WO2016201893A1 - 一种e类功率放大器的补偿电路及其器件参数获取方法 - Google Patents

一种e类功率放大器的补偿电路及其器件参数获取方法 Download PDF

Info

Publication number
WO2016201893A1
WO2016201893A1 PCT/CN2015/095527 CN2015095527W WO2016201893A1 WO 2016201893 A1 WO2016201893 A1 WO 2016201893A1 CN 2015095527 W CN2015095527 W CN 2015095527W WO 2016201893 A1 WO2016201893 A1 WO 2016201893A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
class
compensation circuit
inductor
transistor
Prior art date
Application number
PCT/CN2015/095527
Other languages
English (en)
French (fr)
Inventor
吴光胜
马建国
成千福
朱守奎
邬海峰
Original Assignee
深圳市华讯方舟微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华讯方舟微电子科技有限公司 filed Critical 深圳市华讯方舟微电子科技有限公司
Publication of WO2016201893A1 publication Critical patent/WO2016201893A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2176Class E amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/391Indexing scheme relating to amplifiers the output circuit of an amplifying stage comprising an LC-network

Definitions

  • the invention belongs to the field of power amplifiers, and in particular relates to a compensation circuit of a class E power amplifier and a device parameter acquisition method thereof.
  • the RF power amplifier is precisely the most energy-consuming module in the wireless transmitting terminal. Therefore, the efficiency of the power amplifier directly determines the energy consumption level of the entire transmitting terminal. Therefore, improving the working efficiency of power amplifiers has become a hot spot in the research field of power amplifiers.
  • Class E power amplifiers have been widely researched and applied in the field of RF microwave in recent years due to their ideal working efficiency of 100% and simple structure and easy implementation.
  • the high efficiency characteristics of Class E power amplifiers are largely dependent on the characteristics of the transistors. Among them, the output capacitance inside the transistor is the most important factor limiting the operating frequency of the class E power amplifier. How to solve the limitation of the operating frequency caused by the excess output capacitance of the transistor is a hot spot in the field of class E power amplifiers in recent years.
  • the prior art employs a compensation circuit that: a first microstrip transmission line that links a drain of a transistor, a shorted branch line, and an open branch line; a second microstrip transmission line that links a shorted branch line, an open branch line, and a drain bias power; a shorting branch line at a junction of the first microstrip transmission line and the second microstrip transmission line; and an open branch line linked at a junction of the first microstrip transmission line and the second microstrip transmission line.
  • the prior art has the drawback that the microstrip size is relatively large at relatively low frequencies.
  • the invention provides a compensation circuit of a class E power amplifier and a device parameter acquisition method thereof, aiming at solving the problem that the compensation circuit of the existing class E power amplifier has a relatively large microstrip size when the frequency is relatively low.
  • a compensation circuit for a class E power amplifier includes:
  • the present invention also provides a class E power amplifier comprising the compensation circuit described above.
  • the present invention also provides a device parameter acquisition method for a compensation circuit of a class E power amplifier, comprising:
  • design parameters of the class E power amplifier including a theoretical required inductance value and a capacitance coefficient of the class E power amplifier, the capacitance coefficient being a ratio of excess capacitance to theoretically required capacitance;
  • the parameters of the first inductance, the second inductance, and the second capacitance are separately calculated using the following formula:
  • L 1 is the inductance value of the first inductor
  • L 2 is the inductance value of the second inductor
  • C 2 is the capacitance value of the second capacitor
  • a is the first parameter
  • b is the second parameter
  • L The theoretical required inductance value for the class E power amplifier
  • ⁇ 0 is the angular frequency of the fundamental wave.
  • the first inductor is connected to the first inductor and connected to the second inductor between the drain of the transistor and the second capacitor;
  • the second capacitor between the two inductors and the drain bias supply uses a discrete component to implement the compensation circuit, thereby reducing the microstrip size in the compensation circuit at lower frequencies.
  • FIG. 1 is a circuit diagram showing an example of a compensation circuit of a class E power amplifier according to an embodiment of the present invention
  • FIG. 2 is an equivalent circuit diagram of a compensation circuit of a class E power amplifier according to an embodiment of the present invention
  • FIG. 3 is a schematic circuit diagram of a compensation circuit of a class E power amplifier according to an embodiment of the present invention.
  • FIG. 4 is a simulation waveform of a compensation circuit of a class E power amplifier according to an embodiment of the present invention.
  • An embodiment of the present invention provides a structure of a compensation circuit Lnex of a class E power amplifier, as shown in FIG. 1 , including a first inductor L1 connecting a transistor drain and a drain bias power supply Vdd; and being connected in parallel with the first inductor L1, And connected to the second inductor L2 between the transistor drain and the second capacitor C2; connected to the second capacitor C2 between the second inductor L2 and the drain bias power source Vdd.
  • the compensation circuit composed of the first inductor, the second inductor, and the second capacitor may be equivalent to a fundamental wave and a second harmonic parallel inductor.
  • class E power amplifier class E power amplifier comprising the compensation circuit described above.
  • the class E power amplifier further includes a transistor Q, an output capacitor Cout, a drain bias power supply Vdd, a gate bias power supply Vgg, an input voltage Vin, a load resistor R0, a series filter capacitor C0, and a series filter inductor L0.
  • the transistor Q includes an output capacitor Cout connected between the drain of the transistor Q and the source of the transistor Q.
  • the drain of the transistor Q is connected to the first terminal of the series filter inductor L0, the gate of the transistor Q is connected to the anode of the input voltage Vin, the source of the transistor Q and the first terminal of the load resistor R0 and the drain bias power supply Vdd
  • the negative pole is connected, the negative pole of the input voltage Vin is connected to the positive pole of the gate bias power supply Vgg, the second end of the series filter inductor L0 is connected to the first end of the series filter capacitor C0, the second end of the load resistor R0 and the series filter capacitor C0 The second end of the connection.
  • the output capacitor Cout is determined by the selected transistor; the drain bias power supply Vdd and the gate bias power supply Vgg are determined by the required output power of the selection transistor, and the load resistor R0, the series filter capacitor C0, and the series filter inductor L0 are operated by the frequency. And the class E amplifier working mode is decided.
  • Embodiments of the present invention provide a device parameter acquisition method for a compensation circuit of a class E power amplifier, including the following steps:
  • the design parameters include the theoretical required inductance value and capacitance coefficient of the class E power amplifier, and the capacitance coefficient is the ratio of the excess capacitance to the theoretical required capacitance.
  • L 1 is the inductance value of the first inductor L1
  • L 2 is the inductance value of the second inductor L2
  • C 2 is the capacitance value of the second capacitor C2
  • a is the first parameter
  • b is the second parameter
  • L is the E class.
  • the theoretical required inductance of the power amplifier, For the capacitance coefficient, ⁇ 0 is the angular frequency of the fundamental wave.
  • step 101-2 is further included before step 102.
  • the value of the second parameter may be greater than 0.25 and less than 1.
  • the specific value of 0.5 can be determined within the range of values of b, and the parameters of the first inductor L1, the second inductor L2, and the second capacitor C2 are further solved.
  • an embodiment of the present invention provides an equivalent circuit diagram of a compensation circuit of a class E power amplifier, including an equivalent inductance Lnex of the compensation circuit, a transistor Q, a theoretical required capacitance C, a theoretical required inductance L, Excess capacitor Cex, drain bias supply Vdd, gate bias supply Vgg, input voltage Vin, load resistor R0, series filter capacitor C0, and series filter inductor L0, transistor Q includes theoretically required capacitance C and excess capacitance Cex
  • the theoretical required capacitance C is connected between the drain of the transistor Q and the source of the transistor Q, and the excess capacitance Cex is connected between the drain of the transistor Q and the source of the transistor Q; the drain and series filtering of the transistor Q
  • the first end of the inductor L0 is connected to the first end of the equivalent inductor Lnex
  • the gate of the transistor Q is connected to the anode of the input voltage Vin, the source of the transistor Q and the first end of the load resistor R0 a negative pole of
  • the input impedance of the compensation circuit of the class E power amplifier can be expressed by the following formula:
  • L 1 is the inductance value of the first inductor L1 in FIG. 2
  • L 2 is the inductance value of the second inductor L2 in FIG. 2
  • C 2 is a graph The capacitance value of the second capacitor C2 in 2
  • is the working angle frequency
  • the fundamental input impedance X( ⁇ 0 ) and the second harmonic impedance X(2 ⁇ 0 ) of the compensation circuit of the class E power amplifier can be expressed by the following formula:
  • ⁇ 0 and 2 ⁇ 0 are the angular frequencies of the fundamental wave and the second harmonic, respectively, and the first parameter a is The second parameter b is Capacitance coefficient for
  • the compensation circuit is equivalent to the equivalent inductance Lnex, and the above formula is connected to obtain the parameter formula of the first inductance L1, the second inductance L2, and the second capacitance C2.
  • the embodiment of the present invention provides a complete circuit schematic diagram of a compensation circuit of a class E power amplifier, which includes an input capacitor Cblock; an input matching circuit composed of a first capacitor C1 and a third inductor L3; a gate DC bias circuit composed of an inductor Lg, a gate bypass capacitor Cbypass1, and a gate resistor R; a compensation circuit composed of a first inductor L1, a second inductor L2, and a second capacitor C2, and the compensation circuit and the drain
  • the capacitor Cbypass2 together constitutes a drain DC bias circuit; a fundamental wave filter composed of an inductor L0 and a capacitor C0; and an output matching circuit composed of a third capacitor C3 and a fourth inductor L4.
  • the transistor Q can be selected from a 10W LDMOS transistor of the type MRF21010.
  • the operating frequency is 433MHz
  • the drain bias voltage is 20V
  • the output power is 10W
  • the output capacitance Cout inside the transistor is 10pF.
  • the excess capacitance Cex is calculated to be 5.389pF, and the capacitance coefficient. It is 1.169.
  • the parameters of the compensation circuit of the class E power amplifier are calculated as follows: the first inductor L1 is 7.65 nH, the second inductor L2 is 28.4 nH, and the second capacitor C2 is 1.874 pF.
  • the voltage and current waveforms of the transistor drains are simulated in the ADS software for the function of this compensation circuit. It can be clearly seen that in the time domain, the voltage and current waveforms hardly overlap, ie the efficiency of the designed Class E power amplifier is close to 100%.
  • the embodiment of the present invention includes a first inductor including a connection transistor drain connection and a drain bias power supply; a second inductor connected in parallel with the first inductor and connected between the transistor drain and the second capacitor; A second capacitor connected between the second inductor and the drain bias supply implements the compensation circuit using discrete components, thereby reducing the microstrip size in the compensation circuit at lower frequencies.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明属于功率放大器领域,提供了一种E类功率放大器的补偿电路及其器件参数获取方法。E类功率放大器的补偿电路包括连接晶体管漏接和漏极偏置电源的第一电感;与第一电感并联连接,并连接于晶体管漏极和第二电容之间的第二电感;连接于第二电感和漏极偏置电源之间的第二电容,使用分立元件实现补偿电路。本发明通过所述E类功率放大器的补偿电路及其器件参数获取方法,在频率较低时减小了补偿电路中的微带尺寸。

Description

一种E类功率放大器的补偿电路及其器件参数获取方法 技术领域
本发明属于功率放大器领域,特别涉及一种E类功率放大器的补偿电路及其器件参数获取方法。
背景技术
目前,移动通信服务的快速发展对低能耗、高效率的器件设计提出了更高的要求。而射频功率放大器恰恰是无线发射终端中耗能最大的模块。因此功率放大器的效率直接决定了整个发射终端的能耗量级。所以,提高功率放大器的工作效率成为功率放大器研究领域的热点。
E类功率放大器因其理想工作效率能够达到100%而结构简单、容易实现等优点,近年来,在射频微波领域受到了广泛的研究和应用。然而,在实际情况中,E类功率放大器的高效率特性很大程度上依赖于晶体管的特性。其中,晶体管内部的输出电容是限制E类功率放大器工作频率最重要的一个因素。如何解决晶体管内部输出电容多余而带来的工作频率的限制,是近年来E类功率放大器领域内研究的一个热点。
由于给定的晶体管内部的参数都是固定的,所以解决此问题的最流行的方法是利用外部电路来补偿多余的电容,来拓展E类功率放大器的工作频率。现有技术采用下述补偿电路:链接晶体管漏极、短路分支线和开路分支线的第一微带传输线;链接短路分支线、开路分支线和漏极偏置电源的第二微带传输线;链接于第一微带传输线和第二微带传输线连接处的短路分支线;以及链接于第一微带传输线和第二微带传输线连接处的开路分支线。
现有技术具有以下缺陷:在频率相对较低时,微带尺寸相对过大。
技术问题
本发明提供了一种E类功率放大器的补偿电路及其器件参数获取方法,旨在解决现有的E类功率放大器的补偿电路在频率相对较低时微带尺寸相对过大 的技术问题。
技术解决方案
本发明是这样实现的,一种E类功率放大器的补偿电路,包括:
连接晶体管漏接和漏极偏置电源的第一电感;
与所述第一电感并联连接,并连接于所述晶体管漏极和第二电容之间的第二电感;
连接于所述第二电感和所述漏极偏置电源之间的所述第二电容。
另一方面,本发明还提供了一种的E类功率放大器,所述E类功率放大器包括上述的补偿电路。
另一方面,本发明还提供了一种的E类功率放大器的补偿电路的器件参数获取方法,包括:
确定所述E类功率放大器的设计参数,所述设计参数包括所述E类功率放大器的理论所需电感值和电容系数,所述电容系数为多余的电容和理论所需电容的比值;
使用下述公式分别计算所述第一电感、所述第二电感和所述第二电容的参数:
Figure PCTCN2015095527-appb-000001
Figure PCTCN2015095527-appb-000002
Figure PCTCN2015095527-appb-000003
Figure PCTCN2015095527-appb-000004
其中L1为所述第一电感的电感值,L2为所述第二电感的电感值,C2为所述第二电容的电容值,a为第一参数,b为第二参数,L为所述E类功率放大器的理论所需电感值,
Figure PCTCN2015095527-appb-000005
为所述电容系数,ω0为基波的角频率。
有益效果
本发明提供的技术方案带来的有益效果是:
从上述本发明可知,由于包括连接晶体管漏接和漏极偏置电源的第一电感;与第一电感并联连接,并连接于晶体管漏极和第二电容之间的第二电感;连接于第二电感和漏极偏置电源之间的第二电容,使用分立元件实现补偿电路,因此,在频率较低时减小了补偿电路中的微带尺寸。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的E类功率放大器的补偿电路的示例电路图;
图2为本发明实施例提供的E类功率放大器的补偿电路的等效电路图;
图3为本发明实施例提供的E类功率放大器的补偿电路的完整的电路原理图;
图4为本发明实施例提供的E类功率放大器的补偿电路的仿真波形。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本发明实施例提供E类功率放大器的补偿电路Lnex的一种结构,如图1所示,包括连接晶体管漏接和漏极偏置电源Vdd的第一电感L1;与第一电感L1并联连接,并连接于晶体管漏极和第二电容C2之间的第二电感L2;连接于第二电感L2和漏极偏置电源Vdd之间的第二电容C2。
具体实施中,所述第一电感、所述第二电感和所述第二电容组成的补偿电路可以等效于基波和二次谐波并联电感。
一种的E类功率放大器,E类功率放大器包括上述的补偿电路。
如图1所示,E类功率放大器还包括晶体管Q、输出电容Cout、漏极偏置电源Vdd、栅极偏置电源Vgg、输入电压Vin、负载电阻R0、串联滤波电容C0以及串联滤波电感L0,晶体管Q包括输出电容Cout,输出电容Cout连接于晶体管Q的漏极和晶体管Q的源极之间。
晶体管Q的漏极与串联滤波电感L0的第一端连接,晶体管Q的栅极与输入电压Vin的正极连接,晶体管Q的源极与负载电阻R0的第一端和漏极偏置电源Vdd的负极连接,输入电压Vin的负极与栅极偏置电源Vgg的正极连接,串联滤波电感L0的第二端与串联滤波电容C0的第一端连接,负载电阻R0的第二端与串联滤波电容C0的第二端连接。
其中,输出电容Cout由选择的晶体管决定;漏极偏置电源Vdd和栅极偏置电源Vgg由选择晶体管的所需输出功率决定,负载电阻R0、串联滤波电容C0和串联滤波电感L0由工作频率和E类功放工作模式决定。
本发明实施例提供E类功率放大器的补偿电路的器件参数获取方法,包括以下步骤:
101:确定E类功率放大器的设计参数,设计参数包括E类功率放大器的理论所需电感值和电容系数,电容系数为多余的电容和理论所需电容的比值。
102:使用下述公式分别计算第一电感、第二电感和第二电容的参数:
Figure PCTCN2015095527-appb-000006
Figure PCTCN2015095527-appb-000007
Figure PCTCN2015095527-appb-000008
Figure PCTCN2015095527-appb-000009
其中L1为第一电感L1的电感值,L2为第二电感L2的电感值,C2为第二电容C2的电容值,a为第一参数,b为第二参数,L为E类功率放大器的理论所需电感值,
Figure PCTCN2015095527-appb-000010
为电容系数,ω0为基波的角频率。
优选的,在步骤102之前还包括步骤101-2。
101-2:预设第二参数。
具体实施中,第二参数的取值可以为大于0.25且小于1。例如,可先在b的取值范围内确定具体的数值0.5,再求解第一电感L1、第二电感L2、第二电容C2的参数。
如图2所示,本发明实施例提供E类功率放大器的补偿电路的等效电路图,包括补偿电路的等效电感Lnex、晶体管Q、理论所需电容C、理论所需电感L、 多余的电容Cex、漏极偏置电源Vdd、栅极偏置电源Vgg、输入电压Vin、负载电阻R0、串联滤波电容C0以及串联滤波电感L0,晶体管Q包括理论所需电容C和多余的电容Cex,理论所需电容C连接于晶体管Q的漏极和晶体管Q的源极之间,多余的电容Cex连接于晶体管Q的漏极和晶体管Q的源极之间;晶体管Q的漏极与串联滤波电感L0的第一端和等效电感Lnex的第一端连接,晶体管Q的栅极与所述输入电压Vin的正极连接,所述晶体管Q的源极与所述负载电阻R0的第一端和所述漏极偏置电源Vdd的负极连接,所述输入电压Vin的负极与所述栅极偏置电源Vgg的正极连接,所述串联滤波电感L0的第二端与所述串联滤波电容C0的第一端连接,所述负载电阻R0的第二端与所述串联滤波电容C0的第二端连接,等效电感Lnex的第二端与漏极偏置电源Vdd的正极连接。E类功率放大器的补偿电路的输入阻抗可用以下公式表示:
Figure PCTCN2015095527-appb-000011
其中,Z(ω)为E类功率放大器的补偿电路的输入阻抗,L1为图2中第一电感L1的电感值,L2为图2中第二电感L2的电感值,C2为图2中第二电容C2的电容值,ω为工作角频率,
Figure PCTCN2015095527-appb-000012
E类功率放大器的补偿电路的基波输入阻抗X(ω0)和二次谐波阻抗X(2ω0)可用以下公式表示:
Figure PCTCN2015095527-appb-000013
Figure PCTCN2015095527-appb-000014
Figure PCTCN2015095527-appb-000015
其中,ω0和2ω0分别为基波和二次谐波的角频率,第一参数a为
Figure PCTCN2015095527-appb-000016
第二参数b为
Figure PCTCN2015095527-appb-000017
电容系数
Figure PCTCN2015095527-appb-000018
Figure PCTCN2015095527-appb-000019
将补偿电路等效为等效电感Lnex,并将上述公式联立,即可得到第一电感L1,第二电感L2,第二电容C2的参数取值公式。
如图3所示,本发明实施例提供E类功率放大器的补偿电路的完整的电路原理图,其包含输入电容Cblock;由第一电容C1和第三电感L3构成的输入匹配电路;由栅极电感Lg、栅极旁路电容Cbypass1和栅极电阻R构成的栅极直流偏置电路;由第一电感L1、第二电感L2和第二电容C2构成的补偿电路,同时此补偿电路和漏极电容Cbypass2共同构成漏极直流偏置电路;由电感L0和电容C0构成的基波滤波器;由第三电容C3和第四电感L4组成的输出匹配电路。
具体实施中,晶体管Q可选用型号为MRF21010的10W的LDMOS晶体管。当设计的E类功率放大器的指标为:工作频率为433MHz,漏极偏置电压为20V,输出功率为10W,晶体管内部的输出电容Cout为10pF。由此,计算得到多余的电容Cex为5.389pF,电容系数
Figure PCTCN2015095527-appb-000020
为1.169。取第二参数b的值等于0.5,计算得出E类功率放大器的补偿电路的参数如下:第一电感L1为7.65nH,第二电感L2为28.4nH,第二电容C2为1.874pF。
如图4所示,在ADS软件中对此补偿电路的功能进行仿真的晶体管漏极的电压和电流波形。可以很清楚地看出,在时域上,电压和电流波形几乎没有重叠,即设计的E类功率放大器的效率接近100%。
综上所述,本发明实施例通过包括连接晶体管漏接和漏极偏置电源的第一电感;与第一电感并联连接,并连接于晶体管漏极和第二电容之间的第二电感;连接于第二电感和漏极偏置电源之间的第二电容,使用分立元件实现补偿电路,因此,在频率较低时减小了补偿电路中的微带尺寸。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种E类功率放大器的补偿电路,其特征在于,包括:
    连接晶体管漏接和漏极偏置电源的第一电感;
    与所述第一电感并联连接,并连接于所述晶体管漏极和第二电容之间的第二电感;
    连接于所述第二电感和所述漏极偏置电源之间的所述第二电容。
  2. 如权利要求1所述的E类功率放大器的补偿电路,其特征在于,适用于并联型的E类功率放大器。
  3. 如权利要求1所述的E类功率放大器的补偿电路,其特征在于,所述第一电感、所述第二电感和所述第二电容组成的补偿电路等效于基波和二次谐波并联电感。
  4. 一种E类功率放大器,其特征在于,所述E类功率放大器包括如权利要求1至4任一项所述的补偿电路。
  5. 如权利要求4所述的E类功率放大器,其特征在于,所述E类功率放大器还包括晶体管、输出电容、漏极偏置电源、栅极偏置电源、输入电压、负载电阻、串联滤波电容以及串联滤波电感,所述晶体管包括输出电容,所述输出电容连接于所述晶体管的漏极和所述晶体管的源极之间;
    所述晶体管的漏极与所述串联滤波电感的第一端连接,所述晶体管的栅极与所述输入电压的正极连接,所述晶体管的源极与所述负载电阻的第一端和所述漏极偏置电源的负极连接,所述输入电压的负极与所述栅极偏置电源的正极连接,所述串联滤波电感的第二端与所述串联滤波电容的第一端连接,所述负载电阻的第二端与所述串联滤波电容的第二端连接。
  6. 一种权利要求1所述的E类功率放大器的补偿电路的器件参数获取方法,其特征在于,包括:
    确定所述E类功率放大器的设计参数,所述设计参数包括所述E类功率放大器的理论所需电感值和电容系数,所述电容系数为多余的电容和理论所需电容的比值;
    使用下述公式分别计算所述第一电感、所述第二电感和所述第二电容的参数:
    Figure PCTCN2015095527-appb-100001
    Figure PCTCN2015095527-appb-100002
    Figure PCTCN2015095527-appb-100003
    Figure PCTCN2015095527-appb-100004
    其中L1为所述第一电感的电感值,L2为所述第二电感的电感值,C2为所述第二电容的电容值,a为第一参数,b为第二参数,L为所述E类功率放大器的理论所需电感值,
    Figure PCTCN2015095527-appb-100005
    为所述电容系数,ω0为基波的角频率。
  7. 如权利要求6所述的E类功率放大器的补偿电路的器件参数获取方法,其特征在于,所述使用下述公式分别计算所述第一电感、所述第二电感和所述第二电容的参数之前包括:
    预设所述第二参数。
  8. 如权利要求7所述的E类功率放大器的补偿电路的器件参数获取方法,其特征在于,所述第二参数的取值为大于0.25且小于1。
PCT/CN2015/095527 2015-06-16 2015-11-25 一种e类功率放大器的补偿电路及其器件参数获取方法 WO2016201893A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510334523.4A CN104953966B (zh) 2015-06-16 2015-06-16 一种e类功率放大器的补偿电路及其器件参数获取方法
CN201510334523.4 2015-06-16

Publications (1)

Publication Number Publication Date
WO2016201893A1 true WO2016201893A1 (zh) 2016-12-22

Family

ID=54168369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095527 WO2016201893A1 (zh) 2015-06-16 2015-11-25 一种e类功率放大器的补偿电路及其器件参数获取方法

Country Status (2)

Country Link
CN (1) CN104953966B (zh)
WO (1) WO2016201893A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547050B (zh) * 2017-08-21 2020-12-15 天津大学 一种双级双频带高效功率放大器
CN108923755B (zh) * 2018-06-12 2022-01-28 合肥工业大学 一种带减压负载电路的小直流馈电电感e类功率放大器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423418A (zh) * 2001-12-06 2003-06-11 Eni技术公司 半正弦波谐振激励电路
CN1479969A (zh) * 2000-10-10 2004-03-03 ���������Ǽ���Э�� E/f类开关功率放大器
US8054135B2 (en) * 2008-12-05 2011-11-08 General Electric Company Class-E amplifier and lighting ballast using the amplifier
CN102684712A (zh) * 2012-04-25 2012-09-19 中国工程物理研究院电子工程研究所 一种高效率调频发射机、功率放大器电路结构及设计方法
CN102868305A (zh) * 2012-09-13 2013-01-09 电子科技大学 基于e类直流-直流变换器的包络跟踪电源

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203086414U (zh) * 2012-12-18 2013-07-24 中国科学院微电子研究所 一种两频点微带补偿电路
CN204967766U (zh) * 2015-06-16 2016-01-13 深圳市华讯方舟微电子科技有限公司 一种补偿电路及含有其的e类功率放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1479969A (zh) * 2000-10-10 2004-03-03 ���������Ǽ���Э�� E/f类开关功率放大器
CN1423418A (zh) * 2001-12-06 2003-06-11 Eni技术公司 半正弦波谐振激励电路
US8054135B2 (en) * 2008-12-05 2011-11-08 General Electric Company Class-E amplifier and lighting ballast using the amplifier
CN102684712A (zh) * 2012-04-25 2012-09-19 中国工程物理研究院电子工程研究所 一种高效率调频发射机、功率放大器电路结构及设计方法
CN102868305A (zh) * 2012-09-13 2013-01-09 电子科技大学 基于e类直流-直流变换器的包络跟踪电源

Also Published As

Publication number Publication date
CN104953966A (zh) 2015-09-30
CN104953966B (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
CN104300925B (zh) 一种高效率f类/逆f类功率放大器
CN104953963B (zh) 一种高阶f类功率放大电路及射频功率放大器
WO2016201897A1 (zh) 一种双级逆d类功率放大电路及射频功率放大器
WO2016201894A1 (zh) 一种基于寄生补偿的j类功率放大电路及射频功率放大器
CN106208972B (zh) 一种高效率高宽带的谐波功率放大电路及射频功率放大器
CN103117711B (zh) 一种单片集成的射频高增益低噪声放大器
US11552599B2 (en) Harmonic power amplifying circuit with high efficiency and high bandwidth and radio-frequency power amplifier
CN204794915U (zh) 基于谐波整形的逆d类功率放大电路及射频功率放大器
CN205945655U (zh) 一种高效率高宽带的谐波功率放大电路及射频功率放大器
CN205430180U (zh) 一种磁耦合谐振式无线电能传输e类功率放大器
CN107547050A (zh) 一种双级双频带高效功率放大器
WO2016201896A1 (zh) 一种e类功率放大器的等效电感电路及器件参数获取方法
CN101888212B (zh) 提高功率放大器线性度及功率附加效率的电路结构
WO2016201893A1 (zh) 一种e类功率放大器的补偿电路及其器件参数获取方法
CN201726362U (zh) 提高功率放大器线性度及功率附加效率的电路结构
CN103457555B (zh) 采用任意耦合系数片上变压器的毫米波放大器单向化网络
CN106505901B (zh) 一种线性-谐振复合式超高频逆变器
CN204967766U (zh) 一种补偿电路及含有其的e类功率放大器
CN105048971A (zh) 基于开关谐振结构的高效率Doherty功率放大器实现方法
JP2009081605A (ja) 逆f級増幅回路
CN103281039B (zh) 一种采用延迟控制泄放支路的差分e类功率放大器
CN108923755B (zh) 一种带减压负载电路的小直流馈电电感e类功率放大器
CN204794918U (zh) 一种e类功率放大器的电感补偿电路
CN110971194A (zh) 一种基于谐波控制的高效双频带功率放大器
Ninh et al. Design of a highly efficient broadband class-E power amplifier with a low Q series resonance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895460

Country of ref document: EP

Kind code of ref document: A1