WO2016202180A1 - 一种mems结构及其制作方法 - Google Patents

一种mems结构及其制作方法 Download PDF

Info

Publication number
WO2016202180A1
WO2016202180A1 PCT/CN2016/084692 CN2016084692W WO2016202180A1 WO 2016202180 A1 WO2016202180 A1 WO 2016202180A1 CN 2016084692 W CN2016084692 W CN 2016084692W WO 2016202180 A1 WO2016202180 A1 WO 2016202180A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
component
suspended
mems structure
mems
Prior art date
Application number
PCT/CN2016/084692
Other languages
English (en)
French (fr)
Inventor
程进
陆安江
白忠臣
陈巧
丁金玲
徐乃涛
孙其梁
谢会开
Original Assignee
无锡微奥科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡微奥科技有限公司 filed Critical 无锡微奥科技有限公司
Publication of WO2016202180A1 publication Critical patent/WO2016202180A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate

Definitions

  • the invention belongs to the field of micro mechanical systems (MEMS), and relates to a MEMS structure and a manufacturing method thereof.
  • MEMS micro mechanical systems
  • MEMS microelectromechanical systems
  • the controllable deformation member mentioned in the present invention may be a Bimorph structure.
  • This structure has been applied to a variety of fields, and the article "Development and applications of high fill-factor, small footprint mems micromirrors and micromirror arrays" (the article is Dr. Kemiao Jia, University of Florida, 2009) describes a variety of Bimorphs.
  • Application of structural thermal drivers is not able to maintain a certain state for a long time, so that the position of the component suspended by the heat driver cannot be guaranteed at all; for some special applications, the suspended component needs to be kept at a certain position forever.
  • the invention can solve this problem without change.
  • MEMS switch and MEMS VOA mainly use electrostatic high and low comb teeth as the driver.
  • two wafers are bonded together by bonding technology to realize high and low comb drive.
  • the disadvantage is that the process capability is very high. If there is a slight deviation in the bonding position during the bonding process, the yield of the entire product will be affected.
  • the technical problem to be solved by the present application is: for the above technical problem, a MEMS structure and a manufacturing method thereof are provided, wherein a MEMS structure having a controllable deformation component is driven by a controllable deformation component to be lifted by the suspension component, and then is adhesived fixed.
  • a MEMS structure comprising a substrate, a controllably deformable member, a suspended component, wherein the suspended component is coupled to the substrate by at least one controllably deformable component, and further comprising a first connection portion disposed on the suspended component And a second connection portion disposed on the substrate.
  • the suspended component is one of a mirror structure, a comb structure or a mass structure.
  • controllable deformation components are two, and the two controllable deformation components are symmetrically disposed on both sides of the suspended component.
  • the substrate material is monocrystalline silicon, polycrystalline silicon, silicon carbide or glass material.
  • the invention also discloses a manufacturing method of the MEMS structure, comprising the following steps:
  • Step 1 The controllable deformation component is a structure in which two or more different expansion coefficient materials are stacked; the deformation of the controllable deformation component is controlled by heating or cooling the entire MEMS structure, thereby changing the suspension component. Suspension height or angle;
  • Step 2 After the suspension height or angle of the suspension component reaches the setting requirement in the first step, the first connection portion on the suspension component is connected and fixed to the second connection portion on the substrate by the bonding material.
  • the bonding material is any one of UV glue, photoresist, polymer glue, inorganic glue, epoxy resin glue, silver paste, metal film, and non-metal film.
  • first connecting portion and the second connecting portion are bonded and fixed by a dispensing, a glue spraying, a film growth process or a screen printing process.
  • controllable deformation component is embedded with a resistance heating layer, the substrate is connected with an electrical lead, the resistance heating layer is connected with the electrical lead; and the heating lead is energized to achieve controllable The deformed parts are fine-tuned.
  • the suspended component is provided with a magnetic material layer or a coil-shaped metal thin film layer, and the bottom of the substrate is provided with a magnetic driver; the auxiliary adjustment of the height of the suspended component is realized by the magnetic driver.
  • the invention is obviously superior to the conventional high and low comb process in the manufacturing process, and has low requirements on process capability and high yield.
  • the present invention utilizes a MEMS structure of a controllable deformable member in combination with a bonding material to fix the MEMS movable structure.
  • MEMS field assembly process precise, accurate and reliable fixing methods are realized.
  • the present invention can be applied to applications such as micro-optical optical path adjustment, MEMS switch, MEMS VOA, MEMS Mirror, and MEMS gyro.
  • the present invention can also be similarly applied to the fields of optical communication MEMS, acceleration, gyro and the like.
  • Figure 1 is a perspective view showing the structure of the present invention not yet bonded
  • Figure 2 is a plan view of Figure 1;
  • Figure 3 is a side view of Figure 1;
  • Figure 4 is a cross-sectional view taken along line 2AA;
  • FIG. 5 is a schematic structural view of the MEMS after the dispensing of FIG. 1;
  • Figure 6 is a plan view of Figure 5;
  • Figure 7 is a side view of Figure 5;
  • Figure 8 is a cross-sectional view taken along line BB of Figure 6;
  • Figure 9 is a perspective view showing the structure of the method without the heating lead after bonding according to the method of the present invention.
  • Figure 10 is a perspective view of the method of the present invention not yet bonded structure - two controllable deformation structures
  • Figure 11 is a plan view of Figure 10
  • FIG. 12 is a schematic structural view of the MEMS after dispensing according to FIG. 10;
  • Figure 13 is a perspective view of the method of the present invention having no bonded structure - the suspended component is a comb-tooth structure;
  • Figure 14 is a plan view of Figure 13;
  • FIG. 15 is a schematic structural view of the MEMS after the dispensing of FIG. 13;
  • Figure 16 is an enlarged view of the suspended component of Figure 13;
  • FIG. 17 is a process flow diagram of forming a MEMS structure in Embodiment 1 of the present invention.
  • a MEMS structure comprising a substrate 1, a controllable deformation member 3, a suspended member 4, wherein the suspended member 4 is coupled to the substrate 1 by at least one controllable deformation member 3, further comprising a suspension member disposed thereon A first connection portion 7 on the fourth connection portion 8 and a second connection portion 8 provided on the substrate 1.
  • the invention also discloses a manufacturing method of the MEMS structure, comprising the following steps:
  • Step 1 The controllable deformation component is a structure in which two or more different expansion coefficient materials are stacked; the deformation of the controllable deformation component is controlled by heating or cooling the entire MEMS structure, thereby changing the suspension component. Suspension height or angle;
  • Step 2 After the suspension height or angle of the suspension component reaches the setting requirement in the first step, the first connection portion on the suspension component is connected and fixed to the second connection portion on the substrate by the bonding material.
  • a MEMS structure includes a substrate 1, a suspended component 4, such as a mass or mirror, and a controllable deformation component 3, wherein one end of the controllable deformation component 3 and the lining
  • the bottom 1 is connected, and the other end is connected to the suspended component 4;
  • a first connecting portion 7 is disposed at a side of the suspended component 4; one end of the first connecting portion 7 is fixedly connected to the suspended component 4, and the other end is suspended.
  • the substrate 1 is provided with a second connecting portion 8 which forms a matching relationship with the first connecting portion 7; the structural application can be applied to fields such as micro-optical optical path adjustment and optical communication.
  • the substrate 1 provides a support for the MEMS structure of the present invention
  • the first connecting portion 7 and the second connecting portion 8 are used for positioning by the suspension member 4, and the first connecting portion 7 and the second connecting portion 8 are matched to each other in a corresponding comb-tooth structure relationship for facilitating bonding;
  • the controllable deformation member 3 is made of a material of two different expansion coefficients of Al and SiO 2 and a Ti metal conductive layer, and functions to raise the suspended component 4 to the surface of the substrate 1 and form electrical electricity with the electrical lead 5. connection;
  • the suspended component 4 is an optical mirror
  • Electrical leads 5 are used to energize the metallic conductive layer within the controllably deformable component 3;
  • the bonding material 6 is a UV glue which acts as a bonding agent.
  • the MEMS movable structural process is fabricated using Al and SiO 2 as the material of the controllable deformation component 3 (see Figure 17 for the process flow diagram):
  • the suspended member 4 having one end connected to the substrate 1 and the other end raised and forming a 10° angle and a height difference of 0 to 30 ⁇ m from the surface of the substrate 1 can be obtained.
  • the heating lead 5 is energized as needed, and the controllable deformation member 3 is finely adjusted;
  • the UV glue When adjusted to the set position, the UV glue is used to rapidly cure the UV glue;
  • the final MEMS structure is shown in FIG. 5.
  • controllable deformation member 3 is used; the controllable deformation member 3 is formed by combining materials of two different expansion coefficients of Cu and W;
  • a MEMS structure includes a substrate 1, a suspended component 4 (for example, a mass or a mirror), two symmetrically distributed controllable deformation members 3, and one end of the controllable deformation member 3. Connected to the substrate 1 and connected to the suspended component 4 at the other end; a first connecting portion 7 is provided at a side of the suspended component 4; one end of the first connecting portion 7 is fixedly connected to the suspended component 4 The other end is suspended.
  • the substrate 1 is provided with a second connecting portion 8 which forms a matching relationship with the first connecting portion 7; the structural application can be applied to fields such as micro-optical optical path adjustment and optical communication.
  • the MEMS movable structural process is fabricated using Cu and W as the material of the controllable deformation component 3:
  • the suspended member 4 having one end connected to the substrate 1 and the other end raised and forming a 0° angle and a height difference of 0 to 30 ⁇ m from the surface of the substrate 1 can be obtained.
  • the bonding process is based on UV glue and power trimming.
  • the heating lead 5 is energized as needed, and the controllable deformation member 3 is finely adjusted;
  • the UV glue When adjusted to the set position, the UV glue is used to rapidly cure the UV glue;
  • controllable deformation member 3 is made of a material of two different expansion coefficients of Au and SiO 2 , and its action is to raise the suspended component 4 to the surface of the substrate 1; Electrical lead 5; the adhesive material 6 is made of epoxy resin.
  • a MEMS structure includes a substrate, a suspended component (mass or mirror), and a single controllable deformation component, wherein one end of the controllable deformation component is connected to the substrate, and One end is connected to the suspended member; a first connecting portion 7 is provided at a side of the suspended member; one end of the first connecting portion 7 is fixedly connected to the suspended member, and the other end is suspended.
  • the structure application can be applied to fields such as micro optical optical path adjustment and optical communication.
  • the MEMS structure flow is made using Au and SiO 2 as the material of the controllable deformation component 3:
  • the suspended member 4 having one end connected to the substrate 1 and the other end raised and forming a 10° angle and a height difference of 0 to 30 ⁇ m from the surface of the substrate 1 can be obtained.
  • the bonding process takes epoxy resin and changes the ambient temperature as an example.
  • the ambient temperature is changed, and the controllable deformation component 3 is finely adjusted;
  • the epoxy resin When adjusted to the set position, the epoxy resin is cured using a heat curing box;
  • the suspended component 4 is a comb-tooth structure; a mirror surface 9 is added, and the mirror edge has a comb-tooth structure, and a high-low comb drive is formed with the suspended component 4; After a connecting portion 7 is fixed by the bonding material 6, the high and low comb drive can drive the mirror surface 9 to rotate;
  • a MEMS structure includes a substrate 1, a suspended component 4 (comb structure), a mirror component 9 with a comb structure, and two symmetrical controllable deformation components, wherein the One end of the deformation preventing member 3 is connected to the substrate 1, and the other end is connected to the suspended member 4; a first connecting portion 7 is provided at a side of the suspended member 4; one end of the first connecting portion 7 is The suspension member 4 is fixedly connected and the other end is suspended.
  • the substrate 1 is provided with a second connecting portion 8 which forms a matching relationship with the first connecting portion 7; the hanging member 4 and the comb teeth around the mirror surface form a high and low comb structure, and can be used as a driver.
  • This structure can be used in fields such as MEMS switch, MEMS VOA, and the like.
  • the MEMS structure process is fabricated using Al and SiO 2 as the material of the controllable deformation component 3:
  • the suspended member 4 having one end connected to the substrate 1 and having the other end lifted up and forming a 0° angle and a 0 to 30 ⁇ m height difference comb structure with the surface of the substrate 1 can be obtained.
  • the bonding process is based on UV glue and power trimming.
  • the heating lead 5 is energized as needed, and the controllable deformation member 3 is finely adjusted;
  • the UV glue When adjusted to the set position, the UV glue is used to rapidly cure the UV glue;
  • the suspended component 4 contains a magnetic coil structure, and the suspended component is a mirror surface;
  • a MEMS structure comprising a substrate 1, a suspended component 4, and two symmetric controllable deforming members, wherein one end of the controllable deforming member 3 is connected to the substrate 1, and the other end and the suspended member 4 are a first connecting portion 7 is disposed at a side of the suspended member 4; one end of the first connecting portion 7 is fixedly connected to the suspended member 4, The other end is suspended.
  • the substrate 1 is provided with a second connecting portion 8 which forms a matching relationship with the first connecting portion 7; the suspended member 4 contains a magnetic coil.
  • a magnetic actuator is provided at the bottom of the substrate 1, and the height adjustment of the suspension member 4 is achieved in combination with the magnetic coil in the suspended component 4. This structure can be used in fields such as MEMS switch, MEMS VOA, and the like.
  • Al and SiO 2 are used as the material of the controllable deformable member 3, and Ti is used as the coil material to fabricate the MEMS structure flow:
  • the suspended member 4 having one end connected to the substrate 1 and having the other end lifted up and forming a 0° angle and a 0 to 30 ⁇ m height difference comb structure with the surface of the substrate 1 can be obtained.
  • the bonding process is based on UV glue and electromagnetic fine tuning.
  • a magnetic driver is disposed at the bottom of the substrate to finely adjust the controllable deformation member 3;
  • the UV glue When adjusted to the set position, the UV glue is used to rapidly cure the UV glue;
  • the entire MEMS can be fabricated.
  • the MEMS switch and the MEMS VOA with the electrostatic high and low comb as the driver can be realized by the embodiment 5, which solves the prior art process problem and greatly reduces the cost, and the invention can also be similarly applied to the optical communication MEMS. , acceleration, gyro and other fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)

Abstract

一种MEMS结构,包括衬底(1)、可控变形部件(3)、被悬挂部件(4),其中,被悬挂部件(4)通过至少一个可控变形部件(3)与衬底(1)连接,还包括设置在被悬挂部件(4)上的第一连接部(7)以及设置在衬底(1)上的第二连接部(8);一种MEMS结构的制造方法,其中可控变形部件(3)为两种或两种以上不同膨胀系数材料叠放而成的结构,通过外部对整个MEMS结构加热或制冷来控制可控变形部件(3)的变形,从而改变被悬挂部件(4)的悬挂高度或角度;当被悬挂部件(4)的悬挂高度或角度达到设定要求后,通过粘结材料(6)将被悬挂部件(4)上第一连接部(7)与衬底(1)上的第二连接部(8)连接固定。该方法实现了MEMS结构精密、准确和可靠的固定连接。

Description

一种MEMS结构及其制作方法 技术领域
本发明属于微机械系统(MEMS)领域,涉及一种MEMS结构及其制作方法。
背景技术
微机电系统(MEMS)技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。
本发明中提到的可控变形部件,可以是一种Bimorph结构。这种结构已被应用到多个领域,文章“Development and applications of high fill-factor,small footprint mems micromirrors and micromirror arrays”(文章为University of Florida的Kemiao Jia博士论文.2009)中描述了多种Bimorph结构热驱动器的应用。但Bimorph结构热驱动器存在一个缺点是不能够长期的保持某个状态,从而不能够保证被热驱动器悬挂的部件位置一点都不变;针对某些特殊应用需要将被悬挂部件保持在某个位置永远不变,本发明即可解决该难题。例如:在微光学器件装配过程中,经常会遇到一些光路的对准和微小光学元件的精确安装,目前只是依靠精密的机械结构来进行调整,但精密机械结构价格昂贵,但又不能很有效的解决微光学器件装配中存在的问题。本发明可以很有效的解决该技术难题。
目前市场上MEMS switch、MEMS VOA主要以静电高低梳齿作为驱动器,在制作工艺上均是由2片wafer通过键合技术粘接在一起,从而实现高低梳齿驱动器。存在的缺点是对工艺能力要求非常高,在键合过程中如果键合对位有一点偏差即会影响整个产品的成品率。
发明内容
本申请所要解决的技术问题是:针对上述技术问题,提供一种MEMS结构及其制作方法,将具有可控变形部件的MEMS结构,通过可控变形部件带动被悬挂部件抬升,再被粘接剂固定。
一种MEMS结构,包括衬底、可控变形部件、被悬挂部件,其中,被悬挂部件通过至少一个可控变形部件与衬底连接,还包括设置在所述被悬挂部件上的第一连接部及设置在所述衬底上的第二连接部。
进一步的,所述被悬挂部件为镜面结构、梳齿结构或质量块结构中的一种。
进一步的,所述可控变形部件为两个,两个所述可控变形部件对称设置在所述被悬挂部件的两侧。
进一步的,所述衬底材料为单晶硅、多晶硅、碳化硅或玻璃材料。
本发明还公开了一种所述MEMS结构的制作方法,包括以下几个步骤:
步骤一、所述可控变形部件为两种或两种以上不同膨胀系数材料叠放而成的结构;通过外整个MEMS结构加热或制冷来控制可控变形部件的变形,从而改变被悬挂部件的悬挂高度或角度;
步骤二、当步骤一中被悬挂部件的悬挂高度或角度达到设定要求后,通过粘结材料将被悬挂部件上第一连接部与衬底上的第二连接部连接固定。
进一步的,所述粘结材料为UV胶、光刻胶、高分子胶、无机胶、环氧树脂胶、银浆、金属薄膜、非金属薄膜中的任意一种。
进一步的,通过点胶、喷胶、薄膜生长工艺或者丝网印刷工艺对第一连接部和第二连接部部位进行粘接固定。
进一步的,所述可控变形部件上内嵌有电阻加热层,所述衬底上连接有电引线,所述电阻加热层与所述电引线连接;通过对加热引线进行通电,实现对可控变形部件进行微调。
进一步的,所述被悬挂部件上设有磁性材料层或线圈形状的金属薄膜层,所述衬底的底部设有磁性驱动器;通过磁性驱动器实现被悬挂部件的高度的辅助调节。
本发明的有益效果:
第一、本发明在制作工艺上明显优于传统的高低梳齿工艺,并且对工艺能力要求低,成品率高。
第二、本发明利用可控变形部件MEMS结构与粘接材料相结合,来固定MEMS可动结构。在MEMS领域装配工艺过程中,实现了精密,准确,可靠的固定方式。
第三、本发明可以应用在微光学光路调节、MEMS switch、MEMS VOA、MEMS Mirror、MEMS陀螺等应用。
第四、本发明还可以做类似推广应用于光通信MEMS、加速度、陀螺等领域。
附图说明
图1为本发明方法还未粘接结构的立体示意图;
图2为图1的俯视图;
图3为图1的侧视图;
图4为图2AA方向的剖视图;
图5为图1点胶后MEMS的结构示意图;
图6为图5的俯视图;
图7为图5的侧视图;
图8为图6的BB方向剖视图;
图9为本发明方法粘接后无加热引线结构立体示意图;
图10为本发明方法还未粘接结构的立体示意图——两个可控变形结构;
图11为图10的俯视图;
图12为图10的点胶后MEMS的结构示意图;
图13为本发明方法还未粘接结构的立体示意图——被悬挂部件为梳齿结构;
图14为图13的俯视图;
图15为图13的点胶后MEMS的结构示意图;
图16为图13中的被悬挂部件的放大图;
图17为本发明中实施例1中形成MEMS结构的工艺流程图;
其中,1、衬底;3、可控变形部件;4、被悬挂部件;5、加热引线;6、粘结材料;7、第一连接部;8第二连接部。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施的限制。
其次,本发明利用示意图进行详细描述,在详述本发明实施例时,为便于说明,所述示意图只是实例,其在此不应限制本发明保护的范围。
一种MEMS结构,包括衬底1、可控变形部件3、被悬挂部件4,其中,被悬挂部件4通过至少一个可控变形部件3与衬底1连接,还包括设置在所述被悬挂部件4上的第一连接部7以及设置在所述衬底1上的第二连接部8。
本发明还公开了一种所述MEMS结构的制作方法,包括以下几个步骤:
步骤一、所述可控变形部件为两种或两种以上不同膨胀系数材料叠放而成的结构;通过外整个MEMS结构加热或制冷来控制可控变形部件的变形,从而改变被悬挂部件的悬挂高度或角度;
步骤二、当步骤一中被悬挂部件的悬挂高度或角度达到设定要求后,通过粘结材料将被悬挂部件上第一连接部与衬底上的第二连接部连接固定。
下面通过具体实施例对发明作进一步详细的说明;
实施例1
如图1所示,一种MEMS结构,包括衬底1、被悬挂部件4,例如:质量块或者反射镜、可控变形部件3,其中,所述可控变形部件3的一端与所述衬底1连接,另一端与被悬挂部件4连接;在所述被悬挂部件4的侧部设置有第一连接部7;所述第一连接部7一端与被悬挂部件4固定连接,另一端悬空。衬底1上设置有第二连接部8,所述第二连接部8与第一连接部7形成匹配关系;该结构应用可以适用于微光学光路调节及光通信等领域。
衬底1是为本发明MEMS结构提供了一个支撑的作用;
第一连接部7和第二连接部8是用于被悬挂部件4定位,第一连接部7与第二连接部8是匹配对应的梳齿结构关系,便于实施粘接;
可控变形部件3是由Al、SiO2两种不同膨胀系数的材料及Ti金属导电层复合而成,其作用使被悬挂部件4抬升高于衬底1表面,并能与电引线5形成电学连接;
被悬挂部件4是光学反射镜;
电引线5是用于给可控变形部件3内的金属导电层通电;
粘结材料6的为UV胶,起粘接作用。
使用Al与SiO2作为可控变形部件3材料制作MEMS可动结构流程(工艺流程图参见图17):
a、在SOI硅片制作的衬底1上PECVD SiO2并图形化;
b、溅射Ti并图形化;
c、再次PECVD SiO2并图形化;
d、溅射Al并图形化;
e、DRIE背面硅;
f、DRIE正面硅;
g、释放结构。
通过以上方法就可以得到一端连接在衬底1上,另一端翘起并与所述衬底1表面之间形成10°角及0~30μm高度差的被悬挂部件4。
在完成上述步骤的前提下,进行以下步骤:
根据需要选择合适的UV胶,通过喷射点胶方式进行点胶,对所述第二连接部8与第一连接部7部位进行点胶;
然后根据需要,对加热引线5进行通电,对可控变形部件3进行微调;
当调到设定位置时,使用UV光源对UV胶进行迅速固化;
通过上述步骤可实现整个MEMS的制作,最终MEMS结构如图5所示。
实施例2
该实施例与实施例1的主要区别在于采用了对称分布的可控变形部件3;可控变形部件3选用Cu与W两种不同膨胀系数的材料复合而成;
如图10所示,一种MEMS结构,包括衬底1、被悬挂部件4(例如:质量块或者反射镜)、两个对称分布的可控变形部件3,所述可控变形部件3的一端与所述衬底1连接,另一端与被悬挂部件4连接;在所述被悬挂部件4的侧部设置有第一连接部7;所述第一连接部7一端与被悬挂部件4固定连接,另一端悬空。衬底1上设置有第二连接部8,所述第二连接部8与第一连接部7形成匹配关系;该结构应用可以适用于微光学光路调节及光通信等领域。
使用Cu与W作为可控变形部件3的材料制作MEMS可动结构流程:
在SOI硅片制作的衬底1上PECVD SiO2并图形化;
溅射Ti并图形化;
再次PECVD SiO2并图形化;
溅射W并图形化;
溅射Cu并图形化;
DRIE背面硅;
DRIE正面硅;
释放结构。
如图10所示,通过以上方法就可以得到一端连接在衬底1上,另一端翘起并与所述衬底1表面之间形成0°角及0~30μm高度差的被悬挂部件4。
粘接工艺方法,以UV胶,通电微调为例。
在完成上述步骤的前提下,进行以下步骤:
根据需要选择合适的UV胶,通过喷射点胶方式进行点胶,对所述第二连接部8与第一连接部7部位进行点胶;
然后根据需要,对加热引线5进行通电,对可控变形部件3进行微调;
当调到设定位置时,使用UV光源对UV胶进行迅速固化;
通过上述步骤即可实现整个MEMS的制作,最终MEMS结构如图12所示。
实施例3
该实施例与实施例1的主要区别在于可控变形部件3是由Au、SiO2两种不同膨胀系数的材料复合而成,其作用使被悬挂部件4抬升高于衬底1表面;并且没有电引线5;粘接材料6使用的是环氧树脂胶。
如图9所示,一种MEMS结构,包括衬底、被悬挂部件(质量块或者反射镜)、单个可控变形部件,其中,所述可控变形部件的一端与所述衬底连接,另一端与被悬挂部件连接;在所述被悬挂部件的侧部设置有第一连接部7;所述第一连接部7一端与被悬挂部件固定连接,另一端悬空。该结构应用可以适用于微光学光路调节及光通信等领域。
使用Au与SiO2作为可控变形部件3的材料制作MEMS结构流程:
在SOI硅片制作的衬底1上PECVD SiO2并图形化;
溅射Au并图形化;
DRIE背面硅;
DRIE正面硅;
释放结构。
通过以上方法就可以得到一端连接在衬底1上,另一端翘起并与所述衬底1表面之间形成10°角及0~30μm高度差的被悬挂部件4。
粘接工艺方法,以环氧树脂胶,改变环境温度为例。
在完成上述步骤的前提下,进行以下步骤:
根据需要选择合适的环氧树脂胶,通过喷射点胶方式进行点胶,对第一连接部7与衬底1之间部位进行点胶;
然后根据需要,对环境温度进行改变,对可控变形部件3进行微调;
当调到设定位置时,使用热固化箱对环氧树脂胶进行固化;
通过上述步骤可实现整个MEMS的制作,最终MEMS结构如图9所示。
实施例4
该实施例与实施例2的主要区别在于被悬挂部件4为梳齿结构;多了一个反射镜面9,并且反射镜面边缘也有梳齿结构,与被悬挂部件4形成了高低梳齿驱动器;当第一连接部7被粘接材料6固定后,高低梳齿驱动器可以驱动反射镜面9进行转动;
如图13所示,一种MEMS结构,包括衬底1、被悬挂部件4(梳齿结构)、带梳齿结构的反射镜面部件9、两个对称的可控变形部件,其中,所述可控变形部件3的一端与所述衬底1连接,另一端与被悬挂部件4连接;在所述被悬挂部件4的侧部设置有第一连接部7;所述第一连接部7一端与被悬挂部件4固定连接,另一端悬空。衬底1上设置有第二连接部8,所述第二连接部8与第一连接部7形成匹配关系;被悬挂部件4与镜面四周的梳齿形成高低梳齿结构,可作为驱动器使用。该结构可以用于MEMS switch、MEMS VOA等领域。
使用Al与SiO2作为可控变形部件3材料制作MEMS结构流程:
在SOI硅片制作的衬底1上PECVD SiO2并图形化;
溅射Ti并图形化;
再次PECVD SiO2并图形化;
溅射Al并图形化;
DRIE背面硅;
DRIE正面硅;
释放结构。
通过以上方法就可以得到一端连接在衬底1上,另一端翘起并与所述衬底1表面之间形成0°角及0~30μm高度差梳齿结构的被悬挂部件4。
粘接工艺方法,以UV胶,通电微调为例。
在完成上述步骤的前提下,进行以下步骤:
根据需要选择合适的UV胶,通过喷射点胶方式进行点胶,对第二连接部8及第一连接部7部位进行点胶;
然后根据需要,对加热引线5进行通电,对可控变形部件3进行微调;
当调到设定位置时,使用UV光源对UV胶进行迅速固化;
通过上述步骤即可实现整个MEMS的制作,最终MEMS结构如图15所示。
实施例5
该实施例与实施例2的主要区别在于被悬挂部件4内含有磁性线圈结构,被悬挂部件为反射镜面;
一种MEMS结构,包括衬底1、被悬挂部件4、两个对称的可控变形部件,其中,所述可控变形部件3的一端与所述衬底1连接,另一端与被悬挂部件4连接;在所述被悬挂部件4的侧部设置有第一连接部7;所述第一连接部7一端与被悬挂部件4固定连接, 另一端悬空。衬底1上设置有第二连接部8,所述第二连接部8与第一连接部7形成匹配关系;被悬挂部件4内含有磁性线圈。使用方法:在衬底1底部设置磁性驱动器,与被悬挂部件4内的磁性线圈相结合实现被悬挂部件4的高度调节。该结构可以用于MEMS switch、MEMS VOA等领域。
使用Al与SiO2作为可控变形部件3材料,Ti作为线圈材料,制作MEMS结构流程:
在SOI硅片制作的衬底1上PECVD SiO2并图形化;
溅射Ti并图形化;
再次PECVD SiO2并图形化;
溅射Al并图形化;
DRIE背面硅;
DRIE正面硅;
释放结构。
通过以上方法就可以得到一端连接在衬底1上,另一端翘起并与所述衬底1表面之间形成0°角及0~30μm高度差梳齿结构的被悬挂部件4。
粘接工艺方法,以UV胶,电磁微调为例。
在完成上述步骤的前提下,进行以下步骤:
根据需要选择合适的UV胶,通过喷射点胶方式进行点胶,对第二连接部8及第一连接部7部位进行点胶;
然后根据需要,在衬底底部设置磁性驱动器,对可控变形部件3进行微调;
当调到设定位置时,使用UV光源对UV胶进行迅速固化;
通过上述步骤即可实现整个MEMS的制作。
通过实施例5可以实现以静电高低梳齿作为驱动器的MEMS switch、MEMS VOA,该方案解决了现有技术的工艺难题,并大大的缩减了成本,本发明还可以做类似推广应用于光通信MEMS、加速度、陀螺等领域。

Claims (10)

  1. 一种MEMS结构,其特征在于,包括衬底(1)、可控变形部件(3)、被悬挂部件(4),其中,被悬挂部件(4)通过至少一个可控变形部件(3)与衬底(1)连接,还包括设置在所述被悬挂部件(4)上的第一连接部(7)以及设置在所述衬底(1)上的第二连接部(8)。
  2. 根据权利要求1所述的一种MEMS结构,其特征在于,所述被悬挂部件(4)为镜面结构、梳齿结构或质量块结构中的一种。
  3. 根据权利要求1所述的MEMS结构,其特征在于,所述可控变形部件(3)为两个,两个所述可控变形部件(3)对称设置在所述被悬挂部件(4)的两侧。
  4. 根据权利要求1所述的一种MEMS结构,其特征在于,所述衬底(1)材料为单晶硅、多晶硅、碳化硅或玻璃材料。
  5. 一种如权利要求1~4中任一所述MEMS结构的制作方法,其特征在于,包括以下几个步骤:
    步骤一、所述可控变形部件(3)为两种或两种以上不同膨胀系数材料叠放而成的结构;通过对整个MEMS结构加热或制冷来控制可控变形部件(3)的变形,从而改变被悬挂部件(4)的悬挂高度或角度;
    步骤二、当步骤一中被悬挂部件(4)的悬挂高度或角度达到设定要求后,通过粘结材料(6)将被悬挂部件(4)上第一连接部(7)与衬底(1)上的第二连接部(8)连接固定。
  6. 根据权利要求5所述MEMS结构的制作方法,其特征在于,所述粘结材料(6)为UV胶、光刻胶、高分子胶、无机胶、环氧树脂胶、银浆、金属薄膜、非金属薄膜中的任意一种。
  7. 根据权利要求6所述MEMS结构的制作方法,其特征在于,通过点胶、喷胶、薄膜生长工艺或者丝网印刷工艺对第一连接部(7)和第二连接部(8)部位进行粘接固定。
  8. 根据权利要求7所述MEMS结构的制作方法,其特征在于,所述可控变形部件(3)上内嵌有电阻加热层,所述衬底(1)上连接有电引线(5),所述电阻加热层与所述电引线(5)连接;通过对加热引线(5)进行通电,实现对可控变形部件(3)进行微调。
  9. 根据权利要求8所述MEMS结构的制作方法,其特征在于,所述被悬挂部件(4)上设有磁性材料层或线圈形状的金属薄膜层,所述衬底(1)的底部设有磁性驱动器;通过磁 性驱动器实现被悬挂部件(4)的高度调节。
  10. 根据权利要求1~4中任一所述MEMS结构的制作方法,其特征在于,所述被悬挂部件(4)上设有磁性材料层或线圈形状的金属薄膜层,所述衬底(1)的底部设有磁性驱动器;通过磁性驱动器实现被悬挂部件(4)的高度调节。
PCT/CN2016/084692 2015-06-15 2016-06-03 一种mems结构及其制作方法 WO2016202180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510330771.1A CN105174197B (zh) 2015-06-15 2015-06-15 一种mems结构及其制作方法
CN201510330771.1 2015-06-15

Publications (1)

Publication Number Publication Date
WO2016202180A1 true WO2016202180A1 (zh) 2016-12-22

Family

ID=54896743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084692 WO2016202180A1 (zh) 2015-06-15 2016-06-03 一种mems结构及其制作方法

Country Status (2)

Country Link
CN (1) CN105174197B (zh)
WO (1) WO2016202180A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105174197B (zh) * 2015-06-15 2016-12-07 无锡微奥科技有限公司 一种mems结构及其制作方法
CN106125295B (zh) * 2016-06-08 2019-03-05 无锡微奥科技有限公司 一种电热式mems微镜阵列器件及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020018334A1 (en) * 1999-12-15 2002-02-14 Hill Edward A. MEMS device members having portions that contact a substrate and associated methods of operating
US20050161751A1 (en) * 2004-01-22 2005-07-28 Zyvex Corporation MEMS device having compact actuator
CN202886707U (zh) * 2012-10-30 2013-04-17 无锡微奥科技有限公司 一种基于微机电系统的微透镜
CN103091835A (zh) * 2013-02-05 2013-05-08 无锡微奥科技有限公司 一种垂直大位移mems微镜及加工工艺
CN103915317A (zh) * 2013-12-24 2014-07-09 上海新傲科技股份有限公司 应变层的生长方法以及带有应变层的衬底
CN105174197A (zh) * 2015-06-15 2015-12-23 无锡微奥科技有限公司 一种mems结构及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020018334A1 (en) * 1999-12-15 2002-02-14 Hill Edward A. MEMS device members having portions that contact a substrate and associated methods of operating
US20050161751A1 (en) * 2004-01-22 2005-07-28 Zyvex Corporation MEMS device having compact actuator
CN202886707U (zh) * 2012-10-30 2013-04-17 无锡微奥科技有限公司 一种基于微机电系统的微透镜
CN103091835A (zh) * 2013-02-05 2013-05-08 无锡微奥科技有限公司 一种垂直大位移mems微镜及加工工艺
CN103915317A (zh) * 2013-12-24 2014-07-09 上海新傲科技股份有限公司 应变层的生长方法以及带有应变层的衬底
CN105174197A (zh) * 2015-06-15 2015-12-23 无锡微奥科技有限公司 一种mems结构及其制作方法

Also Published As

Publication number Publication date
CN105174197B (zh) 2016-12-07
CN105174197A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
US6275320B1 (en) MEMS variable optical attenuator
Michael et al. Piezoelectric micro-lens actuator
US8724200B1 (en) MEMS hierarchically-dimensioned optical mirrors and methods for manufacture thereof
Hishinuma et al. Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror
WO2016202180A1 (zh) 一种mems结构及其制作方法
JP3723431B2 (ja) マイクロ電気機械光学デバイス
JP2008233405A (ja) 可変曲率ミラーデバイス及びその製造方法
CN102540456A (zh) 一种自倾斜微机电系统微镜及其制作方法
US8648433B2 (en) Method for producing oblique surfaces in a substrate and wafer having an oblique surface
CN202472118U (zh) 一种自倾斜微机电系统微镜
Wang et al. Fabrication and characterization of MEMS piezoelectric synthetic jet actuators with bulk-micromachined PZT thick film
CN114019673A (zh) 一种电磁驱动珐珀滤波芯片及其圆片级制作工艺
EP2784566A1 (en) Steerable MOEMS device comprising a micromirror
US7054052B2 (en) Adhesive sacrificial bonding of spatial light modulators
Singh et al. A novel electrostatic microactuator for large deflections in MEMS applications
CN100570430C (zh) 静电驱动的焦点可变微平面镜及其制造方法
US6933004B2 (en) Control of stress in metal films by controlling the temperature during film deposition
CN110632754B (zh) 一种线型微机械双向扭转镜阵列及其制作方法
US20120132349A1 (en) Method for producing tunable interference filter
CN111580265A (zh) 微机电系统微镜及其制作方法
US7060521B2 (en) Bonding method
CN100417970C (zh) 一种微液滴驱动连续镜面能动变形反射镜
Chen et al. A large-stroke MEMS deformable mirror fabricated by low-stress fluoropolymer membrane
Tu et al. A large-angle and large-mirror microscanner based on thermal actuators
CN114981701B (zh) 一种可调光学滤波器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16810921

Country of ref document: EP

Kind code of ref document: A1