WO2016203609A1 - 電動機及び空気調和機 - Google Patents

電動機及び空気調和機 Download PDF

Info

Publication number
WO2016203609A1
WO2016203609A1 PCT/JP2015/067598 JP2015067598W WO2016203609A1 WO 2016203609 A1 WO2016203609 A1 WO 2016203609A1 JP 2015067598 W JP2015067598 W JP 2015067598W WO 2016203609 A1 WO2016203609 A1 WO 2016203609A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
recesses
electric motor
end surface
Prior art date
Application number
PCT/JP2015/067598
Other languages
English (en)
French (fr)
Inventor
石井 博幸
及川 智明
山本 峰雄
洋樹 麻生
隼一郎 尾屋
優人 浦辺
貴也 下川
柴山 勝己
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/067598 priority Critical patent/WO2016203609A1/ja
Priority to JP2017524230A priority patent/JP6391830B2/ja
Priority to CN201590001132.4U priority patent/CN207134949U/zh
Publication of WO2016203609A1 publication Critical patent/WO2016203609A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles

Definitions

  • the present invention relates to an electric motor and an air conditioner equipped with the electric motor.
  • the electric motor described in Patent Document 1 is a DC electric motor including a stator and a magnet rotor, and the magnet rotor includes an annular main magnetic pole portion made of a resin magnet and an outer diameter of the main magnetic pole portion.
  • Sensor magnetic pole part made of an annular resin magnet with a small outer diameter, and the resin magnet constituting the sensor magnetic pole part has a plurality of through holes penetrating in the axial direction. It is a stepped through hole or mortar-shaped through hole with a small diameter part on the main magnetic pole part side, the main magnetic pole part is fixed to the rotor shaft through a holding part, and the holding part protrudes in the axial direction for sensor use.
  • a protrusion for fixing the magnetic pole portion; the protrusion is fitted into the through hole; and the tip of the protrusion is crushed in a space formed on the large diameter portion side of the through hole.
  • the magnetic pole part is fixed.
  • the present invention has been made in view of the above, and an object thereof is to provide an electric motor capable of improving performance, productivity, and quality.
  • an electric motor according to the present invention is disposed on a rotor shaft and an outer peripheral surface of the rotor shaft, and is opposed to each other in the axial direction of the rotor shaft.
  • An annular rotor magnet having first and second end faces and formed by molding, and an annular rotor assembly assembled to one end of the rotor magnet in the axial direction and having a plurality of holes penetrating in the axial direction
  • a position detecting magnet wherein the rotor magnet is provided on the first end surface, and a plurality of pedestals on which the position detecting magnets are placed, and provided on the plurality of pedestals, respectively.
  • FIG. 1 The figure which shows the structure of the electric motor which concerns on Embodiment 1.
  • FIG. 1 The figure which shows the rotor with which the bearing was assembled
  • FIG. 1 The figure which shows the rotor which concerns on Embodiment 1.
  • Manufacturing flow diagram showing a method for manufacturing the rotor of the electric motor according to the first embodiment The figure which shows an example of a structure of the air conditioner which concerns on Embodiment 2.
  • FIG. 1 The figure which shows an example of a structure of the air conditioner which concerns on Embodiment 2.
  • FIG. 1 is a diagram showing a configuration of an electric motor according to the present embodiment
  • FIG. 2 is a diagram showing a rotor with a bearing assembled therein
  • FIG. 3 is a diagram showing a rotor
  • FIG. 4 is a diagram showing a rotor shaft.
  • FIG. 5 is a diagram showing the assembled rotor magnet
  • FIG. 5 is a diagram showing the position detecting magnet
  • FIG. 6 is a diagram showing assembly of the rotor.
  • the electric motor 100 includes a mold stator 40, a rotor 20 disposed inside the mold stator 40, and a metal bracket 30 attached to one end of the mold stator 40 in the axial direction.
  • the electric motor 100 is, for example, a brushless DC motor or a stepping motor.
  • the mold stator 40 includes a stator 42 and a mold resin portion 41 that covers the stator 42 to which the substrate 46 is assembled. That is, the mold stator 40 is formed by integrally molding the stator 42 to which the substrate 46 is assembled with the mold resin that is the material of the mold resin portion 41.
  • the mold resin is a thermosetting resin that is, for example, an unsaturated polyester. Since the substrate 46 generally has a weak structure, low-pressure molding is desirable. Therefore, a thermosetting resin such as an unsaturated polyester resin is used for molding.
  • the stator 42 includes a stator core 43 in which electromagnetic steel plates are laminated, an insulating portion 44 applied to the stator core 43, and a coil 45 wound around the insulating portion 44.
  • the insulating portion 44 is integrally molded with the stator core 43 with a thermoplastic resin, or is formed by assembling a separate molded product molded with the thermoplastic resin into the stator core 43.
  • the thermoplastic resin is, for example, polybutylene terephthalate.
  • the substrate 46 is assembled to the insulating portion 44.
  • a magnetic detection element 47 is mounted on the substrate 46, and the magnetic detection element 47 constitutes a sensor circuit that detects the position of the rotor 20.
  • the magnetic detection element 47 is disposed opposite to the position detection magnet 11 shown in FIG. 3, and detects the position of the rotor 20 by detecting magnetism generated from the position detection magnet 11.
  • the electric motor 100 is a brushless DC motor
  • the electric motor 100 controls energization of the coil 45 according to the position of the rotor 20 by a drive circuit (not shown) provided on the substrate 46. Thereby, the motor 100 can be driven with high efficiency and low noise.
  • the rotor 20 is integrally provided with the rotor shaft 1. That is, the rotor shaft 1 is inserted through the shaft hole 48 of the rotor 20. A pair of bearings 21 a and 21 b is assembled to the rotor shaft 1. The rotor 20 assembled with the bearings 21a and 21b is inserted into the hollow portion 49 provided in the mold stator 40.
  • the bearing 21a is disposed on the substrate 46 side, and the bearing 21b is disposed on the bracket 30 side. Since the bracket 30 side is the load side, the bearing 21 b is disposed on the load side of the electric motor 100 and is supported by the bracket 30. Further, the bearing 21 a is disposed on the side opposite to the load of the electric motor 100 and is supported by the mold resin portion 41.
  • the load side is the tip side of the rotor shaft 1 protruding from the mold stator 40, and the anti-load side is the opposite side to the load side.
  • FIG. 2A is a side view of the rotor 20 with the bearings 21a and 21b assembled as seen from the load side
  • FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2A
  • FIG. ) Is a side view of the rotor 20 assembled with the bearings 21a and 21b as viewed from the non-load side
  • 3A is a side view of the rotor 20 viewed from the load side
  • FIG. 3B is a cross-sectional view taken along the line BB in FIG. 3A
  • FIG. It is the side view seen from the side
  • 4A is a side view of the rotor magnet 10 assembled with the rotor shaft 1 as viewed from the load side
  • FIG. 4B is a cross-sectional view taken along the line CC in FIG. 4A
  • FIG. c) is a side view of the rotor magnet 10 with the rotor shaft 1 assembled, as viewed from the non-load side.
  • 5A is a plan view of the position detection magnet 11
  • FIG. 5B is a cross-sectional view taken along the line DD in FIG. 5A.
  • the rotor 20 includes a rotor shaft 1, first and second rotors that are coaxially arranged on the outer peripheral surface of the rotor shaft 1 and face each other in the axial direction.
  • a rotor magnet 10 having a second end surface and formed by molding of a molding material is disposed coaxially with the rotor shaft 1 and assembled to one end portion of the rotor magnet 10 in the axial direction of the rotor shaft 1.
  • the position detecting magnet 11 is provided.
  • the axial direction of the rotor shaft 1 is simply referred to as “axial direction”.
  • the axial direction of the rotor shaft 1 is the axial direction of the rotor magnet 10 and also the axial direction of the position detection magnet 11.
  • Magnetic poles are formed on the rotor magnet 10 so that N poles and S poles are alternately arranged in the circumferential direction.
  • a plurality of pedestals 7 are provided on a first end surface which is one end surface of the rotor magnet 10 in the axial direction, and the position detecting magnets 11 are placed on the plurality of pedestals 7. That is, the position detection magnet 11 abuts on the plurality of bases 7.
  • a protrusion 5 is provided on each pedestal 7, the protrusion 5 passes through a hole 15 provided in the position detection magnet 11, and the tip end portion of the protrusion 5 is thermally welded, so that the position detection magnet 11 becomes a rotor magnet. 10 is fixed. At this time, the tips of the protrusions 5 are heat-welded to form a heat-welded portion 35.
  • the height of the heat welding part 35 is the same as or lower than that of the detection part 14 of the position detection magnet 11.
  • the bearing 21a is press-fitted into the rotor shaft 1 until it abuts against the end face of the cylindrical portion 12 of the position detecting magnet 11, and the bearing 21b is fitted onto the rotor shaft 1 until it abuts against the bearing abutting portion 4 of the rotor magnet 10. Press fit.
  • the bearings 21a and 21b are ball bearings, for example.
  • the rotor magnet 10 has a two-layer structure, in which the back yoke 3 that is the first annular layer is the inner layer, and the plastic magnet 9 that is the second annular layer is the outer layer. That is, the rotor magnet 10 includes an annular back yoke 3 disposed on the outer peripheral surface of the rotor shaft 1 and an annular plastic magnet 9 disposed on the outer peripheral surface of the back yoke 3.
  • the back yoke 3 is formed by molding a thermoplastic resin containing soft magnetic powder or ferrite powder.
  • the thermoplastic resin is, for example, polyamide.
  • the back yoke 3 is formed integrally with the rotor shaft 1 on the outer peripheral surface of the rotor shaft 1 and is fixed to the rotor shaft 1.
  • the back yoke may be formed by molding with a thermoplastic resin containing both soft magnetic powder and ferrite powder.
  • the plastic magnet 9 is formed by molding a thermoplastic resin containing rare earth magnet powder.
  • the plastic magnet 9 is formed integrally with the back yoke 3 on the outer peripheral surface of the back yoke 3.
  • a knurl 2 is provided on the outer peripheral surface of the central portion of the rotor shaft 1 in the axial direction. The knurls 2 prevent the rotor shaft 1 from coming off from the back yoke 3 and prevent it from rotating.
  • the outer periphery of the back yoke 3 is formed in a wave shape and has unevenness in the circumferential direction.
  • the magnetic poles of the rotor magnet 10 are set in association with the irregularities on the outer periphery of the back yoke 3. For example, it can be magnetized so that the orientation (magnetic pole) is disposed in the wave-shaped concave portion on the outer periphery of the back yoke 3 and the space between the magnetic poles is disposed on the convex portion.
  • the magnetic poles may be arranged on the wavy convex portions on the outer periphery of the back yoke 3 and may be oriented (magnetic poles) so that the gaps are arranged in the concave portions.
  • the back yoke 3 includes a cylindrical portion 8 on an end surface on the substrate 46 side, and a bearing contact portion 4 on an end surface opposite to the substrate 46.
  • the cylindrical portion 8 is provided around the shaft hole 48 on the end face of the back yoke 3 on the substrate 46 side, and protrudes toward the substrate 46 at a predetermined height.
  • the cylindrical portion 8 is provided on the inner side in the radial direction of the back yoke 3 than the base 7.
  • the cylindrical portion 8 receives the bearing 21 a via the position detection magnet 11.
  • the bearing contact portion 4 is provided around the shaft hole 48 on the end surface opposite to the end surface on which the cylindrical portion 8 of the back yoke 3 is provided, and protrudes to the opposite side to the substrate 46 side at a predetermined height. Yes.
  • the inner diameter of the cylindrical portion 8 is larger than the outer diameter of the rotor shaft 1 at a certain depth from the end face of the cylindrical portion 8.
  • the end surface of the back yoke 3 provided with the cylindrical portion 8 forms a part of the first end surface of the rotor magnet 10, and the end surface of the back yoke 3 includes a plurality of pedestals 7 and on each pedestal 7.
  • Protrusions 5 that are provided and extend in the axial direction from the pedestals 7 are provided.
  • the plurality of protrusions 5 are evenly arranged in the circumferential direction of the back yoke 3. Further, the positions of the plurality of protrusions 5 in the radial direction are equal to each other.
  • the radial direction is the radial direction of the back yoke 3.
  • the heights of the plurality of protrusions 5 are equal to each other.
  • the height of the protrusion 5 is shorter than the axial length from one end of the rotor shaft 1 on the protrusion 5 side to the end surface of the base 7. In the illustrated example, three pedestals 7 are formed, and three protrusions 5 are also formed.
  • the plurality of pedestals 7 are formed integrally with the cylindrical portion 8.
  • the plurality of pedestals 7 extend radially outward from the cylindrical portion 8 in the radial direction.
  • the height of the end surface of the cylindrical part 8 and the height of the end surface of the base 7 are the same, and these end surfaces form the same surface.
  • the pedestal 7 and the cylindrical portion 8 serve as an installation surface for the position detection magnet 11, and the position detection magnet 11 is positioned in the axial direction by these.
  • the number of the protrusions 5 as the first number is not limited to the illustrated example, and may be a plurality other than three or may be one. However, since the protrusions 5 are used for assembling the position detection magnet 11, a plurality of protrusions 5 are generally provided for balance. Further, one or a plurality of pedestals 7 can be provided according to the number of the protrusions 5. The pedestal 7 can also be formed separately from the cylindrical portion 8. In this case, a plurality of bases 7 can be connected to form a single base, and the number of bases 7 can be set independently of the number of protrusions 5.
  • the protrusion 5 can have a polygonal shape on the outer periphery. In the illustrated example, the protrusion 5 has an outer octagonal shape. On the other hand, the hole 15 is circular.
  • the position detecting magnet 11 can be fixed to the back yoke 3 by inserting the protrusion 5 into the hole 15 and thermally welding the tip of the protrusion 5.
  • the protrusion 5 has a cylindrical shape, a gap is required between the protrusion 5 and the hole 15 in order to allow the protrusion 5 to be inserted, and this gap becomes loose, and the rotor magnet 10 and the position detection magnet. The concentricity with 11 deteriorates.
  • the dimensions of the protrusion 5 and the hole 15 are such that when the protrusion 5 is formed into a polygonal outer periphery and the protrusion 5 is inserted through the hole 15, the corners of the outer periphery of the protrusion 5 are scraped by the edge of the hole 15.
  • the protrusion 5 is formed with a gate 6 used as a resin injection port when the back yoke 3 is formed.
  • the back yoke 3 is molded by injecting a thermoplastic resin containing soft magnetic powder or ferrite powder from the gate 6.
  • the cut portion may protrude from the end surface and cause a problem. Therefore, it is not possible to provide a recess around the gate so that the cut portion does not protrude from the end surface. Suppress.
  • providing the concave portion in the back yoke 3 reduces the amount of the magnet of the rotor magnet 10 and also causes the rotor magnet 10 to be unbalanced, leading to a decrease in magnetic force and a deterioration in the distortion rate of the magnetic flux density distribution. 100 efficiency and performance degradation is a concern.
  • the gate 6 is provided on the protrusion 5 that is crushed when the tip is thermally welded, quality defects due to protrusion of the cut portion of the gate 6 do not occur, and the rotor magnet 10 needs to be provided with a recess. Therefore, the efficiency and performance degradation of the electric motor 100 can be suppressed.
  • the position detection magnet 11 is lifted and deformed even when the position detection magnet 11 is pressed when the tip of the protrusion 5 is heat welded. Suppressed by the pedestal 7, the quality of the assembly is improved.
  • the height of the protrusion 5 is made shorter than the axial length from one end of the rotor shaft 1 on the protrusion 5 side to the end surface of the pedestal 7, so that the position detection magnet 11 is replaced with the rotor magnet.
  • the rotor shaft 1 is passed through the shaft hole 13 of the position detection magnet 11 before the projection 5 is passed through the hole 15 of the position detection magnet 11.
  • the rotor magnet 10 is centered to facilitate assembly.
  • the gate 6 remains on the protrusion 5 as a trace of the gate after the back yoke 3 is formed.
  • the trace of the gate is a trace indicating the position of the gate 6 at the time of injection molding, and a trace corresponding to the gate 6 is formed on the protrusion 5.
  • the end surface of the back yoke 3 opposite to the position detection magnet 11 side forms a part of the second end surface of the rotor magnet 10, and a plurality of recesses 16 are formed on the end surface of the back yoke 3. Is provided. That is, a plurality of recesses 16 are provided on the end surface of the back yoke 3 where the bearing contact portion 4 is provided. In the illustrated example, the number of recesses 16 that is the second number is six, and is three or more that is the number of protrusions 5.
  • the plurality of recesses 16 includes a plurality of recesses 16 a having a radial distance from the axis of the back yoke 3 and a depth from the end face of the back yoke 3 that are equal to each other. It consists of one recess 16b having a different radial distance from the shaft and a depth from the end face of the back yoke 3.
  • the radial direction is the radial direction of the back yoke 3.
  • the axis of the back yoke 3 is the axis of the rotor shaft 1 and is also the axis of the rotor magnet 10.
  • the plurality of recesses 16 a are arranged uniformly in the circumferential direction of the back yoke 3.
  • the number of recesses 16a is five. Specifically, the depth of the recess 16a is larger than the depth of the recess 16b. Moreover, the recessed part 16a is arrange
  • the back yoke 3 is molded by injecting a molding material from the gate 6 on which the protrusions 5 are formed.
  • the protrusion 5 is arranged on a fixed mold (not shown). Accordingly, the molding pressure is applied most to the protrusion 5, the frictional force between the protrusion 5 and the fixed mold is increased, and the mold releasing force of the fixed mold is increased. If the mold release force of the fixed mold is larger than the mold release force of the movable mold (not shown), the protrusion 5 is likely to stick to the fixed mold when the mold is opened, and the protrusion 5 actually sticks to the fixed mold. If it is attached, continuous molding becomes difficult, and productivity deteriorates. Further, when removing the molded product attached to the fixed side mold, the protrusion 5 may be broken or the protrusion 5 may be cracked, and a defective product may flow to the subsequent process, which is a quality problem. .
  • the molded product When the mold is opened, the molded product is in the movable side mold, and the molded product is ejected by an ejector pin provided on the movable side mold, and continuous molding can be performed.
  • the taper In order to suppress sticking to the fixed mold, it is common to increase the taper.
  • the protrusion 5 has a tapered shape in which the outer periphery increases from the gate 6 side to the pedestal 7 side.
  • the extraction taper can be increased. Thereby, the mold release force of a fixed side metal mold
  • the position detection magnet 11 is fixed to the rotor magnet 10. There is a concern that the play of the hole 15 of the magnet 11 will occur and the alignment will be insufficient.
  • a plurality of recesses 16 are provided on the end surface opposite to the end surface on which the protrusions 5 are provided to increase the frictional force between the movable side mold and the molded product, thereby separating the fixed side mold.
  • the mold release force of the movable mold larger than the mold force, the back yoke 3 is prevented from sticking to the fixed mold when the mold is opened. That is, a plurality of recesses 16 are provided on the end face opposite to the end face on which the protrusion 5 is provided without increasing the taper shape of the protrusion 5 on which the gate 6 is formed.
  • the back yoke 3 can be continuously formed, productivity can be improved and costs can be reduced, and the quality of the protrusions 5 can be suppressed since the occurrence of breakage or cracking of the protrusions 5 can be suppressed.
  • the number and depth of the recesses 16 are set according to the mold release force of the fixed mold, but the mold release force of the movable mold can be increased by setting the number of the recesses 16 to be equal to or greater than the number of the protrusions 5. Can be increased.
  • the number and depth of the recesses 16 can be set such that the sum of the surface areas of the plurality of recesses 16 is equal to or greater than the sum of the surface areas of the plurality of protrusions 5.
  • the cross-sectional shape of the recess 16 is circular, but is not limited to this, and other shapes may be used.
  • the cross-sectional shape of the recess 16 can be a polygonal shape.
  • the cross-sectional shape is a shape with a cross section perpendicular to the axial direction.
  • the recess 16 is disposed outside the bearing contact portion 4 and is disposed radially inward from the outer periphery of the back yoke 3 by a certain distance. Thereby, the thickness of the back yoke 3 in the radial direction is secured without being obstructed by the concave portion 16, and a sufficient magnetic path for securing the magnetic force of the rotor magnet 10 is secured.
  • the plurality of recesses 16 a are arranged on the outer peripheral side of the bearing contact portion 4 with respect to the radial direction rather than the outer periphery of the back yoke 3.
  • the number of recesses 16 is greater than the number of protrusions 5, but the number of recesses 16 may be equal to the number of protrusions 5.
  • the recesses 16 can be arranged at positions that face the positions of the protrusions 5 in the axial direction. That is, one or a plurality of recesses 16 and one or a plurality of protrusions 5 are made to correspond one to one, and the positions of the corresponding recesses 16 and protrusions 5 in the circumferential direction and the radial direction can be made equal.
  • the circumferential direction and the radial direction are the circumferential direction and the radial direction of the back yoke 3.
  • the position in the radial direction is a distance in the radial direction from the axis of the back yoke 3.
  • the number of the recesses 16a is made equal to the number of the protrusions 5, the one or more recesses 16a and the one or more protrusions 5 are made to correspond one-to-one, and the circumferential direction of the corresponding recesses 16a and protrusions 5 And the position in radial direction can be made equal.
  • the number of the recesses 16a is equal to the number of the protrusions 5, only the position in the circumferential direction of the recesses 16a can be matched with the position in the circumferential direction of the protrusions 5.
  • the recesses 16 can be evenly arranged in the circumferential direction of the back yoke 3.
  • the mold release force of the concave portion 16 efficiently acts on the mold release force of the projection 5 when the mold is opened, and the sticking of the back yoke 3 to the fixed mold is stably suppressed. be able to.
  • the back yoke 3 can be balanced.
  • the recesses 16 a when the number of the recesses 16 a is larger than the number of the protrusions 5, the recesses 16 a can be evenly arranged in the circumferential direction of the back yoke 3. In this case, the same effect is obtained.
  • the recess 16b is shallower than the plurality of recesses 16a. Moreover, the recessed part 16b is arrange
  • the positioning recess 16b can be formed by an ejector pin.
  • the back yoke 3 may be molded in a state where ejector pins (not shown) provided in the movable mold are arranged in the mold by the length of the recess 16b.
  • the rotor magnet 10 is formed by setting the back yoke 3 on a mold and integrally molding a plastic magnet 9 on the outer peripheral surface of the back yoke 3. At this time, the waveform of the outer periphery of the back yoke 3 is transferred to the inner periphery of the plastic magnet 9, and the outer periphery of the back yoke 3 and the inner periphery of the plastic magnet 9 mesh with each other.
  • the inner peripheral wave shape is a detent. Further, since the magnetic path is formed by making the outer periphery of the back yoke 3 into a wave shape, the magnetic flux density distribution can be arbitrarily adjusted.
  • the back yoke 3 When the back yoke 3 is set in a mold for molding the plastic magnet 9, for example, when the end surface side provided with the cylindrical portion 8 of the back yoke 3 is inserted into the movable side mold, It is necessary to align the protrusion 5 with a predetermined position of the movable mold.
  • the three protrusions 5 are evenly arranged in the circumferential direction, and the position is not selected by setting to the movable mold, but the wave shape on the outer periphery of the back yoke 3 depends on the number of poles of the rotor magnet 10, so In general, the number of projections and depressions is not a multiple of the number of projections 5, and there is no symmetry in the arrangement and wave shape of projections 5.
  • the back yoke 3 is positioned and set in the mold with reference to the recess 16b provided on the end surface opposite to the end surface on which the protrusion 5 is provided. To do. Thereby, the positioning of the back yoke 3 is facilitated, and the productivity is improved. Furthermore, since the orientations of the back yoke 3 and the plastic magnet 9 are accurately matched, the magnetic characteristics of the rotor magnet 10 can be stabilized, the performance of the electric motor 100 can be improved, and the sound and vibration of the electric motor 100 can be reduced. .
  • the recess 16b can be used for positioning not only in the alignment of the mold for molding the plastic magnet 9 and the back yoke 3, but also in the magnetizing process of the rotor magnet 10. That is, when the rotor magnet 10 is inserted into a magnetizing yoke (not shown), the recess 16b can be used to align the rotor magnet 10 and the magnetizing yoke. As a result, the magnetization accuracy can be improved and stabilized, and the performance of the electric motor 100 can be improved.
  • the rotor magnet 10 is configured to mold the plastic magnet 9 on the outer peripheral surface of the back yoke 3
  • the rotor magnet 10 has a single layer structure, and the entire rotor magnet 10 is configured only by the plastic magnet 9. You can also Even in this case, the recess 16b can be used for positioning in the magnetization process.
  • the position detection magnet 11 has an annular shape in which a shaft hole 13 is provided at the center.
  • the position detection magnet 11 has a cylindrical portion 12 provided with a shaft hole 13 on the end surface opposite to the rotor magnet 10 on the inner side in the radial direction, and is provided facing the magnetic detection element 47.
  • An annular detection unit 14 used for detection is provided outside in the radial direction.
  • the radial direction is the radial direction of the position detection magnet 11. That is, the cylindrical portion 12 provided coaxially with the rotor shaft 1 around the shaft hole 13 protrudes from the end surface of the position detecting magnet 11 opposite to the rotor magnet 10 side.
  • the portion of the position detecting magnet 11 that is radially outside the cylindrical portion 12 and radially inside the detecting portion 14 is flat and annular, and a plurality of portions that penetrate the portion in the axial direction. Holes 15 are provided.
  • the hole 15 is provided at a position corresponding to the protrusion 5 of the rotor magnet 10.
  • the cylindrical portion 12 is the thickest, the detection portion 14 is next thick, and the portion where the hole 15 is provided is the thinnest, and this portion defines one end surface of the position detection magnet 11.
  • the position detecting magnet 11 is asymmetric in the axial direction, and the rotor magnet 10 side is planar.
  • the protrusion 5 of the rotor magnet 10 is inserted into the hole 15, and the position detection magnet 11 is fixed to the rotor magnet 10 by heat-welding the tip of the protrusion 5.
  • the position detecting magnet 11 is mechanically fixed to the rotor magnet 10, the reliability of assembly is improved.
  • the thickness of the position detecting magnet is made the thinnest at the portion where the hole 15 is provided, the height of the heat welding portion 35 where the tip end portion of the protrusion 5 is heat welded is detected by the position detecting magnet 11. It can be the same as or lower than part 14. Thereby, the heat welding part 35 does not contact a mold stator at the time of the incorporation of the electric motor 100, and the reliability of assembly improves.
  • the outer diameter of the cylindrical portion 12 is equal to or slightly larger than the outer diameter of the inner ring of the bearing 21a and smaller than the inner diameter of the outer ring of the bearing 21a so that only the inner ring of the bearing 21a is received.
  • the bearing 21a is press-fitted into the rotor shaft 1 until it comes into contact with the end face of the cylindrical portion 12, and the bearing 21a is positioned.
  • the bearing 21 a is disposed on the inner side in the radial direction than the detection unit 14.
  • the distance between the detection unit 14 of the position detection magnet 11 and the magnetic detection element 47 of the substrate 46 is determined by the position detection magnet 11 alone in the rotor 20. Can be easily managed and adjusted. Therefore, since the accuracy of the distance between the detection unit 14 and the magnetic detection element 47 is improved, the position of the rotor 20 can be detected with high accuracy, and the controllability and performance of the electric motor 100 can be improved. .
  • FIG. 6A is a perspective view of the rotor magnet 10 and the position detection magnet 11 before the position detection magnet 11 is assembled to the rotor magnet 10
  • FIG. 6B is a view of the position detection magnet 11 assembled
  • FIG. 6C is a perspective view of the rotor magnet 10 to which the tip end portion of the protrusion 5 is heat-welded and the position detection magnet 11 is fixed.
  • the rotor shaft 1 is inserted into the shaft hole 13 of the cylindrical portion 12, thereby roughly aligning the rotor magnet 10 and the position detection magnet 11, and the protrusion 5 of the rotor magnet 10 and the position detection magnet.
  • the positioning of the 11 holes 15 is facilitated.
  • the plurality of protrusions 5 of the rotor magnet 10 are inserted into the plurality of holes 15 of the position detection magnet 11 and assembled until the position detection magnet 11 contacts the base 7 of the rotor magnet 10 (FIG. 6 ( b)). At this time, the polygonal protrusion 5 of the rotor magnet 10 is inserted into the hole 15 of the position detection magnet 11, and the corners on the outer periphery are shaved, so that there is no backlash and the position detection magnet 11 is aligned. Therefore, the concentricity of the rotor magnet 10 and the position detection magnet 11 is improved, and the position of the rotor 20 can be detected with high accuracy, so that the efficiency and performance of the electric motor 100 are improved.
  • the position detection magnet 11 is fixed to the rotor magnet 10 and becomes the rotor 20 by heat-sealing the tip of the protrusion 5 of the rotor magnet 10 protruding from the hole 15 of the position detection magnet 11 (see FIG. 6 (c), FIG. 3).
  • FIG. 7 is a manufacturing flow diagram illustrating a method for manufacturing the rotor of the electric motor according to the present embodiment.
  • the outline of the manufacturing method of the rotor of the electric motor is as follows.
  • Step 1 The rotor shaft 1 is processed.
  • the position detecting magnet 11 is formed.
  • Step 2 The back yoke 3 is formed. That is, the back yoke 3 is integrally formed on the outer peripheral surface of the rotor shaft 1 by injection molding.
  • the recess 16 is provided on the end surface of the back yoke 3 opposite to the end surface on which the protrusions 5 are provided. Thereby, sticking of the back yoke 3 to the fixed mold is suppressed, and continuous molding becomes possible.
  • Step 3 The plastic magnet 9 is molded. That is, the plastic magnet 9 is integrally formed on the outer peripheral surface of the back yoke 3 by injection molding, and the rotor magnet 10 is manufactured.
  • the recess 16b is used for positioning.
  • the use of the concave portion 16b for positioning not only facilitates the operation, but also the magnetic properties of the rotor magnet 10 can be stabilized by accurately matching the orientation of the magnetic force, thereby improving the performance of the electric motor 100 and improving the electric motor. 100 sounds and vibrations can be reduced.
  • Step 4 The position detection magnet 11 is assembled to the rotor magnet 10. At this time, the protrusion 5 of the rotor magnet 10 is inserted into the hole 15 of the position detection magnet 11, and the position detection magnet 11 is assembled so as to contact the pedestal 7.
  • Step 5 The tip of the protrusion 5 is thermally welded, the position detecting magnet 11 is fixed to the rotor magnet 10, and the rotor 20 is manufactured.
  • Step 6 Magnetize the rotor 20. In the magnetization, the positioning recess 16b of the back yoke 3 is used for positioning. As a result, the magnetization accuracy can be improved and stabilized.
  • Step 7 The bearings 21a and 21b are assembled to the rotor shaft 1 until they contact the cylindrical portion 12 of the position detection magnet 11 and the bearing contact portion 4 of the rotor magnet 10.
  • a plurality of recesses 16 are provided on the end surface of the back yoke 3 in the axial direction opposite to the end surface on which the plurality of protrusions 5 are provided, and the number of recesses 16 is determined. Since the number of protrusions 5 is equal to or greater than the number of protrusions 5, sticking of the back yoke 3 to the fixed mold is suppressed during the formation of the back yoke 3, the back yoke 3 can be continuously formed, and the productivity of the back yoke 3 is improved.
  • the occurrence of the folds or cracks of the protrusions 5 is suppressed, and the quality of the back yoke 3 is improved. Therefore, productivity improvement, quality improvement, and cost reduction of the electric motor 100 can be achieved.
  • the number of protrusions 5 is plural and the number of recesses 16 is equal to or greater than the number of protrusions 5.
  • the number of protrusions 5 is one and the number of recesses 16 is one. It can also be set as above.
  • the gate 6 is provided on each of the plurality of protrusions 5.
  • the gate 5 may be provided on a part of the plurality of protrusions 5.
  • one recess 16 b of the plurality of recesses 16 has a depth from the second end face of the rotor magnet 10 that is different from the recess 16 a of the plurality of recesses 16. Therefore, the recess 16b can be easily distinguished from the recess 16a, and can be used for positioning in the molding process of the plastic magnet 9 and the magnetizing process of the rotor 20. As a result, productivity and magnetization accuracy can be improved and stabilized, leading to improved productivity, quality, performance, and cost reduction of the electric motor 100.
  • one recess 16b of the plurality of recesses 16 has a radial distance from the axis of the rotor magnet 10, a depth from the second end face of the rotor magnet 10, and a cross-sectional shape perpendicular to the axial direction.
  • the concave portion 16b can be distinguished by a shape other than the cross-sectional shape perpendicular to the axial direction or a radius.
  • shapes other than the cross-sectional shape perpendicular to the axial direction are cross-sectional shapes including the axial direction, for example.
  • the depth from the second end face of the rotor magnet 10 and the cross-sectional shape perpendicular to the axial direction are easy to identify.
  • the recessed part 16 used for positioning may be plural. In general, if at least one of the plurality of recesses 16 differs from each other of the plurality of recesses 16 with respect to at least one of the radial distance from the shaft, shape, depth, and radius.
  • At least one of the plurality of recesses 16 can be used for positioning in the molding process of the plastic magnet 9 and the magnetizing process of the rotor 20.
  • two recesses 16b can be provided, and these two recesses 16b can be used for positioning.
  • the protrusion 5 of the rotor magnet 10 is inserted into the hole 15 of the position detection magnet 11, the position detection magnet 11 is brought into contact with the base 7, and the tip of the protrusion 5 is thermally welded. As a result, the position detection magnet 11 is fixed to the rotor magnet 10, and the molding gate 6 is provided on the protrusion 5. As described above, since the tip of the protrusion 5 provided with the gate 6 is heat-welded, there is no protrusion at the cut portion of the gate 6, and the protrusion at the cut portion comes into contact with another portion, or from the cut portion. Problems such as resin powder appearing can be suppressed.
  • the position detection magnet 11 is fixed to the rotor magnet 10 by thermally welding the tip of the protrusion 5.
  • the position detecting magnet 11 is mechanically fixed to the rotor magnet 10, the reliability of assembly is improved.
  • the position detecting magnet 11 can be fixed to the rotor magnet 10 by such a simple process, the cost is also reduced.
  • the height of the heat welding part 35 is the same as or lower than that of the detection part 14 of the position detecting magnet 11, the heat welding part 35 does not come into contact with the mold stator when the motor is incorporated. Assembly reliability is improved.
  • the protrusion 5 is provided on the pedestal 7, even if the position detection magnet 11 is pressed when the protrusion 5 is heat-sealed, the pedestal 7 lifts the position detection magnet 11. Deformation is suppressed, and assembly quality is improved.
  • the bearing 21b is positioned in contact with the bearing contact portion 4 of the rotor magnet 10, and the bearing 21a is positioned in contact with the end surface of the cylindrical portion 12 of the position detecting magnet 11. ing.
  • the position detection magnet 11 is determined alone. Therefore, compared to the case where a plurality of parts are involved, the size can be easily managed and adjusted, the assembling accuracy can be improved, and the position of the rotor 20 can be detected with high accuracy. Performance, performance, and reliability can be improved. Further, by directly positioning the bearing 21a on the position detection magnet 11 side with the position detection magnet 11, the number of parts is reduced and the cost is also reduced.
  • the press-fitting load of the bearing 21a is supported by the cylindrical portion 12 of the position detecting magnet 11 and the cylindrical portion 8 of the rotor magnet 10, so that the deformation of the position detecting magnet 11 is suppressed, and assembly Quality is improved.
  • FIG. FIG. 8 is a diagram illustrating an example of the configuration of the air conditioner according to the present embodiment.
  • the air conditioner 300 includes an indoor unit 310 and an outdoor unit 320 connected to the indoor unit 310.
  • An indoor unit blower (not shown) is mounted on the indoor unit 310, and an outdoor unit blower 330 is mounted on the outdoor unit 320.
  • the electric motor 100 of Embodiment 1 is used as the drive source for the outdoor unit blower 330 and the indoor unit blower.
  • the productivity is improved, the quality is improved, the performance is improved, and the cost is low. 300 can be obtained.
  • the electric motor 100 of Embodiment 1 can also be mounted in electrical equipment other than an air conditioner, and in this case as well, the same effects as in this embodiment can be obtained.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Brushless Motors (AREA)

Abstract

電動機の回転子(20)は、回転子軸(1)の周囲に回転子軸(1)と一体に成形される回転子マグネット(10)と、回転子マグネット(10)の軸方向の一端部に組付けられる位置検出用マグネット(11)と、を備え、回転子マグネット(10)は、位置検出用マグネット(11)側の一端面に設けられた台座(7)と、台座(7)上に設けられ、成形用のゲート(6)が設けられた突起(5)とを有し、回転子マグネット(10)の他端面には、成形工程または着磁工程での位置決めに用いられる凹部(16)が設けられている。

Description

電動機及び空気調和機
 本発明は、電動機及び電動機を備えた空気調和機に関するものである。
 特許文献1に記載された電動機は、固定子及び磁石回転子を備えたDC電動機であって、前記磁石回転子は、樹脂磁石よりなる環状の主磁極部と、この主磁極部の外径よりも小さい外径で環状の樹脂磁石よりなるセンサ用磁極部とから構成され、このセンサ用磁極部を構成する樹脂磁石は、軸方向に貫通する複数の貫通穴を有し、この貫通穴は、主磁極部側を小径部とした段付き貫通穴又はすり鉢状貫通穴であり、前記主磁極部は保持部を介して回転子軸に固定され、前記保持部は、軸方向に突出し、センサ用磁極部を固定する突部を備え、この突部が前記貫通穴に嵌合し、前記突部の先端部が前記貫通穴の大径部側に形成される空間部内で潰されて前記センサ用磁極部が固定されている。
特許第4628527号公報
 上記従来の電動機では、磁石回転子を着磁する際にセンサ用磁極部を下にして着磁ヨークに挿入し着磁するため、磁極位置の判別が可能なセンサ用磁極部側が見えず、磁石回転子と着磁ヨークの位置決めが困難で着磁精度が悪化し、電動機の運転時に音及び振動が大きくなることが懸念される。
 本発明は、上記に鑑みてなされたものであって、性能、生産性及び品質の向上が可能な電動機を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る電動機は、回転子軸と、前記回転子軸の外周面上に配置され、前記回転子軸の軸方向に互いに対向する第1および第2の端面を有し、成形により形成された環状の回転子マグネットと、前記軸方向における前記回転子マグネットの一端部に組み付けられ、前記軸方向に貫通する複数個の穴を有する環状の位置検出用マグネットと、を備え、前記回転子マグネットは、前記第1の端面に設けられ、前記位置検出用マグネットが載置される複数個の台座と、前記複数個の台座上にそれぞれ設けられ、複数個の成形用のゲートの跡をそれぞれ有すると共に、前記複数個の穴をそれぞれ通る複数個の突起と、前記第2の端面に設けられた複数個の凹部と、を有し、前記複数個の凹部のうちの少なくとも1つは、前記軸方向に垂直な断面形状と前記第2の端面からの深さの少なくとも1つについて、前記複数個の凹部のうちの他の各々とは異なる。
 本発明によれば、性能、生産性及び品質の向上が可能になる、という効果を奏する。
実施の形態1に係る電動機の構成を示す図 実施の形態1において軸受が組み付けられた回転子を示す図 実施の形態1に係る回転子を示す図 実施の形態1において回転子軸が組み付けられた回転子マグネットを示す図 実施の形態1において位置検出用マグネットを示す図 実施の形態1において回転子の組立を示す図 実施の形態1に係る電動機の回転子の製造方法を示した製造フロー図 実施の形態2に係る空気調和機の構成の一例を示す図
 以下に、本発明の実施の形態に係る電動機及び空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本実施の形態に係る電動機の構成を示す図、図2は、軸受が組み付けられた回転子を示す図、図3は、回転子を示す図、図4は、回転子軸が組み付けられた回転子マグネットを示す図、図5は、位置検出用マグネットを示す図、図6は、回転子の組立を示す図である。以下、図1から図6を参照して、本実施の形態に係る電動機の構成について説明する。
 図1に示すように、電動機100は、モールド固定子40、モールド固定子40の内側に配置される回転子20、及びモールド固定子40の軸方向の一端部に取り付けられる金属製のブラケット30を備える。電動機100は、例えば、ブラシレスDCモータ又はステッピングモータである。
 モールド固定子40は、固定子42と、基板46が組付けられた固定子42を覆うモールド樹脂部41とを備える。すなわち、モールド固定子40は、基板46が組付けられた固定子42をモールド樹脂部41の材料であるモールド樹脂で一体に成形して形成される。ここで、モールド樹脂は、例えば不飽和ポリエステルである熱硬化性樹脂である。基板46は、一般に強度的に弱い構造であるため、低圧成形が望ましく、そのため、モールド成形には不飽和ポリエステル樹脂のような熱硬化性樹脂が用いられる。
 固定子42は、電磁鋼板を積層した固定子コア43と、固定子コア43に施された絶縁部44と、絶縁部44に巻付けられたコイル45とを備えている。絶縁部44は、熱可塑性樹脂で固定子コア43に一体成形され、又は熱可塑性樹脂で成形された別体の成形品を固定子コア43に組付けて施される。ここで、熱可塑性樹脂は例えばポリブチレンテレフタレートである。
 基板46は、絶縁部44に組付けられている。基板46には、磁気検出素子47が実装され、磁気検出素子47は回転子20の位置を検出するセンサ回路を構成する。磁気検出素子47は図3の位置検出用マグネット11と対向して配置され、位置検出用マグネット11から発生する磁気を検出することで回転子20の位置を検出する。また、電動機100がブラシレスDCモータである場合は、電動機100は基板46に設けられた図示しない駆動回路により回転子20の位置に応じてコイル45の通電制御をする。これにより、電動機100の高効率で低騒音な駆動を行うことができる。
 回転子20には、回転子軸1が一体に設けられる。すなわち、回転子20の軸孔48に回転子軸1が挿通されている。回転子軸1には一対の軸受21a,21bが組付けられる。モールド固定子40に設けられた中空部49には、軸受21a,21bが組付けられた回転子20が挿入される。軸受21aは、基板46側に配置され、軸受21bはブラケット30側に配置される。ブラケット30側は負荷側であるので、軸受21bは、電動機100の負荷側に配置され、ブラケット30によって支持される。また、軸受21aは、電動機100の反負荷側に配置され、モールド樹脂部41によって支持される。なお、負荷側はモールド固定子40から突出した回転子軸1の先端側であり、反負荷側は、負荷側と反対側である。
 図2(a)は、軸受21a,21bが組み付けられた回転子20を負荷側から見た側面図、図2(b)は、図2(a)におけるA-A断面図、図2(c)は、軸受21a,21bが組み付けられた回転子20を反負荷側から見た側面図である。図3(a)は、回転子20を負荷側から見た側面図、図3(b)は、図3(a)におけるB-B断面図、図3(c)は、回転子20を負荷側から見た側面図である。図4(a)は、回転子軸1が組み付けられた回転子マグネット10を負荷側から見た側面図、図4(b)は、図4(a)におけるC-C断面図、図4(c)は、回転子軸1が組み付けられた回転子マグネット10を反負荷側から見た側面図である。図5(a)は、位置検出用マグネット11の平面図、図5(b)は、図5(a)におけるD-D断面図である。
 図2から図5に示すように、回転子20は、回転子軸1と、回転子軸1と同軸的に回転子軸1の外周面上に配置され、軸方向に互いに対向する第1および第2の端面を有し、成形材料の成形により形成された回転子マグネット10と、回転子軸1と同軸的に配置され、回転子軸1の軸方向における回転子マグネット10の一端部に組み付けられた位置検出用マグネット11とを備えている。なお、以下では、回転子軸1の軸方向を単に「軸方向」という。回転子軸1の軸方向は、回転子マグネット10の軸方向であり、位置検出用マグネット11の軸方向でもある。
 回転子マグネット10には、周方向にN極とS極とが交互となるように磁極が形成される。回転子マグネット10の軸方向の一端面である第1の端面には複数個の台座7が設けられており、位置検出用マグネット11は複数個の台座7上に載置されている。すなわち、位置検出用マグネット11は複数個の台座7に当接する。また、各台座7上には突起5が設けられ、突起5は位置検出用マグネット11に設けられた穴15を通り、突起5の先端部が熱溶着されて位置検出用マグネット11が回転子マグネット10に固定される。この際、突起5の先端部は熱溶着されて熱溶着部35を形成する。熱溶着部35の高さは、位置検出用マグネット11の検出部14と同じか、又は低くなっている。
 また、軸受21aは位置検出用マグネット11の円筒部12の端面に当接するまで回転子軸1に圧入され、軸受21bは回転子マグネット10の軸受当接部4に当接するまで回転子軸1に圧入される。軸受21a,21bは、例えば玉軸受である。
 回転子マグネット10は、2層構造であり、第1の環状層であるバックヨーク3を内層とし、第2の環状層であるプラスチックマグネット9を外層とする。すなわち、回転子マグネット10は、回転子軸1の外周面上に配置された環状のバックヨーク3と、バックヨーク3の外周面上に配置された環状のプラスチックマグネット9とを備えている。バックヨーク3は、軟磁性粉末又はフェライト粉末を含有した熱可塑性樹脂を成形して形成される。熱可塑性樹脂は例えばポリアミドである。バックヨーク3は、回転子軸1の外周面に回転子軸1と一体に成形され、回転子軸1に固定される。なお、バックヨークは、軟磁性粉末及びフェライト粉末の双方を含有した熱可塑性樹脂で成形して形成してもよい。プラスチックマグネット9は、希土類磁石粉末を含有した熱可塑性樹脂を成形して形成される。プラスチックマグネット9は、バックヨーク3の外周面にバックヨーク3と一体に成形される。軸方向における回転子軸1の中央部の外周面にはローレット2が施されている。ローレット2は、回転子軸1のバックヨーク3からの抜け止め及び回り止めとなる。
 バックヨーク3の外周は、波形状に形成され、周方向に凹凸を繰り返している。また、回転子マグネット10の磁極は、バックヨーク3の外周の凹凸と関連して設定される。例えば、バックヨーク3の外周の波形状の凹部に配向(磁極)が配置され、凸部に磁極間が配置されるように着磁することができる。なお、バックヨーク3の外周の波形状の凸部に磁極が配置され、凹部に磁極間が配置されるように配向(磁極)することもできる。
 バックヨーク3は、基板46側の端面に円筒部8を備え、基板46と反対側の端面に軸受当接部4を備えている。詳細には、円筒部8は、バックヨーク3の基板46側の端面における軸孔48の周囲に設けられ、予め決められた高さで基板46側に突出している。円筒部8は、台座7よりもバックヨーク3の径方向の内側に設けられる。円筒部8は、位置検出用マグネット11を介して軸受21aを受け止める。軸受当接部4は、バックヨーク3の円筒部8が設けられた端面と反対側の端面における軸孔48の周囲に設けられ、予め決められた高さで基板46側と反対側に突出している。
 また、円筒部8の内径は、円筒部8の端面から一定の深さまでは、回転子軸1の外径より大きくなっている。これにより、バックヨーク3の成形時のバリ発生が抑制され、品質の向上が図られる。
 バックヨーク3の円筒部8が設けられた端面は回転子マグネット10の第1の端面の一部を成し、バックヨーク3の当該端面には、複数個の台座7と、各台座7上に設けられ、各台座7から軸方向に伸びる突起5が設けられている。複数個の突起5は、バックヨーク3の周方向に均等に配置されている。また、複数個の突起5の径方向における位置は互いに等しい。ここで径方向は、バックヨーク3の径方向である。また、複数個の突起5の高さは互いに等しい。突起5の高さは、回転子軸1の突起5側の一端から台座7の端面までの軸方向長よりも短くなっている。図示例では、台座7は、3個形成され、突起5も3個形成されている。
 複数個の台座7は、円筒部8と一体に形成されている。複数個の台座7は、円筒部8から径方向外向きに放射状に伸びている。また、円筒部8の端面の高さと台座7の端面の高さは同じであり、これらの端面は同一面を形成する。台座7と円筒部8は位置検出用マグネット11の設置面となり、位置検出用マグネット11はこれらによって軸方向に位置決めされる。
 なお、第1の個数である突起5の個数は、図示例に限定されず、3個以外の複数個でもよいし、あるいは1個でもよい。ただし、突起5は、位置検出用マグネット11の組付けに使用されるので、バランスをとるために複数個設けることが一般的である。また、台座7は、突起5の個数に応じて1又は複数個設けることができる。また、台座7は円筒部8から分離して形成することもできる。この場合、複数個の台座7を連結して単一の台座とすることもでき、台座7の個数は突起5の個数とは独立に設定することができる。
 突起5は、外周多角形状とすることができる。図示例では、突起5は外周八角形状である。一方、穴15は円形状である。突起5を穴15に挿通させ、突起5の先端部を熱溶着することで、位置検出用マグネット11をバックヨーク3に固定することができる。ここで、突起5を円柱状とした場合には、突起5を挿通させるために突起5と穴15との間に隙間が必要となり、この隙間がガタとなり、回転子マグネット10と位置検出用マグネット11との同芯が悪化する。
 そこで、本実施の形態では、突起5を外周多角形状にし、突起5を穴15に挿通させる際に、突起5の外周の角が穴15の縁で削れるように、突起5及び穴15の寸法設計をする。こうすることで、突起5を穴15に挿通させた状態でのガタがなくなり、位置検出用マグネット11を調芯することができる。従って、回転子マグネット10と位置検出用マグネット11との同芯が向上し、回転子20の位置検出精度が向上するため、電動機100の効率及び性能が向上する。
 また、突起5には、バックヨーク3を成形する際に樹脂注入口として使用されるゲート6が形成される。バックヨーク3は、ゲート6から軟磁性粉末又はフェライト粉末を含有した熱可塑性樹脂が注入されて成形される。一般に、バックヨーク3の端面に設けたゲートを切断する場合、切断箇所が端面から突出し不具合を引き起こすことがあるため、切断箇所が端面から突出しないように、ゲートの周辺に凹部を設けることで不具合を抑制する。しかしながら、バックヨーク3に凹部を設けることは、回転子マグネット10のマグネット量を少なくし、また、回転子マグネット10がアンバランスになるため、磁力低下及び磁束密度分布の歪率悪化につながり、電動機100の効率及び性能低下が懸念される。
 本実施の形態では、先端部が熱溶着されて潰れる突起5にゲート6を設けたので、ゲート6の切断箇所の突出による品質不具合も発生せず、また、回転子マグネット10に凹部を設ける必要もないので、電動機100の効率及び性能低下を抑制することができる。
 さらに、本実施の形態では、突起5を台座7に設けたので、突起5の先端部を熱溶着する際に、位置検出用マグネット11が押さえられても位置検出用マグネット11の浮き上がり及び変形が台座7によって抑制され、組立の品質が向上する。
 さらに、本実施の形態では、突起5の高さを、回転子軸1の突起5側の一端から台座7の端面までの軸方向長よりも短くしたので、位置検出用マグネット11を回転子マグネット10に組付ける際、位置検出用マグネット11の穴15に突起5を通すよりも先に、位置検出用マグネット11の軸孔13に回転子軸1が通されるので、位置検出用マグネット11と回転子マグネット10の芯だしがなされ、組立が容易になる。
 なお、ゲート6は、バックヨーク3の成形後には、ゲートの跡として突起5に残る。ゲートの跡は、射出成形時のゲート6の位置を示す痕跡であり、突起5にはゲート6に相当する跡が形成される。
 バックヨーク3の端面のうち位置検出用マグネット11側と反対側の端面は回転子マグネット10の第2の端面の一部を成し、バックヨーク3の当該端面には、複数個の凹部16が設けられている。すなわち、バックヨーク3の軸受当接部4が設けられた端面には、複数個の凹部16が設けられている。図示例では、第2の個数である凹部16の個数は6個であり、突起5の個数である3個以上である。複数個の凹部16は、バックヨーク3の軸からの径方向における距離及びバックヨーク3の上記端面からの深さが互いに等しい複数個の凹部16aと、複数個の凹部16aとはバックヨーク3の軸からの径方向における距離及びバックヨーク3の上記端面からの深さが異なる1個の凹部16bとからなる。ここで、径方向とは、バックヨーク3の径方向である。バックヨーク3の軸は、回転子軸1の軸であり、回転子マグネット10の軸でもある。また、複数個の凹部16aは、バックヨーク3の周方向に均等に配置されている。図示例では、凹部16aの個数は5個である。具体的には、凹部16aの深さは凹部16bの深さよりも大きい。また、凹部16aは、凹部16bよりも径方向の内側に配置されている。このように、突起5が設けられたバックヨーク3の端面と反対側のバックヨーク3の端面に複数個の凹部16を設けることにより、以下に詳細を説明するように、型開き時のバックヨーク3の金型への張り付きが抑制される。
 バックヨーク3は、突起5が形成されたゲート6から成形材料を射出して成形される。この場合、突起5は図示しない固定側金型に配置される。従って、突起5に最も成形圧力がかり、突起5と固定側金型との摩擦力が増大し、固定側金型の離型力が増大する。図示しない可動側金型の離型力よりも固定側金型の離型力が大きくなると、型開き時に突起5が固定側金型に張り付きやすくなり、実際に突起5が固定側金型に張り付いた場合には、連続成形が困難となり、生産性が悪化することとなる。また、固定側金型に張り付いた成形品を取り外す際に、突起5が折れ又は突起5に亀裂が発生することもあり、後工程まで不具合品が流れることもあり、品質上の問題となる。
 型開き時、成形品は可動側金型にあり、成形品を可動側金型に設けられたエジェクタピンで突き出し成形品を取り出すことで連続成形が可能になる。固定側金型への張り付き抑制は、抜きテーパを大きくすることが一般的である。図示例では、突起5の外周がゲート6側から台座7側にかけて大きくなるテーパ形状とするが、突起5のゲート6側の外径をより小さくすることで抜きテーパを大きくすることができる。これにより、固定側金型の離型力を抑制し、突起5の固定側金型への張り付きを抑制することができる。
 しかしながら、突起5を位置検出用マグネット11の穴15に挿通させ、先端部を熱溶着することで位置検出用マグネット11を回転子マグネット10に固定するので、突起5のテーパを大きくすると位置検出用マグネット11の穴15のガタが発生し、調芯が不十分になることが懸念される。
 そこで、本実施の形態では、突起5が設けられた端面と反対側の端面に複数個の凹部16を設け、可動側金型と成形品との摩擦力を増大させ、固定側金型の離型力よりも可動側金型の離型力を大きくすることで、型開き時のバックヨーク3の固定側金型への張り付きを抑制する。すなわち、ゲート6が形成される突起5の抜きテーパ形状を大きくすることなく、突起5が設けられた端面と反対側の端面には複数個の凹部16を設ける。これにより、バックヨーク3の連続成形が可能になり、生産性の向上と低コスト化が図れると共に、突起5の折れ又は亀裂の発生も抑制できるので品質も向上する。
 なお、凹部16の個数及び深さは、固定側金型の離型力に応じて設定されるが、凹部16の個数を突起5の個数以上とすることで可動側金型の離型力を増大させることができる。また、凹部16の個数及び深さは、複数個の凹部16の表面積の総和が複数個の突起5の表面積の総和以上となるように設定することができる。
 また、図示例では、凹部16の断面形状を円形としているが、これに限定されず、他の形状でもよい。例えば、突起5と同様に、凹部16の断面形状を多角形状とすることもできる。なお、断面形状は、軸方向に垂直な断面による形状である。
 なお、突起5が設けられた端面と反対側の端面に複数個の凹部16を設ける代わりに、複数個の凸部を設けることでも可動側金型の離型力を増大させることができる。ただし、この場合は、凸部の凸形状により、成形に必要な樹脂量が増加し、コストアップにつながる。
 凹部16は、軸受当接部4の外側に配置されると共に、バックヨーク3の外周から一定の距離だけ径方向の内側に配置される。これにより、凹部16に妨げられることなくバックヨーク3の径方向の肉厚が確保され、回転子マグネット10の磁力を得るのに十分な磁路が確保される。特に、複数個の凹部16aは、径方向に対してバックヨーク3の外周よりも軸受当接部4の外周側に配置されている。
 また、図示例では、凹部16の個数は突起5の個数よりも多いが、凹部16の個数は突起5の個数に等しくてもよい。凹部16の個数が突起5の個数に等しい場合は、凹部16は軸方向に突起5の位置と対向する位置に配置することができる。すなわち、1又は複数個の凹部16と1又は複数個の突起5とを1対1に対応させ、互いに対応する凹部16と突起5の周方向及び径方向における位置を等しくすることができる。ここで、周方向及び径方向は、バックヨーク3の周方向及び径方向である。ここで、径方向における位置は、バックヨーク3の軸からの径方向における距離である。なお、凹部16の個数が突起5の個数に等しい場合に、凹部16の周方向における位置のみを突起5の周方向における位置に合せることもできる。また、凹部16aの個数を突起5の個数に等しくし、1又は複数個の凹部16aと1又は複数個の突起5とを1対1に対応させ、互いに対応する凹部16aと突起5の周方向及び径方向における位置を等しくすることができる。なお、凹部16aの個数が突起5の個数に等しい場合に、凹部16aの周方向における位置のみを突起5の周方向における位置に合せることもできる。
 また、凹部16の個数が突起5の個数よりも多い場合は、凹部16はバックヨーク3の周方向に均等に配置することができる。このように配置することで、型開き時の突起5の離型力に対し効率的に凹部16の離型力が作用し、安定して固定側金型へのバックヨーク3の張り付きを抑制することができる。また、バックヨーク3のバランスをとることができる。また、また、凹部16aの個数が突起5の個数よりも多い場合に、凹部16aをバックヨーク3の周方向に均等に配置することもできる。この場合も同様の効果を奏する。
 凹部16bは、複数個の凹部16aよりも深さが浅くなっている。また、凹部16bは、複数個の凹部16aよりも径方向の外側に配置されている。これにより、凹部16bは複数個の凹部16aから区別しやすくなっている。そこで、このような凹部16bは、プラスチックマグネット9の成形工程又は回転子マグネット10の着磁工程での位置決めに使用することができる。
 また、位置決め用の凹部16bはエジェクタピンで形成することができる。具体的には、可動側金型に設けられた図示しないエジェクタピンを凹部16bの長さ分だけ金型内に配置した状態でバックヨーク3を成形すればよい。これにより、金型を簡素化し、金型製作費用の低減が図れる。なお、複数個の凹部16aの一部又は全部をエジェクタピンで形成することも可能である。
 回転子マグネット10は、金型にバックヨーク3をセットし、バックヨーク3の外周面にプラスチックマグネット9を一体に成形することで形成される。この際、プラスチックマグネット9の内周には、バックヨーク3の外周の波形状が転写され、バックヨーク3の外周とプラスチックマグネット9の内周が互いに噛み合う波形状となることから、プラスチックマグネット9の内周の波形状は回り止めとなる。また、バックヨーク3の外周を波形状として磁路を形成するので、磁束密度分布を任意に調整可能となっている。
 プラスチックマグネット9を成形する金型にバックヨーク3をセットする場合、例えば可動側金型にバックヨーク3の円筒部8を備えた端面側を挿入するときは、バックヨーク3の外周の波形状と突起5を可動側金型の予め決められた位置に合せる必要がある。この場合、3個の突起5は周方向に均等配置され、可動側金型へのセットで位置を選ばないが、バックヨーク3の外周の波形状は回転子マグネット10の極数によるため、波形状の凹凸の個数は一般に突起5の個数の倍数ではなく、突起5の配置と波形状に対称性がないため、プラスチックマグネット9の成形用の金型とバックヨーク3との位置合せが必要となる。セット中に見えなくなる突起5で位置決めをするのは困難なため、突起5が設けられた端面と反対側の端面に設けられた凹部16bを基準として、バックヨーク3を位置決めして金型にセットする。これにより、バックヨーク3の位置決めが容易になり、生産性が向上する。さらに、バックヨーク3とプラスチックマグネット9の配向が精度よく一致することで回転子マグネット10の磁気特性の安定化が図れ、電動機100の性能が向上すると共に、電動機100の音及び振動の低減が図れる。
 また、凹部16bは、プラスチックマグネット9の成形用の金型とバックヨーク3との位置合せのみならず、回転子マグネット10の着磁工程でも位置決めとして用いることができる。すなわち、回転子マグネット10を図示しない着磁ヨークに挿入する際に、回転子マグネット10と着磁ヨークとの位置合わせに凹部16bを利用することができる。これにより、着磁精度の向上と安定化が図れ、電動機100の性能が向上する。
 なお、回転子マグネット10は、バックヨーク3の外周面にプラスチックマグネット9を成形する構成としたが、回転子マグネット10を1層構造とし、回転子マグネット10の全体をプラスチックマグネット9のみで構成することもできる。この場合でも、凹部16bは着磁工程での位置決めとして用いることができる。
 図5に示すように、位置検出用マグネット11は、中央部に軸孔13が設けられた環状である。位置検出用マグネット11は、回転子マグネット10側と反対側の端面に、軸孔13が設けられた円筒部12を径方向の内側に有すると共に、磁気検出素子47と対向して設けられて位置検出に利用される環状の検出部14を径方向の外側に有する。ここで、径方向は、位置検出用マグネット11の径方向である。すなわち、軸孔13の周囲に回転子軸1と同軸的に設けられた円筒部12が、位置検出用マグネット11の回転子マグネット10側と反対側の端面から突出している。また、円筒部12よりも径方向の外側でかつ検出部14よりも径方向の内側における位置検出用マグネット11の部分は、平板状でかつ環状であり、当該部分に軸方向に貫通する複数個の穴15が設けられる。穴15は、回転子マグネット10の突起5に対応した位置に設けられる。なお、円筒部12が最も肉厚で、次に検出部14が肉厚で、穴15が設けられた部分が最も肉薄で、当該部分が位置検出用マグネット11の一端面を規定する。また、位置検出用マグネット11は、軸方向に非対称で、回転子マグネット10の側は平面状である。
 穴15には、回転子マグネット10の突起5が挿通され、突起5の先端部が熱溶着されることで、位置検出用マグネット11が回転子マグネット10に固定される。このように、位置検出用マグネット11が回転子マグネット10に機械的に固定されるので、組立の信頼性が向上する。また、位置検出用マグネットの肉厚を、穴15が設けられた部分を最も肉薄にしたので、突起5の先端部を熱溶着した熱溶着部35の高さは、位置検出用マグネット11の検出部14と同じか、又は低くすることができる。これにより、電動機100の組込み時に、熱溶着部35がモールド固定子に接触することがなく、組立の信頼性が向上する。
 円筒部12の外径は軸受21aの内輪外径と同等又は少し大きく、かつ、軸受21aの外輪内径よりも小さく、軸受21aの内輪のみを受けるようになっている。軸受21aは、円筒部12の端面に当接するまで回転子軸1に圧入され、軸受21aの位置決めがされる。軸受21aは、検出部14よりも径方向の内側に配置される。
 このように、本実施の形態では、位置検出用マグネット11の検出部14と基板46の磁気検出素子47との間隔は、回転子20においては、位置検出用マグネット11単体で決まることとなり、寸法の管理及び調整が容易になる。そのため、検出部14と磁気検出素子47との距離の精度が向上されるため、回転子20の位置を精度良く検出することが可能となり、電動機100の制御性及び性能の向上を図ることができる。
 回転子20の組立を図6に示す。図6(a)は、回転子マグネット10に位置検出用マグネット11を組付ける前の回転子マグネット10及び位置検出用マグネット11の斜視図、図6(b)は、位置検出用マグネット11が組付けられた回転子マグネット10の斜視図、図6(c)は、突起5の先端部が熱溶着されて位置検出用マグネット11が固定された回転子マグネット10の斜視図である。
 回転子マグネット10の台座7が設けられた端面と位置検出用マグネット11の平面を向かい合わせ、回転子マグネット10の回転子軸1を位置検出用マグネット11の軸孔13に挿通させる(図6(a))。先に回転子軸1を円筒部12の軸孔13に挿通させることで、回転子マグネット10と位置検出用マグネット11の概略な芯だしがされ、回転子マグネット10の突起5と位置検出用マグネット11の穴15の位置決めが容易になる。
 回転子マグネット10の複数個の突起5を、位置検出用マグネット11の複数個の穴15に挿通させ、位置検出用マグネット11が回転子マグネット10の台座7に当接するまで組付ける(図6(b))。この際、回転子マグネット10の多角形状の突起5が位置検出用マグネット11の穴15に挿入され、外周の角が削れるため、ガタがなくなり、位置検出用マグネット11が調芯される。そのため、回転子マグネット10と位置検出用マグネット11の同芯が向上し、精度良く回転子20の位置が検出できるようになるため、電動機100の効率及び性能が向上する。
 位置検出用マグネット11の穴15から突出した回転子マグネット10の突起5の先端部を熱融着することで、位置検出用マグネット11が回転子マグネット10に固定され、回転子20となる(図6(c)、図3)。
 図7は、本実施の形態に係る電動機の回転子の製造方法を示した製造フロー図である。電動機の回転子の製造方法の概略は次の通りである。
(1)ステップ1:回転子軸1の加工をする。併せて、位置検出用マグネット11の成形をする。
(2)ステップ2:バックヨーク3の成形をする。すなわち、回転子軸1の外周面にバックヨーク3を射出成形で一体に成形する。この際、バックヨーク3の端面のうち突起5が設けられた端面と反対側の端面に凹部16を設ける。これにより、バックヨーク3の固定側金型への張り付きを抑制し、連続成形が可能となる。成形後にバックヨーク3を脱磁する。併せて、位置検出用マグネット11を脱磁する。
(3)ステップ3:プラスチックマグネット9の成形をする。すなわち、バックヨーク3の外周面にプラスチックマグネット9を射出成形で一体に形成し、回転子マグネット10を製作する。プラスチックマグネット9の成形用の金型にバックヨーク3をセットする際に、凹部16bを位置決めに用いる。凹部16bを位置決めに用いることで作業が容易となるだけでなく、磁力の配向が精度よく一致することで回転子マグネット10の磁気特性の安定化が図れ、電動機100の性能が向上すると共に、電動機100の音及び振動の低減が図れる。製作後に、回転子マグネット10を脱磁する。
(4)ステップ4:位置検出用マグネット11を回転子マグネット10に組付ける。この際、回転子マグネット10の突起5を位置検出用マグネット11の穴15に挿通させ、位置検出用マグネット11を台座7に当接させるようにして組付ける。
(5)ステップ5:突起5の先端部を熱溶着し、位置検出用マグネット11を回転子マグネット10に固定し、回転子20を製作する。
(6)ステップ6:回転子20を着磁する。着磁では、バックヨーク3の位置決めの凹部16bを位置決めに用いる。これにより、着磁精度の向上と安定化が図れる。
(7)ステップ7:位置検出用マグネット11の円筒部12と回転子マグネット10の軸受当接部4に当接するまで軸受21a,21bを回転子軸1に組付ける。
 以上説明したように、本実施の形態では、バックヨーク3の軸方向の端面のうち複数個の突起5が設けられた端面と反対側の端面に複数の凹部16を設け、凹部16の個数を突起5の個数以上としたので、バックヨーク3の成形時にバックヨーク3の固定側金型への張り付きが抑制され、バックヨーク3の連続成形が可能となり、バックヨーク3の生産性が向上する。さらに、バックヨーク3の連続成形において、突起5の折れ又は亀裂の発生が抑制され、バックヨーク3の品質が向上する。従って、電動機100の生産性の向上、品質の向上、及びコストの低減を図ることができる。
 なお、本実施の形態では、突起5の個数を複数個とし、凹部16の個数を突起5の個数以上の複数個としたが、突起5の個数を1個とし、凹部16の個数を1個以上とすることもできる。また、突起5の個数にかかわらず、凹部16を1個以上設けた場合でも、バックヨーク3の成形時においてバックヨーク3の固定側金型への張り付きを抑制する効果が得られる。また、本実施の形態では、ゲート6は複数個の突起5にそれぞれ設けられるとしたが、ゲート5は複数個の突起5のうちの一部に設けられる構成でもよい。
 また、本実施の形態では、複数個の凹部16のうちの一つの凹部16bは、回転子マグネット10の第2の端面からの深さを複数個の凹部16のうちの凹部16aとは異なるようにしたので、凹部16bは凹部16aから区別しやすく、プラスチックマグネット9の成形工程及び回転子20の着磁工程での位置決めとして用いることができる。これにより、生産性及び着磁精度の向上と安定化が図れ、電動機100の生産性向上、品質の向上、性能の向上及び低コスト化につながる。
 一般に、複数個の凹部16のうちの1つの凹部16bが、回転子マグネット10の軸からの径方向における距離、回転子マグネット10の第2の端面からの深さ及び軸方向に垂直な断面形状の少なくとも1つについて、他の凹部16aの各々とは異なるようにすることで、凹部16bは凹部16aから区別しやすくなり、プラスチックマグネット9の成形工程及び回転子20の着磁工程での位置決めとして用いることができる。なお、凹部16bを位置決めとして用いるためには、凹部16aから区別できればよいので、上記以外にも、軸方向に垂直な断面形状以外の形状、あるいは半径により区別することもできる。ここで、軸方向に垂直な断面形状以外の形状は、例えば軸方向を含む断面形状である。ただし、回転子マグネット10の第2の端面からの深さ及び軸方向に垂直な断面形状は識別が容易である。また、位置決めに用いる凹部16は複数個でもよい。一般に、複数個の凹部16のうちの少なくとも1つが、軸からの径方向における距離、形状、深さおよび半径の少なくとも1つについて、複数個の凹部16のうちの他の各々と異なる場合には、複数個の凹部16のうちの少なくとも1つをプラスチックマグネット9の成形工程及び回転子20の着磁工程で位置決めとして用いることができる。例えば、図3(a)において、凹部16bを2個設け、これらの2個の凹部16bを位置決めに用いることができる。
 また、本実施の形態では、回転子マグネット10の突起5を位置検出用マグネット11の穴15に挿通させ、位置検出用マグネット11を台座7に当接させ、突起5の先端部を熱溶着することで、位置検出用マグネット11を回転子マグネット10に固定し、かつ、突起5に成形用のゲート6を設けるようにしている。このように、ゲート6が設けられた突起5の先端部を熱溶着するので、ゲート6の切断箇所の突出がなくなり、当該切断箇所の突出が他の部位に接触し、あるいは、当該切断箇所から樹脂粉が出るといった不具合を抑制することができる。また、従来のように、回転子マグネット10の端面に当該切断箇所の突出を抑制する凹部を設ける必要がないので、磁力低下及び磁束密度分布の歪率悪化を抑制し、電動機100の効率及び性能の向上につながる。
 また、本実施の形態では、突起5の先端部が熱溶着されることで、位置検出用マグネット11が回転子マグネット10に固定される。このように、位置検出用マグネット11が回転子マグネット10に機械的に固定されるので、組立の信頼性が向上する。また、このような簡易な工程で位置検出用マグネット11を回転子マグネット10に固定することができるので、コストも低減される。また、熱溶着部35の高さは、位置検出用マグネット11の検出部14と同じか、又は低くなっているので、モータ組込み時、熱溶着部35がモールド固定子に接触することがなく、組立の信頼性が向上する。
 また、本実施の形態では、突起5は台座7に設けられているので、突起5を熱融着する際に位置検出用マグネット11が押さえられても台座7により位置検出用マグネット11の浮き上がり及び変形が抑制され、組立の品質が向上する。
 また、本実施の形態では、軸受21bは回転子マグネット10の軸受当接部4に当接されて位置決めされ、軸受21aは位置検出用マグネット11の円筒部12の端面に当接されて位置決めされている。このように、位置検出用マグネット11側の軸受21aを位置検出用マグネット11の円筒部12のみで位置決めすることで、位置検出用マグネット11の検出部14と磁気検出素子47との間隔が、回転子20においては、位置検出用マグネット11単体で決まる。そのため、部品が複数個関与する場合に比べて、寸法の管理及び調整が容易で、組立精度を向上させることができ、回転子20の位置を精度良く検出することが可能となり、電動機100の制御性及び性能並びに信頼性の向上を図ることができる。また、位置検出用マグネット11側の軸受21aを位置検出用マグネット11で直接位置決めすることで、部品点数が削減し、コストも低減される。
 また、本実施の形態では、軸受21aの圧入荷重は位置検出用マグネット11の円筒部12及び回転子マグネット10の円筒部8によって支えられるので、位置検出用マグネット11の変形が抑制され、組立の品質が向上する。
 なお、本実施の形態のその他の効果は、構成の説明と共に既に説明した通りである。
実施の形態2.
 図8は、本実施の形態に係る空気調和機の構成の一例を示す図である。空気調和機300は、室内機310と、室内機310に接続される室外機320とを備える。室内機310には室内機用送風機(図示せず)が搭載され、室外機320には室外機用送風機330が搭載されている。そして、室外機用送風機330及び室内機用送風機には、その駆動源として実施の形態1の電動機100が使用されている。空気調和機300の主用部品である室外機用送風機330及び室内機用送風機に電動機100を用いることにより、生産性が向上し、品質が向上し、性能が向上し及び低コストな空気調和機300を得ることが可能となる。
 なお、実施の形態1の電動機100は、空気調和機以外の電気機器に搭載することもでき、この場合も、本実施の形態と同様の効果を得ることができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 回転子軸、2 ローレット、3 バックヨーク、4 軸受当接部、5 突起、6 ゲート、7 台座、8 円筒部、9 プラスチックマグネット、10 回転子マグネット、11 位置検出用マグネット、12 円筒部、13 軸孔、14 検出部、15 穴、16,16a,16b 凹部、20 回転子、21a,21b 軸受、30 ブラケット、35 熱溶着部、40 モールド固定子、41 モールド樹脂部、42 固定子、43 固定子コア、44 絶縁部、45 コイル、46 基板、47 磁気検出素子、48 軸孔、49 中空部、300 空気調和機、310 室内機、320 室外機、330 室外機用送風機。

Claims (7)

  1.  回転子軸と、
     前記回転子軸の外周面上に配置され、前記回転子軸の軸方向に互いに対向する第1および第2の端面を有し、成形により形成された環状の回転子マグネットと、
     前記軸方向における前記回転子マグネットの一端部に組み付けられ、前記軸方向に貫通する複数個の穴を有する環状の位置検出用マグネットと、
     を備え、
     前記回転子マグネットは、
     前記第1の端面に設けられ、前記位置検出用マグネットが載置される複数個の台座と、
     前記複数個の台座上にそれぞれ設けられ、複数個の成形用のゲートの跡をそれぞれ有すると共に、前記複数個の穴をそれぞれ通る複数個の突起と、
     前記第2の端面に設けられた複数個の凹部と、
     を有し、
     前記複数個の凹部のうちの少なくとも1つは、前記軸方向に垂直な断面形状と前記第2の端面からの深さの少なくとも1つについて、前記複数個の凹部のうちの他の各々とは異なる電動機。
  2.  前記複数個の凹部のうちの少なくとも1つは、前記回転子マグネットの着磁工程において位置決めに用いられる請求項1に記載の電動機。
  3.  前記回転子マグネットは、前記回転子軸の外周面上に配置され、軟磁性粉末及びフェライト粉末の少なくとも一方を含有する樹脂を成形して形成された第1の環状層と、前記第1の環状層の外周面上に配置され、希土類磁石粉末を含有する樹脂を成形して形成された第2の環状層とを有し、
     前記複数個の台座及び前記複数個の突起は、前記第1の端面の一部を成す前記軸方向における前記第1の環状層の一端面に設けられ、
     前記複数個の凹部は、前記第2の端面の一部を成す前記軸方向における前記第1の環状層の他端面に設けられる請求項1に記載の電動機。
  4.  前記第1の環状層の外周と前記第2の環状層の内周は、互いに噛み合う波形状である請求項3に記載の電動機。
  5.  前記複数個の凹部のうちの少なくとも1つは、前記第2の環状層の成形工程において位置決めに用いられる請求項4に記載の電動機。
  6.  前記複数個の凹部のうちの少なくとも1つは、前記回転子マグネットの成形用の金型に設けられたエジェクタピンにより形成される請求項1に記載の電動機。
  7.  請求項1から6のいずれか1項に記載の電動機を備える空気調和機。
     
     
PCT/JP2015/067598 2015-06-18 2015-06-18 電動機及び空気調和機 WO2016203609A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/067598 WO2016203609A1 (ja) 2015-06-18 2015-06-18 電動機及び空気調和機
JP2017524230A JP6391830B2 (ja) 2015-06-18 2015-06-18 電動機、空気調和機及び電動機の回転子の製造方法
CN201590001132.4U CN207134949U (zh) 2015-06-18 2015-06-18 电动机以及空调机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067598 WO2016203609A1 (ja) 2015-06-18 2015-06-18 電動機及び空気調和機

Publications (1)

Publication Number Publication Date
WO2016203609A1 true WO2016203609A1 (ja) 2016-12-22

Family

ID=57545546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067598 WO2016203609A1 (ja) 2015-06-18 2015-06-18 電動機及び空気調和機

Country Status (3)

Country Link
JP (1) JP6391830B2 (ja)
CN (1) CN207134949U (ja)
WO (1) WO2016203609A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234822A1 (ja) * 2020-05-19 2021-11-25 三菱電機株式会社 回転子、電動機、送風機、及び空気調和機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119876A (ja) * 1999-10-18 2001-04-27 Matsushita Seiko Co Ltd 無刷子電動機
JP2003174745A (ja) * 2001-12-06 2003-06-20 Nidec Shibaura Corp ブラシレスdcモータ用回転子
JP2009158153A (ja) * 2007-12-25 2009-07-16 Nec Tokin Corp 近接スイッチおよび近接スイッチの製造方法
JP2011061936A (ja) * 2009-09-08 2011-03-24 Mitsubishi Electric Corp 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP2013104451A (ja) * 2011-11-10 2013-05-30 Yamada Seisakusho Co Ltd 樹脂プーリ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119876A (ja) * 1999-10-18 2001-04-27 Matsushita Seiko Co Ltd 無刷子電動機
JP2003174745A (ja) * 2001-12-06 2003-06-20 Nidec Shibaura Corp ブラシレスdcモータ用回転子
JP2009158153A (ja) * 2007-12-25 2009-07-16 Nec Tokin Corp 近接スイッチおよび近接スイッチの製造方法
JP2011061936A (ja) * 2009-09-08 2011-03-24 Mitsubishi Electric Corp 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP2013104451A (ja) * 2011-11-10 2013-05-30 Yamada Seisakusho Co Ltd 樹脂プーリ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234822A1 (ja) * 2020-05-19 2021-11-25 三菱電機株式会社 回転子、電動機、送風機、及び空気調和機
WO2021235017A1 (ja) * 2020-05-19 2021-11-25 三菱電機株式会社 回転子、電動機、送風機、及び空気調和機

Also Published As

Publication number Publication date
JP6391830B2 (ja) 2018-09-19
CN207134949U (zh) 2018-03-23
JPWO2016203609A1 (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6062069B2 (ja) 電動機及び空気調和機
JP5584669B2 (ja) 回転電機の回転子
JPWO2016178368A1 (ja) 回転電機およびその製造方法
JP4246136B2 (ja) 電動機の回転子の製造方法及び電動機の回転子及び電動機及び空気調和機及び冷蔵庫及び換気扇及び電動機の回転子の樹脂成形金型
WO2016208031A1 (ja) 電動機および空気調和機
JP6062068B2 (ja) 電動機及び空気調和機
US11316416B2 (en) Method of manufacturing rotor, rotor, and motor
JP6373505B2 (ja) 電動機及び空気調和機
JP6586633B2 (ja) 電動機
JP6391830B2 (ja) 電動機、空気調和機及び電動機の回転子の製造方法
JP4942806B2 (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP6381821B2 (ja) 電動機及び空気調和機
JP5159734B2 (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP6391831B2 (ja) 電動機及び空気調和機
US20170201166A1 (en) Electric motor and electrical apparatus comprising same
JP4942802B2 (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
KR101247685B1 (ko) 로터, 이를 구비한 모터 및 로터 제조방법
WO2018016067A1 (ja) 電動機、空気調和機、回転子、及び電動機の製造方法
JP2011120334A (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
WO2018003114A1 (ja) 回転子、電動機、空気調和機、及び回転子の製造方法
JP2011061936A (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP2017046386A (ja) 永久磁石電動機
JP2002223537A (ja) Dcモータ
JP7224218B2 (ja) ロータおよびロータの製造方法
JP6591076B2 (ja) 電動機及び空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895629

Country of ref document: EP

Kind code of ref document: A1