WO2016202188A1 - 增高式磁悬浮装置 - Google Patents

增高式磁悬浮装置 Download PDF

Info

Publication number
WO2016202188A1
WO2016202188A1 PCT/CN2016/085009 CN2016085009W WO2016202188A1 WO 2016202188 A1 WO2016202188 A1 WO 2016202188A1 CN 2016085009 W CN2016085009 W CN 2016085009W WO 2016202188 A1 WO2016202188 A1 WO 2016202188A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnetic levitation
suspension
levitation device
base
Prior art date
Application number
PCT/CN2016/085009
Other languages
English (en)
French (fr)
Inventor
李才力
王云川
王晓冰
李良清
Original Assignee
肇庆市衡艺实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54034031&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016202188(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 肇庆市衡艺实业有限公司 filed Critical 肇庆市衡艺实业有限公司
Publication of WO2016202188A1 publication Critical patent/WO2016202188A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic

Definitions

  • the present invention generally relates to the field of magnetic levitation, and more particularly to magnetic repulsion suspension devices.
  • the existing magnetic levitation devices currently on the market are mainly magnetic repulsion type suspension devices, such as CN1729614B, CN100544183C, CN204993114U and the like.
  • the base disclosed in CN1729614B comprises one or two sets of symmetrically arranged magnets to form a horizontal uniaxial control magnetic field, and optionally a co-magnetic outer peripheral ring magnet to enhance the rollover prevention capability.
  • This base structure is relatively complicated and unstable in suspension.
  • the base disclosed in CN100544183C comprises a single annular magnet to form a horizontal two-axis control magnetic field and at the same time to form sufficient rollover prevention capability.
  • the base is simple in structure and stable in suspension, the suspension height is not ideal.
  • the base disclosed in CN204993114U comprises a ring magnet and a cylindrical magnet arranged in the center of the ring magnet to be magnetically opposite.
  • Such a base while taking into account the levitation height, creates a space barrier to the placement of horizontal control mechanisms such as electromagnets.
  • a first aspect of the invention provides a magnetic levitation device comprising:
  • a suspension comprising a first magnet, wherein the first magnet has magnetically opposite upper and lower surfaces;
  • a base comprising a second magnet and a repulsive magnet for suspending the suspension in the air, wherein the second magnet and the repulsive magnet each have an upper surface and a lower surface opposite in magnetic polarity,
  • the suspension In the normal working state, the suspension is suspended at a reference position above the base, and the lower surface of the first magnet is magnetically opposite to the upper surface of the second magnet but magnetically identical to the upper surface of the repulsive magnet.
  • the first magnet, the second magnet, and the repulsive magnet may be, for example, permanent magnets, and are no longer limited to cylindrical or ring magnets as long as the magnets of each of the magnets themselves have opposite magnetic top and bottom surfaces (or top and bottom surfaces).
  • the present invention completely eliminates the problem of being limited by the shape of the base magnet, which is conceived in that the opposite side of the suspension magnet and the base magnet are magnetically opposite so that the floating magnet does not roll over with respect to the base magnet, and then a repulsive means such as a repulsive magnet is provided to The two are separated by a certain distance.
  • the inherent constraint of the current magnetic repulsion suspension idea is broken, and the base magnet is no longer limited by the structure of the existing ring magnet or the separately dispersed magnet, and even a whole piece of magnet cake can be used as the base suspension structure.
  • the corresponding repulsive means is used at the same time to generate a tendency to separate the two.
  • At least one of the first magnet, the second magnet, and the repulsion magnet may have a substantially cylindrical outer contour, and the repulsion magnet is preferably disposed at a central position of the second magnet.
  • the second magnet may be a round cake or a circular ring (or a ring magnet)
  • the first magnet may be a cylinder or a ring
  • the repulsion magnet may also be a cylinder or a ring.
  • At least one of the first magnet, the second magnet, and the repulsive magnet may have upper and lower through holes.
  • the upper and lower through holes of the first magnet and the repulsive magnet may serve as a certain passage such as a line or a mounting hole, and the upper and lower through holes of the second magnet may be arranged with an electromagnetic control mechanism or a repulsive magnet to make the device more compact or miniaturized.
  • the repulsive magnet may be an annular array of a plurality of co-directional cylindrical permanent magnets, such as a square array of four identically sized, identical cylindrical permanent magnets.
  • the repulsive magnet may be disposed on the upper surface of the second magnet.
  • the upper surface of the second magnet may be the entire plane, and the repulsion magnet and the electromagnetic control mechanism may be disposed thereon. This structure makes the manufacturing and assembly process easier and more convenient.
  • the second magnet may be a cylindrical magnet or set of magnets having a central vertical bore, the repulsive magnet being disposed in the central vertical bore.
  • Central vertical hole It is a blind hole or a through hole that is open at the top. This structure can reduce the height of the entire base and facilitate the fixing of the repulsive magnet.
  • the horizontal cross-sectional outer contours of the first magnet and the repulsive magnet may both be smaller than the horizontal cross-sectional outer contour of the second magnet.
  • This second magnet has a larger footprint and makes the anti-rollover effect better.
  • the first magnet and the repulsive magnet may both be cylindrical magnets, and the second magnet is a cylindrical magnet having upper and lower through holes.
  • the magnetic field formed by this structure is more uniform and can shorten the height of the base.
  • the suspension may further have an auxiliary ring magnet disposed around the first magnet having magnetically opposite upper and lower surfaces, and the lower surface of the auxiliary ring magnet is magnetically opposite to the lower surface of the first magnet.
  • the auxiliary ring magnet and the second magnet may be a single ring magnet or a plurality of discrete magnets arranged in a substantially annular shape. In the operating state, the auxiliary ring magnet is at least partially opposite or projected to coincide with the upper surface of the second magnet. This structure effectively provides a further repulsion, resulting in a further increase in the levitation height.
  • At least one of the first magnet and the repulsive magnet may be a single cylindrical permanent magnet or a special-shaped column permanent magnet in which at least two cylindrical permanent magnets of different sizes are combined.
  • a magnet structure such as a large cylinder and then superimposing a small cylinder, can be more adapted to a particular application, such as where the suspension has a spherical curvature.
  • At least one of the suspension and the base may further include an adsorption plate such as an iron plate having a larger area, and the first magnet and the repulsion magnet or the second magnet may be adsorbed on the respective adsorption plates.
  • an adsorption plate such as an iron plate having a larger area
  • the first magnet and the repulsion magnet or the second magnet may be adsorbed on the respective adsorption plates.
  • the base may further include an auxiliary anti-overturn magnet disposed around the repulsive magnet, the auxiliary anti-overturn magnet having magnetically opposite upper and lower surfaces, and the upper surface of the auxiliary anti-overturn magnet and the second magnet
  • the surface is magnetically identical.
  • the auxiliary anti-overturn magnet may be a single ring disposed directly on or in the second magnet or a plurality of magnetic columns arranged in a ring shape.
  • the auxiliary anti-rolling magnet may actually constitute a part of the second magnet, or a combination of the two may also be referred to as a "second magnet" in the sense of the present invention as long as there is sufficient anti-rollover force as a whole.
  • the base typically also includes a horizontal electromagnetic control system or mechanism for controlling the horizontal displacement of the suspension relative to the base in real time.
  • the horizontal electromagnetic control system may include at least two sets of electromagnets, at least two displacement sensors corresponding to the at least two sets of electromagnets, and a control circuit for respectively controlling the deviation of the suspension in the horizontal direction.
  • At least two horizontal components of the reference position that is, the control circuit controls the corresponding group of electromagnets to generate corresponding correcting electromagnetic forces to return the suspension to the reference position according to the horizontal offset component of the suspension detected by the corresponding displacement sensor.
  • the "reference position" of the present invention means that the suspension has a suspension balance position relative to the base, and the suspension balance position or reference position is usually located above the base, and the inclination or translation of the base also changes accordingly.
  • the displacement sensor of the present invention may employ any suitable sensor such as a Hall sensor or an optical sensor or a radar sensor or the like.
  • the second magnet may further have at least one outer vertical hole distributed around the central vertical hole, and the base further includes a horizontal electromagnetic control system for real-time control of the suspension in a horizontal direction with respect to the base An offset wherein the horizontal electromagnetic control system is at least partially disposed in the at least one outer vertical aperture.
  • the at least one outer vertical hole may be a plurality of blind holes or through holes, for example four upper openings, generally uniformly symmetrically arranged around the central vertical hole, at least for conveniently placing a corresponding electromagnet, for example, to avoid
  • the repulsive magnet has a placeholder interference and reduces the overall height of the base.
  • the shape of the central vertical hole and the outer vertical hole is not limited, but a circular hole shape is preferably employed.
  • the second magnet may be composed of a plurality of (eg four) annular magnets arranged around the repulsive magnet, the at least one outer vertical aperture being provided by the central aperture of each annular magnet itself, and the central vertical The aperture is provided by a gap formed between the plurality of ring magnets.
  • a structure of, for example, four (usually the same size) ring magnets having a coplanar contact (four toroids forming, for example, a parallelogram or a square) is very practical: the gaps or voids that are commonly enclosed by the four can be placed, for example, with a repulsive magnet.
  • the respective central holes can be placed, for example, with an electromagnet.
  • the multiple coplanar array ring magnet structures are also completely different from the existing single ring magnet structure, completely overturning the conventional design idea.
  • the at least one outer vertical aperture may be an eccentric aperture formed in the second magnet about the central vertical aperture.
  • the design idea of re-drilling the ring magnet itself on the ring body can also effectively avoid the positional conflict between the repeller magnet and the electromagnet, for example.
  • the eccentric hole and the central vertical The holes may also be interconnected or merged into a shaped hole such as a four-petal plum hole.
  • the four-ply plum blossom hole saves material and makes the circuit design simpler: for example, all displacement sensors of the horizontal electromagnetic control system can even be integrated or It is designed as a single piece and placed in the central vertical hole, and the line communication between the sensor, control circuit and electromagnet can be conveniently realized.
  • a second aspect of the invention provides a magnetic levitation device comprising:
  • a suspension comprising a first magnet, wherein the first magnet has magnetically opposite upper and lower surfaces;
  • a base comprising a second magnet for suspending the suspension in the air, wherein the second magnet has magnetically opposite upper and lower surfaces, wherein in normal operation, the suspension is suspended at a reference position above the base, and first The lower surface of the magnet is magnetically opposite to the upper surface of the second magnet;
  • the first magnet and the second magnet are stably maintained in a holding force generating means that is at least partially suspended.
  • the holding force generating means enables the first magnet and the second magnet to be stably maintained at least partially suspended, that is, the first magnet is suspended relative to the second magnet or at least a height distance therebetween is completely separated by air or vacuum Separate without any other physical entity intervening to support the first magnet.
  • the holding force generating means is a repulsive force (generating) magnet.
  • the repulsive magnet is preferably disposed in the base, and has magnetically opposite upper and lower surfaces and is magnetically opposite to the upper surface of the second magnet.
  • magnet and “magnet” in the sense of the present invention have substantially the same meaning, and each denotes a magnetic body.
  • FIG. 1 is a schematic structural view of an embodiment of a magnetic levitation device according to the present invention.
  • Figure 2 is a modification of the embodiment shown in Figure 1;
  • Figure 3 is a schematic view showing the structure of another embodiment of the magnetic levitation device according to the present invention.
  • Figure 4 is a schematic view showing the structure of still another embodiment of the magnetic levitation device according to the present invention.
  • Figure 5 is a variant of the embodiment according to Figure 4.
  • Figure 6 is a variant of the embodiment according to Figure 3;
  • Figure 7 shows a variation of the magnet of the embodiment shown in Figure 6;
  • the base of the embodiment shown in Figure 8 includes four adjacent ring magnets
  • FIG. 1 is a schematic view showing the structure of an embodiment of a magnetic levitation device according to the present invention.
  • the magnetic levitation device of this embodiment includes a base 10 and a suspension 20.
  • the base 10 includes a disc-shaped permanent magnet 11 and a cylindrical permanent magnet 12, and the magnet 12 is centrally disposed on the flat upper surface of the magnet 11, the upper surface of the magnet 12 is magnetic N, and the upper surface of the magnet 11 is magnetic S.
  • the suspension 20 includes a larger cylindrical permanent magnet 21 and a smaller cylindrical permanent magnet 22, and the magnet 22 is centrally adsorbed on the magnet 21, both of which have a magnetic N. Further, the suspension 20 further includes a circular iron plate 23, and the magnet 21 is centrally adsorbed on the iron plate 23.
  • the suspension 20 including the magnets 21 and 22 located above will not have a tendency to roll over or flip relative to the base 10 including the magnet 11 located below, and due to the magnet 12 in the base 10.
  • a sufficient repulsive force can be generated, and the suspension 20 will no longer form an adsorption or close tendency with respect to the base 10, that is, the two will be able to maintain a certain distance up and down by the mutual balance of repulsion and gravity.
  • the structure shown in Figure 1 above is fully equipped with other suspension conditions, i.e., the vertical movement tendency and the tendency to flip have been self-eliminated. Control techniques for the traverse tendency of the suspension relative to the base have long been common knowledge in the art and are also briefly exemplified below.
  • the structure shown in Fig. 1 also shows a traverse or horizontal movement control mechanism comprising four electromagnets composed of a core 13 and a coil 14 and corresponding sensors 15, which are evenly spaced around the magnet 12 at the magnet 11 upper surface (forming a cross structure with an X-axis and a Y-axis).
  • the traverse control mechanism typically also has control circuitry that is not shown in the figures for the sake of brevity.
  • the sensor 15 monitors or senses the lateral offset or horizontal component offset of the suspension 20 relative to the base 10 in real time and feeds the sensing result to the control circuit in real time, and controls The circuit controls the corresponding electromagnet according to the feedback crest to generate the corresponding rectifying electromagnetic force in real time, thereby completing the elimination of the traverse trend and realizing the stable suspension of the suspension body 20 relative to the base 10.
  • Figure 2 is a variation of the embodiment of Figure 1.
  • the difference from the embodiment shown in Fig. 1 is that the magnet 12 of the structure shown in Fig. 2 is no longer a single cylindrical magnet but a rectangular array of four discrete magnets.
  • Such a square or annular array of repulsive magnets can provide a more stable repulsive force while also providing a space in which, for example, an integrated sensor is placed.
  • Figure 3 is a schematic view showing the structure of another embodiment of the magnetic levitation device according to the present invention.
  • the disk-shaped magnet 11 of the structure shown in Fig. 3 no longer has a flat upper surface, but has corresponding blind holes 16 for accommodating the electromagnet and the magnet 12, respectively.
  • This blind hole structure can facilitate the mounting and positioning of the electromagnet or magnet and reduce the height of the base.
  • Figure 4 is a schematic view showing the structure of still another embodiment of the magnetic levitation device according to the present invention.
  • the difference from the embodiment shown in Fig. 1 is that the magnet 11 shown in Fig. 4 is no longer a circular plate but a circular ring having a cylindrical through hole 17 in the middle.
  • the four sensors 15 are arranged close to each other around the solid cylindrical magnet 12, and the X-axis and the Y-axis are respectively arranged symmetrically, and the four electromagnets are located around the magnet 12 at a long distance, both of which are located in the through hole 17.
  • the base 10 further includes an annular iron plate 18 that is attracted to the bottom of the magnet 11, the outer edge extending outward beyond the outer edge of the magnet 11, and the inner edge being aligned with the inner edge of the magnet 11.
  • Figure 5 is a variation of the embodiment of Figure 4. The difference from the embodiment shown in FIG. 4 is that the magnet 12 shown in FIG. 5 is no longer a solid cylinder but a hollow cylinder having upper and lower through holes 120. Two sensors 15 are arranged in the through hole 120, one for each of the X axis and the Y axis. The two sensors 15 can be made either as discrete components or as one-piece integrated components.
  • Figure 6 is a variation of the embodiment shown in Figure 3. The difference from the embodiment shown in Fig. 3 is that in Fig. 6, the blind holes 16 in the magnet 11 become corresponding through holes, so that the height of the base can be further reduced. Further, an iron plate 18 is attached, but only the holes corresponding to the four electromagnets (or through holes) are formed in the iron plate 18 to avoid the influence of the electromagnet without opening a hole corresponding to the magnet 12.
  • Fig. 7 shows a modification of the magnet 11 of the embodiment shown in Fig. 6, wherein the five discrete through holes formed in the magnet 11 shown in Fig. 6 communicate with each other in Fig. 7, and generally form a four-pronged plum blossom through hole.
  • FIG. 8 The embodiment shown in Figure 8 is somewhat similar to the embodiment shown in Figure 6.
  • the magnet 11 in the base 10 is no longer a single magnet, but is constituted by four annular magnets 11' adjacent to each other.
  • the central circular hole 110' of each of the ring magnets 11' is used to place a corresponding electromagnet, and the hollow portion 111' surrounded by the four annular magnets 11' is used to place the magnet 12. Only the holes corresponding to the four circular holes 110' are opened in the iron plate 18 to avoid the influence of the electromagnets without opening the holes corresponding to the hollow portions 111'.
  • the embodiment shown in Figure 9 is a modification of the embodiment shown in Figure 8.
  • the suspension 20 shown in Fig. 9 further includes a peripheral magnet ring composed of a plurality of discrete cylindrical magnets 24, the lower surface of which is magnetic S. This peripheral magnet ring further enhances the repulsive force and can even replace the magnet 12 in the base 10.
  • the embodiment shown in Figure 10 is a modification of the embodiment shown in Figure 6.
  • the suspension 20 shown in Fig. 10 also adds a peripheral magnet ring composed of a plurality of discrete cylindrical magnets 24. Further, a magnet ring composed of a plurality of discrete cylindrical magnets 19 is added to the base 10, and is disposed around the magnet 12, but the upper surface is magnetically S.
  • the cross-sectional shape of the magnet is circular or circular, any other suitable cross-sectional shape such as a square cross-section may be employed as long as the upper and lower surfaces are magnetically opposite; the cross-sectional shape of all blind holes or through holes is also Neither is it limited to the illustrated circular shape, and any other suitable cross-sectional shape such as a polygon or the like may be employed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

磁悬浮装置,包括:包含第一磁体(21,22)的悬浮体(20),其中第一磁体(21,22)具有磁性相反的上表面和下表面;以及包含第二磁体(11)和斥力磁体(12)的底座(10),用于将悬浮体(20)悬浮于空中,其中第二磁体(11)和斥力磁体(12)均具有磁性相反的上表面和下表面。正常工作状态下,悬浮体(20)悬浮在底座(10)上方的基准位置,并且第一磁体(21,22)的下表面磁性与第二磁体(11)的上表面磁性相反但与斥力磁体(12)的上表面磁性相同。该磁悬浮装置打破了目前磁斥型悬浮思想的固有束缚,底座磁铁不再受已有环形磁铁或者分开散布磁体的结构限制,甚至是一整块磁铁饼就能作为底座悬浮结构。

Description

增高式磁悬浮装置 技术领域
本发明总体涉及磁悬浮领域,更具体地涉及磁斥型悬浮装置。
背景技术
由于悬吊式磁悬浮装置的底座需要另行设计上方悬臂以悬吸悬浮体,因此底座结构复杂且视觉效果不佳。故而,目前市场上现有的磁悬浮装置基本以磁斥型悬浮装置为主,例如CN1729614B、CN100544183C、CN204993114U等。
CN1729614B公开的底座包含一组或两组呈对称布置的磁铁以形成水平单轴控制磁场,另外可选择性增设同向磁性的外围环形磁铁以增强防侧翻能力。这种底座结构相对复杂且悬浮不稳定。
CN100544183C公开的底座包括单个环形磁铁以形成水平双轴控制磁场并且同时形成足够的防侧翻能力。这种底座虽然结构简单且悬浮稳定,但悬浮高度不够理想。
CN204993114U公开的底座包括环形磁铁以及在环形磁铁中央布设成反向磁性的柱形磁铁。这种底座虽然顾及了悬浮高度,但却给水平控制机构例如电磁铁的布置造成了空间障碍。
发明内容
本发明的目的是提供一种磁悬浮装置,其能够克服上述现有磁悬浮装置的某种或某些缺陷。
本发明的第一方面提供了一种磁悬浮装置,其包括:
包含第一磁体的悬浮体,其中第一磁体具有磁性相反的上表面和下表面;以及
包含第二磁体和斥力磁体的底座,用于将悬浮体悬浮于空中,其中第二磁体和斥力磁体均具有磁性相反的上表面和下表面,
其中正常工作状态下,悬浮体悬浮在底座上方的基准位置,并且第一磁体的下表面磁性与第二磁体的上表面磁性相反但与斥力磁体的上表面磁性相同。
第一磁体、第二磁体以及斥力磁体可以是例如永久磁铁,不再受限于柱形或环形磁铁,只要各磁体自身上下表面(或顶面和底面)的磁性相反即可。本发明彻底摆脱了受底座磁体形状限制的问题,其构思为:悬浮磁体与底座磁体相对面磁性相反以使悬浮磁体不会相对于底座磁体发生侧翻,然后再提供斥力手段例如斥力磁铁以使二者上下隔开一定距离。因此,对于本发明而言,打破了目前磁斥型悬浮思想的固有束缚,底座磁铁不再受已有环形磁铁或者分开散布磁体的结构限制,甚至是一整块磁铁饼就能作为底座悬浮结构,只要同时辅以相应的斥力手段以产生能够使二者上下分开的趋势即可。
根据本发明的磁悬浮装置,第一磁体、第二磁体和斥力磁体中的至少一个可以具有基本圆柱形外轮廓,并且斥力磁体优选布置在第二磁体的中央位置。例如,第二磁体可以是圆饼或圆环(或环形磁铁),第一磁体可以是圆柱或圆环,斥力磁体也可以是圆柱或圆环。各磁体采用这种圆柱形外轮廓使得所形成的磁场更加均匀并因此更容易控制。
在进一步的优选实施例中,第一磁体、第二磁体和斥力磁体中的至少一个可以具有上下贯通孔。第一磁体和斥力磁体的上下贯通孔可以作为某种通道例如线路或安装孔等;第二磁体的上下贯通孔则可以布置电磁控制机构或者斥力磁体以使装置更加紧凑或小型化。在一个更优选的实施例中,斥力磁体可以为由多个同向柱形永磁体构成的环形阵列,例如四个尺寸相同的同向圆柱形永磁铁所构成的方阵。
在本发明的可选实施例中,斥力磁体可以布置在第二磁体的上表面上。这种情况下,第二磁体的上表面可以是整个平面,在其上再布置斥力磁体以及电磁控制机构即可。这种结构使得制造以及组装过程更加简单方便。
在本发明的替代性实施例中,第二磁体可以为具有中央竖向孔的圆柱形磁体或磁体组,斥力磁体布置在中央竖向孔中。中央竖向孔可 以是上部开口的盲孔或贯通孔。这种结构可以降低整个底座的高度并便于固定斥力磁体。
根据本发明的磁悬浮装置,第一磁体与斥力磁体的水平横截面外轮廓可以均小于第二磁体的水平横截面外轮廓。这种第二磁体占地面积更大的结构使得防侧翻效果更好。
在进一步的优选实施例中,第一磁体与斥力磁体可以均为圆柱形磁体,第二磁体则为具有上下贯通孔的圆柱形磁体。如上所述,这种结构所形成的磁场更加均匀且能够缩短底座高度。
更进一步,悬浮体还可以具有围绕第一磁体布置的辅助环形磁体,其具有磁性相反的上表面和下表面,并且辅助环形磁体的下表面磁性与第一磁体的下表面磁性相反。辅助环形磁体与第二磁体可以是单个环形磁体也可以是大致环形排列的多个分立磁体。工作状态下辅助环形磁体与第二磁体的上表面至少部分相对或投影重合。这种结构有效提供了进一步的斥力,使得悬浮高度进一步增加。
根据本发明的磁悬浮装置,第一磁体和斥力磁体中的至少一个可以为单个圆柱形永磁体或由至少两个尺寸不同的圆柱形永磁体加合而成的异型柱永磁体。这种例如大圆柱再叠加小圆柱的磁体结构可以更加适配某种具体应用例如悬浮体具有球面弧度的情况。
根据本发明的磁悬浮装置,悬浮体和底座中的至少一个还可以包括吸附板例如面积更大的铁板,第一磁体和斥力磁体或第二磁体可以吸附在相应吸附板上。采用这种结构不但可以更加方便地安装或固定相应磁铁,同时还使得相应磁体的磁场借助这种大面积铁板而能够得以有效外延或增大。
根据本发明的磁悬浮装置,底座还可以包括围绕斥力磁体布置的辅助防翻转磁体,辅助防翻转磁体具有磁性相反的上表面和下表面,并且辅助防翻转磁体的上表面磁性与第二磁体的上表面磁性一致。辅助防翻转磁体可以是直接布置在第二磁体之上或之中的单个环或排列成环状的多个磁柱。辅助防翻转磁体其实可以构成第二磁体的一部分,或者二者合起来亦可称作本发明意义下的“第二磁体”,只要整体上具有足够的防侧翻力即可。
根据本发明的磁悬浮装置,底座通常还包括水平电磁控制系统或机构,用于实时控制悬浮体相对于底座沿水平方向的偏移。这种情况下,水平电磁控制系统可以包括至少两组电磁铁、与所述至少两组电磁铁相对应的至少两个位移传感器、以及控制电路,用以分别控制悬浮体在水平方向上偏离所述基准位置的至少两个水平分量,即控制电路根据相应位移传感器所检测的悬浮体的水平偏移分量,控制相应组的电磁铁产生相应纠偏电磁力以使悬浮体返回基准位置。应当理解,本发明的“基准位置”是指悬浮体相对于底座具有悬浮平衡位置,该悬浮平衡位置或基准位置通常位于底座上方,随着底座的倾斜或平移也会随之发生相应改变。此外,本发明的位移传感器可以采用任何合适的传感器例如霍尔传感器或光学传感器或雷达传感器等。
在本发明的一个优选实施例中,第二磁体还可以具有围绕中央竖向孔分布的至少一个外侧竖向孔,底座还包括水平电磁控制系统,用于实时控制悬浮体相对于底座沿水平方向的偏移,其中水平电磁控制系统至少部分设置在所述至少一个外侧竖向孔中。所述至少一个外侧竖向孔可以是多个例如四个上部开口的盲孔或贯通孔,通常围绕中央竖向孔均匀对称布置,至少可以用于例如方便地安放相应的电磁铁,以避免与斥力磁体发生占位干涉并降低底座整体高度。中央竖向孔以及外侧竖向孔的形状不受限制,但优选采用圆孔形状。
在进一步的实施例中,第二磁体可以由围绕斥力磁体布置的多个(例如四个)环形磁体组成,所述至少一个外侧竖向孔由各环形磁体自身的中央孔提供,而中央竖向孔则由所述多个环形磁体之间所形成的间隙提供。这种例如四个(通常尺寸相同的)环形磁铁共面两两接触(四个环心形成例如平行四边形或正方形)的结构非常实用:四者所共同围成的间隙或空隙可以放置例如斥力磁体,各自的中央孔则可以放置例如电磁铁。另外,这种多个共面阵列环形磁铁结构也完全不同于现有的单个环形磁铁结构,彻底颠覆了常规设计思想。
在进一步的替代实施例中,所述至少一个外侧竖向孔可以为在第二磁体上围绕中央竖向孔开设的偏心孔。这种在环形磁铁自身环体上再挖孔的设计思想同样能够有效避免例如斥力磁体与电磁铁之间的占位冲突。作为这种情况的一个可选择性实例,偏心孔与中央竖向 孔还可以相互连通或融合为一个异型孔例如四瓣梅花孔。相对于中央竖向孔与偏心孔之间互不连通的实例,这种四瓣梅花孔会更加节省材料并使得线路设计更加简单:例如,这时水平电磁控制系统的所有位移传感器甚至可以集成或设计为一个单体件并安放在中央竖向孔中,同时可以方便地实现传感器、控制电路与电磁铁之间的线路通信。
本发明的第二方面提供了一种磁悬浮装置,其包括:
包含第一磁体的悬浮体,其中第一磁体具有磁性相反的上表面和下表面;
包含第二磁体的底座,用于将悬浮体悬浮于空中,其中第二磁体具有磁性相反的上表面和下表面,其中在正常工作状态下,悬浮体悬浮在底座上方的基准位置,并且第一磁体的下表面磁性与第二磁体的上表面磁性相反;以及
使第一磁体与第二磁体稳定保持至少部分悬空隔开的保持力产生手段。
根据本发明的保持力产生手段使得第一磁体与第二磁体能够稳定保持至少部分悬空隔开,即第一磁体相对于第二磁体悬浮或二者之间至少有一段高度距离完全由空气或真空隔开而无需任何其它物理实体介于其间来支撑第一磁体。
在本发明的一个具体实施例中,所述保持力产生手段为斥力(产生)磁体。这种情况下,斥力磁体优选设置在底座中,也具有磁性相反的上表面和下表面,并与第二磁体的上表面磁性相反。
本领域技术人员可以理解,虽然为了简明起见可能在本申请的说明书中没有具体描述,但是除非存在明显冲突本发明每个实施例的相关特征同样可以适用于其它实施例。另外,本发明意义下的“磁体”和“磁铁”这两个术语含义基本相同,均表示磁性体。
附图说明
图1为根据本发明的磁悬浮装置的一个实施例的结构示意图;
图2为图1所示实施例的一个变型;
图3为根据本发明的磁悬浮装置的另一个实施例的结构示意图;
图4为根据本发明的磁悬浮装置的又一个实施例的结构示意图;
图5是根据图4实施例的一个变型;
图6是根据图3所示实施例的一个变型;
图7示出了图6所示实施例的磁铁的变型;
图8所示实施例的底座包括四个邻近的环形磁铁;
图9所示实施例是图8所示实施例的改进;以及
图10所示实施例是图6所示实施例的改进。
具体实施方式
下面结合附图详细说明本发明的实施例。
图1是根据本发明的磁悬浮装置的一个实施例的结构示意图。该实施例的磁悬浮装置包括底座10和悬浮体20。底座10包括圆板形永久磁铁11和圆柱形永久磁铁12,磁铁12居中布置在磁铁11的平整上表面上,磁铁12上表面磁性为N,磁铁11上表面磁性为S。悬浮体20包括较大的圆柱形永久磁铁21和较小的圆柱形永久磁铁22,磁铁22居中吸附在磁铁21上,二者的下表面磁性均为N。此外,悬浮体20还包括圆形铁板23,磁铁21居中吸附在铁板23上。
根据上述图1所示布置结构,位于上方的包括磁铁21和22的悬浮体20将不会相对于位于下方的包括磁铁11的底座10产生侧翻或翻转趋势,并且由于底座10中的磁铁12可以产生足够斥力,悬浮体20将不再相对于底座10形成吸附或靠近趋势,即二者通过斥力以及重力作用的相互平衡将能够上下保持一定距离。因此,除了悬浮体20相对于底座10的横移或水平移动趋势以外,上述图1所示结构已经完全具备其它悬浮条件,即已经自我消除了竖直移动趋势以及翻转趋势。而悬浮体相对于底座的仅存横移趋势的控制技术早已是本领域公知常识,亦如下所简单举例说明。
图1所示结构还示出了横移或水平移动控制机构,包括四个由铁芯13和线圈14所组成的电磁铁以及相应的传感器15,四个电磁铁围绕磁铁12均匀间隔布置在磁铁11上表面(形成具有X轴和Y轴的十字架结构)。横移控制机构通常还具有控制电路,为了简明起见未在图中示出。传感器15实时监控或感测悬浮体20相对于底座10的横向偏移或水平分量偏移并将感测结果实时反馈给控制电路,控制 电路根据反馈结杲实时控制相应的电磁铁产生相应的纠偏电磁力,从而完成横移趋势的消除,实现悬浮体20相对于底座10的稳定悬浮。
图2是图1所示实施例的一个变型。与图1所示实施例的不同之处在于,图2所示结构的磁铁12不再是单个柱形磁铁,而是四个分立磁铁所形成的矩形阵列。这种方阵或环形阵列的斥力磁铁可以提供更加稳定的斥力,同时还在其中提供了布置例如一体集成传感器的空间。
图3是根据本发明的磁悬浮装置的另一个实施例的结构示意图。与图1所示实施例的不同之处在于,图3所示结构的圆板形磁铁11不再具有平整上表面,而是具有相应的盲孔16以分别容纳电磁铁以及磁铁12。这种盲孔结构可以便于电磁铁或磁铁的安装定位,并减小底座高度。
图4是根据本发明的磁悬浮装置的又一个实施例的结构示意图。与图1所示实施例的不同之处在于,图4所示磁铁11不再是圆板而是中间具有圆筒状贯通孔17的圆环。四个传感器15近距离围绕实心圆柱磁铁12布置,X轴与Y轴各两个并对称布置,四个电磁铁远距离围绕磁铁12,均位于贯通孔17内。此外,底座10还包括环形铁板18,吸附在磁铁11底部,外沿向外延伸超过磁铁11外沿,内沿与磁铁11内沿对齐。
图5是根据图4实施例的一个变型。与图4所示实施例的不同之处在于,图5所示磁铁12不再是实心圆柱而是具有上下贯通孔120的空心圆柱。2个传感器15布置在贯通孔120中,X轴与Y轴各一个。这两个传感器15既可以制成分立件,也可以制成一体集成件。
图6是根据图3所示实施例的一个变型。与图3所示实施例的不同之处在于,在图6中,磁铁11上的盲孔16变为了相应的通孔,从而可以进一步减小底座高度。另外还附加了铁板18,但铁板18上仅仅开设有与四个电磁铁(或通孔)对应的孔以避免对电磁铁产生影响而不开设与磁铁12相对应的孔。
图7示出了图6所示实施例的磁铁11的变型,其中图6所示磁铁11上开设的5个分立通孔在图7中互相连通,总体形成一个四瓣梅花通孔。
图8所示实施例有些近似图6所示实施例。但是,在图8中,底座10中的磁铁11不再是单个磁铁,而是由四个环形磁铁11’互相邻近而构成。各环形磁铁11’自身的中央圆孔110’用以放置相应的电磁铁,而由四个环形磁铁11’所围成的中空部分111’则用来放置磁铁12。铁板18上也仅仅开设有与四个圆孔110’对应的孔以避免对电磁铁产生影响而不开设与中空部分111’相对应的孔。
图9所示实施例是图8所示实施例的改进。图9所示悬浮体20还包括外围磁铁环,由多个分立圆柱形磁铁24构成,磁铁24下表面磁性为S。这种外围磁铁环进一步增强了斥力,甚至可以取代底座10中的磁铁12。
图10所示实施例是图6所示实施例的改进。图10所示悬浮体20也增加了由多个分立圆柱形磁铁24构成的外围磁铁环。此外,底座10中还增加了由多个分立圆柱形磁铁19所构成的磁铁环,围绕磁铁12布置,但上表面磁性为S。
本领域技术人员应该理解,上述实施例仅用于说明而非限制本发明。例如,虽然所示磁铁截面形状为圆形或圆环形,但也可以采用任何其它合适的截面形状例如方形截面等,只要其上下表面磁性相反即可;所有盲孔或通孔的截面形状也均不限于图示的圆形,可以采用任何其它合适截面形状例如多边形等。

Claims (21)

  1. 一种磁悬浮装置,包括:
    包含第一磁体的悬浮体,其中第一磁体具有磁性相反的上表面和下表面;以及
    包含第二磁体和斥力磁体的底座,用于将悬浮体悬浮于空中,其中第二磁体和斥力磁体均具有磁性相反的上表面和下表面,
    其中正常工作状态下,悬浮体悬浮在底座上方的基准位置,并且第一磁体的下表面磁性与第二磁体的上表面磁性相反但与斥力磁体的上表面磁性相同。
  2. 根据权利要求1所述的磁悬浮装置,其中第一磁体、第二磁体和斥力磁体中的至少一个具有基本圆柱形外轮廓,并且斥力磁体布置在第二磁体的中央位置。
  3. 根据权利要求2所述的磁悬浮装置,其中第一磁体、第二磁体和斥力磁体中的至少一个具有上下贯通孔。
  4. 根据权利要求2所述的磁悬浮装置,其中斥力磁体布置在第二磁体的上表面上。
  5. 根据权利要求2所述的磁悬浮装置,其中第二磁体为具有中央竖向孔的圆柱形磁体或磁体组,斥力磁体布置在中央竖向孔中。
  6. 根据权利要求1所述的磁悬浮装置,其中第一磁体与斥力磁体的水平横截面外轮廓均小于第二磁体的水平横截面外轮廓。
  7. 根据权利要求6所述的磁悬浮装置,其中第一磁体与斥力磁体均为圆柱形磁体,第二磁体为具有上下贯通孔的圆柱形磁体。
  8. 根据权利要求7所述的磁悬浮装置,其中悬浮体还具有围绕第一磁体布置的辅助环形磁体,具有磁性相反的上表面和下表面,并且辅助环形磁体的下表面磁性与第一磁体的下表面磁性相反。
  9. 根据权利要求1所述的磁悬浮装置,其中第一磁体和斥力磁体中的至少一个为单个圆柱形永磁体或由至少两个尺寸不同的圆柱形永磁体加合而成的异型柱永磁体。
  10. 根据权利要求1所述的磁悬浮装置,其中悬浮体和底座中的至少一个还包括吸附板,第一磁体和斥力磁体或第二磁体吸附在相应吸附板上。
  11. 根据权利要求1所述的磁悬浮装置,其中底座还包括围绕斥力磁体布置的辅助防翻转磁体,辅助防翻转磁体具有磁性相反的上表面和下表面,并且辅助防翻转磁体的上表面磁性与第二磁体的上表面磁性一致。
  12. 根据权利要求1所述的磁悬浮装置,其中底座还包括水平电磁控制系统,用于实时控制悬浮体相对于底座沿水平方向的偏移。
  13. 根据权利要求12所述的磁悬浮装置,其中水平电磁控制系统包括至少两组电磁铁、与所述至少两组电磁铁相对应的至少两个位移传感器、以及控制电路,控制电路根据相应位移传感器所检测的悬浮体的水平偏移分量,控制相应组的电磁铁产生相应纠偏电磁力以使悬浮体返回基准位置。
  14. 根据权利要求5所述的磁悬浮装置,其中第二磁体还具有围绕中央竖向孔分布的至少一个外侧竖向孔,底座还包括水平电磁控制系统,用于实时控制悬浮体相对于底座沿水平方向的偏移,其中水平电磁控制系统至少部分设置在所述至少一个外侧竖向孔中。
  15. 根据权利要求14所述的磁悬浮装置,其中第二磁体由围绕斥力磁体布置的多个环形磁体组成,所述至少一个外侧竖向孔由各环形磁体自身的中央孔提供,而中央竖向孔则由所述多个环形磁体之间所形成的间隙提供。
  16. 根据权利要求14所述的磁悬浮装置,其中所述至少一个外侧竖向孔为在第二磁体上围绕中央竖向孔开设的偏心孔。
  17. 根据权利要求16所述的磁悬浮装置,其中所述至少一个外侧竖向孔与中央竖向孔相互连通或融合为一个异型孔。
  18. 根据权利要求3所述的磁悬浮装置,其中斥力磁体为由多个同向柱形永磁体构成的环形阵列。
  19. 一种磁悬浮装置,包括:
    包含第一磁体的悬浮体,其中第一磁体具有磁性相反的上表面和下表面;
    包含第二磁体的底座,用于将悬浮体悬浮于空中,其中第二磁体具有磁性相反的上表面和下表面,其中在正常工作状态下,悬浮体悬浮在底座上方的基准位置,并且第一磁体的下表面磁性与第二磁体的上表面磁性相反;以及
    使第一磁体与第二磁体稳定保持至少部分悬空隔开的保持力产生手段。
  20. 根据权利要求19所述的磁悬浮装置,其中所述保持力产生手段为斥力磁体。
  21. 根据权利要求20所述的磁悬浮装置,其中斥力磁体设置在底座中,也具有磁性相反的上表面和下表面,并与第二磁体的上表面磁性相反。
PCT/CN2016/085009 2015-06-16 2016-06-06 增高式磁悬浮装置 WO2016202188A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2015103375051 2015-06-16
CN201510337505.1A CN104901587A (zh) 2015-06-16 2015-06-16 移动式磁悬浮装置
CN201610329845.4A CN105790641B (zh) 2015-06-16 2016-05-18 磁悬浮装置
CN2016103298454 2016-05-18

Publications (1)

Publication Number Publication Date
WO2016202188A1 true WO2016202188A1 (zh) 2016-12-22

Family

ID=54034031

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/085009 WO2016202188A1 (zh) 2015-06-16 2016-06-06 增高式磁悬浮装置
PCT/CN2016/085008 WO2016202187A1 (zh) 2015-06-16 2016-06-06 移动式磁悬浮装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085008 WO2016202187A1 (zh) 2015-06-16 2016-06-06 移动式磁悬浮装置

Country Status (3)

Country Link
US (1) US10476407B2 (zh)
CN (3) CN104901587A (zh)
WO (2) WO2016202188A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109567406A (zh) * 2018-12-29 2019-04-05 鸿达磁健康科技有限公司 磁悬浮茶几
CN110671631A (zh) * 2019-09-04 2020-01-10 南京理工大学 一种圆杆式悬浮台灯
CN112196896A (zh) * 2020-10-10 2021-01-08 珠海格力电器股份有限公司 一种磁悬浮控制方法、系统、控制器及存储介质

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901587A (zh) * 2015-06-16 2015-09-09 肇庆市衡艺实业有限公司 移动式磁悬浮装置
CN105517261B (zh) * 2016-02-05 2018-03-06 上海顿格电子贸易有限公司 一种磁悬浮灯具的控制系统
CN105846642B (zh) * 2016-04-19 2019-05-10 中北大学 磁体阵列平面转动式能量采集器
DE102016224951A1 (de) * 2016-12-14 2018-06-14 Robert Bosch Gmbh Beförderungsvorrichtung mit einem Stator zur kontrollierten Beförderung eines Transportkörpers relativ zum Stator
KR102564536B1 (ko) * 2017-01-04 2023-08-04 엘지전자 주식회사 음향 출력장치
KR102564534B1 (ko) * 2017-01-04 2023-08-04 엘지전자 주식회사 음향 출력장치
CN107200178A (zh) * 2017-06-12 2017-09-26 皓科通信科技有限公司 便携式的产品悬浮盒
CN107547009A (zh) * 2017-07-07 2018-01-05 乌鲁木齐爱思特专利转让服务有限责任公司 悬浮并能移动的智能装置及控制方法
CN107659210A (zh) * 2017-10-10 2018-02-02 北京紫晶立方科技有限公司 磁斥型磁悬浮产品的辅助放置卡具、系统及放置方法
JP2019120810A (ja) * 2018-01-09 2019-07-22 株式会社小泉製作所 浮上ベル装置
CN108584445A (zh) * 2018-01-18 2018-09-28 佛山科学技术学院 一种远程可控磁悬浮传输系统
CN108937117A (zh) * 2018-01-26 2018-12-07 重庆嘎娃娃科技有限公司 用于夹紧电路板的便捷式桌面
CN107958625B (zh) * 2018-01-26 2024-04-19 航天创客(北京)科技有限公司 一种模拟卫星转动的教学装置
CN109036095B (zh) * 2018-08-17 2021-03-19 杭州红山磁性材料有限公司 一种磁悬浮展示装置
CN109158802B (zh) * 2018-10-16 2021-02-26 宁夏吴忠市好运电焊机有限公司 用于焊接机器人的磁悬浮减震稳定连接器
CN109350333A (zh) * 2018-11-26 2019-02-19 西安交通大学医学院第附属医院 一种磁悬浮颈椎牵引装置
CN109599245B (zh) * 2018-11-26 2021-07-02 苏州佳世达电通有限公司 磁悬浮固定系统及其装置
CN110572080B (zh) 2019-09-25 2023-04-07 肇庆市衡艺实业有限公司 磁悬浮装置及其直线运动机构
CN110748563B (zh) * 2019-09-29 2020-12-25 肇庆市衡艺实业有限公司 磁悬浮装置及其旋转升降机构
CN110993387B (zh) * 2019-11-26 2021-10-26 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种超快速断路器用斥力机构
CN110941081B (zh) * 2019-12-13 2021-07-30 南通大学 一种磁悬浮式载物台及其控制方法
CN111240695B (zh) * 2020-01-07 2023-08-08 中车株洲电力机车有限公司 一种中低速磁浮列车悬浮控制器在线编程方法
CN111313762B (zh) * 2020-03-25 2021-02-02 四川矿产机电技师学院 全位推挤磁斥型自动磁悬浮系统
CN111474237A (zh) * 2020-06-01 2020-07-31 浙江蔡司管道科技有限公司 一种管材内壁在线缺陷检测仪
CN111732320A (zh) * 2020-07-10 2020-10-02 王莉红 一种污泥干化处理系统
CN111817608A (zh) * 2020-07-13 2020-10-23 王晓冰 行星式磁悬浮装置
CN112086312A (zh) 2020-07-13 2020-12-15 李良清 多维控制悬浮开关
EP3984421B1 (en) * 2020-10-19 2023-08-09 BSH Hausgeräte GmbH Coffee machine with electromagnetic suspension system
CN112228734B (zh) * 2020-10-26 2022-04-01 深圳衡艺贸易有限公司 磁悬浮装置及其复合升降系统
US20220287490A1 (en) * 2021-03-12 2022-09-15 James Singleton Magnetic Holder for Beverages
CN113055574B (zh) * 2021-03-26 2023-01-10 联想(北京)有限公司 一种电子设备
CN115159131B (zh) * 2021-04-01 2024-06-25 广汽埃安新能源汽车有限公司 一种磁悬浮输送系统及其运载组件
CN113257620A (zh) * 2021-05-20 2021-08-13 王雨川 准悬浮开关设备
CN113600254B (zh) * 2021-08-05 2022-12-23 苏州熙华新药开发有限公司 一种生物实验用水浴加热装置
CN113787897B (zh) * 2021-08-16 2023-10-13 岚图汽车科技有限公司 一种磁悬浮悬置及动力总成支撑装置
CN114333581B (zh) * 2021-12-23 2023-08-25 湖北长江新型显示产业创新中心有限公司 悬浮拉伸显示装置
WO2023216010A1 (zh) * 2022-05-07 2023-11-16 王晓冰 环筒式磁悬浮装置升降系统
CN115242129B (zh) * 2022-07-11 2024-09-24 泉州装备制造研究所 一种三自由度磁悬浮移动平台及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819436A (zh) * 2006-03-17 2006-08-16 王晓冰 磁斥型悬浮装置
CN1838521A (zh) * 2006-04-18 2006-09-27 王晓冰 具有垂向移动控制机构的磁斥型悬浮装置
CN2922271Y (zh) * 2006-03-10 2007-07-11 王晓冰 磁斥型悬浮装置
CN201594802U (zh) * 2009-12-02 2010-09-29 深圳博迪恒业科技有限公司 微功耗永磁斥力型磁悬浮装置
US20110025153A1 (en) * 2008-11-16 2011-02-03 Jannick Simeray optimised levitation device
CN202395704U (zh) * 2011-08-16 2012-08-22 周霞 一种利用磁铁同极相斥、异性相吸以及电磁相结合的悬浮装置
CN104901587A (zh) * 2015-06-16 2015-09-09 肇庆市衡艺实业有限公司 移动式磁悬浮装置
CN204993114U (zh) * 2015-06-16 2016-01-20 肇庆市衡艺实业有限公司 磁悬浮装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1788933C (ru) * 1990-09-05 1993-01-15 Инженерно-научный центр "ТЭМП" Подъемно-т говое устройство дл транспортной системы на магнитной подвеске
CN1767349A (zh) * 2005-11-08 2006-05-03 宁波天明电子股份有限公司 一种移动型磁悬浮装置
GB2425576A (en) * 2005-04-26 2006-11-01 Z & D Ltd Magnetic suspension structure
CN1822487B (zh) * 2006-03-24 2011-01-05 王晓冰 磁斥型悬浮装置
JP4853496B2 (ja) 2007-07-30 2012-01-11 株式会社デンソー 位置検出センサ
KR101237933B1 (ko) * 2010-10-08 2013-03-05 우성곤 공중 부양 전시 장치
CN102315805B (zh) * 2011-09-27 2014-02-12 沈欠辉 一种磁悬浮装置
CN202309577U (zh) * 2011-10-28 2012-07-04 刘敬兰 磁悬浮旋转装置
US9795894B2 (en) * 2013-08-12 2017-10-24 Joseph Chieffo Magnetic levitation device and method
US9564838B2 (en) * 2014-08-27 2017-02-07 Barry Stipe Magnetic levitation device for prolonged rotation
CN204835984U (zh) * 2015-06-16 2015-12-02 肇庆市衡艺实业有限公司 移动式磁悬浮装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2922271Y (zh) * 2006-03-10 2007-07-11 王晓冰 磁斥型悬浮装置
CN1819436A (zh) * 2006-03-17 2006-08-16 王晓冰 磁斥型悬浮装置
CN1838521A (zh) * 2006-04-18 2006-09-27 王晓冰 具有垂向移动控制机构的磁斥型悬浮装置
US20110025153A1 (en) * 2008-11-16 2011-02-03 Jannick Simeray optimised levitation device
CN201594802U (zh) * 2009-12-02 2010-09-29 深圳博迪恒业科技有限公司 微功耗永磁斥力型磁悬浮装置
CN202395704U (zh) * 2011-08-16 2012-08-22 周霞 一种利用磁铁同极相斥、异性相吸以及电磁相结合的悬浮装置
CN104901587A (zh) * 2015-06-16 2015-09-09 肇庆市衡艺实业有限公司 移动式磁悬浮装置
CN204993114U (zh) * 2015-06-16 2016-01-20 肇庆市衡艺实业有限公司 磁悬浮装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109567406A (zh) * 2018-12-29 2019-04-05 鸿达磁健康科技有限公司 磁悬浮茶几
CN110671631A (zh) * 2019-09-04 2020-01-10 南京理工大学 一种圆杆式悬浮台灯
CN112196896A (zh) * 2020-10-10 2021-01-08 珠海格力电器股份有限公司 一种磁悬浮控制方法、系统、控制器及存储介质

Also Published As

Publication number Publication date
CN105790641A (zh) 2016-07-20
WO2016202187A1 (zh) 2016-12-22
CN104901587A (zh) 2015-09-09
CN205792311U (zh) 2016-12-07
US10476407B2 (en) 2019-11-12
CN105790641B (zh) 2018-04-10
US20180175750A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2016202188A1 (zh) 增高式磁悬浮装置
JP5981939B2 (ja) 振動絶縁装置
US10361021B1 (en) System and method for magnetic levitation
WO2017177617A1 (zh) 运送托盘及包括其的运输机器人
KR101729684B1 (ko) 자기부상을 이용한 그리퍼
KR100622057B1 (ko) 영·전자 마그네틱 리프트
CN204993114U (zh) 磁悬浮装置
WO2023155891A1 (zh) 一种磁悬浮装置
KR101107181B1 (ko) 마스크 흡착용 자석 조립체
US20150219872A1 (en) Lens driving device
KR101717463B1 (ko) 모방 장치
WO2010127572A1 (zh) 旋转磁悬浮装置及陀螺磁悬浮方法
KR100313415B1 (ko) 자력식 진공증착용 섀도우마스크 지지장치
KR20110011050A (ko) 중량물 인양용 슬링장치
KR20110007411A (ko) 마그네틱 리프터
CN219457266U (zh) 一种新型环形电磁铁
WO2018214576A1 (zh) 设有阻隔墙的吸盘安装板
JP6946167B2 (ja) 基板保持部材
KR102091781B1 (ko) 기판처리장치
KR102511685B1 (ko) 미소 소자, 미소 소자의 정렬 장치 및 방법
JP2010003997A (ja) 磁気浮揚装置
US4525078A (en) Electromagnetically-induced rocking clock
WO2018158804A1 (ja) 制振台
JP2005003621A (ja) 空間支持方法および装置
CN116915091A (zh) 一种侧向平衡式磁悬浮装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16810929

Country of ref document: EP

Kind code of ref document: A1