WO2016202093A1 - 一种分布式自动功率优化的方法及装置 - Google Patents

一种分布式自动功率优化的方法及装置 Download PDF

Info

Publication number
WO2016202093A1
WO2016202093A1 PCT/CN2016/080166 CN2016080166W WO2016202093A1 WO 2016202093 A1 WO2016202093 A1 WO 2016202093A1 CN 2016080166 W CN2016080166 W CN 2016080166W WO 2016202093 A1 WO2016202093 A1 WO 2016202093A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
adjustment
abnormal
current
abnormality
Prior art date
Application number
PCT/CN2016/080166
Other languages
English (en)
French (fr)
Inventor
张国良
朱玺
林鹏
朱帆
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016202093A1 publication Critical patent/WO2016202093A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present application relates to, but is not limited to, the field of communications technologies, and in particular, to a method and apparatus for distributed automatic power optimization.
  • the main optical power of the WDM system must maintain the power budget of the system design to ensure the normal operation of the receiver.
  • the optical amplifiers in the system are all It is required to work in the gain lock state.
  • the embodiment of the invention provides a method for distributed automatic power optimization, which is applied to a current node, and the method includes:
  • the alarm message is reported to the first node, where the preset condition is: the offset value (Poffset) of the current node in the result obtained by at least two consecutive calculations is greater than the pre-stored current node.
  • the offset threshold (ThreOffset) or the second cumulative error of the current node (Paccumulate offset2) is greater than the current node cumulative offset threshold (ThreAccumulateOffset), wherein the Paccumulate offset2 refers to the accumulated error value from the next node of the first node to the current node. ;
  • the abnormality detection result does not satisfy the preset condition, it indicates that the current node belongs to a normal node.
  • the method further includes: after the abnormality monitoring enable command sent by the first node is received, before the abnormality detection is started, the method further includes:
  • the enable success message is fed back to the head node.
  • the abnormality detection is started according to the abnormality monitoring enable command, and the abnormality detection algorithm is used to calculate the abnormality detection result in the abnormality detection, which may include:
  • the Poffset is calculated by using the following formula:
  • Poffset G1(Pout1-Pin1)+Pcompensation
  • the Paccumulate offset 2 is calculated according to the Poffset and the prePaccumulate offset1, where the abnormality detection result includes at least: the Poffset and the Paccumulate offset2;
  • Paccumulate offset2 Poffset+prePaccumulate offset1.
  • the entering the adjustment state for power adjustment and feeding back the adjustment result to the first node may include:
  • the adjustment value Ladjust is calculated by using the following formula:
  • the adjustment completion message is fed back to the head node; if the difference between the first boundary value and the adjustment value is L1'-Ladjust or the adjustment value and the second boundary value If the difference Ladjust-L2' is not within the second adjustable range [G3, G4], a command to adjust the boundary value G3 or G4 of the second adjustable range is sent, and the adjustment failure is fed back to the head node. Message.
  • the embodiment of the present invention further provides another method for distributed automatic power optimization, which is applied to a first node, and the method may include:
  • the response message fed back by each abnormal node is received, and when the adjustment success message returned by the last abnormal node is received, the adjustment success event is answered to the network management system.
  • the method may further include: receiving a monitoring enable notification sent by the network management system, before sending the abnormal monitoring enable command to each of the downstream nodes.
  • the method may further include: receiving an enable response fed back by each of the downstream nodes, and receiving an enable response of the last node, and entering the abnormal node detection state; When receiving an enable response from any node feedback, The network management system sends an enable failure message and does not enter the abnormal node detection state.
  • the method may further include: when receiving the adjustment failure message fed back by the abnormal node, sending a stop adjustment instruction to the abnormal node, and responding to the network management system for the adjustment failure event.
  • the sending, by the alarm message, an adjustment instruction to each abnormal node according to the alarm message comprising: determining a current adjustment mode, and when the current adjustment mode is an automatic mode, sending an adjustment instruction to the first abnormal node;
  • the current adjustment mode is the manual mode, determining whether the start adjustment instruction sent by the network management system is received, and after receiving the start adjustment instruction, sending an adjustment instruction to the first abnormal node, so that the first abnormal node enters Adjusting the state to perform power adjustment; when the start adjustment command is not received, driving the downstream node to perform abnormality detection;
  • the embodiment of the present invention further provides a device for distributed automatic power optimization, which is applied to a current node, and the device may include:
  • the first processing module is configured to receive an abnormality monitoring enable command sent by the first node, and start an abnormality detection according to the abnormality monitoring enable command, and use the abnormality detecting algorithm to calculate an abnormality detecting result in the abnormality detecting;
  • the reporting module is configured to report a warning message to the head node when the abnormality detection result meets the preset condition, where the preset condition is: the offset value Poffset of the current node in the result obtained by at least two consecutive calculations is greater than The current node pre-stored offset threshold ThreOffset; or, the current node's second cumulative error Paccumulate offset2 is greater than the current node cumulative offset threshold ThreAccumulateOffset; wherein the Paccumulate offset2 refers to the accumulated from the next node of the first node to the current node difference;
  • the second processing module is configured to receive the adjustment instruction sent by the first node, enter the adjustment state to perform power adjustment, and feed back the adjustment result to the first node.
  • the embodiment of the present invention further provides a device for distributed automatic power optimization, which is applied to a first node, and the device may include:
  • the sending module is configured to send an abnormal monitoring enable command to each downstream node, so that the downstream section The point can enable the abnormality detection according to the abnormality monitoring enable command.
  • the downstream node uses the abnormality detection algorithm to calculate the abnormality detection result.
  • the downstream node generates an alarm.
  • the third processing module is configured to receive an alarm message reported by the downstream node, and send an adjustment instruction to each abnormal node according to the alarm message, where the abnormal node is a downstream node that reports the alarm message, and the preset condition is: at least The offset value Poffset of the current node in the result of two consecutive calculations is greater than the offset threshold Thrresetset prestored by the current node or the second cumulative error Paccumulate offset2 of the current node is greater than the current node cumulative offset threshold ThrreAccumulateOffset;
  • the first receiving module is configured to receive a response message fed back by each abnormal node, and respond to the adjustment success event to the network management system when receiving the adjustment completion message returned by the last abnormal node.
  • Embodiments of the present invention also provide a computer readable storage medium storing computer executable instructions that are implemented by a processor to implement the above method.
  • the offset threshold ThreOffset and the current node cumulative offset threshold ThreAccumulateOffset are introduced, so that the network element management system is not required to configure the comparison standard value for each node, and the manual is simplified. Manage the complexity of the configuration; introduce gain offset compensation Pcompensation when performing power adjustment, which can eliminate the optical power abnormal alarm and avoid repeated invalid adjustment.
  • the attenuation of the optical fiber changes the attenuation or gain in the system is automatically adjusted, so that the entire system can maintain the designed power budget and ensure the normal transmission of the service.
  • FIG. 1 is a schematic diagram of distributed deployment of an APO according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart 1 of a method for distributed automatic power optimization applied to a current node according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart 2 of a method for distributed automatic power optimization applied to a current node according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart 3 of a method for distributed automatic power optimization applied to a current node according to an embodiment of the present invention
  • FIG. 5 is a flowchart of current node anomaly detection according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of current node power adjustment according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart 1 of a method for distributed automatic power optimization applied to a first node according to an embodiment of the present invention
  • FIG. 8 is a second schematic flowchart of a method for distributed automatic power optimization applied to a first node according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a process of detecting an abnormality of a first node startup according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing the flow of the first node adjustment execution according to the embodiment of the present invention.
  • FIG. 11 is a schematic flow chart of an overall step of an embodiment of the present invention.
  • FIG. 12 is a schematic diagram 1 of a device for distributed automatic power optimization according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram 2 of a device for distributed automatic power optimization according to an embodiment of the present invention.
  • the management architecture of the APO (Distributed Automatic Power Optimization) power management system mainly includes a controller, an executor, a collector, and an interface for communication with each other (including communication between the network element and the network element) and a protocol.
  • the APO adjustment is implemented by a feedback control algorithm.
  • the algorithm core of the feedback control algorithm is implemented in the controller.
  • the controller obtains current power information through the collector (reference unit and power monitoring unit), and adjusts the actuator (attenuation adjustment unit) according to the collection result. Until power optimization is achieved.
  • a multiplex section 110 is formed from an optical multiplexing board (OMU) 105 to an optical splitter board (ODU) 111.
  • OMU optical multiplexing board
  • ODU optical splitter board
  • APO group adjacent detection points on the APO link constitute an APO group, and the output of the first optical amplifying board (OA1) 106 to the output of the second optical amplifying board (OA2) 108 constitutes a first APO group 107, and second The output of the optical amplifying plate 108 to the output of the third optical amplifying plate (OA3) 113 constitutes the second APO group 112.
  • the related elements of the APO group may be distributed on multiple network elements or may be located in the same network element.
  • the reference unit of the first APO group 107 is located at the first network element (NE1) 103
  • the detecting unit is located at the second network element (NE2) 103.
  • the reference unit and the detecting unit of the second APO group 112 are both located in the second network element 103.
  • An APO node may include a reference unit, a detection unit, an attenuation adjustment unit, and a gain adjustment unit.
  • the APO reference unit is the output detection point of the OA board.
  • the logical reference unit belongs to the APO management and is physically deployed on the previous APO.
  • the second optical amplifying board 108 is logically disposed as a reference unit of the second APO group 112, and is physically disposed on the first APO group 107.
  • the detection unit the input detection point of the OA board, is an input port of the second optical amplifying board 108 and the third optical amplifying board 113.
  • Attenuation adjustment unit LAC board 109.
  • Gain adjustment unit SFPVOA on the OA board.
  • each APO node is responsible for the collection, calculation, and adjustment process of the corresponding unit of the APO, and avoids the disadvantage that the network management system centrally manages the entire link, resulting in huge traffic and weak real-time system.
  • An embodiment of the present invention provides a method for distributed automatic power optimization, which is applied to a current node. As shown in FIG. 2, the method includes:
  • Step S201 Receive an abnormality monitoring enable command sent by the first node, and start an abnormality detection according to the abnormality monitoring enable command, and use the abnormality detecting algorithm to calculate an abnormality detecting result in the abnormality detecting;
  • Step S202 When the abnormality detection result meets the preset condition, the alarm message is reported to the first node, where the preset condition is: the offset value Poffset of the current node in the result obtained by at least two consecutive calculations is greater than the current node pre-stored.
  • the offset threshold Thrresetset or the second cumulative error Paccumulate offset2 of the current node is greater than the current node cumulative offset threshold ThreAccumulateOffset, wherein the Paccumulate offset2 refers to the accumulated error value from the next node of the first node to the current node;
  • Step S203 Receive an adjustment instruction sent by the first node, enter an adjustment state, perform power adjustment, and feed back the adjustment result to the first node.
  • the current node in step S201 After receiving the abnormality monitoring enable command sent by the first node, the current node in step S201 currently The node starts the abnormality detection timer and starts the abnormality detection after the abnormality detection timer expires.
  • the abnormality detection result here includes Poffset and Paccumulate offset2, and the ThreOffset and ThreAccumulateOffset saved by the node are taken out, and Poffset is compared with ThreOffset, Paccumulate offset2 and ThreAccumulateOffset, if Poffset is greater than ThreOffset or Paccumulate Offset2 is greater than the value of ThreAccumulateOffset, indicating that the limit is successful. In this case, the calculation is performed again. If the abnormality detection result obtained after the second calculation is still successful, the abnormal detection result meets the preset condition, and an alarm message can be sent to the first node.
  • the abnormality detection result obtained by the first calculation is more successful, the abnormality detection result obtained by the second calculation is unsuccessful, indicating that the abnormal detection result does not satisfy the preset condition, indicating that the current node belongs to the normal node.
  • the abnormality detection result obtained by the first calculation is unsuccessful, the second calculation is not needed, and the current node is determined to belong to the normal node. It can be understood that after the previous two abnormal detection results are successfully exceeded, the third or fourth abnormal detection result is successful, indicating that the current node belongs to the abnormal node.
  • the abnormality detection is started and the abnormality detection algorithm is used to calculate the abnormality detection result.
  • the abnormality detection result satisfies the preset condition, it indicates that the current node belongs to the abnormal node, and needs to be A warning message is reported on the first node.
  • the result of the abnormality detection does not satisfy the preset condition, it indicates that the current node belongs to the normal node, and there is no need to report the alarm message to the first node.
  • the attenuation or gain in the system is automatically adjusted, so that the entire system can maintain the designed power budget and ensure the normal transmission of the service.
  • the method further includes: feeding back an enable success message to the first node.
  • the first node after receiving the abnormality monitoring enable command sent by the first node, the first node needs to feed back the success message to the first node. After receiving the success message, the first node knows that the node is successfully enabled. After the current node is successfully enabled, abnormal detection can be started. When the current node is unsuccessful, the first node cannot receive the success message of the current node. The first node needs to report the link failure to the network management system. The process ends.
  • step S201 may include:
  • Step S2011 Acquire a first output optical power Pout1, a first input optical power Pin1, a first gain G1, and a first accumulated error prePaccumulate offset1 of the current node, and acquire a pre-stored gain offset compensation Pcompensation, where the prePaccumulate offset1 Refers to the error value accumulated from the next node of the first node to the previous node of the current node at the first moment;
  • Step S2012 Calculate the Poffset by using the following formula according to the obtained Pout1, the Pin1, the G1, and the Pcompensation:
  • Poffset G1(Pout1-Pin1)+Pcompensation
  • Step S2013 according to the Poffset and the prePaccumulate offset1, the Paccumulate offset2 is calculated by using the following formula, the abnormality detection result at least: the Poffset and the Paccumulate offset2;
  • Paccumulate offset2 Poffset+prePaccumulate offset1.
  • the first output optical power Pout1, the first input optical power Pin1, the first gain G1, and the first accumulated error prePaccumulate offset1 of the current node are acquired in the current state; it should be noted that if the previous node of the current node is the first node , Paccumulate offset1 is 0; because the first node can manage the entire link, but the abnormality detection and adjustment processing is not performed on the first node, there is no accumulated error. Pcompensation is used to compensate the gain offset of the amplifier caused by line noise.
  • Poffset is calculated using Equation 1.
  • Paccumulate offset2 is calculated using Equation 2.
  • the abnormality detection result is obtained, and whether the current node belongs to the abnormal node can be determined according to whether the abnormality detection result satisfies the preset condition.
  • step S203 may include:
  • Step S2031 Acquire a second output optical power Pout2, a second input optical power Pin2, a second gain G2, and a third accumulated error prePaccumulate offset3 of the current node, and acquire a pre-stored gain offset compensation Pcompensation, where the prePaccumulate offset3 Refers to the error value accumulated from the next node of the first node to the previous node of the current node at the second moment;
  • Step S2032 Calculate the adjusted value Ladjust according to the obtained formula: Pout2, the Pin2, the G2, the prePaccumulate offset3, and the Pcompensation by using the following formula:
  • Step S2033 When the Ladjust is within the preset first adjustable range [L1, L2], the adjustment completion message is fed back to the head node; when the Ladjust is not in the first adjustable range [L1, L2], the adjustment is performed.
  • the boundary value L1 or L2 of the first adjustable range is obtained, and the adjusted first boundary value L1' or the second boundary value L2' is obtained;
  • Step S2034 If the difference between the first boundary value and the adjustment value is L1'-Ladjust or the difference between the adjustment value and the second boundary value Ladjust-L2' is in a preset second adjustable range [G3, G4], the adjustment completion message is fed back to the head node; if the adjusted difference between the first boundary value and the adjustment value L1'-Ladjust or Ladjust-L2' is not in the second adjustable range [ In G3, G4], a command for adjusting the boundary value G3 or G4 of the second adjustable range is sent, and an adjustment failure message is fed back to the head node.
  • Pout2, Pin2, G2, and prePaccumulate offset3 of the current node are acquired at the current time, and Pcompensation is extracted, and the adjustment value Ladjust is calculated by using Equation 3 according to Pout2, Pin2, G2, prePaccumulate offset3, and Pcompensation.
  • Ladjust After obtaining Ladjust, it is necessary to judge whether Ladjust is within the first adjustable range [L1, L2], and if so, feed back the adjustment completion message to the head node. If not, it is necessary to determine the relationship between Ladjust and the boundary values L1 and L2. If Ladjust is smaller than L1, it is necessary to reduce the value of L1 to obtain the adjusted L1', and determine the difference between the first boundary value and the adjustment value. Whether L1'-Ladjust is in the second adjustable range [G3, G4], if the adjustment completion message is fed back to the head node, if not, send A command to adjust the boundary value G3 or G4 of the second adjustable range is sent, and an adjustment failure message is fed back to the head node.
  • Ladjust is greater than L2, it is necessary to increase the value of L2 to obtain the adjusted L2', and determine whether the difference between the adjustment value and the second boundary value Ladjust-L2' is in the second adjustable range [G3, G4] If the adjustment completion message is fed back to the head node, if not, a command to adjust the boundary value G3 or G4 of the second adjustable range is sent, and the adjustment failure message is fed back to the head node.
  • the adjustment mentioned in this paper starts from the node connected to the first node, and the adjustment is started in turn.
  • the first moment and the second moment are mainly for explaining the sequence relationship.
  • FIG. 5 it is a flowchart of current node anomaly detection according to an embodiment of the present invention, which may include the following steps:
  • Step S301 receiving an abnormality monitoring enable command, and starting an abnormality detection
  • Step S302 acquiring a first output optical power Pout1, a first input optical power Pin1, a first gain G1, a gain offset compensation Pcompensation, and a first accumulated error prePaccumulate offset1;
  • Step S303 calculating a deviation of the offset value Poffset and the second cumulative error Paccumulate offset2;
  • Step S304 determining whether the number of times of exceeding the limit is greater than or equal to 2;
  • step S305 if the number of violations is greater than 2, the alarm message needs to be reported to the first node.
  • FIG. 6 is a flowchart of current node power adjustment according to an embodiment of the present invention.
  • Step S401 determining whether an adjustment instruction sent by the first node is received
  • Step S402 When receiving an adjustment instruction sent by the first node, the abnormal node performs adjustment;
  • Step S403 it is determined whether it has been adjusted twice, if yes, then step S405 is performed, if not, then step S404 is performed;
  • Step S404 performing node adjustment processing, adjusting the status of the node after adjustment, and continuing to adjust when the node is abnormal;
  • Step S405 reporting an adjustment failure message to the first node.
  • An embodiment of the present invention provides a method for distributed automatic power optimization, which is applied to a first node. As shown in FIG. 7, the method includes:
  • Step S501 Send an abnormality monitoring enable command to each downstream node, so that the downstream node can start abnormality detection according to the abnormality monitoring enable command.
  • the downstream node uses an abnormality detection algorithm to calculate an abnormality detection result.
  • the abnormality detection result satisfies a preset condition, and the downstream node generates an alarm message;
  • Step S502 Receive an alarm message reported by the downstream node, and send an adjustment instruction to each abnormal node according to the alarm message, where the abnormal node is a downstream node that reports the alarm message, and the preset condition is: at least two consecutive calculations.
  • the offset value Poffset of the current node is greater than the offset threshold Thrresetset prestored by the current node or the second cumulative error Paccumulate offset2 of the current node is greater than the current node cumulative offset threshold ThrReAccumulateOffset;
  • Step S503 Receive a response message fed back by each abnormal node, and when receiving the adjustment completion message returned by the last abnormal node, answer the adjustment success event to the network management system.
  • the first node receives the monitoring enable notification sent by the network management system, sends an abnormal monitoring enable command to each downstream node according to the enable monitoring notification, and receives an enable response fed back by each node, and receives an enable response of the last node. Then, the abnormal node detection state is entered; when the enable response fed back by the downstream node is not received, the enable failure message is sent to the network management system, and the abnormal node detection state is not entered.
  • the abnormal node detection state is entered.
  • the downstream node can start the abnormality detection according to the abnormality monitoring enable command, and the abnormality detection algorithm is used to calculate the abnormality detection result. If the abnormality detection result satisfies the preset condition, the downstream node generates an alarm message.
  • the first node receives the alarm message reported by the downstream node, and sequentially sends an adjustment instruction to each abnormal node according to the alarm message.
  • step S502 may include:
  • Step S5021 determining a current adjustment mode, and when the current adjustment mode is an automatic mode, sending an adjustment instruction to the first abnormal node;
  • Step S5022 When the current adjustment mode is the manual mode, determine whether the start adjustment instruction sent by the network management system is received, and after receiving the start adjustment instruction, send an adjustment instruction to the first abnormal node, so that the An abnormal node enters an adjustment state to perform power adjustment; if the start adjustment instruction is not received, driving the downstream node to perform an abnormality detection;
  • Step S5023 After receiving the adjustment result returned by the first abnormal node, determining whether it is necessary to continue the adjustment, if the adjustment result is an adjustment failure message, ending the adjustment process; if the adjustment result is an adjustment completion message, then The next abnormal node sends an adjustment command.
  • the first node determines the current adjustment mode, and when the adjustment mode is the automatic mode, directly sends an adjustment instruction to the first abnormal node, so that the first abnormal node enters the adjustment state to perform power adjustment.
  • the adjustment mode is the manual mode, it is required to determine whether a start adjustment instruction sent by the network management system is received, and if the start adjustment instruction is received, an adjustment instruction is sent to the first abnormal node; if the start adjustment instruction is not received, Continue with anomaly detection.
  • the adjustment process After receiving the adjustment result returned by the first abnormal node, if the adjustment result is the adjustment failure message, the adjustment process is ended; if the adjustment result is the adjustment completion message, the adjustment instruction is sent to the next abnormal node, and the adjustment is continued.
  • the schematic diagram of the abnormality monitoring process is started for the first node, which may include the following steps:
  • Step S601 Receive a monitoring enable notification sent by the network management system.
  • Step S602 Send an abnormal monitoring enable command to the downstream node.
  • Step S603 it is determined whether the downstream node is successfully enabled, if successful, proceed to step S604, if not, proceed to step S606;
  • Step S604 determining whether the last node returns to enable success, if yes, proceed to step S605, if not, then return to step S602;
  • Step S605 setting the system to an abnormality detecting state, and ending the process
  • Step S606 If the configuration fails, the link failure event is reported to the network management system, and the process ends.
  • the nodes adjusted by the first node are abnormal nodes, and the process may include the following steps:
  • Step S701 sending an adjustment instruction to the downstream node
  • Step S702 determining whether the adjustment completion message fed back by the downstream node is received; if yes, executing step S703, if not, executing step S705;
  • Step S703 determining whether the last node returns the adjustment completion message; if yes, executing step S704, if not, executing step S701;
  • Step S704 the adjustment succeeds, and sends an adjustment success event to the network management system, and step S707 is performed;
  • Step S705 sending a stop adjustment instruction to the downstream node
  • Step S706 The adjustment fails, and the adjustment failure event is sent to the network management system.
  • step S707 the adjustment ends, and the abnormality detection state is entered.
  • FIG. 11 it is an overall flowchart of an embodiment of the present invention, which may include the following steps:
  • Step S801 the network management system configures the link
  • Step S802 creating a first node, and the first node creates another node according to the configuration information
  • Step S803 the first node starts an abnormality monitoring process
  • Step S804 The non-first node performs an abnormality detection process, and reports to the first node;
  • Step S805 the first node determines the current adjustment mode, in the automatic mode, step S806 is performed, and in the manual mode, step S812 is performed;
  • Step S806 the current mode is an automatic mode
  • Step S807 the first node sends an adjustment instruction to the first abnormal node
  • Step S808 After receiving the adjustment instruction, the first abnormal node starts to adjust;
  • Step S809 the first abnormal node adjustment ends, and the adjustment result is reported to the first node;
  • Step S810 the first node determines whether to continue the adjustment according to the result, if the adjustment continues to perform step S811, if the adjustment is not continued, then returns to step S804;
  • Step S811 the first node sends an adjustment instruction to the next abnormal node, and the next abnormal node is connected. Receiving the adjustment instruction, starting to return to step S808 to start the adjustment, and ending the process after the adjustment of each abnormal node is completed;
  • Step S812 the current adjustment mode is a manual mode
  • step S813 it is determined whether the start adjustment instruction sent by the network management system is received, if yes, step S807 is performed, and if not, the process returns to step S804.
  • An embodiment of the present invention provides a device for distributed automatic power optimization, which is applied to a current node. As shown in FIG. 12, the device includes:
  • the first processing module 901 is configured to receive an abnormality monitoring enable command sent by the first node, and start an abnormality detection according to the abnormality monitoring enable command, and use the abnormality detecting algorithm to calculate an abnormality detecting result in the abnormality detecting;
  • the reporting module 902 is configured to report a warning message to the head node when the abnormality detection result satisfies a preset condition, where the preset condition is: an offset value Poffset of the current node in the result of at least two consecutive calculations
  • the offset threshold Thrresetset2 that is greater than the current node pre-stored or the second cumulative error Paccumulate offset2 of the current node is greater than the current node cumulative offset threshold ThrreAccumulateOffset, where the Paccumulate offset2 refers to the accumulated error value from the next node of the first node to the current node. ;
  • the second processing module 903 is configured to receive an adjustment instruction sent by the first node, enter an adjustment state, perform power adjustment, and feed back the adjustment result to the first node.
  • the abnormality detection result obtained by the first processing module 901 when the abnormality detection result obtained by the first processing module 901 does not satisfy the preset condition, it indicates that the current node belongs to a normal node.
  • the device may further include:
  • the feedback module 904 is configured to: after the first processing module 901 receives the abnormality monitoring enable command sent by the first node, before the abnormality detection is started, the enabling success message is fed back to the first node.
  • the first processing module 901 includes:
  • the first obtaining sub-module 9011 is configured to acquire the first output optical power Pout1, the first input optical power Pin1, the first gain G1, and the first accumulated error prePaccumulate offset1 of the current node, and acquire the gain offset compensation Pcompensation pre-stored by the current node.
  • the prePaccumulate offset1 refers to the first time accumulating from the next node of the first node to the previous node of the current node. Error value
  • the first calculation sub-module 9012 is configured to calculate the Poffset according to the Pout1, the Pin1, the G1, and the Pcompensation according to the following formula:
  • Poffset G1(Pout1-Pin1)+Pcompensation
  • the second calculation sub-module 9013 is configured to calculate the Paccumulate offset 2 according to the Poffset and the prePaccumulate offset1 by using the following formula, the abnormality detection result at least: the Poffset and the Paccumulate offset2;
  • Paccumulate offset2 Poffset+prePaccumulate offset1.
  • the second processing module 903 may include:
  • the second obtaining sub-module 9031 is configured to acquire the second output optical power Pout2, the second input optical power Pin2, the second gain G2, and the third accumulated error prePaccumulate offset3 of the current node, and acquire a pre-stored gain offset compensation Pcompensation of the current node.
  • the prePaccumulate offset3 refers to an error value accumulated from a next node of the first node to a previous node of the current node at the second moment;
  • the third calculation sub-module 9032 is configured to calculate the adjustment value Ladjust according to the obtained Pout2, the Pin2, the G2, the prePaccumulate offset3, and the Pcompensation by using the following formula:
  • the first processing submodule 9033 is configured to: when the Ladjust is within the preset first adjustable range [L1, L2], feed back an adjustment completion message to the head node; the Ladjust is not in the first adjustable range [L1 , in L2], adjusting the boundary value L1 or L2 of the first adjustable range to obtain an adjusted first boundary value L1' or a second boundary value L2';
  • the second processing sub-module 9034 is configured to set a difference L1′-Ladjust between the first boundary value and the adjustment value or a difference Ladjust-L2′ between the adjustment value and the second boundary value at a preset
  • the adjustment completion message is fed back to the head node; when L1'-Ladjust or Ladjust-L2' is not in the second adjustable range [G3, G4], then A command to adjust the boundary value G3 or G4 of the second adjustable range is sent, and an adjustment failure message is fed back to the head node.
  • the embodiment of the invention further provides a device for distributed automatic power optimization, which is applied to a first node, As shown in FIG. 13, the device includes:
  • the sending module 1001 is configured to send an abnormality monitoring enable command to each downstream node, so that the downstream node can start the abnormality detection according to the abnormality monitoring enable command, in which the downstream node calculates the abnormality detection result by using the abnormality detecting algorithm. And if the abnormality detection result meets a preset condition, the downstream node generates an alarm message;
  • the third processing module 1002 is configured to receive an alarm message reported by the downstream node, and send an adjustment instruction to each abnormal node according to the alarm message, where the abnormal node is a downstream node that reports the alarm message, and the preset condition is:
  • the offset value Poffset of the current node is greater than the offset threshold ThreOffset prestored by the current node or the second accumulated error Paccumulate offset2 of the current node is greater than the current node cumulative offset threshold ThrecAccumulateOffset;
  • the first receiving module 1003 is configured to receive a response message fed back by each abnormal node, and respond to the adjustment success event to the network management system when receiving the adjustment completion message returned by the last abnormal node.
  • the device may further include:
  • the second receiving module 1004 is configured to receive a monitoring enable notification sent by the network management system before the sending module 1001 sends an abnormal monitoring enable command to each downstream node.
  • the device may further include:
  • the fourth processing module 1005 is configured to: after the sending module 1001 sends an abnormal monitoring enable command to each downstream node, receive an enable response fed back by each downstream node, and enter an abnormal node detection when receiving an enable response of the last node. If the response is not received by the downstream node, the device sends an enable failure message to the network management system and does not enter the abnormal node detection state.
  • the device may further include:
  • the fifth processing module 1006 is configured to, when receiving the adjustment failure message fed back by the abnormal node, send a stop adjustment instruction to the abnormal node, and respond to the network management system with the adjustment failure event, and end the adjustment process.
  • the third processing module 1002 may include:
  • the first sub-module 10021 is configured to determine a current adjustment mode, and send an adjustment instruction to the first abnormal node when the current adjustment mode is the automatic mode;
  • the second sub-module 10022 is configured to determine, when the current adjustment mode is the manual mode, whether to receive the start adjustment instruction sent by the network management system, and after receiving the start adjustment instruction, send an adjustment instruction to the first abnormal node. And causing the first abnormal node to enter an adjustment state for power adjustment; when the start adjustment instruction is not received, driving the downstream node to perform an abnormality detection;
  • the third sub-module 10023 is configured to: after receiving the adjustment result returned by the first abnormal node, determine whether it is necessary to continue the adjustment, and if the adjustment result is an adjustment failure message, end the adjustment process; the adjustment result is an adjustment completion message. , then send an adjustment command to the next abnormal node.
  • the method for distributed automatic power optimization introduces an offset threshold ThrreOffset and a current node cumulative offset threshold ThreAccumulateOffset when determining whether the current node belongs to an abnormal node by using an abnormality detecting algorithm, so that the network element management system is not required for each
  • the standard value of the node configuration comparison simplifies the complexity of the manual management configuration.
  • the gain offset compensation Pcompensation is introduced, which can eliminate the optical power abnormality alarm and avoid repeated invalid adjustment.
  • the attenuation of the optical fiber changes, the attenuation or gain in the system is automatically adjusted, so that the entire network management system can maintain the designed power budget and ensure the normal transmission of the service.
  • Embodiments of the present invention also provide a computer readable storage medium storing computer executable instructions that are implemented by a processor to implement the above method.
  • the storage medium includes, but is not limited to, an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • Embodiments of the invention are not limited to any specific form of combination of hardware and software.
  • the distributed automatic power optimization device provided by the present invention is a device applying the above method, and embodiments of the above methods are all applicable to the device, and the same or similar beneficial effects can be achieved.
  • the method and device for distributed automatic power optimization introduces an offset threshold ThrreOffset and a current node cumulative offset threshold ThreAccumulateOffset when an abnormality detection algorithm is used to determine whether the current node belongs to an abnormal node, so that the network element management system is not required.
  • the standard value of the comparison is configured for each node, which simplifies the complexity of the manual management configuration.
  • the gain offset compensation Pcompensation is introduced, which can eliminate the optical power abnormality alarm and avoid repeated invalid adjustment.
  • the attenuation of the optical fiber changes, the attenuation or gain in the system is automatically adjusted, so that the entire system can maintain the designed power budget and ensure the normal transmission of the service.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

本文公布一种分布式自动功率优化的方法及装置,其中方法包括:接收首节点发送的异常监测使能命令,并根据异常监测使能命令启动异常检测,在异常检测中采用异常检测算法计算得到异常检测结果;若异常检测结果满足预设条件,则向首节点上报告警消息;接收首节点发送的调节指令,进入调节状态进行功率调节并将调节结果反馈给首节点。本文公布的方法及装置能够在光纤衰减变化时,自动调节系统中的衰减或增益,使整个系统能够保持设计的功率预算,保证业务的正常传送。

Description

一种分布式自动功率优化的方法及装置 技术领域
本申请涉及但不限于通信技术领域,尤其涉及一种分布式自动功率优化的方法及装置。
背景技术
波分系统运行时的主光功率必须保持系统设计时的功率预算,保证接收机的正常工作,同时为了保证扩容或其它增减波的操作不影响已有的业务传输,系统中的光放大器都要求工作在增益锁定状态。系统运行时,如果光纤的衰减出现变化,将会导致业务光信号的功率发生变化,严重时会导致业务中断。
相关技术中,在进行光功率检测或调节时,往往存在以下弊端:将节点输出光功率与标准输出光功率的差值是否越过标准门限,作为异常上报和调节成功的标准时,网管系统需要为每个节点配置标准输出光功率,增加了用户操作复杂度和维护成本。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保围。
本发明实施例提供一种分布式自动功率优化的方法,应用于当前节点,所述方法包括:
接收首节点发送的异常监测使能命令,并根据所述异常监测使能命令启动异常检测,在所述异常检测中采用异常检测算法计算得到异常检测结果;
所述异常检测结果满足预设条件,则向首节点上报告警消息,其中所述预设条件为:至少连续两次计算得到的结果中当前节点的偏移值(Poffset)大于当前节点预存的偏移门限(ThreOffset)或者当前节点的第二累计误差(Paccumulate offset2)大于当前节点累计偏移门限(ThreAccumulateOffset),其中所述Paccumulate offset2是指从首节点的下一个节点到当前节点累计的误差值;
接收首节点发送的调节指令,进入调节状态进行功率调节并将调节结果反馈给首节点。
其中,如果所述异常检测结果不满足预设条件,则表明当前节点属于正常节点。
其中,所述接收首节点发送的异常监测使能命令之后,启动异常检测之前,所述方法还包括:
向首节点反馈使能成功消息。
其中,所述根据所述异常监测使能命令启动异常检测,在所述异常检测中采用异常检测算法计算得到异常检测结果,可以包括:
获取当前节点的第一输出光功率Pout1、第一输入光功率Pin1、第一增益G1和第一累计误差prePaccumulate offset1,并获取当前节点预存的增益偏移补偿Pcompensation,其中所述prePaccumulate offset1是指第一时刻从首节点的下一个节点到当前节点的上一个节点累计的误差值;
根据所述Pout1、所述Pin1、所述G1以及所述Pcompensation,采用如下公式计算得到所述Poffset:
Poffset=G1(Pout1-Pin1)+Pcompensation;
根据所述Poffset和所述prePaccumulate offset1,采用如下公式计算得到所述Paccumulate offset2,所述异常检测结果至少包括:所述Poffset和所述Paccumulate offset2;其中,
Paccumulate offset2 =Poffset+prePaccumulate offset1。
其中,所述进入调节状态进行功率调节并将调节结果反馈给首节点,可以包括:
获取当前节点的第二输出光功率Pout2、第二输入光功率Pin2、第二增益G2和第三累计误差prePaccumulate offset3,并获取当前节点预存的增益偏移补偿Pcompensation,其中所述prePaccumulate offset3是指第二时刻从首节点的下一个节点到当前节点的上一个节点累计的误差值;
根据所述Pout2、所述Pin2、所述G2、所述prePaccumulate offset3以及所述Pcompensation,采用如下公式计算得到调整值Ladjust:
Ladjust=(Pout2-Pin2)-G2-(Pcompensation+prePaccumulate offset3)
当所述Ladjust在预设的第一可调范围[L1,L2]内,向首节点反馈调节完成消息;当所述Ladjust不在所述第一可调范围[L1,L2]内,调节所述第一可调范围的边界值L1或L2,得到调节后的第一边界值L1'或第二边界值L2';
如果所述第一边界值与所述调整值之间的差值L1'-Ladjust或所述调整值与所述第二边界值之间的差值Ladjust-L2'在预设的第二可调范围[G3,G4]内,则向首节点反馈调节完成消息;如果所述第一边界值与所述调整值之间的差值L1'-Ladjust或所述调整值与所述第二边界值之间的差值Ladjust-L2'不在所述第二可调范围[G3,G4]内,则发送调节所述第二可调范围的边界值G3或G4的命令,并向首节点反馈调节失败消息。
本发明实施例还提供了另一种分布式自动功率优化的方法,应用于首节点,所述方法可以包括:
向下游各个节点发送异常监测使能命令,使得下游节点能够根据所述异常监测使能命令启动异常检测,在所述异常检测中下游节点采用异常检测算法计算得到异常检测结果,若所述异常检测结果满足预设条件,由所述下游节点生成告警消息;
接收下游节点上报的告警消息,根据所述告警消息依次向各个异常节点发送调节指令,其中异常节点为上报所述告警消息的下游节点,所述预设条件为:至少连续两次计算得到的结果中当前节点的偏移值Poffset大于当前节点预存的偏移门限ThreOffset或者当前节点的第二累计误差Paccumulate offset2大于当前节点累计偏移门限ThreAccumulateOffset;
接收各个异常节点反馈的应答消息,接收到最后一个异常节点返回的调节成功消息时,向网管系统应答调节成功事件。
其中,所述向下游各个节点发送异常监测使能命令之前,所述方法还可以包括:接收所述网管系统发送的监测使能通知。
其中,所述向下游各个节点发送异常监测使能命令之后,所述方法还可以包括:接收下游各个节点反馈的使能应答,接收到末节点的使能应答,则进入异常节点检测状态;没有接收到任意一个节点反馈的使能应答时,向所 述网管系统发送使能失败消息,不进入异常节点检测状态。
其中,所述方法还可以包括:接收到异常节点反馈的调节失败消息时,向异常节点发送停止调节指令,并向所述网管系统应答调节失败事件。
其中,所述根据所述告警消息依次向各个异常节点发送调节指令,包括:判断当前调节模式,当前调节模式为自动模式时,向第一异常节点发送调节指令;
当前调节模式为手动模式时,判断是否接收到所述网管系统发送的开始调节指令,接收到所述开始调节指令后,向所述第一异常节点发送调节指令,使得所述第一异常节点进入调节状态进行功率调节;没有接收到所述开始调节指令时,驱动下游节点进行异常检测;
接收到所述第一异常节点返回的调节结果后,判断是否需要继续调节,在所述调节结果为调节完成消息时,向下一个异常节点发送调节指令。
本发明实施例还提供了一种分布式自动功率优化的装置,应用于当前节点,所述装置可以包括:
第一处理模块,设置为接收首节点发送的异常监测使能命令,并根据所述异常监测使能命令启动异常检测,在所述异常检测中采用异常检测算法计算得到异常检测结果;
上报模块,设置为在所述异常检测结果满足预设条件时,向首节点上报告警消息;其中所述预设条件为:至少连续两次计算得到的结果中当前节点的偏移值Poffset大于当前节点预存的偏移门限ThreOffset;或者,当前节点的第二累计误差Paccumulate offset2 大于当前节点累计偏移门限ThreAccumulateOffset;其中,所述Paccumulate offset2是指从首节点的下一个节点到当前节点所累计的误差值;
第二处理模块,设置为接收首节点发送的调节指令,进入调节状态进行功率调节并将调节结果反馈给首节点。
本发明实施例还提供一种分布式自动功率优化的装置,应用于首节点,所述装置可以包括:
发送模块,设置为向下游各个节点发送异常监测使能命令,使得下游节 点能够根据所述异常监测使能命令启动异常检测,在所述异常检测中下游节点采用异常检测算法计算得到异常检测结果,所述异常检测结果满足预设条件时,由所述下游节点生成告警消息;
第三处理模块,设置为接收下游节点上报的告警消息,根据所述告警消息依次向各个异常节点发送调节指令,其中异常节点为上报所述告警消息的下游节点,所述预设条件为:至少连续两次计算得到的结果中当前节点的偏移值Poffset大于当前节点预存的偏移门限ThreOffset或者当前节点的第二累计误差Paccumulate offset2大于当前节点累计偏移门限ThreAccumulateOffset;
第一接收模块,设置为接收各个异常节点反馈的应答消息,在接收到最后一个异常节点返回的调节完成消息时,向网管系统应答调节成功事件。
本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述方法。
本发明实施例在采用异常检测算法判断当前节点是否属于异常节点时引入偏移门限ThreOffset和当前节点累计偏移门限ThreAccumulateOffset,使得不需要网元管理系统为每个节点配置比较的标准值,简化人工管理配置的复杂度;在进行功率调节时引入增益偏移补偿Pcompensation,可以消除光功率异常告警,避免反复无效调节。本发明实施例在光纤衰减变化时,自动调节系统中的衰减或增益,使整个系统能够保持设计的功率预算,保证业务的正常传送。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例的APO分布式部署示意图;
图2为本发明实施例的应用于当前节点的分布式自动功率优化的方法流程示意图一;
图3为本发明实施例的应用于当前节点的分布式自动功率优化的方法流程示意图二;
图4为本发明实施例的应用于当前节点的分布式自动功率优化的方法流程示意图三;
图5为本发明实施例的当前节点异常检测流程图;
图6为本发明实施例的当前节点功率调节流程图;
图7为本发明实施例应用于首节点的分布式自动功率优化的方法流程示意图一;
图8为本发明实施例应用于首节点的分布式自动功率优化的方法流程示意图二;
图9表示本发明实施例首节点启动异常监测流程示意图;
图10表示本发明实施例首节点调节执行流程示意图;
图11为本发明实施例整体步骤流程示意图;
图12为本发明实施例分布式自动功率优化的装置示意图一;
图13为本发明实施例分布式自动功率优化的装置示意图二。
本发明的实施方式
为使本发明实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
在本发明实施例中APO(分布式自动功率优化)功率管理系统的管理架构主要包括控制器、执行器、采集器,以及相互通讯的接口(包括网元内与网元间通讯)与协议。APO调节采用反馈控制算法实现,反馈控制算法的算法核心实现在控制器中,控制器通过采集器(参考单元和功率监测单元)获取当前功率信息,根据采集结果调节执行器(衰减调节单元),直到达到功率优化。下面结合图1进行详细描述。
APO链路,整个复用段对应一条APO链路,图1中从光合波板(OMU)105到光分波板(ODU)111组成一个复用段110。
APO组,APO链路上相邻的检测点构成一个APO组,第一光放大板(OA1)106的输出到第二光放大板(OA2)108的输出组成一个第一APO组107,第二光放大板108的输出到第三光放大板(OA3)113的输出构成第二APO组112。可以看出,APO组相关要素可能分布在多个网元上,也可能位于同一个网元。第一APO组107的参考单元位于第一网元(NE1)103, 检测单元位于第二网元(NE2)103。第二APO组112的参考单元和检测单元都位于第二网元103。一个APO节点可以包含参考单元、检测单元、衰减调节单元、增益调节单元。
APO参考单元,OA单板的输出检测点,逻辑上参考单元归属本APO管理,物理上部署在前一个APO上。
如图1所示,第二光放大板108逻辑上作为第二APO组112的参考单元,物理上部署在第一APO组107上。
检测单元,OA单板的输入检测点,为第二光放大板108、第三光放大板113的输入端口。
衰减调节单元,LAC单板109。
增益调节单元,OA单板上的SFPVOA。
采用分布式部署,每个APO节点负责该APO相应单元的采集、计算、调节过程,避免采用网管系统集中管理整个链路导致通信量巨大、系统实时性较弱的缺点。
本发明实施例提供一种分布式自动功率优化的方法,应用于当前节点,如图2所示,所述方法包括:
步骤S201、接收首节点发送的异常监测使能命令,并根据所述异常监测使能命令启动异常检测,在所述异常检测中采用异常检测算法计算得到异常检测结果;
步骤S202、所述异常检测结果满足预设条件时,向首节点上报告警消息,其中所述预设条件为:至少连续两次计算得到的结果中当前节点的偏移值Poffset大于当前节点预存的偏移门限ThreOffset或者当前节点的第二累计误差Paccumulate offset2大于当前节点累计偏移门限ThreAccumulateOffset,其中所述Paccumulate offset2是指从首节点的下一个节点到当前节点所累计的误差值;
步骤S203、接收首节点发送的调节指令,进入调节状态进行功率调节并将调节结果反馈给首节点。
步骤S201中当前节点在接收到首节点发送的异常监测使能命令后,当前 节点启动异常检测定时器,在异常检测定时器超时后,启动异常检测。
步骤S202中在计算一次得到异常检测结果后,这里的异常检测结果包括Poffset和Paccumulate offset2,取出本节点保存的ThreOffset与ThreAccumulateOffset,将Poffset与ThreOffset、Paccumulate offset2与ThreAccumulateOffset进行比较,如果Poffset大于ThreOffset或Paccumulate offset2大于ThreAccumulateOffset,表明越限成功;此时需要再次计算,当第二次计算后得到的异常检测结果仍然越限成功,则表明异常检测结果满足预设条件,可以向首节点发送告警消息。当第一次计算得到的异常检测结果越限成功,第二次计算得到的异常检测结果越限不成功,则表明异常检测结果不满足预设条件,表明当前节点属于正常节点。当第一次计算得到的异常检测结果越限不成功,无需进行第二次计算,即可判断当前节点属于正常节点。可以理解的是,前两次异常检测结果都越限成功后,第三次或第四次异常检测结果越限成功时,表明当前节点属于异常节点。
具体的,接收首节点发送的异常监测使能命令后,启动异常检测并采用异常检测算法进行计算得到异常检测结果,当异常检测的结果满足预设条件时,表明当前节点属于异常节点,需要向首节点上报告警消息。当异常检测的结果不满足预设条件时,表明当前节点属于正常节点,不需要向首节点上报告警消息。在判断出当前节点属于异常节点,并向首节点上报告警消息后,需要等待首节点发送的调节指令,根据所述调节指令进入到调节状态进行功率的调节,将调节结果上报到首节点。
本发明实施例在光纤衰减变化时,自动调节系统中的衰减或增益,使整个系统能够保持设计的功率预算,保证业务的正常传送。
在本发明实施例中,在接收首节点发送的异常监测使能命令之后,启动异常检测之前,所述方法还包括:向首节点反馈使能成功消息。
具体的,在接收到首节点发送的异常监测使能命令之后,需要向首节点反馈使能成功消息,首节点在收到使能成功消息后,知晓该节点使能成功。当前节点在使能成功后,可以启动异常检测。在当前节点使能不成功时,首节点无法接收到当前节点的使能成功消息,首节点需要向网管系统上报链路使能失败,流程结束。
在本发明实施例中,如图3所示,步骤S201可以包括:
步骤S2011、获取当前节点的第一输出光功率Pout1、第一输入光功率Pin1、第一增益G1和第一累计误差prePaccumulate offset1,并获取当前节点预存的增益偏移补偿Pcompensation,其中所述prePaccumulate offset1是指第一时刻从首节点的下一个节点到当前节点的上一个节点所累计的误差值;
步骤S2012、根据获取的所述Pout1、所述Pin1、所述G1以及所述Pcompensation,采用如下公式计算得到所述Poffset:
Poffset=G1(Pout1-Pin1)+Pcompensation;
步骤S2013、根据所述Poffset和所述prePaccumulate offset1,采用如下公式计算得到所述Paccumulate offset2,所述异常检测结果至少包括:所述Poffset和所述Paccumulate offset2;
Paccumulate offset2 =Poffset+prePaccumulate offset1。
具体的,当前状态下获取当前节点的第一输出光功率Pout1、第一输入光功率Pin1、第一增益G1和第一累计误差prePaccumulate offset1;需要说明的是,如果当前节点的前一个节点为首节点,则Paccumulate offset1为0;因为首节点可以对整个链路进行管理,但首节点上不进行异常检测和调节的处理,不存在累计误差。Pcompensation用于补偿线路噪声引起的放大器的增益偏移量,链路光功率调测正常情况下:Pcompensation=G-(Pout-Pin),其中这里G、Pout和Pin分别为链路光功率调测正常情况下的增益、光输出功率和光输入功率。
在获取Pout1、Pin1、G1以及Pcompensation后,利用公式1计算得到Poffset。
Poffset=G1(Pout1-Pin1)+Pcompensation    (公式1)
在获得Poffset后,利用公式2计算得到Paccumulate offset2。
Paccumulate offset2 =Poffset+prePaccumulate offset1    (公式2)
在获得Poffset和Paccumulate offset2后,即得到了异常检测结果,根据异常检测结果是否满足预设条件即可判断出当前节点是否属于异常节点。
在本发明实施例中,如图4所示,步骤S203可以包括:
步骤S2031、获取当前节点的第二输出光功率Pout2、第二输入光功率Pin2、第二增益G2和第三累计误差prePaccumulate offset3,并获取当前节点预存的增益偏移补偿Pcompensation,其中所述prePaccumulate offset3是指第二时刻从首节点的下一个节点到当前节点的上一个节点所累计的误差值;
步骤S2032、根据获取的所述Pout2、所述Pin2、所述G2、所述prePaccumulate offset3以及所述Pcompensation,采用如下公式计算得到调整值Ladjust:
Ladjust=(Pout2-Pin2)-G2-(Pcompensation+prePaccumulate offset3)
步骤S2033、所述Ladjust在预设的第一可调范围[L1,L2]内时,向首节点反馈调节完成消息;所述Ladjust不在第一可调范围[L1,L2]内时,调节所述第一可调范围的边界值L1或L2,得到调节后的第一边界值L1'或第二边界值L2';
步骤S2034、如果所述第一边界值与所述调整值的差值L1'-Ladjust或所述调整值与所述第二边界值的差值Ladjust-L2'在预设的第二可调范围[G3,G4]内,则向首节点反馈调节完成消息;若调节后的所述第一边界值与所述调整值的差值L1'-Ladjust或Ladjust-L2'不在第二可调范围[G3,G4]内,则发送调节所述第二可调范围的边界值G3或G4的命令,并向首节点反馈调节失败消息。
具体的,在进行调节时,在当前时刻获取当前节点的Pout2、Pin2、G2和prePaccumulate offset3,并提取Pcompensation,根据Pout2、Pin2、G2、prePaccumulate offset3和Pcompensation,采用公式三计算得到调整值Ladjust。
Ladjust=(Pout2-Pin2)-G2-(Pcompensation+prePaccumulate offset3)(公式3)
在获得Ladjust后,需要判断Ladjust是否在第一可调范围[L1,L2]内,如果在,则向首节点反馈调节完成消息。如果不在,则需要判断Ladjust与边界值L1、L2的关系,如果Ladjust小于L1,则需要减小L1的值得到调节后的L1',判断所述第一边界值与所述调整值的差值L1'-Ladjust是否在第二可调范围[G3,G4]内,如果在向首节点反馈调节完成消息,如果不在,发 送调节第二可调范围的边界值G3或G4的命令,并向首节点反馈调节失败消息。
如果Ladjust大于L2,则需要增大L2的值得到调节后的L2',判断所述调整值与所述第二边界值的差值Ladjust-L2'是否在第二可调范围[G3,G4]内,如果在向首节点反馈调节完成消息,如果不在,发送调节第二可调范围的边界值G3或G4的命令,并向首节点反馈调节失败消息。
需要说明的是,本文中提到的调节是从首节点相连的节点开始,依次开始调节,上述的第一时刻和第二时刻主要是为了说明先后关系。
如图5所示,为本发明实施例当前节点异常检测流程图,可以包括如下步骤:
步骤S301、接收到异常监测使能命令,启动异常检测;
步骤S302、获取第一输出光功率Pout1、第一输入光功率Pin1、第一增益G1、增益偏移补偿Pcompensation和第一累计误差prePaccumulate offset1;
步骤S303、计算得到偏移值Poffset和第二累计误差Paccumulate offset2的偏差;
步骤S304、判断越限次数是否大于等于2;
步骤S305、如果越限次数大于2则需要上报告警消息至首节点。
如果越限次数小于2,且计算一次后得到的计算结果越限,需要再次进行计算,如果两次计算结果中仅有第一次越限,则不需上报告警消息。需要说明的是,再次进行计算时获取的Pout1、Pin1、G1和prePaccumulate offset1的值与第一次获取的值相比,会发生变化。
如图6所示,为本发明实施例当前节点功率调节流程图。
步骤S401、判断是否接收到首节点发送的调节指令;
步骤S402、当收到首节点发送的调节指令,异常节点进行调节;
步骤S403、判断是否已经调节2次,如果是,则执行步骤S405,如果不是,则执行步骤S404;
步骤S404、进行节点调节处理,调节后查看节点状态,当节点异常时继续进行调节;
步骤S405、向首节点上报调节失败消息。
本发明实施例提供一种分布式自动功率优化的方法,应用于首节点,如图7所示,所述方法包括:
步骤S501、向下游各个节点发送异常监测使能命令,使得下游节点能够根据所述异常监测使能命令启动异常检测,在所述异常检测中下游节点采用异常检测算法计算得到异常检测结果,若所述异常检测结果满足预设条件,由所述下游节点生成告警消息;
步骤S502、接收下游节点上报的告警消息,根据所述告警消息依次向各个异常节点发送调节指令,其中异常节点为上报所述告警消息的下游节点,所述预设条件为:至少连续两次计算得到的结果中当前节点的偏移值Poffset大于当前节点预存的偏移门限ThreOffset或者当前节点的第二累计误差Paccumulate offset2大于当前节点累计偏移门限ThreAccumulateOffset;
步骤S503、接收每个异常节点反馈的应答消息,当接收到最后一个异常节点返回的调节完成消息时,向网管系统应答调节成功事件。
具体的,首节点接收网管系统发送的监测使能通知,根据使能监测通知向下游各个节点发送异常监测使能命令,接收下游各个节点反馈的使能应答,当接收到末节点的使能应答后,进入异常节点检测状态;当没有接收到下游某节点反馈的使能应答时,向网管系统发送使能失败消息,不进入异常节点检测状态。
当接收到末节点的使能应答后,进入异常节点检测状态。此时下游节点能够根据异常监测使能命令启动异常检测,采用异常检测算法计算得到异常检测结果,若异常检测结果满足预设条件,下游节点生成告警消息。首节点接收下游节点上报的告警消息,根据告警消息依次向每个异常节点发送调节指令。然后接收每个异常节点反馈的应答消息,当接收到最后一个异常节点返回调节完成消息时,向网管系统应答调节成功事件;当接收到异常节点反馈的调节失败消息时,向异常节点发送停止调节指令,并向网管系统应答调 节失败事件,结束调节流程。
在本发明实施例中,如图8所示,步骤S502可以包括:
步骤S5021、判断当前调节模式,当前调节模式为自动模式时,向第一异常节点发送调节指令;
步骤S5022、当前调节模式为手动模式时,判断是否接收到所述网管系统发送的开始调节指令,在接收到所述开始调节指令后,向所述第一异常节点发送调节指令,使得所述第一异常节点进入调节状态进行功率调节;如果没有接收到所述开始调节指令,驱动下游节点进行异常检测;
步骤S5023、接收到所述第一异常节点返回的调节结果后,判断是否需要继续调节,如果所述调节结果为调节失败消息,则结束调节流程;如果所述调节结果为调节完成消息,则向下一个异常节点发送调节指令。
具体的,首节点在判断当前所处的调节模式,当调节模式为自动模式时,直接向第一异常节点发送调节指令,使得第一异常节点进入调节状态进行功率调节。当调节模式为手动模式时,需要判断是否接收到网管系统发送的开始调节指令,如果接收到所述开始调节指令则向第一异常节点发送调节指令;如果没有接收到所述开始调节指令,则继续进行异常检测。
接收到第一异常节点返回的调节结果后,如果调节结果为调节失败消息,则结束调节流程;如果所述调节结果为调节完成消息,则向下一个异常节点发送调节指令,继续进行调节。
如图9所示,为首节点启动异常监测流程示意图,具体可以包括如下步骤:
步骤S601、收到网管系统发送的监测使能通知;
步骤S602、向下游节点发送异常监测使能命令;
步骤S603、判断下游节点是否使能成功,如果成功则进行步骤S604,如果不成功则进行步骤S606;
步骤S604、判断末节点是否返回使能成功,如果是则进行步骤S605,如果不是则返回到步骤S602;
步骤S605、设置系统为异常检测状态,结束流程;
步骤S606、使能失败,向网管系统上报链路使能失败事件,结束流程。
如图10所示,为首节点调节执行流程示意图,首节点调节的节点均为异常节点,该流程可以包括如下步骤:
步骤S701、向下游节点发送调节指令;
步骤S702、判断是否接收到下游节点反馈的调节完成消息;如果收到则执行步骤S703,如果没有收到则执行步骤S705;
步骤S703、判断末节点是否返回调节完成消息;如果是则执行步骤S704,如果不是则执行步骤S701;
步骤S704、调节成功,向网管系统发送调节成功事件,执行步骤S707;
步骤S705、向下游节点发送停止调节指令;
步骤S706、调节失败,向网管系统发送调节失败事件;
步骤S707、调节结束,进入异常检测状态。
如图11所示,为本发明实施例整体流程图,主要可以包括如下步骤:
步骤S801、网管系统配置链路;
步骤S802、创建首节点,首节点根据配置信息创建其他节点;
步骤S803、首节点启动异常监测流程;
步骤S804、非首节点执行异常检测过程,并向首节点报告;
步骤S805、首节点判断当前调节模式,自动模式时执行步骤S806,手动模式时执行步骤S812;
步骤S806、当前模式为自动模式;
步骤S807、首节点向第一异常节点发送调节指令;
步骤S808、第一异常节点接收到调节指令后,开始调节;
步骤S809、第一异常节点调节结束,向首节点上报调节结果;
步骤S810、首节点根据结果判定是否继续调节,如果继续调节执行步骤S811,如果不继续调节,则返回到步骤S804;
步骤S811、首节点向下一个异常节点发送调节指令,下一个异常节点接 收到调节指令,开始返回步骤S808开始调节,各个异常节点调节完成后结束流程;
步骤S812、当前调节模式为手动模式;
步骤S813、判断是否接收到网管系统发送的开始调节指令,如果接收到则执行步骤S807,如果没有接收到则返回到步骤S804。
本发明实施例提供一种分布式自动功率优化的装置,应用于当前节点,如图12所示,所述装置包括:
第一处理模块901,设置为接收首节点发送的异常监测使能命令,并根据所述异常监测使能命令启动异常检测,在所述异常检测中采用异常检测算法计算得到异常检测结果;
上报模块902,设置为在所述异常检测结果满足预设条件时,向首节点上报告警消息,其中所述预设条件为:至少连续两次计算得到的结果中当前节点的偏移值Poffset大于当前节点预存的偏移门限ThreOffset或者当前节点的第二累计误差Paccumulate offset2大于当前节点累计偏移门限ThreAccumulateOffset,其中所述Paccumulate offset2是指从首节点的下一个节点到当前节点所累计的误差值;
第二处理模块903,设置为接收首节点发送的调节指令,进入调节状态进行功率调节并将调节结果反馈给首节点。
在本发明实施例中,当所述第一处理模块901得到的所述异常检测结果不满足预设条件时,则表明当前节点属于正常节点。
在本发明实施例中,所述装置还可以包括:
反馈模块904,设置为在所述第一处理模块901接收首节点发送的异常监测使能命令之后,启动异常检测之前,向首节点反馈使能成功消息。
在本发明实施例中,所述第一处理模块901包括:
第一获取子模块9011,设置为获取当前节点的第一输出光功率Pout1、第一输入光功率Pin1、第一增益G1和第一累计误差prePaccumulate offset1,并获取当前节点预存的增益偏移补偿Pcompensation,其中所述prePaccumulate offset1是指第一时刻从首节点的下一个节点到当前节点的上一个节点所累计 的误差值;
第一计算子模块9012,设置为根据所述Pout1、所述Pin1、所述G1以及所述Pcompensation,采用如下公式计算得到所述Poffset:
Poffset=G1(Pout1-Pin1)+Pcompensation;
第二计算子模块9013,设置为根据所述Poffset和所述prePaccumulate offset1,采用如下公式计算得到所述Paccumulate offset2,所述异常检测结果至少包括:所述Poffset和所述Paccumulate offset2;
Paccumulate offset2=Poffset+prePaccumulate offset1。
在本发明实施例中,所述第二处理模块903可以包括:
第二获取子模块9031,设置为获取当前节点的第二输出光功率Pout2、第二输入光功率Pin2、第二增益G2和第三累计误差prePaccumulate offset3,并获取当前节点预存的增益偏移补偿Pcompensation,其中所述prePaccumulate offset3是指第二时刻从首节点的下一个节点到当前节点的上一个节点所累计的误差值;
第三计算子模块9032,设置为根据获取的所述Pout2、所述Pin2、所述G2、所述prePaccumulate offset3以及所述Pcompensation,采用如下公式计算得到调整值Ladjust:
Ladjust=(Pout2-Pin2)-G2-(Pcompensation+prePaccumulate offset3)
第一处理子模块9033,设置为所述Ladjust在预设的第一可调范围[L1,L2]内时,向首节点反馈调节完成消息;所述Ladjust不在所述第一可调范围[L1,L2]内时,调节所述第一可调范围的边界值L1或L2,得到调节后的第一边界值L1'或第二边界值L2';
第二处理子模块9034,设置为在所述第一边界值与调整值之间的差值L1'-Ladjust或所述调整值与第二边界值之间的差值Ladjust-L2'在预设的第二可调范围[G3,G4]内时,则向首节点反馈调节完成消息;在L1'-Ladjust或Ladjust-L2'不在所述第二可调范围[G3,G4]内时,则发送调节所述第二可调范围的边界值G3或G4的命令,并向首节点反馈调节失败消息。
本发明实施例还提供一种分布式自动功率优化的装置,应用于首节点, 如图13所示,所述装置包括:
发送模块1001,设置为向下游各个节点发送异常监测使能命令,使得下游节点能够根据所述异常监测使能命令启动异常检测,在所述异常检测中下游节点采用异常检测算法计算得到异常检测结果,若所述异常检测结果满足预设条件,由所述下游节点生成告警消息;
第三处理模块1002,设置为接收下游节点上报的告警消息,根据所述告警消息依次向各个异常节点发送调节指令,其中异常节点为上报所述告警消息的下游节点,所述预设条件为:至少连续两次计算得到的结果中当前节点的偏移值Poffset大于当前节点预存的偏移门限ThreOffset或者当前节点的第二累计误差Paccumulate offset2 大于当前节点累计偏移门限ThreAccumulateOffset;
第一接收模块1003,设置为接收各个异常节点反馈的应答消息,当接收到最后一个异常节点返回的调节完成消息时,向网管系统应答调节成功事件。
在本发明实施例中,所述装置还可以包括:
第二接收模块1004,设置为在所述发送模块1001向下游各个节点发送异常监测使能命令之前,接收所述网管系统发送的监测使能通知。
在本发明实施例中,所述装置还可以包括:
第四处理模块1005,设置为在所述发送模块1001向下游各个节点发送异常监测使能命令之后,接收下游各个节点反馈的使能应答,当接收到末节点的使能应答,进入异常节点检测状态;当没有接收到下游某节点反馈的使能应答时,向所述网管系统发送使能失败消息,不进入异常节点检测状态。
在本发明实施例中,所述装置还可以包括:
第五处理模块1006,设置为当接收到异常节点反馈的调节失败消息时,向异常节点发送停止调节指令,并向所述网管系统应答调节失败事件,结束调节流程。
在本发明实施例中,所述第三处理模块1002可以包括:
第一子模块10021,设置为判断当前调节模式,并在当前调节模式为自动模式时向第一异常节点发送调节指令;
第二子模块10022,设置为在当前调节模式为手动模式时,判断是否接收到所述网管系统发送的开始调节指令,接收到所述开始调节指令后,向所述第一异常节点发送调节指令,使得所述第一异常节点进入调节状态进行功率调节;没有接收到所述开始调节指令时,驱动下游节点进行异常检测;
第三子模块10023,设置为接收到所述第一异常节点返回的调节结果后,判断是否需要继续调节,所述调节结果为调节失败消息,则结束调节流程;所述调节结果为调节完成消息,则向下一个异常节点发送调节指令。
本发明实施例分布式自动功率优化的方法,通过在采用异常检测算法判断当前节点是否属于异常节点时引入偏移门限ThreOffset和当前节点累计偏移门限ThreAccumulateOffset,使得不需要网元管理系统为每个节点配置比较的标准值,简化人工管理配置的复杂度;在进行功率调节时引入增益偏移补偿Pcompensation,可以消除光功率异常告警,避免反复无效调节。本发明实施例在光纤衰减变化时,自动调节系统中的衰减或增益,使整个网管系统能够保持设计的功率预算,保证业务的正常传送。
本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述方法。该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明实施例不限制于任何特定形式的硬件和软件的结合。
需要说明的是,本发明提供的分布式自动功率优化的装置是应用上述方法的装置,则上述方法的实施例均适用于该装置,且能达到相同或相似的有益效果。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本发明实施例提供的分布式自动功率优化的方法及装置,在采用异常检测算法判断当前节点是否属于异常节点时引入偏移门限ThreOffset和当前节点累计偏移门限ThreAccumulateOffset,使得不需要网元管理系统为每个节点配置比较的标准值,简化人工管理配置的复杂度;在进行功率调节时引入增益偏移补偿Pcompensation,可以消除光功率异常告警,避免反复无效调节。本发明实施例在光纤衰减变化时,自动调节系统中的衰减或增益,使整个系统能够保持设计的功率预算,保证业务的正常传送。

Claims (13)

  1. 一种分布式自动功率优化的方法,应用于当前节点,所述方法包括:
    接收首节点发送的异常监测使能命令,并根据所述异常监测使能命令启动异常检测,在所述异常检测中采用异常检测算法计算得到异常检测结果;
    所述异常检测结果满足预设条件,则向首节点上报告警消息,其中所述预设条件为:至少连续两次计算得到的结果中当前节点的偏移值Poffset大于当前节点预存的偏移门限ThreOffset或者当前节点的第二累计误差Paccumulate offset2大于当前节点累计偏移门限ThreAccumulateOffset,其中所述第二累计误差Paccumulate offset2是指从首节点的下一个节点到当前节点所累计的误差值;
    接收首节点发送的调节指令,进入调节状态进行功率调节并将调节结果反馈给首节点。
  2. 如权利要求1所述的分布式自动功率优化的方法,其中,如果所述异常检测结果不满足预设条件,则表明当前节点属于正常节点。
  3. 如权利要求1所述的分布式自动功率优化的方法,所述接收首节点发送的异常监测使能命令之后,启动异常检测之前,所述方法还包括:
    向首节点反馈使能成功消息。
  4. 如权利要求1所述的分布式自动功率优化的方法,其中,所述根据所述异常监测使能命令启动异常检测,在所述异常检测中采用异常检测算法计算得到异常检测结果,包括:
    获取当前节点的第一输出光功率Pout1、第一输入光功率Pin1、第一增益G1和第一累计误差prePaccumulate offset1,并获取当前节点预存的增益偏移补偿Pcompensation,其中所述第一累计误差prePaccumulate offset1是指第一时刻从首节点的下一个节点到当前节点的上一个节点所累计的误差值;
    根据所述Pout1、所述Pin1、所述G1以及所述Pcompensation,采用如下公式计算得到所述偏移值Poffset:
    Poffset=G1(Pout1-Pin1)+Pcompensation;
    根据所述偏移值Poffset和所述第一累计误差prePaccumulate offset1,采用如下公式计算得到所述Paccumulate offset2,所述异常检测结果至少包括:所述偏移值Poffset和所述第二累计误差Paccumulate offset2;
    Paccumulate offset2 =Poffset+prePaccumulate offset1。
  5. 如权利要求1所述的分布式自动功率优化的方法,其中,所述进入调节状态进行功率调节并将调节结果反馈给首节点,包括:
    获取当前节点的第二输出光功率Pout2、第二输入光功率Pin2、第二增益G2和第三累计误差prePaccumulate offset3,并获取当前节点预存的增益偏移补偿Pcompensation,其中所述第三累计误差prePaccumulate offset3是指第二时刻从首节点的下一个节点到当前节点的上一个节点所累计的误差值;
    根据获取的所述第二输出光功率Pout2、所述第二输入光功率Pin2、所述第二增益G2、所述第三累计误差prePaccumulate offset3 以及所述Pcompensation,采用如下公式计算得到调整值Ladjust:
    Ladjust=(Pout2-Pin2)-G2-(Pcompensation+prePaccumulate offset3)
    所述调整值Ladjust在预设的第一可调范围[L1,L2]内时,向首节点反馈调节完成消息;所述调整值Ladjust不在所述第一可调范围[L1,L2]内时,调节所述第一可调范围的边界值L1或L2,得到第一边界值L1'或第二边界值L2';
    如果所述第一边界值与所述调整值的差值L1'-Ladjust或所述调整值与所述第二边界值的差值Ladjust-L2'在预设的第二可调范围[G3,G4]内,则向首节点反馈调节完成消息;如果所述第一边界值与所述调整值的差值L1'-Ladjust或所述调整值与所述第二边界值的差值Ladjust-L2'不在所述第二可调范围[G3,G4]内,则发送调节所述第二可调范围的边界值G3或G4的命令,并向首节点反馈调节失败消息。
  6. 一种分布式自动功率优化的方法,应用于首节点,所述方法包括:
    向下游各个节点发送异常监测使能命令,使得下游节点能够根据所述异常监测使能命令启动异常检测,在所述异常检测中下游节点采用异常检测算法计算得到异常检测结果,若所述异常检测结果满足预设条件,由所述下游 节点生成告警消息;
    接收下游节点上报的告警消息,根据所述告警消息依次向各个异常节点发送调节指令,其中异常节点为上报所述告警消息的下游节点,所述预设条件为:至少连续两次计算得到的结果中当前节点的偏移值Poffset大于当前节点预存的偏移门限ThreOffset或者当前节点的第二累计误差Paccumulate offset2大于当前节点累计偏移门限ThreAccumulateOffset;
    接收各个异常节点反馈的应答消息,接收到最后一个异常节点返回的调节完成消息时,向网管系统应答调节成功事件。
  7. 如权利要求6所述的分布式自动功率优化的方法,所述向下游各个节点发送异常监测使能命令之前,所述方法还包括:
    接收所述网管系统发送的监测使能通知。
  8. 如权利要求6所述的分布式自动功率优化的方法,所述向下游各个节点发送异常监测使能命令之后,所述方法还包括:
    接收下游各个节点反馈的使能应答,接收到末节点的使能应答,则进入异常节点检测状态;没有接收到任意一个节点反馈的使能应答时,向所述网管系统发送使能失败消息,不进入异常节点检测状态。
  9. 如权利要求6所述的分布式自动功率优化的方法,所述方法还包括:
    接收到异常节点反馈的调节失败消息时,向异常节点发送停止调节指令,并向所述网管系统应答调节失败事件。
  10. 如权利要求6所述的分布式自动功率优化的方法,其中,所述根据所述告警消息依次向各个异常节点发送调节指令,包括:
    判断当前调节模式,当前调节模式为自动模式时,向第一异常节点发送调节指令;
    当前调节模式为手动模式时,判断是否接收到所述网管系统发送的开始调节指令,接收到所述开始调节指令后,向所述第一异常节点发送调节指令,使得所述第一异常节点进入调节状态进行功率调节;没有接收到所述开始调节指令时,驱动下游节点进行异常检测;
    接收到所述第一异常节点返回的调节结果后,判断是否需要继续调节, 在所述调节结果为调节完成消息时,向下一个异常节点发送调节指令。
  11. 一种分布式自动功率优化的装置,应用于当前节点,其特征在于,所述装置包括:
    第一处理模块,设置为接收首节点发送的异常监测使能命令,并根据所述异常监测使能命令启动异常检测,在所述异常检测中采用异常检测算法计算得到异常检测结果;
    上报模块,设置为当所述异常检测结果满足预设条件时,则向首节点上报告警消息,其中所述预设条件为:至少连续两次计算得到的结果中当前节点的偏移值Poffset大于当前节点预存的偏移门限ThreOffset或者当前节点的第二累计误差Paccumulate offset2大于当前节点累计偏移门限ThreAccumulateOffset,其中所述第二累计误差Paccumulate offset2是指从首节点的下一个节点到当前节点所累计的误差值;
    第二处理模块,设置为接收首节点发送的调节指令,进入调节状态进行功率调节并将调节结果反馈给首节点。
  12. 一种分布式自动功率优化的装置,应用于首节点,其特征在于,所述装置包括:
    发送模块,设置为向下游各个节点发送异常监测使能命令,使得下游节点能够根据所述异常监测使能命令启动异常检测,在所述异常检测中下游节点采用异常检测算法计算得到异常检测结果,若所述异常检测结果满足预设条件,由所述下游节点生成告警消息;
    第三处理模块,设置为接收下游节点上报的告警消息,根据所述告警消息依次向各个异常节点发送调节指令,其中异常节点为上报所述告警消息的下游节点,所述预设条件为:至少连续两次计算得到的结果中当前节点的偏移值Poffset大于当前节点预存的偏移门限ThreOffset或者当前节点的第二累计误差Paccumulate offset2大于当前节点累计偏移门限ThreAccumulateOffset;
    第一接收模块,设置为接收各个异常节点反馈的应答消息,在接收到最后一个异常节点返回的调节完成消息时,向网管系统应答调节成功事件。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求1至5任一项所述的方法。
PCT/CN2016/080166 2015-06-17 2016-04-25 一种分布式自动功率优化的方法及装置 WO2016202093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510336326.6 2015-06-17
CN201510336326.6A CN106330302B (zh) 2015-06-17 2015-06-17 一种分布式自动功率优化的方法及装置

Publications (1)

Publication Number Publication Date
WO2016202093A1 true WO2016202093A1 (zh) 2016-12-22

Family

ID=57544869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080166 WO2016202093A1 (zh) 2015-06-17 2016-04-25 一种分布式自动功率优化的方法及装置

Country Status (2)

Country Link
CN (1) CN106330302B (zh)
WO (1) WO2016202093A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808793B (zh) * 2018-08-02 2022-04-15 中兴通讯股份有限公司 监控信道控制方法、设备及可读存储介质
CN115913383A (zh) * 2021-08-05 2023-04-04 中兴通讯股份有限公司 光复用段功率调节方法、系统和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1132578A (zh) * 1993-10-07 1996-10-02 麦垂考母公司 分组通信链路的自动功率控制
CN1665175A (zh) * 2004-03-03 2005-09-07 华为技术有限公司 光网络中基于功率检测的自动功率控制的实现方法
EP2432143A1 (en) * 2010-09-21 2012-03-21 ADVA AG Optical Networking A method and apparatus for performing an automatic power adjustment for an optical signal
CN102891720A (zh) * 2012-10-19 2013-01-23 烽火通信科技股份有限公司 一种自动调整光功率的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9002303B2 (en) * 2011-05-27 2015-04-07 Samsung Electronics Co., Ltd. Method and apparatus for programmable envelope shaping circuit based on piecewise linear interpolation
US8768265B2 (en) * 2011-11-29 2014-07-01 General Electric Company Method for reducing power consumption in node devices of a condition monitoring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1132578A (zh) * 1993-10-07 1996-10-02 麦垂考母公司 分组通信链路的自动功率控制
CN1665175A (zh) * 2004-03-03 2005-09-07 华为技术有限公司 光网络中基于功率检测的自动功率控制的实现方法
EP2432143A1 (en) * 2010-09-21 2012-03-21 ADVA AG Optical Networking A method and apparatus for performing an automatic power adjustment for an optical signal
CN102891720A (zh) * 2012-10-19 2013-01-23 烽火通信科技股份有限公司 一种自动调整光功率的方法

Also Published As

Publication number Publication date
CN106330302A (zh) 2017-01-11
CN106330302B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
US10063313B1 (en) Synchronization of optical protection switching and loading of path specific characteristics
TWI413364B (zh) 通信方法、光通信系統、局方光回線終端裝置、使用者方光回線終端裝置,以及控制裝置
EP1832044B1 (en) Wireless communication path management methods and systems
US7831149B2 (en) Optical transmission device
WO2007036108A1 (en) An automatic recovery detection method, automatic recovery method and apparatus for optical communication system
US6341032B1 (en) Method and system for reducing optical surge
US9531470B2 (en) Method, system, and node device for monitoring optical performance of wavelength channel
WO2016202093A1 (zh) 一种分布式自动功率优化的方法及装置
WO2018121466A1 (zh) Onu测距方法及装置、调整onu内部时延的参数确定方法及装置
US20110150482A1 (en) Transmission control system, subscriber-side communication device, and office-side communication device
KR102061498B1 (ko) 슬립모드 onu 제어 기법
JP4351189B2 (ja) 光伝送路監視方法、光伝送路監視プログラムおよび光伝送路監視装置
JP3613337B2 (ja) 光伝送ネットワークにおける伝送路切替え方法
JP2006033581A (ja) 光伝送装置
US10320513B2 (en) Distributed automatic power optimization system and method
WO2020024735A1 (zh) 监控信道控制方法、装置及设备
US20080075468A1 (en) Optical transmission device and redundant switch method for the optical transmission device
JP3083118B2 (ja) 光通信障害検出方法及びその方法を用いた光通信システム
EP3297220B1 (en) Signal transmission method, controller and signal transmission system
US10397091B1 (en) Optical safety and connections discovery
JP3949503B2 (ja) 光増幅器およびその増幅器を用いた光通信システム
JP6108113B2 (ja) 光伝送装置
WO2013170745A1 (zh) 一种智能光网络中处理消息的方法及光线路设备
JP2882360B2 (ja) 光受信監視システム
JPS61263346A (ja) 光バスネツトワ−クの送信回線障害検出閉塞装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16810834

Country of ref document: EP

Kind code of ref document: A1