WO2016202104A1 - 光通讯网络中的业务控制方法及装置 - Google Patents

光通讯网络中的业务控制方法及装置 Download PDF

Info

Publication number
WO2016202104A1
WO2016202104A1 PCT/CN2016/080535 CN2016080535W WO2016202104A1 WO 2016202104 A1 WO2016202104 A1 WO 2016202104A1 CN 2016080535 W CN2016080535 W CN 2016080535W WO 2016202104 A1 WO2016202104 A1 WO 2016202104A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
path
road segment
replaced
damaged
Prior art date
Application number
PCT/CN2016/080535
Other languages
English (en)
French (fr)
Inventor
张海波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016202104A1 publication Critical patent/WO2016202104A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/038Arrangements for fault recovery using bypasses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • This document relates to, but is not limited to, the field of optical communication, and relates to a service control method and apparatus in an optical communication network.
  • OTN Optical Transport Network
  • the OTN technology includes the complete architecture of the optical layer and the electrical layer, and both the optical layer and the electrical layer have a network survivability mechanism.
  • the problem of how to perform route recovery in the case of OTN network in the case of fiber breakage must also be considered during the planning and construction period.
  • the so-called fiber-breaking plan is to find a route for the affected service in a broken fiber scenario to ensure the smooth flow of the network.
  • the fiber break here refers to the disconnection of the fiber link between the two nodes in the network.
  • the fiber break scenario can be a fiber link disconnected, or multiple fiber links in the network can be disconnected at the same time, or multiple fibers can be used.
  • the link is disconnected.
  • the embodiment of the invention provides a service control method and device in an optical communication network, which can quickly recover damaged services when fiber breaks.
  • the embodiment of the invention provides a service control method in an optical communication network, including:
  • finding a target replacement path for the service path includes:
  • determining the to-be-replaced road segment on the service path includes:
  • the road segment that is damaged on the service path is used as the road segment to be replaced.
  • the road segment is gradually expanded to the undamaged road segment until the composition is All road segments of the service path are determined as road segments to be replaced;
  • the road segment that is damaged on the service path is used as the road segment to be replaced.
  • the target replacement path fails for the road segment to be replaced, all the road segments that constitute the service path are directly determined as the road segments to be replaced.
  • switching the service path of the damaged service to the target replacement path includes:
  • the target replacement road segment is assigned the same wavelength as the to-be-replaced road segment.
  • switching the service path of the damaged service to the target replacement path further includes:
  • the method further includes:
  • the embodiment of the invention further provides a service control device in an optical communication network, comprising:
  • the damaged service acquisition module is set to obtain the damaged service when the fiber is broken
  • a service path determining module configured to determine a service path where the damaged service is located
  • a first control module configured to: find a target replacement path for the service path; and switch the service path of the damaged service to the target replacement path.
  • the first control module includes a determining submodule and a processing submodule
  • the determining submodule is configured to determine a road segment to be replaced on the service path
  • the processing submodule is configured to find a target replacement road segment for the to-be-replaced road segment.
  • the determining submodule is set to:
  • the road segment that is damaged on the service path is used as the road segment to be replaced.
  • the road segment is gradually expanded to the undamaged road segment until the composition is All road segments of the service path are determined as road segments to be replaced;
  • the road segment that is damaged on the service path is used as the road segment to be replaced.
  • the target replacement path fails for the road segment to be replaced, all the road segments that constitute the service path are directly determined as the road segments to be replaced.
  • the device further includes:
  • a path adding module configured to: when the first control module fails to find a target replacement path for the service path, or fails to switch the service path of the damaged service to the target replacement path, adding a path;
  • the second control module is configured to switch the service path to the newly added path.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores computer executable instructions, and when the computer executable instructions are executed, implements a service control method in an optical communication network.
  • the service control method and device in the optical communication network acquires the damaged service when the fiber is broken, determines the service path where the damaged service is located, and then searches for the target replacement path for the service path. That is, in the embodiment of the present invention, the optical layer scheduling for the damaged service is performed in time for the broken fiber, so that the damaged service can be quickly and effectively restored, thereby satisfying the survivability protection requirement of the network, and providing guarantee for the network planning hypothesis.
  • FIG. 1 is a schematic flowchart of a service control method in an optical communication network according to Embodiment 1 of the present invention
  • FIG. 2 is another schematic flowchart of a service control method in an optical communication network according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of a service control apparatus in an optical communication network according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of an optical communication network according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic flowchart of a service control method in an optical communication network according to Embodiment 3 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the service control method in the optical communication network collects the damaged service in the fiber-cutting scenario and performs optical layer scheduling on the collected damaged service. , including the following steps:
  • Step S101 Obtaining a damaged service when the fiber is broken
  • Step S102 determining a service path where the damaged service is located
  • Step S103 Find a target replacement path for the service path.
  • Step S104 Switch the service path of the damaged service to the target replacement path.
  • the optical layer scheduling of the damaged service can be performed in time for the damaged service, so that the damaged service can be quickly and effectively restored to meet the survivability protection requirement of the network, and the network planning hypothesis is guaranteed.
  • searching for a target replacement path for the service path includes:
  • the damaged road segment on the service path can be used as the road segment to be replaced; or the damaged road segment on the service path is used as the road segment to be replaced, and when the target replacement path fails for the road segment to be replaced, Then gradually expand to the undamaged road segment on the service path until all the road segments constituting the service path are determined as the road segments to be replaced; or, the damaged road segment on the service path is used as the road segment to be replaced, and the road segment to be replaced is When the search destination replacement path fails, all the road segments that make up the service path are directly determined as the road segments to be replaced.
  • the switching the service path of the damaged service to the target replacement path includes:
  • the target replacement segment is assigned the same wavelength as the segment to be replaced; if the target replacement segment is assigned the same wavelength as the segment to be replaced, the target replacement segment is assigned a different wavelength than the segment to be replaced, and then the sequence is attempted to be different. .
  • the method further includes: when failing to find the target replacement path for the service path or failing to switch the service path of the damaged service to the target replacement path, that is, when the optical layer scheduling fails,
  • the embodiment may also perform electrical layer scheduling on the damaged service. In this case, a new path needs to be added to the damaged service, and the service path of the damaged service is switched to the newly added path. You need to add a board port to the node.
  • the optical layer scheduling may be performed for the damaged service when the fiber is broken, and the damaged service that fails for the optical layer scheduling may further perform service recovery through the electrical layer scheduling.
  • the process shown in FIG. 2 includes the following steps:
  • Step S201 Collecting all damaged services for the fiber-breaking scenario, and obtaining the damaged service set TS;
  • Step S202 Perform optical layer scheduling on the damaged service, and collect services successfully scheduled by the optical layer. Obtaining a service set TS1 with successful optical layer scheduling;
  • Step S203 Deleting the service set TS1 with the optical layer scheduling success from the damaged service set TS, and obtaining the damaged service set TS2 that fails the optical layer scheduling;
  • Step S204 Perform electrical layer scheduling on the damaged service in the damaged service set TS2 that fails the optical layer scheduling.
  • Step S205 End the fiber break planning.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the embodiment provides a service control apparatus in an optical communication network, including:
  • the damaged service obtaining module 1 is configured to acquire the damaged service when the fiber is broken;
  • the service path determining module 2 is configured to determine a service path where the damaged service is located;
  • the first control module 3 is configured to: find a target replacement path for the service path; and switch the service path of the damaged service to the target replacement path.
  • the first control module 3 includes a determining submodule and a processing submodule
  • the determining submodule is set to determine the road segment to be replaced on the service path, including:
  • the processing submodule is set to replace the road segment for the road segment to be replaced.
  • the service control apparatus in the optical communication network of the embodiment further includes a path adding module 4, configured to: when the first control module 3 finds a target replacement path for the service path, fails, or When the service path of the damaged service fails to be switched to the target replacement path, the path is newly added; that is, when the optical layer scheduling failure of the damaged service fails, the electrical layer scheduling is performed for the damaged service;
  • the second control module 5 is configured to switch the service path to the newly added path.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the solid line indicates the optical fiber
  • the broken line indicates the service between the two nodes.
  • the service path of service T (1-4) is 001-002-003-004
  • the service path of service T (3-4) is 003-004.
  • service T(1-4) and service T(3-4) converge to the same wavelength.
  • the path segment where service T(1-4) is located occupies the same wave on 001-002 and 002-003 fibers; the path segment of service T(1-4) and service T(3-4) occupies on fiber 003-004 The same wave.
  • Figure 5 shows the 002-003 fiber disconnection on the basis of the network shown in Figure 4, as shown in Figure 4.
  • the service control process at this time is as follows:
  • Step S501 Collect all damaged service TSs
  • the service path of the service T(1-4) passes through the optical fiber, and the service is affected, and the service path of the service T(3-4) does not pass through the optical fiber, and is not affected. Therefore, the service in the TS set of the damaged service in this scenario is T(1-4);
  • Step S502 Perform optical layer scheduling on the damaged service.
  • the optical layer scheduling feature is that no board port is added during the scheduling process.
  • the process includes:
  • the damaged fiber is a 002-003 fiber
  • the FA (Forwarding Adjacent) segment where the fiber is located has a damaged FA of 001-002-003.
  • An alternative path 001-005-003 is found, and the alternative path for generating the service is 001-005-003-004. Then assign a wavelength to the path, just assign a wavelength to the newly found alternate path, first try the same wavelength as the original damaged path, and if the same wavelength is not available, try the different waves in sequence.
  • the service T(1-4) is scheduled to 001-005-003-004, and the result is saved.
  • the damaged optical fiber has been traversed, and the service set TS2 of the optical layer scheduling failure is empty; if the optical layer scheduling fails, the damaged optical fiber has been traversed at this time, and the service set TS2 in which the optical layer scheduling fails includes the service T (1) 4).
  • Step S503 determining whether the optical layer scheduling is successful, if yes, go to step S504; otherwise, go to step S505;
  • Step S504 After the current damaged service is scheduled, the next damaged service is transferred.
  • Step S505 Perform electrical layer scheduling on the service T(1-4) when the service T(1-4) is included in the TS2;
  • the path that the service T(1-4) may take is 001-005-003-004 or 001-006-004;
  • Step S506 After the current damaged service is scheduled, the next damaged service is transferred.
  • the fiber-breaking planning method described in the embodiment of the present invention can quickly and efficiently find a recovery path for a service while saving resources as much as possible.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores computer executable instructions, and when the computer executable instructions are executed, implements a service control method in an optical communication network.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • This application is not limited to any particular form of hardware and software. The combination of pieces.
  • the above technical solution can enable the damaged service to be recovered quickly and effectively, thereby satisfying the survivability protection requirement of the network and providing guarantee for the network planning hypothesis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种光通讯网络中的业务控制方法及装置,在断纤时获取受损业务;确定受损业务所在的业务路径;为该业务路径查找目标替换路径;根据所述目标替换路径对所述受损业务进行切换。上述技术方案在断纤时针对受损业务进行及时地光层调度,可以使得受损业务得到快速有效的恢复从而满足网络的生存性保护要求,为网络的规划假设提供保障。

Description

光通讯网络中的业务控制方法及装置 技术领域
本文涉及但不限于光通讯领域,涉及一种光通讯网络中的业务控制方法及装置。
背景技术
在光通讯领域中,OTN(光传送网,Optical Transport Network)网络作为全业务运营的网络融合必备利器,可以融合不同网络,解决光缆资源不足,提供业务交叉调度,提升网络安全性,提供大带宽传送。OTN技术包括光层和电层的完整体系结构,光层和电层都具有网络生存性机制。而OTN网络在断纤的情况下如何进行路由恢复的问题也是在规划建设时期必须要考虑的。所谓断纤规划,即是在一个断纤的场景下,为受到影响的业务重新寻找路由,以保证网络的畅通。这里的断纤是指网络中两节点间的光纤链路断开无法使用,断纤场景可以是一条光纤链路断开,或网络中同时多条光纤链路断开,也可能是多条光纤链路先后断开。网络中一旦发生断纤场景,将中断大量的业务,造成巨大的损失。因此,在断纤时如何快速、可靠地让受损业务恢复显得越来越重要。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种光通讯网络中的业务控制方法及装置,实现了断纤时快速恢复受损业务。
本发明实施例提供一种光通讯网络中的业务控制方法,包括:
在断纤时获取受损业务;
确定所述受损业务所在的业务路径;
为所述业务路径查找目标替换路径,将所述受损业务的业务路径切换到所述目标替换路径上。
可选地,为所述业务路径查找目标替换路径包括:
确定所述业务路径上的待替换路段;
为所述待替换路段查找目标替换路段。
可选地,确定所述业务路径上的待替换路段包括:
直接将组成所述业务路径的所有路段都确定为待替换路段;
或将所述业务路径上受损的路段作为待替换路段;
或先将所述业务路径上受损的路段作为待替换路段,在为该待替换路段查找目标替换路径失败时,再逐渐向所述业务路径上未受损的路段扩展,直到将组成所述业务路径的所有路段都确定为待替换路段;
或先将所述业务路径上受损的路段作为待替换路段,在为该待替换路段查找目标替换路径失败时,直接将组成所述业务路径的所有路段都确定为待替换路段。
可选地,将所述受损业务的业务路径切换到所述目标替换路径上包括:
为所述目标替换路段分配与所述待替换路段相同的波长。
可选地,将所述受损业务的业务路径切换到所述目标替换路径上还包括:
在为所述目标替换路段分配与所述待替换路段相同的波长失败时,为所述目标替换路段分配与所述待替换路段不同的波长。
可选地,所述方法还包括:
在为所述业务路径查找目标替换路径失败,或将所述受损业务的业务路径切换到所述目标替换路径上失败时,新增路径,将所述业务路径切换到所述新增路径上。
本发明实施例还提供了一种光通讯网络中的业务控制装置,包括:
受损业务获取模块,设置为获取断纤时的受损业务;
业务路径确定模块,设置为确定所述受损业务所在的业务路径;
第一控制模块,设置为为所述业务路径查找目标替换路径;将所述受损业务的业务路径切换到所述目标替换路径上。
可选地,所述第一控制模块包括确定子模块、处理子模块;
所述确定子模块设置为确定所述业务路径上的待替换路段;
所述处理子模块设置为为所述待替换路段查找目标替换路段。
可选地,所述确定子模块是设置为:
直接将组成所述业务路径的所有路段都确定为待替换路段;
或将所述业务路径上受损的路段作为待替换路段;
或先将所述业务路径上受损的路段作为待替换路段,在为该待替换路段查找目标替换路径失败时,再逐渐向所述业务路径上未受损的路段扩展,直到将组成所述业务路径的所有路段都确定为待替换路段;
或先将所述业务路径上受损的路段作为待替换路段,在为该待替换路段查找目标替换路径失败时,直接将组成所述业务路径的所有路段都确定为待替换路段。
可选地,所述装置还包括:
路径增加模块,设置为所述第一控制模块为所述业务路径查找目标替换路径失败,或将所述受损业务的业务路径切换到所述目标替换路径上失败时,新增路径;
第二控制模块,设置为将所述业务路径切换到所述新增路径上。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令被执行时实现光通讯网络中的业务控制方法。
本发明实施例的有益效果是:
本发明实施例提供的光通讯网络中的业务控制方法及装置,在断纤时获取受损业务,确定受损业务所在的业务路径,然后为该业务路径查找目标替换路径进行切换。也即本发明实施例在断纤时针对受损业务进行及时地光层调度,因此可以使得受损业务得到快速有效的恢复,从而满足网络的生存性保护要求,为网络的规划假设提供保障。
在阅读并理解了附图和详细描述后,可以明白其它方面。
附图说明
图1为本发明实施例一提供的光通讯网络中的业务控制方法的流程示意图;
图2为本发明实施例一提供的光通讯网络中的业务控制方法的另一流程示意图;
图3为本发明实施例二提供的光通讯网络中的业务控制装置的结构示意图;
图4为本发明实施例三提供的光通讯网络的示意图;
图5为本发明实施例三提供的光通讯网络中的业务控制方法的流程示意图。
具体实施方式
下面通过具体实施方式结合附图对本申请作进一步详细说明。
实施例一:
请参见图1所示,本实施例提供的光通讯网络中的业务控制方法,在断纤场景下收集受损业务,对收集的受损业务进行光层调度,其过程请参见图1所示,包括以下步骤:
步骤S101:在断纤时获取受损业务;
步骤S102:确定受损业务所在的业务路径;
步骤S103:为业务路径查找目标替换路径;
步骤S104:将所述受损业务的业务路径切换到所述目标替换路径上。
通过上述过程可在断纤时针对受损业务进行及时地光层调度,因此可以使得受损业务得到快速有效的恢复从而满足网络的生存性保护要求,为网络的规划假设提供保障。
可选地,在本实施例中,上述步骤103中,为业务路径查找目标替换路径包括:
确定业务路径上的待替换路段;
为待替换路段查找目标替换路段。
在本实施例中,在确定业务路径上的待替换路段时,可以采用尽量复用和尽量分离两个原则。
采用尽量复用原则时,可将业务路径上受损的路段作为待替换路段;或,先将业务路径上受损的路段作为待替换路段,在为该待替换路段查找目标替换路径失败时,再逐渐向业务路径上未受损的路段扩展,直到将组成业务路径的所有路段都确定为待替换路段;或,先将业务路径上受损的路段作为待替换路段,在为该待替换路段查找目标替换路径失败时,直接将组成业务路径的所有路段都确定为待替换路段。
采用尽量分离原则时,可直接将组成业务路径的所有路段都确定为待替换路段。
可选地,上述步骤104中,将所述受损业务的业务路径切换到所述目标替换路径上包括:
为目标替换路段分配与待替换路段相同的波长;如果为目标替换路段分配与待替换路段相同的波长失败,则为目标替换路段分配与待替换路段不同的波长,此时则需顺序尝试异波。
可选地,所述方法还包括:在为业务路径查找目标替换路径失败或将所述受损业务的业务路径切换到所述目标替换路径上失败时,也即进行光层调度失败时,本实施例还可对该受损业务进行电层调度,此时则需要为该受损业务新增路径,将该受损业务的业务路径切换到新增路径上。此时需要在节点上新增单板端口。
综上可知,本实施例在断纤时针对受损业务可以先进行光层调度,针对光层调度失败的受损业务还可进一步通过电层调度进行业务恢复。
下面以集合的形式说明本实施例提供的方案,请参见图2所示,图2所示流程包括以下步骤:
步骤S201:针对断纤场景,收集所有受损业务,得到受损业务集合TS;
步骤S202:对受损业务进行光层调度,并收集光层调度成功的业务, 得到光层调度成功的业务集合TS1;
步骤S203:从受损业务集合TS中删除光层调度成功的业务集合TS1,得到光层调度失败的受损业务集合TS2;
步骤S204:对光层调度失败的受损业务集合TS2中的受损业务进行电层调度;
步骤S205:结束断纤规划。
实施例二:
请参见图3所示,本实施例提供了一种光通讯网络中的业务控制装置,包括:
受损业务获取模块1,设置为获取断纤时的受损业务;
业务路径确定模块2,设置为确定受损业务所在的业务路径;
第一控制模块3,设置为:为业务路径查找目标替换路径;将所述受损业务的业务路径切换到所述目标替换路径上。
第一控制模块3包括确定子模块、处理子模块;
确定子模块设置为确定业务路径上的待替换路段,包括:
采用尽量复用原则,将业务路径上受损的路段作为待替换路段;或,先将业务路径上受损的路段作为待替换路段,在为该待替换路段查找目标替换路径失败时,再逐渐向业务路径上未受损的路段扩展,直到将组成业务路径的所有路段都确定为待替换路段;或,先将业务路径上受损的路段作为待替换路段,在为该待替换路段查找目标替换路径失败时,直接将组成业务路径的所有路段都确定为待替换路段。
采用尽量分离原则,直接将组成业务路径的所有路段都确定为待替换路段。
处理子模块设置为为待替换路段查找目标替换路段。
可选地,本实施例的光通讯网络中的业务控制装置还包括路径增加模块4,用于设置为在第一控制模块3为业务路径查找目标替换路径失败,或将 所述受损业务的业务路径切换到所述目标替换路径上失败时,新增路径;也即在对受损业务进行光层调度失败时,针对该受损业务进行电层调度;
第二控制模块5,设置为将业务路径切换到新增路径上。
实施例三:
下面以一个具体的组网为例,对本发明实施例做进一步示例性说明。
请参见图4所示,实线表示光纤,虚线表示两节点之间的业务。在节点001和004之间创建一条业务,记为T(1-4);在节点003和004之间创建一条业务,记为T(3-4)。业务T(1-4)的业务路径走001-002-003-004,业务T(3-4)的业务路径走003-004。假设在003-004光纤上,业务T(1-4)和业务T(3-4)汇聚成同一波长。业务T(1-4)所在的路径路段在001-002和002-003光纤上占同波;业务T(1-4)和业务T(3-4)的路径路段在光纤003-004上占用同波。
图5为在图4所示组网基础上,断纤场景为002-003光纤断开,如图4所示,此时的业务控制过程如下:
步骤S501:收集所有受损业务TS;
在光纤002-003受损时,业务T(1-4)的业务路径经过该光纤,业务受到影响,而业务T(3-4)的业务路径没有经过该光纤,不受影响。所以该场景下受损业务TS集合中的业务为T(1-4);
步骤S502:对受损业务进行光层调度;
光层调度的特点是在调度过程中不会新增单板端口,该过程包括:
受损的光纤是002-003光纤,该光纤所在的FA(Forwarding Adjacent,转发邻接)段即受损FA为001-002-003。
为受损业务的业务路径寻找可替代的目标替换路径;若用户采用尽量复用策略,找替代FA时系统会尝试复用完好光纤001-002,在002,003节点寻找替代光纤,由于没有可替代的,故再扩大范围,从1,3节点寻找,可以找到可替代路径001-005-003。若用户采用尽量分离策略,系统直接从001,003节点寻找可替代路径,尽量规避受损路径的所有光纤,该拓扑图中可以找到路径001-005-003;
找到可替代路径001-005-003,由此生成业务的可替代路径为001-005-003-004。然后为该路径分配波长,只需为新找到的替代路径分配波长,先尝试和原先受损路径相同的波长,若相同的波长不可用,再顺序尝试异波。
若光层调度成功,则业务T(1-4)会调度到001-005-003-004,保存该结果。此时受损光纤已遍历完,光层调度失败的业务集合TS2为空;若光层调度失败,此时受损光纤已遍历完,光层调度失败的业务集合TS2中包含业务T(1-4)。
步骤S503:判断光层调度是否成功,如是,转至步骤S504;否则,转至步骤S505;
步骤S504:针对当前的受损业务调度完毕,转入下一个受损业务。
步骤S505:在TS2中包含业务T(1-4)时,对业务T(1-4)进行电层调度;
电层调度需要在节点新增单板端口。本实施例中,新增资源后,业务T(1-4)可能走的路径为001-005-003-004或者001-006-004;
步骤S506:针对当前的受损业务调度完毕,转入下一个受损业务。
在更复杂的网络拓扑和业务量更大的情况下,本发明实施例所描述的断纤规划方法可以在尽量节省资源的情况下,快速有效地为业务寻找恢复路径。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令被执行时实现光通讯网络中的业务控制方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软 件的结合。本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的精神和范围,均应涵盖在本申请的权利要求范围当中。
工业实用性
上述技术方案可以使受损业务得到快速有效的恢复,从而满足网络的生存性保护要求,为网络的规划假设提供保障。

Claims (10)

  1. 一种光通讯网络中的业务控制方法,包括:
    在断纤时获取受损业务;
    确定所述受损业务所在的业务路径;
    为所述业务路径查找目标替换路径,将所述受损业务的业务路径切换到所述目标替换路径上。
  2. 如权利要求1所述的光通讯网络中的业务控制方法,其中,为所述业务路径查找目标替换路径包括:
    确定所述业务路径上的待替换路段;
    为所述待替换路段查找目标替换路段。
  3. 如权利要求2所述的光通讯网络中的业务控制方法,其中,确定所述业务路径上的待替换路段包括:
    直接将组成所述业务路径的所有路段都确定为待替换路段;
    或将所述业务路径上受损的路段作为待替换路段;
    或先将所述业务路径上受损的路段作为待替换路段,在为该待替换路段查找目标替换路径失败时,再逐渐向所述业务路径上未受损的路段扩展,直到将组成所述业务路径的所有路段都确定为待替换路段;
    或先将所述业务路径上受损的路段作为待替换路段,在为该待替换路段查找目标替换路径失败时,直接将组成所述业务路径的所有路段都确定为待替换路段。
  4. 如权利要求2或3所述的光通讯网络中的业务控制方法,其中,将所述受损业务的业务路径切换到所述目标替换路径上包括:
    为所述目标替换路段分配与所述待替换路段相同的波长。
  5. 如权利要求4所述的光通讯网络中的业务控制方法,其中,将所述受损业务的业务路径切换到所述目标替换路径上还包括:
    在为所述目标替换路段分配与所述待替换路段相同的波长失败时,为所述目标替换路段分配与所述待替换路段不同的波长。
  6. 如权利要求1-3任一项所述的光通讯网络中的业务控制方法,所述方法还包括:
    在为所述业务路径查找目标替换路径失败,或将所述受损业务的业务路径切换到所述目标替换路径上失败时,新增路径,将所述受损业务的业务路径切换到所述新增路径上。
  7. 一种光通讯网络中的业务控制装置,包括:
    受损业务获取模块,设置为获取断纤时的受损业务;
    业务路径确定模块,设置为确定所述受损业务所在的业务路径;
    第一控制模块,设置为:为所述业务路径查找目标替换路径;将所述受损业务的业务路径切换到所述目标替换路径上。
  8. 如权利要求7所述的光通讯网络中的业务控制装置,其中,所述第一控制模块包括确定子模块、处理子模块;
    所述确定子模块设置为确定所述业务路径上的待替换路段;
    所述处理子模块设置为:为所述待替换路段查找目标替换路段。
  9. 如权利要求8所述的光通讯网络中的业务控制装置,其中,所述确定子模块是设置为:
    直接将组成所述业务路径的所有路段都确定为待替换路段;
    或将所述业务路径上受损的路段作为待替换路段;
    或先将所述业务路径上受损的路段作为待替换路段,在为该待替换路段查找目标替换路径失败时,再逐渐向所述业务路径上未受损的路段扩展,直到将组成所述业务路径的所有路段都确定为待替换路段;
    或先将所述业务路径上受损的路段作为待替换路段,在为该待替换路段查找目标替换路径失败时,直接将组成所述业务路径的所有路段都确定为待替换路段。
  10. 如权利要求7-9任一项所述的光通讯网络中的业务控制装置,所述装置还包括:
    路径增加模块,设置为:在所述第一控制模块为所述业务路径查找目标 替换路径失败,或将所述受损业务的业务路径切换到所述目标替换路径上失败时,新增路径;
    第二控制模块,设置为将所述业务路径切换到所述新增路径上。
PCT/CN2016/080535 2015-06-18 2016-04-28 光通讯网络中的业务控制方法及装置 WO2016202104A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510342637.3A CN106330294A (zh) 2015-06-18 2015-06-18 光通讯网络中的业务控制方法及装置
CN201510342637.3 2015-06-18

Publications (1)

Publication Number Publication Date
WO2016202104A1 true WO2016202104A1 (zh) 2016-12-22

Family

ID=57545016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080535 WO2016202104A1 (zh) 2015-06-18 2016-04-28 光通讯网络中的业务控制方法及装置

Country Status (2)

Country Link
CN (1) CN106330294A (zh)
WO (1) WO2016202104A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107248952B (zh) * 2017-07-24 2020-06-05 华信咨询设计研究院有限公司 一种业务替代路由确定方法及系统
CN107231301B (zh) * 2017-07-24 2020-11-13 华信咨询设计研究院有限公司 一种光缆替代路由确定方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038471A1 (en) * 2000-03-03 2001-11-08 Niraj Agrawal Fault communication for network distributed restoration
CN101001170A (zh) * 2006-01-10 2007-07-18 华为技术有限公司 业务故障恢复方法
CN101047440A (zh) * 2006-05-10 2007-10-03 华为技术有限公司 一种业务路径返回的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038471A1 (en) * 2000-03-03 2001-11-08 Niraj Agrawal Fault communication for network distributed restoration
CN101001170A (zh) * 2006-01-10 2007-07-18 华为技术有限公司 业务故障恢复方法
CN101047440A (zh) * 2006-05-10 2007-10-03 华为技术有限公司 一种业务路径返回的方法

Also Published As

Publication number Publication date
CN106330294A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
US8402121B2 (en) Method of network reconfiguration in optical transport networks
JP7367795B2 (ja) 光ネットワーク管理装置
Li et al. Control plane design for reliable optical networks
US7852752B2 (en) Method and apparatus for designing backup communication path, and computer product
US10848245B2 (en) Multi-layer network system and path setting method in multi-layer network
JP6269088B2 (ja) 冗長パス提供方法および伝送装置
US20070274224A1 (en) Path setting method, node device, and monitoring/control device
EP2326046B1 (en) Method for realizing permanent ring network protection in mesh network
JP2007028386A (ja) シグナリング装置
WO2021109900A1 (zh) 基于FlexE网络的重路由方法及装置、电子设备和可读存储介质
KR20150085531A (ko) 링형 네트워크 보호에 있어서 레이블을 자동적으로 분배하는 방법 및 시스템
CN101192959B (zh) 一种自动交换光网络组播业务连接的恢复方法
WO2016202104A1 (zh) 光通讯网络中的业务控制方法及装置
CN107547374A (zh) 一种聚合理由处理方法和装置
CN101958809B (zh) 基于包交换的ason网络中实现共享式恢复的方法
RU2651199C2 (ru) Способ и система 1+1 сквозной двунаправленной коммутации и узел
WO2017117955A1 (zh) 一种路由同步方法、设备及通信系统
CN102045228B (zh) 一种环网保护信息的发现方法及系统
CN102739308A (zh) 智能光网络中保护业务的恢复
WO2021249478A1 (zh) 资源部署方法、设备、管控系统及计算机存储介质
JP2005020572A (ja) パス容量及びパス経路変更方法、及びノード装置
JP2014175756A (ja) 自律分散制御対応ネットワークにおける通信装置およびパス切替制御方法
CN101800700B (zh) 一种基于mpls网络的lsp预删除方法和装置
Austin et al. Fast, scalable, and distributed restoration in general mesh optical networks
EP1816804B1 (en) Failure recovery method and packet communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16810845

Country of ref document: EP

Kind code of ref document: A1