 株式会社神户制钢所 压缩空气储能发电装置
EP3613966A4 (en) * 2017-04-21 2021-01-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) ELECTRICITY GENERATING DEVICE WITH COMPRESSED AIR ACCUMULATOR
CN111742463A (zh) * 2018-02-26 2020-10-02 株式会社神户制钢所 压缩空气储存发电装置
WO2022217758A1 (zh) * 2021-04-16 2022-10-20 浙江大学 一种基于高低温蓄热介质的热电联产系统
CN114592939A (zh) * 2022-01-11 2022-06-07 中国长江三峡集团有限公司 一种光热压缩空气储能系统及方法
CN117663873A (zh) * 2023-10-19 2024-03-08 国电投重庆能源研究院有限公司 能量梯级利用的热电联产系统

Also Published As

Publication number Publication date
JP2016211465A (ja) 2016-12-15

Similar Documents

Publication Publication Date Title
WO2016181884A1 (ja) 圧縮空気貯蔵発電装置
JP6343587B2 (ja) 圧縮空気貯蔵発電方法及び圧縮空気貯蔵発電装置
EP3296546B1 (en) Compressed air energy storage and power generation device
US9951979B2 (en) Electrical energy storage and discharge system
JP6511378B2 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP6571491B2 (ja) ヒートポンプ
US10746097B2 (en) Compressed air energy storage power generation device and compressed air energy storage power generation method
CA2821108C (en) Energy storage system and method for energy storage
WO2016178358A1 (ja) 圧縮空気貯蔵発電方法および圧縮空気貯蔵発電装置
JP2016211436A (ja) 圧縮空気貯蔵発電装置
WO2013164562A1 (en) Apparatus for storing energy and method of operating an energy storage system comprising such an apparatus
CN108779712B (zh) 压缩空气贮藏发电装置
JP2017008727A (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP2017141696A (ja) 圧縮空気貯蔵発電装置
CN105135751A (zh) 基于热泵技术和压缩空气蓄电技术的热电冷三联供系统
JP6793616B2 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP6906013B2 (ja) ヒートポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792609

Country of ref document: EP

Kind code of ref document: A1