WO2020024735A1 - 监控信道控制方法、装置及设备 - Google Patents
监控信道控制方法、装置及设备 Download PDFInfo
- Publication number
- WO2020024735A1 WO2020024735A1 PCT/CN2019/093212 CN2019093212W WO2020024735A1 WO 2020024735 A1 WO2020024735 A1 WO 2020024735A1 CN 2019093212 W CN2019093212 W CN 2019093212W WO 2020024735 A1 WO2020024735 A1 WO 2020024735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- network element
- monitoring channel
- adjustment
- power
- monitoring
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
- H04B10/0777—Monitoring line amplifier or line repeater equipment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/0082—Monitoring; Testing using service channels; using auxiliary channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
- H04B10/293—Signal power control
- H04B10/2933—Signal power control considering the whole optical path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/365—Power headroom reporting
Definitions
- the present invention relates to the field of communication technologies, and in particular, to a method, a device, and a device for controlling a monitoring channel.
- the main optical power of the WDM system must maintain the power budget when the system is designed to ensure the normal operation of the receiver.
- the optical amplifiers in the system are all It is required to work in the gain lock state.
- the power of the service optical signal will change, and in severe cases, the service will be interrupted.
- various manufacturers have developed automatic power adjustment functions, that is, when the optical fiber attenuation changes, the attenuation of the attenuator in the system or the gain of the amplifier is automatically adjusted, so that the system can maintain the design Power budget.
- the power management domain starts at the output port of the last optical amplifier board after the last multiplexing board of the first network element, and ends at the last light before the first demultiplexing board of the last network element. Output port of the amplifier board.
- the optical monitoring channel is transmitted along with the main optical channel, if the power adjustment control of the area between two adjacent power monitoring points is not proper, it may cause the monitoring channel to be interrupted, resulting in interruption of communication between network elements and disconnection of network elements.
- the main purpose of the present invention is to provide a monitoring channel control method, device, and device, which aim to solve the problems of monitoring channel interruption, causing communication interruption between network elements and network element de-management.
- the present invention provides a monitoring channel control method, which includes steps:
- the attenuation control fallback command is issued to the adjustment control node, so that the adjustment control node triggers execution of power fallback according to its location, where the adjustment control node is located in the local network element or the upstream Network element.
- the present invention further provides a monitoring channel control device, where the device includes:
- a judging module for detecting whether a monitoring channel between the local network element and an adjacent upstream network element is interrupted
- a command issuing module is configured to: when the judging module detects that a monitoring channel between the local network element and an adjacent upstream network element is interrupted, send an attenuation adjustment fallback command to the adjustment control node, so that the adjustment control node The execution of power backoff is triggered according to its location, wherein the adjustment control node is located in the local network element or the upstream network element.
- the present invention further provides a device, where the device includes a processor and a memory;
- the processor is configured to execute a monitoring channel control program stored in a memory to implement the foregoing method.
- the monitoring channel control method, device, and device provided by the present invention after power adjustment, determine that the monitoring channel between two adjacent network elements is interrupted, and send an attenuation adjustment fallback command to the adjustment control node, so that the The adjustment control node triggers the execution of power fallback according to its location to restore the monitoring channel.
- the monitoring channel detection is automatically initiated. If a monitoring channel interruption is detected, the monitoring channel can be monitored without human intervention. Automatic recovery to ensure that the monitoring channel remains unblocked to avoid communication interruption or network element disconnection.
- FIG. 1 is a schematic diagram of an optional power management subsystem for implementing various embodiments of the present invention
- FIG. 2 is a schematic flowchart of a monitoring channel control method according to a first embodiment of the present invention
- FIG. 3 is a schematic diagram of a sub-process of a monitoring channel control method according to a first embodiment of the present invention
- FIG. 4 is another schematic flowchart of a monitoring channel control method according to a first embodiment of the present invention.
- FIG. 5 is another schematic flowchart of a monitoring channel control method according to a first embodiment of the present invention.
- FIG. 6 is a structural block diagram of a device according to a second embodiment of the present invention.
- FIG. 7 is a schematic block diagram of a monitoring channel control program in FIG. 6.
- FIG. 1 it is a schematic diagram of an optional power management subsystem for implementing the embodiments of the present invention.
- the power management subsystem decomposes the dense wavelength division (DWDM) system into various management units, which are managed and optimized separately, including the network element management unit 101, network elements (NE) 1, NE2, NE3.
- the power management domain starts at the output port of the last optical amplifier board (OA) after the last multiplexing board of the first network element (NE) 1 and ends at the end of the last network element (NE3).
- One direction is a link, and an optical amplifier board is used as a power monitoring point.
- the area between two adjacent power monitoring points on the link is used as a distributed Automatic Power Optimization (APO) group.
- the APO group includes a power monitoring unit (OA) and a power adjustment unit (SFP VOA), so that the output of the first OA101 in NE1 to the output of the second OA102 in NE2 in FIG. 1 constitutes the first APO group 10, and the second in the NE2.
- the output from the second OA102 to the output of the third OA103 in NE3 constitutes the second APO group 20.
- Different APO groups belong to different power controller units.
- the power controller unit performs power monitoring and adjustment on the APO groups belonging to it.
- the management information transmitted between the power control units through the monitoring channels between network elements implements the entire chain. Collaborative control on the road.
- the network element management unit 101 is configured to send an APO link configuration message, and send the link configuration message to the APO controllers of all network elements through which the link passes.
- the network element may include: a power control unit 102, a power monitoring unit 103, and a power adjustment unit 104, where:
- the power control unit 102 runs on the main control board of each network element and is used to control the power adjustment of this network element to perform power monitoring and adjustment, and also to control the cooperation of power controllers across multiple network elements on the entire link. jobs.
- the power monitoring unit 103 is used by the APO controller to query the monitoring performance and obtain a monitoring quantity, that is, an input variable of the power management algorithm.
- the power adjustment unit 104 is configured to receive an adjustment command issued by the controller and execute power adjustment.
- the monitoring channel control method As shown in FIG. 2, the monitoring channel control method according to the first embodiment of the present invention is applied to a wavelength division system.
- the monitoring channel control method includes the following steps:
- Step 210 Detect whether a monitoring channel between the local network element and an adjacent upstream network element is interrupted; if yes, proceed to step 220;
- Step 220 Send an attenuation adjustment fallback command to the adjustment control node, so that the adjustment control node triggers execution of a power fallback according to its location, where the adjustment control node is located in the local network element or the upstream Network element.
- the monitoring channel is transmitted using a dedicated wavelength (1510/1550 nm).
- a dedicated wavelength 1510/1550 nm.
- step 210 specifically includes the following steps:
- Step 310 Send a communication link detection message to the upstream network element.
- Step 320 When a response message from the upstream network element in response to the communication link detection message is not received within a preset time, the monitoring channel is interrupted.
- a power adjustment response message is received, monitoring channel detection is initiated, and a communication link detection message is sent to an upstream node. It is determined whether a response message sent by the upstream network element device is received within a preset time. When the time exceeds the preset time, if no response message from the upstream network element device to the communication link detection message is received, it indicates that the monitoring channel is interrupted and adjustment rollback needs to be performed. Conversely, when the response time of the upstream network element device responding to the communication link detection message is received before the preset time, it indicates that there is no interruption in the monitoring channel and no adjustment rollback is required.
- the monitoring channel control method of the present invention is applicable to a scenario where the control node is in the same network element, and also a scenario where the control node is in a different network element.
- the monitoring channel control method of the present invention further includes:
- the adjustment control node is located in the local network element, for example, in FIG. 1, the power adjustment unit 104 of the second APO group 20 and the power control unit 102 to which it belongs are located at NE3, then the monitoring channel control method is described. Also includes:
- Step 410 Receive the power adjustment link configuration sent by the network element management unit, and start abnormality monitoring;
- Step 420 periodically issue a power reference value update command
- Step 430 Monitor the difference between the input power and the reference value in real time according to the power reference value update command.
- Step 440 when the power exceeds the limit, obtain a power adjustment permission token through a monitoring channel between network elements;
- Step 450 Perform power adjustment.
- the network element management unit (such as the network element management unit 101 in FIG. 1) sends an APO link configuration message, and the link configuration message is sent to the APO controllers of all network elements through which the link passes.
- abnormality monitoring is started.
- the power reference value update command is issued regularly, and according to the command, the difference between the input power and the reference value is monitored in real time. If the limit value is exceeded, the power fluctuation is reported to be over the limit value. If no limit violation occurs, the current node belongs to a normal node.
- an adjustment permission token is applied through the monitoring channel between the network elements. After obtaining the adjustment token of the link, the adjustment command is issued and the power adjustment is performed. When the adjustment is successful, a power adjustment response is generated. Message to initiate monitoring channel detection.
- the monitoring channel control method further includes:
- Step 510 Receive the power adjustment link configuration sent by the network element management unit, and start abnormality monitoring;
- Step 520 regularly issue a power reference value update command
- Step 530 Monitor the difference between the input power and the reference value in real time according to the power reference value update command.
- Step 540 when the power exceeds the limit, obtain a power adjustment permission token through a monitoring channel between network elements;
- Step 550 Send a power attenuation adjustment command to the upstream network element.
- Step 560 Start a timer waiting for a communication link detection message to perform power adjustment by the upstream network element.
- the network element management unit (such as the network element management unit 101 in FIG. 1) sends an APO link configuration message, and the link configuration message is sent to the APO controllers of all network elements through which the link passes.
- abnormality monitoring is started.
- a power reference value update command is issued. According to the command, the difference between the input power and the reference value is monitored in real time. If the limit is exceeded, the power fluctuation is reported to be over the limit. If no limit violation occurs, the current node belongs to a normal node.
- an adjustment permission token is applied through the monitoring channel between the network elements.
- the power adjustment unit is located in the upstream network element (the power adjustment unit of the first APO group 10 in FIG. 1).
- 104 is located in NE1), then sends the attenuation adjustment command to the power control unit 102 of the upstream network element (NE1), and simultaneously starts a timer waiting for a communication link detection message to perform power adjustment through the power control unit 102 of the upstream network element, When the adjustment is successful, a power adjustment response message is generated to initiate monitoring channel detection.
- the monitoring channel control method when the monitoring channel between two adjacent network elements is interrupted after power adjustment, an attenuation adjustment rollback command is issued, and a power rollback is performed according to the rollback command.
- the monitoring channel is restored to enable automatic monitoring channel detection after power adjustment. If a monitoring channel interruption is detected, the monitoring channel can be automatically restored without human intervention to ensure that the monitoring channel remains unblocked to avoid inter-element
- the communication is interrupted or the network element is out of management.
- the terminal includes: a memory 610, a processor 620, and a monitoring channel control program 630 stored on the memory 610 and executable on the processor 620.
- the monitoring channel control program 630 includes a series of computer program instructions stored in the memory 610.
- the monitoring channels of the embodiments of the present invention can be implemented Control operation.
- the monitoring channel control program 630 may be divided into one or more modules based on specific operations implemented by various portions of the computer program instructions. As shown in FIG.
- the monitoring channel control program 630 includes a judgment module 710, a command issuing module 720, an execution module 730, a message sending module 740, a receiving module 750, a monitoring module 760, an acquisition module 770, and a timer starting module 780. among them,
- a judging module 710 is configured to detect whether a monitoring channel between the local network element and an adjacent upstream network element is interrupted; if yes, trigger a command issuing module 720;
- a command issuing module 720 is configured to issue an attenuation adjustment fallback command to an adjustment control node, so that the adjustment control node triggers the execution module 730 according to its location, where the adjustment control node is located in the local The network element or the upstream network element;
- the execution module 730 executes a power fallback according to the fallback command to restore the monitoring channel.
- the monitoring channel is transmitted using a dedicated wavelength (1510/1550 nm).
- a dedicated wavelength 1510/1550 nm.
- the command issuing module 720 sends the attenuation adjustment rollback to the power adjustment node.
- the execution module 730 of the local network element to perform a power fallback to restore the monitoring channel according to the command; or, adjust the control node to trigger the upstream network element to perform a power fallback.
- the judging module 710 judges that there is no interruption in the monitoring channel between two adjacent network elements, it means that the previous conditional action is appropriate, and it is not necessary to perform adjustment and rollback, and the process ends.
- a message sending module 740 configured to send a communication link detection message to an upstream network element
- the determining module 710 is further configured to determine whether a response message of the upstream network element responding to the communication link detection message is received within a preset time; if not, it is determined that the monitoring channel is interrupted.
- a power adjustment response message is received, monitoring channel detection is initiated, and a message sending module 740 sends a communication link detection message to an upstream node.
- the judging module 710 judges whether a response message sent by the upstream network element device is received within a preset time. When the time exceeds the preset time, if no response message from the upstream network element device to the communication link detection message is received, it indicates that the monitoring channel is interrupted and adjustment rollback needs to be performed. Conversely, when the response time of the upstream network element device responding to the communication link detection message is received before the preset time, it indicates that there is no interruption in the monitoring channel and no adjustment rollback is required.
- the monitoring channel control method of the present invention is applicable to a scenario where the control node is in the same network element, and also a scenario where the control node is in a different network element.
- the monitoring channel control method of the present invention further includes:
- the determining module 710 is further configured to determine whether the adjustment control node is located in the local network element or an upstream network element.
- the adjustment control node is located in the local network element, for example, in FIG. 1, the power adjustment unit 104 of the second APO group 20 and the power control unit 102 to which it belongs are located at NE3, and then the receiving module 750 is configured to receive the transmission from the network element management unit. Power adjustment link configuration, start abnormal monitoring;
- the command issuing module 720 is further configured to issue a power reference value update command periodically;
- a monitoring module 760 configured to monitor the difference between the input power and the reference value in real time according to the power reference value update command
- an acquisition module 770 is triggered to acquire a power adjustment permission token through a monitoring channel between network elements;
- the execution module 730 is further configured to perform power adjustment.
- the network element management unit (such as the network element management unit 101 in FIG. 1) sends an APO link configuration message, and the link configuration message is sent to the APO controllers of all network elements through which the link passes.
- abnormality monitoring is started.
- the command issuing module 720 periodically issues a power reference value update command.
- the monitoring module 760 monitors the difference between the input power and the reference value in real time. If the limit is exceeded, the power fluctuation is reported to be over the limit. If no limit violation occurs, the current node belongs to a normal node.
- the obtaining module 770 applies for the adjustment permission token through the monitoring channel between the network elements.
- the command issuing module 720 issues an adjustment command, and the execution module 730 performs power adjustment.
- a power adjustment response message is generated to initiate monitoring channel detection.
- the adjustment control node is located in an upstream network element, for example, in FIG. 1, the power adjustment unit 104 of the first APO group 10 is located at NE1, and the power control unit 102 belonging to the power adjustment unit 104 is located at NE2, then a message sending module 740 is triggered.
- the message sending module 740 is further configured to send a power attenuation adjustment command to an upstream network element;
- the timer starting module 780 is configured to start a timer waiting for a communication link detection message to perform power adjustment by an upstream network element.
- the power adjustment unit is located in the upstream network element (the power adjustment unit of the first APO group 10 in FIG. 1).
- the message sending module 740 sends the attenuation adjustment command to the power control unit 102 of the upstream network element (NE1), and the timer start module 780 starts a timer waiting for a communication link detection message to pass the upstream network element.
- the power control unit 102 performs power adjustment.
- a power adjustment response message is generated to initiate monitoring channel detection.
- the command issuing module 720 issues an attenuation adjustment fallback command to enable the adjustment control node.
- the execution module 730 is triggered to perform a power fallback according to the rollback command to restore the monitoring channel.
- the monitoring channel detection is automatically initiated. If a monitoring channel interruption is detected, the monitoring channel is In the case of human interference, it can automatically recover to ensure that the monitoring channel remains unblocked to avoid communication interruption or network element disconnection between network elements.
- An embodiment of the present invention also provides a computer-readable storage medium.
- the computer-readable storage medium herein stores one or more programs.
- the computer-readable storage medium may include a volatile memory, such as a random access memory; the memory may also include a non-volatile memory, such as a read-only memory, a flash memory, a hard disk, or a solid-state hard disk; the memory may also include the foregoing types Combination of memory.
- the methods in the above embodiments can be implemented by means of software plus a necessary universal hardware platform, and of course, also by hardware, but in many cases the former is better.
- Implementation Based on such an understanding, the technical solution of the present invention, in essence, or a part that contributes to the prior art, can be embodied in the form of a software product, which is stored in a storage medium (such as ROM / RAM, magnetic disk, The optical disc) includes several instructions for causing a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in the embodiments of the present invention.
- a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Small-Scale Networks (AREA)
Abstract
本发明公开了一种监控信道控制方法,该方法包括:检测本网元与相邻的上游网元之间的监控信道是否中断;若是,则向调节控制节点下发衰减调节回退命令,以使所述调节控制节点根据其所在的位置触发执行功率回退,其中,调节控制节点位于本网元或者上游网元。此外,本发明还提供一种设备,通过本发明实现了在功率调节后,自动发起监控信道检测,如果检测到监控信道中断,则监控信道在无人干涉的情况下能够自动恢复,确保监控信道保持畅通,以避免网元间通信中断或网元脱管。
Description
本申请要求享有2018年08月02日提交的名称为“监控信道控制方法、设备及可读存储介质”的中国专利申请CN201810871419.2的优先权,其全部内容通过引用并入本文中。
本发明涉及通信技术领域,尤其涉及一种监控信道控制方法、装置及设备。
波分系统运行时的主光功率必须保持系统设计时的功率预算,保证接收机的正常工作,同时为了保证扩容或其它增减波的操作不影响已有的业务传输,系统中的光放大器都要求工作在增益锁定状态。系统运行时,如果光纤的衰减出现变化,将会导致业务光信号的功率发生变化,严重时会导致业务中断。为了降低光纤衰减变化给业务传输带来的影响,各厂商都开发了自动功率调节功能,即在光纤衰减变化时,自动调节系统中的衰减器的衰减或调节放大器的增益,使系统能够保持设计的功率预算。
在功率管理子系统中,功率管理域开始于首网元最后一个合波类单板之后的最后光放大板的输出端口,终结于尾网元的第一个分波类单板之前的最后光放大板的输出端口。在首网元至尾网元之间还可以存在多个网元,将每个功率放大器作为一个功率监测点。当光监控信道随主光信道传输,如果对相邻两个功率监测点之间区域的功率调节控制不当,有可能导致监控信道中断,造成网元间通信中断和网元脱管。
发明内容
本发明的主要目的在于提出一种监控信道控制方法、装置及设备,旨在解决监控信道中断,造成网元间通信中断和网元脱管的问题。
为实现上述目的,本发明提供的一种监控信道控制方法,所述方法包括步骤:
检测本网元与相邻的上游网元之间的监控信道是否中断;
若是,则向调节控制节点下发衰减调节回退命令,以使所述调节控制节点根据其所 在的位置触发执行功率回退,其中,所述调节控制节点位于所述本网元或者所述上游网元。
此外,为实现上述目的,本发明还提出一种监控信道控制装置,所述装置包括:
判断模块,用于检测本网元与相邻的上游网元之间的监控信道是否中断;
命令下发模块,用于当所述判断模块检测本网元与相邻的上游网元之间的监控信道中断时,向调节控制节点下发衰减调节回退命令,以使所述调节控制节点根据其所在的位置触发执行功率回退,其中,所述调节控制节点位于所述本网元或者所述上游网元。
此外,为实现上述目的,本发明还提出一种设备,所述设备包括处理器、以及存储器;
所述处理器用于执行存储器中存储的监控信道控制程序,以实现上述的方法。
本发明提出的监控信道控制方法、装置及设备,当功率调节之后,通过判断相邻两个网元之间的监控信道中断时,向调节控制节点下发衰减调节回退命令,以使所述调节控制节点根据其所在的位置触发执行功率回退,以恢复监控信道,实现了在功率调节后,自动发起监控信道检测,如果检测到监控信道中断,则监控信道在无人干涉的情况下能够自动恢复,确保监控信道保持畅通,以避免网元间通信中断或网元脱管。
图1为实现本发明各个实施例一个可选的功率管理子系统的分布示意图;
图2为本发明第一实施例提供的监控信道控制方法的流程示意图;
图3为本发明第一实施例提供的监控信道控制方法的子流程示意图;
图4为本发明第一实施例提供的监控信道控制方法的另一流程示意图;
图5为本发明第一实施例提供的监控信道控制方法的另一流程示意图;
图6为本发明第二实施例提供的设备的结构框图;
图7为图6中监控信道控制程序的模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
如图1所示,为实现本发明各个实施例一个可选的功率管理子系统的分布示意图。功率管理子系统将密集型光波复用(Dense Wavelength Division Multiplexing,DWDM)系统分解为各个管理单元,分别加以管理和优化,包括网元管理单元101、网元(Network Element,NE)1、NE2、NE3。在图1中,功率管理域开始于首网元(Network Element,NE)1最后一个合波类单板之后的最后光放大板(OA)的输出端口,终结于尾网元(NE3)的第一个分波类单板之前的最后光放大板的输出端口。一个方向是一条链路,将一个光放大板作为一个功率监测点,则链路上相邻的两个功率监测点之间的区域作为一个分布式自动功率优化(Automatic Power Optimization,APO)组,APO组中包含功率监测单元(OA)和功率调节单元(SFP VOA),从而将图1中的NE1中第一OA101的输出到NE2中第二OA102的输出构成第一APO组10,NE2中第二OA102的输出到NE3中第三OA103的输出构成第二APO组20。不同的APO组归属于不同的功率控制器单元,功率控制器单元对归属于它的APO组执行功率监测与调节,功率控制单元之间通过网元间的监控信道传递的管理信息实现整条链路上下游的协作控制。
网元管理单元101,用于发送APO链路配置报文,将链路配置报文发送给链路经过的所有网元的APO控制器。
网元可以包括:功率控制单元102、功率监测单元103以及功率调节单元104,其中:
功率控制单元102运行在各个网元的主控单板上,用于控制本网元的功率调节执行功率监测和调节,也用于控制整条链路上跨多个网元的功率控制器协同工作。
功率监测单元103用于APO控制器查询监测的性能,得到监测量,即功率管理算法的输入变量。
功率调节单元104,用于接收控制器下发的调节命令,执行功率调节。
基于图1中的APO部署分布场景图,提出本发明的各个实施例,本领域技术人员可以理解的是,本发明并不限制图1中各个系统及单元的数量、分布方式等。
如图2所示,为本发明第一实施例提供的监控信道控制方法,应用于波分系统,在图2中,所述监控信道控制方法包括以下步骤:
步骤210,检测本网元与相邻的上游网元之间的监控信道是否中断;若是,则进入步骤220;
步骤220,向调节控制节点下发衰减调节回退命令,以使所述调节控制节点根据其所在的位置触发执行功率回退,其中,所述调节控制节点位于所述本网元或者所述上游网元。
具体的,监控信道采用专用波长(1510/1550nm)发送。通过检测相邻两个网元的通信是否正常来确定执行调整后的功率是否会影响到监控信道。当判断相邻两个网元之间的监控信道中断时,则说明之前的调节动作不恰当,需要执行调节回退,则向功率调节节点下发衰减调节回退命令,并根据该功率调节节点的位置,以触发本网元执行功率回退,或者触发上游网元执行功率回退,以恢复监控信道。相反地,当判断相邻两个网元之间的监控信道没有中断时,则说明之前的条件动作是恰当的,不需要执行调节回退,从而流程结束。
如图3所示,步骤210具体包括以下步骤:
步骤310,向上游网元发送通信链路检测消息;
步骤320,当在预设时间内没有收到所述上游网元响应所述通信链路检测消息的应答消息时,则所述监控信道中断。
具体的,接收功率调整的应答消息,发起监控信道检测,给上游节点发送通信链路检测消息。判断在预设的时间内,是否收到上游网元装置发送的应答消息。当超过预设时间时,没有收到上游网元装置响应通信链路检测消息的应答消息,则表示监控信道出现中断,需要执行调节回退。相反地,当未到预设时间时,就收到上游网元装置响应通信链路检测消息的应答消息,则表示监控信道没有出现中断,不需要执行调节回退。
本发明的监控信道控制方法适用于调节控制节点在同一网元的场景,也适用于调节控制节点在不同网元的场景。本发明的监控信道控制方法还包括:
判断调节控制节点位于本网元还是上游网元。
如图4所示,若调节控制节点位于本网元,例如,图1中,第二APO组20的功率调节单元104及其归属的功率控制单元102均位于NE3,则所述监控信道控制方法还包括:
步骤410,接收网元管理单元发送的功率调节链路配置,启动异常监测;
步骤420,定时下发功率基准值更新命令;
步骤430,根据所述功率基准值更新命令,实时监测输入功率与基准值的差值;
步骤440,当出现功率越限时,则通过网元间的监控信道获取功率调节许可令牌;
步骤450,执行功率调节。
具体的,网元管理单元(如图1中的网元管理单元101)发送APO链路配置报文,该链路配置报文发送给链路经过的所有网元的APO控制器。当接收网元管理单元发送的功率调节链路配置,则启动异常监测。定时下发功率基准值更新命令,根据该命令,实时监测输入功率与基准值的差值,如果出现越限,则上报功率波动越限。如果没有出现越限,则说明当前节点属于正常节点。
当出现越限时,通过网元间的监控信道申请调节许可令牌,当获取本链路的调节令牌后,下发调节命令,并执行功率调节,当调节成功时,则产生功率调整的应答消息,以发起监控信道检测。
如图5所示,若调节控制节点位于上游网元,例如,图1中,第一APO组10的功率调节单元104位于NE1,归属该功率调节单元104的功率控制单元102位于NE2,则所述监控信道控制方法还包括:
步骤510,接收网元管理单元发送的功率调节链路配置,启动异常监测;
步骤520,定时下发功率基准值更新命令;
步骤530,根据所述功率基准值更新命令,实时监测输入功率与基准值的差值;
步骤540,当出现功率越限时,则通过网元间的监控信道获取功率调节许可令牌;
步骤550,向上游网元发送功率衰减调节命令;
步骤560,启动等待通信链路检测消息的定时器,以通过上游网元执行功率调节。
具体的,网元管理单元(如图1中的网元管理单元101)发送APO链路配置报文,该链路配置报文发送给链路经过的所有网元的APO控制器。当接收网元管理单元发送的功率调节链路配置,则启动异常监测。下发功率基准值更新命令,根据该命令,实时监测输入功率与基准值的差值,如果出现越限,则上报功率波动越限。如果没有出现越限,则说明当前节点属于正常节点。
当出现越限时,通过网元间的监控信道申请调节许可令牌,当获取本链路的调节令牌后,由于功率调节单元位于上游网元(图1中第一APO组10的功率调节单元104位于NE1),则将衰减调节命令发送给上游网元(NE1)的功率控制单元102,同时启动等待 通信链路检测消息的定时器,以通过上游网元的功率控制单元102执行功率调节,当调节成功时,则产生功率调整的应答消息,以发起监控信道检测。
本发明提供的监控信道控制方法,当功率调节之后,通过检测相邻两个网元之间的监控信道中断时,下发衰减调节回退命令,并根据该回退命令,执行功率回退,以恢复监控信道,实现了在功率调节后,自动发起监控信道检测,如果检测到监控信道中断,则监控信道在无人干涉的情况下能够自动恢复,确保监控信道保持畅通,以避免网元间通信中断或网元脱管。
第二实施例
如图6所示,为本发明第二实施例提供一种设备硬件架构的示意图。在图6中,终端包括:存储器610、处理器620及存储在所述存储器610上并可在所述处理器620上运行的监控信道控制程序630。在本实施例中,所述的监控信道控制程序630包括一系列的存储于存储器610上的计算机程序指令,当该计算机程序指令被处理器620执行时,可以实现本发明各实施例的监控信道控制操作。在一些实施例中,基于该计算机程序指令各部分所实现的特定的操作,监控信道控制程序630可以被划分为一个或多个模块。如图7所示,监控信道控制程序630包括:判断模块710、命令下发模块720、执行模块730、消息发送模块740、接收模块750、监测模块760、获取模块770、定时器启动模块780。其中,
判断模块710,用于检测本网元与相邻的上游网元之间的监控信道是否中断;若是,则触发命令下发模块720;
命令下发模块720,用于向调节控制节点下发衰减调节回退命令,以使所述调节控制节点根据其所在的位置触发所述执行模块730,其中,所述调节控制节点位于所述本网元或者所述上游网元;
执行模块730,根据所述回退命令,执行功率回退,以恢复监控信道。
具体的,监控信道采用专用波长(1510/1550nm)发送。通过检测相邻两个网元的通信是否正常来确定执行调整后的功率是否会影响到监控信道。当判断模块710判断相邻两个网元之间的监控信道中断时,则说明之前的调节动作不恰当,需要执行调节回退,则命令下发模块720向功率调节节点下发衰减调节回退命令,并根据该功率调节节点的位置,以触发本网元的执行模块730根据该命令执行功率回退,以恢复监控信道;或者,调节控制节点触发上游网元执行功率回退。相反地,当判断模块710判断相邻两个网元 之间的监控信道没有中断时,则说明之前的条件动作是恰当的,不需要执行调节回退,从而流程结束。
消息发送模块740,用于向上游网元发送通信链路检测消息;
判断模块710,还用于判断在预设时间内是否收到所述上游网元响应所述通信链路检测消息的应答消息;若否,则判断所述监控信道中断。
具体的,接收功率调整的应答消息,发起监控信道检测,消息发送模块740给上游节点发送通信链路检测消息。判断模块710判断在预设的时间内,是否收到上游网元装置发送的应答消息。当超过预设时间时,没有收到上游网元装置响应通信链路检测消息的应答消息,则表示监控信道出现中断,需要执行调节回退。相反地,当未到预设时间时,就收到上游网元装置响应通信链路检测消息的应答消息,则表示监控信道没有出现中断,不需要执行调节回退。
本发明的监控信道控制方法适用于调节控制节点在同一网元的场景,也适用于调节控制节点在不同网元的场景。本发明的监控信道控制方法还包括:
判断模块710,还用于判断调节控制节点位于本网元还是上游网元。
若调节控制节点位于本网元,例如,图1中,第二APO组20的功率调节单元104及其归属的功率控制单元102均位于NE3,则接收模块750,用于接收网元管理单元发送的功率调节链路配置,启动异常监测;
命令下发模块720,还用于定时下发功率基准值更新命令;
监测模块760,用于根据所述功率基准值更新命令,实时监测输入功率与基准值的差值;
当判断模块710判断出现功率越限时,则触发获取模块770,用于通过网元间的监控信道获取功率调节许可令牌;
执行模块730,还用于执行功率调节。
具体的,网元管理单元(如图1中的网元管理单元101)发送APO链路配置报文,该链路配置报文发送给链路经过的所有网元的APO控制器。当接收网元管理单元发送的功率调节链路配置,则启动异常监测。命令下发模块720定时下发功率基准值更新命令,根据该命令,监测模块760实时监测输入功率与基准值的差值,如果出现越限,则上报功率波动越限。如果没有出现越限,则说明当前节点属于正常节点。
当出现越限时,获取模块770通过网元间的监控信道申请调节许可令牌,当获取本 链路的调节令牌后,命令下发模块720下发调节命令,执行模块730执行功率调节,当调节成功时,则产生功率调整的应答消息,以发起监控信道检测。
若调节控制节点位于上游网元,例如,图1中,第一APO组10的功率调节单元104位于NE1,归属该功率调节单元104的功率控制单元102位于NE2,则触发消息发送模块740,该消息发送模块740,还用于向上游网元发送功率衰减调节命令;
定时器启动模块780,用于启动等待通信链路检测消息的定时器,以通过上游网元执行功率调节。
具体的,若调节控制节点部署在不同网元,且出现越限时,当获取本链路的调节令牌后,由于功率调节单元位于上游网元(图1中第一APO组10的功率调节单元104位于NE1),则消息发送模块740将衰减调节命令发送给上游网元(NE1)的功率控制单元102,同时定时器启动模块780启动等待通信链路检测消息的定时器,以通过上游网元的功率控制单元102执行功率调节,当调节成功时,则产生功率调整的应答消息,以发起监控信道检测。
本发明提供的设备,当功率调节之后,通过判断模块710检测相邻两个网元之间的监控信道中断时,命令下发模块720下发衰减调节回退命令,以使所述调节控制节点根据其所在的位置触发执行模块730根据该回退命令,执行功率回退,以恢复监控信道,实现了在功率调节后,自动发起监控信道检测,如果检测到监控信道中断,则监控信道在无人干涉的情况下能够自动恢复,确保监控信道保持畅通,以避免网元间通信中断或网元脱管。
本发明实施例还提供了一种计算机可读存储介质。这里的计算机可读存储介质存储有一个或者多个程序。其中,计算机可读存储介质可以包括易失性存储器,例如随机存取存储器;存储器也可以包括非易失性存储器,例如只读存储器、快闪存储器、硬盘或固态硬盘;存储器还可以包括上述种类的存储器的组合。当计算机可读存储介质中一个或者多个程序可被一个或者多个处理器执行,以实现上述第一实施例所提供的监控信道控制方法。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或 者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。
Claims (9)
- 一种监控信道控制方法,其中,所述方法包括步骤:检测本网元与相邻的上游网元之间的监控信道是否中断;若是,则向调节控制节点下发衰减调节回退命令,以使所述调节控制节点根据其所在的位置触发执行功率回退,其中,所述调节控制节点位于所述本网元或者所述上游网元。
- 根据权利要求1所述的监控信道控制方法,其中,在检测本网元与相邻的上游网元之间的监控信道是否中断之前,所述方法还包括:实时监测输入功率与基准值的差值。
- 根据权利要求2所述的监控信道控制方法,其中,在实时监测输入功率与基准值的差值之前,所述方法还包括:判断所述调节控制节点位于所述本网元还是所述上游网元。
- 根据权利要求3所述的监控信道控制方法,其中,当调节控制节点位于所述本网元时,所述方法还包括:通过网元间的监控信道获取功率调节许可令牌;根据所述功率调节许可令牌下发功率调节命令,以进行功率调节;当调节控制节点位于所述上游网元时,所述方法还包括:通过网元间的监控信道获取功率调节许可令牌;向上游网元发送功率衰减调节命令,以通过上游网元执行功率调节。
- 根据权利要求4所述的监控信道控制方法,其中,在所述向上游网元发送衰减调节命令之后,所述方法还包括:启动等待通信链路检测消息的定时器。
- 根据权利要求2所述的监控信道控制方法,其中,在监测所述通信链路出现异常之前,所述方法还包括:接收网元管理单元发送的功率调节链路配置,启动异常监测。
- 根据权利要求5所述的监控信道控制方法,其中,检测本网元与相邻的上游网元之间的监控信道是否中断,包括:向所述上游网元发送通信链路检测消息;判断在预设时间内是否收到所述上游网元响应所述通信链路检测消息的应答消息,若否,则判断所述监控信道中断。
- 一种监控信道控制装置,其中,所述装置包括:判断模块,用于检测本网元与相邻的上游网元之间的监控信道是否中断;命令下发模块,用于当所述判断模块检测本网元与相邻的上游网元之间的监控信道中断时,向调节控制节点下发衰减调节回退命令,以使所述调节控制节点根据其所在的位置触发执行功率回退,其中,所述调节控制节点位于所述本网元或者所述上游网元。
- 一种设备,其中,所述设备包括处理器、以及存储器;所述处理器用于执行存储器中存储的监控信道控制程序,以实现权利要求1-7任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19845384.7A EP3832906A4 (en) | 2018-08-02 | 2019-06-27 | METHOD, APPARATUS AND DEVICE FOR CONTROLLING A MONITORING CHANNEL |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810871419.2 | 2018-08-02 | ||
CN201810871419.2A CN110808793B (zh) | 2018-08-02 | 2018-08-02 | 监控信道控制方法、设备及可读存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020024735A1 true WO2020024735A1 (zh) | 2020-02-06 |
Family
ID=69232123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/093212 WO2020024735A1 (zh) | 2018-08-02 | 2019-06-27 | 监控信道控制方法、装置及设备 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3832906A4 (zh) |
CN (1) | CN110808793B (zh) |
WO (1) | WO2020024735A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116437373A (zh) * | 2021-12-31 | 2023-07-14 | 中国移动通信有限公司研究院 | 一种通道资源调整方法、装置及通信设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102143052A (zh) * | 2010-11-08 | 2011-08-03 | 华为技术有限公司 | 一种无损带宽调整方法、设备及系统 |
CN102891720A (zh) * | 2012-10-19 | 2013-01-23 | 烽火通信科技股份有限公司 | 一种自动调整光功率的方法 |
CN103392304A (zh) * | 2013-01-25 | 2013-11-13 | 华为技术有限公司 | 告警抑制方法和光网络设备 |
CN106877969A (zh) * | 2015-09-30 | 2017-06-20 | 丛林网络公司 | 使用用于光传送系统的光监控信道数据的分组路由 |
US20170338887A1 (en) * | 2016-05-20 | 2017-11-23 | Infinera Corporation | Heuristic constraint driven optical channel protection |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6701089B1 (en) * | 2000-06-30 | 2004-03-02 | Nortel Networks Limited | Over-equalization for multi-span wavelength division multiplexed fiber optic communication systems |
US6975449B1 (en) * | 2003-03-05 | 2005-12-13 | Nortel Networks Limited | Fast, continuously variable automatic gain control for optical amplifiers |
CN100499438C (zh) * | 2003-10-28 | 2009-06-10 | 华为技术有限公司 | 一种波分复用光网络光功率控制的方法 |
CN101719797B (zh) * | 2010-01-08 | 2012-10-17 | 烽火通信科技股份有限公司 | Wdm系统自动增益均衡的实现方法及装置 |
WO2011132417A1 (ja) * | 2010-04-22 | 2011-10-27 | 三菱電機株式会社 | ノード装置 |
WO2014063279A1 (zh) * | 2012-10-22 | 2014-05-01 | 华为技术有限公司 | 一种光纤衰耗补偿的方法和系统、网元 |
JP6248551B2 (ja) * | 2013-11-05 | 2017-12-20 | 富士通株式会社 | 光伝送システム及び光伝送装置 |
CN106330302B (zh) * | 2015-06-17 | 2019-10-25 | 南京中兴软件有限责任公司 | 一种分布式自动功率优化的方法及装置 |
-
2018
- 2018-08-02 CN CN201810871419.2A patent/CN110808793B/zh active Active
-
2019
- 2019-06-27 WO PCT/CN2019/093212 patent/WO2020024735A1/zh unknown
- 2019-06-27 EP EP19845384.7A patent/EP3832906A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102143052A (zh) * | 2010-11-08 | 2011-08-03 | 华为技术有限公司 | 一种无损带宽调整方法、设备及系统 |
CN102891720A (zh) * | 2012-10-19 | 2013-01-23 | 烽火通信科技股份有限公司 | 一种自动调整光功率的方法 |
CN103392304A (zh) * | 2013-01-25 | 2013-11-13 | 华为技术有限公司 | 告警抑制方法和光网络设备 |
CN106877969A (zh) * | 2015-09-30 | 2017-06-20 | 丛林网络公司 | 使用用于光传送系统的光监控信道数据的分组路由 |
US20170338887A1 (en) * | 2016-05-20 | 2017-11-23 | Infinera Corporation | Heuristic constraint driven optical channel protection |
Non-Patent Citations (1)
Title |
---|
See also references of EP3832906A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN110808793A (zh) | 2020-02-18 |
EP3832906A1 (en) | 2021-06-09 |
CN110808793B (zh) | 2022-04-15 |
EP3832906A4 (en) | 2022-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10063313B1 (en) | Synchronization of optical protection switching and loading of path specific characteristics | |
US6583899B1 (en) | Automatic protection system for an optical transmission system | |
RU2382500C1 (ru) | Способ устранения неисправности волоконной линии, а также предназначенные для этого устройство и система | |
EP2710811B1 (en) | Protection for fibre optic access networks | |
US10027405B2 (en) | Method and device for channel switching, optical network unit, and time wavelength division multiplexing system | |
US10784955B2 (en) | Method and apparatus for rapid recovery of optical power after transient events in C+L band optical networks | |
GB2323490A (en) | Failure recovery in a passive optical network | |
JP2000174706A (ja) | 光信号の出力パワ―を自動制御する方法および装置 | |
WO2009048643A1 (en) | Method and system for power stability control in wavelength division multiplexing networks | |
WO2007036108A1 (en) | An automatic recovery detection method, automatic recovery method and apparatus for optical communication system | |
US6977771B2 (en) | Optical amplifier supervisory control method in WDM communication system | |
WO2016101825A1 (zh) | 一种分布式保护中控制器热备份的方法和装置 | |
WO2020024735A1 (zh) | 监控信道控制方法、装置及设备 | |
US20090317087A1 (en) | Configurable control for network device operation | |
US20040179845A1 (en) | Optical node processor, optical network system and its control method | |
JP2013017026A (ja) | 光通信システム、光通信装置、プログラム、および光ネットワークの制御方法 | |
JP5735198B2 (ja) | 自動光リンクパワー制御 | |
US8965199B2 (en) | Method and apparatus for automatically restoring node resource state in WSON system | |
WO2016202093A1 (zh) | 一种分布式自动功率优化的方法及装置 | |
CN107547125A (zh) | 光线路终端及光链路切换方法 | |
WO2016188228A1 (zh) | 一种分布式自动功率优化系统及方法 | |
EP1017192B1 (en) | Automatic protection system for an optical transmission system | |
EP1788727A1 (en) | Method to protect human eyes in optical communication system | |
WO2017107669A1 (zh) | 基站近端维护端口管理方法、装置和基站 | |
US10397091B1 (en) | Optical safety and connections discovery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19845384 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019845384 Country of ref document: EP Effective date: 20210302 |