WO2016201877A1 - 电机径向通风冷却结构 - Google Patents
电机径向通风冷却结构 Download PDFInfo
- Publication number
- WO2016201877A1 WO2016201877A1 PCT/CN2015/094824 CN2015094824W WO2016201877A1 WO 2016201877 A1 WO2016201877 A1 WO 2016201877A1 CN 2015094824 W CN2015094824 W CN 2015094824W WO 2016201877 A1 WO2016201877 A1 WO 2016201877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- ventilation
- channel steel
- radial
- cooling structure
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/20—Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/14—Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
- H02K9/16—Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the cooling medium circulates through ducts or tubes within the casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/32—Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/02—Casings or enclosures characterised by the material thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/10—Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2205/00—Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
- H02K2205/12—Machines characterised by means for reducing windage losses or windage noise
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/09—Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators
Definitions
- the invention relates to the technical field of electric motors, and in particular to a radial ventilation cooling structure of a motor.
- the radial ventilation cooling form is one of the common cooling forms of the motor. This cooling method can increase the heat dissipation area and increase the power density of the generator, so it has been widely used.
- the core of the motor is divided into a plurality of core segments 11, and a ventilation channel 12 is arranged between the adjacent core segments 11 in the radial direction of the motor, and the ventilation channel 12 supports the core segment 11.
- the space between the adjacent core segments 11 is divided into ventilation grooves 13, and the circulating ventilation path is that cold air enters the air gap 14 from the end of the winding (not shown) through the ventilation groove 13 (for example, in the figure)
- the branch ventilation grooves 1-8) reach the cavity between the two core supports 15, and finally the hot air in the cavity is drawn out to the heat exchanger outside the motor through the pipeline, and after the heat exchanger becomes cold air, Enter the inside of the motor.
- the ventilation channel 12 is a strip-shaped ventilation channel having a rectangular cross section, and the height of the ventilation groove 13 in the axial direction of the motor, that is, the ventilation channel 12 is The height h in the axial direction of the motor (as shown in Figs. 1, 2) is equal to the distance between the adjacent core segments 11 in the axial direction of the motor.
- the inventors have found that at least the following problems exist in the prior art: after the airflow enters the air gap, the speed of the airflow becomes smaller and smaller due to the shunting of the ventilation groove, the local and the resistance along the path, and the like. Thus, from the inlet of the air gap to the middle of the air gap, the static pressure is getting larger and larger, and the dynamic pressure is getting smaller and smaller.
- the plurality of ventilation channels and the plurality of core segments have the same structure, the impedance of the plurality of ventilation grooves is the same, resulting in an increase in the amount of air flowing through the plurality of ventilation grooves.
- the air distribution through the plurality of ventilation grooves is uneven, resulting in the temperature of the coil and the plurality of core segments along the motor shaft.
- the distribution of the directions is not uniform, and the temperature from the inlet of the air gap to the middle of the air gap is getting lower and lower.
- the temperature of the coil and the plurality of core segments are unevenly distributed along the axial direction of the motor, and the maximum temperature value is large, which is liable to cause local temperature rise and high phenomenon, which causes the motor to stop malfunctioning, and at the same time easily causes thermal deformation of the iron core bracket and affects the normal operation of the motor.
- Embodiments of the present invention provide a radial ventilation cooling structure of a motor, which can improve the balance of the air volume flowing through the plurality of ventilation grooves, thereby improving the balance of the temperature distribution of the coil and the plurality of core segments along the axial direction of the motor,
- the maximum temperature value is lowered, and the motor shutdown failure caused by the local temperature rise is effectively avoided, and the thermal deformation of the core bracket is reduced to ensure the normal operation of the motor.
- the present invention provides a radial ventilation cooling structure for a motor, comprising at least three core segments, between which adjacent ventilation cores are provided with ventilation channels, adjacent core segments and said ventilation Ventilation grooves are formed between the channels, and the impedance of the plurality of ventilation grooves gradually increases from the two ends of the motor to the middle of the motor.
- the radial ventilation cooling structure of the motor provided by the invention has the impedance of the plurality of ventilation grooves gradually increasing from the two ends of the motor to the middle of the motor, thereby improving the balance of the air volume flowing through the plurality of ventilation grooves, thereby improving the coil and the plurality of cores
- the balance of the temperature of the segment along the axial distribution of the motor lowers the maximum temperature value, effectively avoids the motor shutdown failure caused by the local temperature rise too high, and reduces the thermal deformation of the core bracket to ensure The motor is running normally.
- FIG. 1 is a schematic structural view of a conventional radial ventilation cooling structure of a motor
- FIG. 2 is a schematic structural view of a ventilation duct steel in a conventional radial ventilation cooling structure of a motor
- FIG. 3 is an equivalent schematic view of a radial ventilation cooling structure of the motor provided by the present invention.
- FIG. 4 is a schematic structural view of the ventilation channel steel after adjusting the size of the radial ventilation cooling structure of the motor according to the present invention
- Figure 5 is a schematic view showing the structure of the ventilation channel steel in the radial ventilation cooling structure of the motor shown in Figure 4;
- Figure 6 is a schematic view showing the distribution of the air volume flowing through the plurality of ventilation grooves after adjusting the size of the ventilation channel steel;
- FIG. 7 is a schematic structural view showing a linear arrangement of a ventilation channel steel in another embodiment of the radial ventilation cooling structure of the motor provided by the present invention.
- FIG. 8 is a schematic structural view showing a staggered arrangement of ventilation duct steel segments in another embodiment of the radial ventilation cooling structure of the motor provided by the present invention.
- FIG. 9 is a schematic structural view showing a segmentation of a ventilation channel steel in another embodiment of the radial ventilation cooling structure of the motor provided by the present invention.
- FIG. 10 is a schematic structural view of a ventilation slot steel segmented inverted product arrangement in another embodiment of the motor radial ventilation cooling structure provided by the present invention.
- FIG. 11 is a schematic structural view of an overall S-shaped ventilation duct steel in another embodiment of the radial ventilation cooling structure of the motor according to the present invention.
- FIG. 12 is a schematic structural view showing a plurality of ventilation grooves communicating in another embodiment of the radial ventilation cooling structure of the motor according to the present invention.
- Figure 13 is a schematic view showing the structure of the ventilation channel steel in the radial ventilation cooling structure of the motor shown in Figure 12;
- FIG. 14 is a schematic structural view showing a chamfering structure of a core segment in another embodiment of the radial ventilation cooling structure of the motor according to the present invention.
- FIG. 15 is a schematic structural view of a chamfered structure provided in a core section of the radial ventilation cooling structure of the motor shown in FIG. 14;
- 16 is a schematic structural view showing a grouping of ventilation channels in another embodiment of a radial ventilation cooling structure of a motor according to the present invention.
- 11-core section 111-ventilation hole; 112-chamfered structure; 113-punch piece; 12-ventilation channel steel; 121-ventilation channel steel section; 13-ventilation groove; 1-8-branch ventilation groove; 14-air gap; 15-core bracket.
- the motor radial ventilation cooling structure of the embodiment of the present invention also includes at least three core segments 11 with ventilation slots 12 disposed between adjacent core segments 11.
- the ventilation core 13 is formed between the adjacent core segment 11 and the ventilation channel steel 12, but unlike the existing motor radial ventilation cooling structure, due to the plurality of ventilation channels 12 and/or the plurality of core segments 11
- the structure is different, resulting in the impedance R of the plurality of ventilation grooves 13 gradually increasing from the both ends of the motor to the middle of the motor.
- the impedance R of the ventilation groove 13 is the resistance of the ventilation groove 13 to the air flow (including local resistance and resistance along the path).
- the ventilation groove 13 in the radial ventilation cooling structure of the motor of the present embodiment may be equivalent to a parallel line in fluid mechanics. As shown in Figure 3 (only the motor pair is shown Referring to half of the structure), node a is the air inlet of the air gap 14, nodes a1, a2, ..., a8 are the air inlets of the branch ventilation grooves 1, 2, ..., 8, respectively, and the node b is the branch ventilation. The air outlets of the trenches 1, 2, ..., 8.
- the velocity of the airflow becomes smaller and smaller due to the shunting, partial and resistance along the venting groove 13, etc., so that from the inlet of the air gap 14 to the middle of the air gap 14, that is, along the ends of the motor In the middle direction of the motor, the static pressures U1, U2, ..., U8 of the airflow at nodes a1, a2, ..., a8 become larger and larger, and the dynamic pressure becomes smaller and smaller.
- the static pressure of the airflow at the node b ie, the air outlet of the ventilation groove 13
- Q1, Q2, ..., Q8 are the air flow flowing through the branch ventilation grooves 1, 2, ..., 8, respectively.
- the impedance R of the plurality of ventilation grooves 13 gradually increases from the two ends of the motor to the middle of the motor, that is, the impedances R1, R2, ..., R8 of the branch ventilation grooves 1, 2, ..., 8 are gradually increased (support The impedance R1 of the road ventilation groove 1 is the smallest, and the impedance R8 of the branch ventilation groove 8 is the largest), the balance of the air volume Q flowing through the plurality of ventilation grooves 13 can be improved, and the flow R can be adjusted by adjusting the impedance R of the plurality of ventilation grooves 13 The air volume Q through the plurality of ventilation grooves 13 is the same.
- the adjustment principle of the impedance R of the ventilation groove 13 is such that if the flow rate of the ventilation groove 13 is large (small), the impedance R of the ventilation groove 13 is increased (reduced), and the sum of the impedances R of the plurality of ventilation grooves 13 does not change.
- the impedance of the plurality of ventilation grooves gradually increases along the two ends of the motor to the middle of the motor, thereby improving the balance of the air volume flowing through the plurality of ventilation grooves, thereby improving the coil and the plurality of
- the balance of the temperature of the core segment along the axial distribution of the motor reduces the maximum temperature value without changing the total flow of the wind, effectively avoiding the motor shutdown failure caused by the excessive local temperature rise, and reducing the thermal deformation of the core bracket. Ensure that the motor is running normally.
- the motor radial ventilation cooling structure of the embodiment of the present invention also includes at least three core segments 11 with ventilation slots 12 disposed between adjacent core segments 11.
- the ventilation core 13 is formed between the adjacent core segment 11 and the ventilation channel steel 12, but unlike the existing motor radial ventilation cooling structure, due to the plurality of ventilation channels 12 and/or the plurality of core segments 11 Different structure, resulting in the impedance R along the plurality of ventilation grooves 13
- the two ends of the motor gradually increase in the middle direction of the motor, and the impedances S of the ventilation paths in which the plurality of ventilation grooves 13 are located are equal.
- the impedance S of the ventilation path is equal to the sum of the impedance R of the ventilation groove 13 in the ventilation path and the impedance of the air gap 14 in the ventilation path.
- the branches a ⁇ a1 ⁇ b, a ⁇ a2 ⁇ b, . . . , a ⁇ a8 ⁇ b are the ventilation paths where the branch ventilation grooves 1, 2, . . . Because the flow distribution of parallel pipelines in fluid mechanics is as follows:
- the impedances S1, S2, ..., S8 of the branch ventilation paths where the branch ventilation grooves 1, 2, ..., 8 are located are equal, so that the air volume flowing through the branch ventilation grooves 1, 2, ..., 8 Q1, Q2, ..., Q8 are the same, that is, the impedances S of the ventilation paths in which the plurality of ventilation grooves 13 are located are equal, so that the air volume Q flowing through the plurality of ventilation grooves 13 can be made the same.
- the impedance of the plurality of ventilation grooves gradually increases along the two ends of the motor to the middle of the motor, and the impedances of the ventilation paths where the plurality of ventilation grooves are located are equal, so that the ventilation flows through multiple ventilations.
- the air volume of the ditch is the same, which improves the balance of the airflow flowing through the plurality of ventilation grooves, thereby improving the balance of the temperature distribution of the coil and the plurality of core segments along the axial direction of the motor, and lowering the maximum without changing the total flow of the wind.
- the temperature value effectively avoids the motor shutdown failure caused by the local temperature rise too high, and at the same time reduces the thermal deformation of the core bracket to ensure the normal operation of the motor.
- the radial ventilation cooling structure of the motor of the present embodiment is based on the first embodiment or the second embodiment, and the size of the ventilation channel 12 is adjusted (including in the axial direction of the motor).
- the height h and/or the width w) in the circumferential direction of the motor is such that the impedance R of the plurality of ventilation grooves 13 gradually increases from the both ends of the motor to the middle of the motor.
- the ventilation channel steel 12 in this embodiment is still an integral in-line strip ventilation channel steel.
- the impedance R of the corresponding ventilation groove 13 is decreased (increased), so that the height h of the plurality of ventilation channels 12 can be adjusted along the ends of the motor to the middle of the motor.
- the gradual decrease is such that the impedance R of the plurality of ventilation grooves 13 gradually increases from the both ends of the motor to the middle of the motor.
- the sum of the heights h of the plurality of ventilation channels 12 is unchanged so as not to affect the electromagnetic performance of the motor.
- the width w of the ventilation channel 12 is increased (reduced), the impedance R of the corresponding ventilation groove 13 is increased (reduced), so the width w of the plurality of ventilation channels 12 can be adjusted along the motor from the both ends of the motor to the middle of the motor. Gradually increasing, so that the impedance R of the plurality of ventilation grooves 13 gradually increases from the both ends of the motor to the middle of the motor.
- the height h of each ventilation channel 12 should not be too large and should not be greater than 10 mm.
- the width w of each ventilation channel steel 12 cannot be too large, and should be smaller than the core tooth width by 12 mm or more.
- the height h of the channel steel 12 cannot be too small and should not be less than 6 mm.
- each ventilation channel 12 may be separately adjusted, or the width w of each ventilation channel 12 may be separately adjusted, or multiple ventilation channels 12 may be simultaneously adjusted.
- the height h and the width w (for example, adjusting the height h of the plurality of ventilation channels 12 first, and then fine-tuning the width w of the plurality of ventilation channels 12), it is also possible to adjust the height h of the partial ventilation channel 12 and a part of the ventilation slots.
- the width w of the steel 12 is such that the impedance R of the plurality of ventilation grooves 13 gradually increases from the both ends of the motor to the middle of the motor.
- the dimensions of the plurality of ventilation channels 12 are as shown in Table 1:
- Figure 6 shows the simulation calculation results of the air volume flowing through the plurality of ventilation grooves after adjusting the height h and width w of the plurality of ventilation channels in Table 1, and the air volume flowing through the plurality of ventilation grooves before adjustment. Comparing the schematic diagrams, it can be seen from Fig. 6 that by adjusting the height h and the width w of the plurality of ventilation channels, the impedance R of the plurality of ventilation grooves 13 is gradually increased along the two ends of the motor to the middle of the motor, thereby improving the flow through the plurality of The balance of the air volume Q of the ventilation groove 13. By further adjustment, the air volume Q flowing through the plurality of ventilation grooves 13 can be made the same.
- the impedance of the plurality of ventilation grooves is gradually increased along the two ends of the motor to the middle of the motor, thereby improving the flow.
- the balance of the air volume of the plurality of ventilation grooves increases the balance of the temperature of the coil and the plurality of core segments along the axial direction of the motor, and reduces the maximum temperature value without changing the total flow of the wind, thereby effectively avoiding local
- the motor is shut down due to excessive temperature rise, and the thermal deformation of the core bracket is reduced to ensure the normal operation of the motor.
- the radial ventilation cooling structure of the motor of the present embodiment is based on the first embodiment or the second embodiment, and the segmentation of the ventilation channel 12 is given (the number of segments n and/or In the radial direction of the motor, the inter-segment spacing ⁇ h is different.)
- Different layouts including segmented linear arrangement, segmented staggered arrangement, segmented word arrangement, and segmented inverted word arrangement) make The impedance R of the ventilation grooves 13 gradually increases from the two ends of the motor to the middle of the motor.
- the ventilation channel steel 12 in this embodiment includes a plurality of identical ventilation channel steel segments 121, and the ventilation channel steel segments 121 are integral in-line strip ventilation channel steel segments, and the same ventilation channel steel 12
- the spacing ⁇ h between the adjacent ventilation channel segments 121 in the radial direction of the motor is the same.
- the layout of the ventilation channel steel 12 may be a segmental linear arrangement as shown in FIG. 7, or may be a segmented staggered arrangement as shown in FIG. 8, or may be a segmented product arrangement as shown in FIG. It is arranged as the segmentation product shown in FIG.
- the impedance R of the corresponding ventilation groove 13 is increased (reduced), so that the ventilation channel segments of the plurality of ventilation channels 12 can be adjusted.
- the number n of 121 gradually increases along the two ends of the motor to the middle of the motor, so that the impedance R of the plurality of ventilation grooves 13 gradually increases from the both ends of the motor to the middle of the motor.
- the impedance R of the corresponding ventilation groove 13 is decreased (increased), so that a plurality of ventilation channels 12 can be adjusted.
- the spacing ⁇ h between the ventilation channel segments 121 gradually decreases along the middle of the motor to the middle of the motor, so that the impedance R of the plurality of ventilation grooves 13 gradually increases from the two ends of the motor to the middle of the motor.
- the number n of the ventilation channel segments 121 in each ventilation channel 12 can be separately adjusted, or the spacing between the ventilation channels 121 in each ventilation channel 12 can be separately adjusted.
- the number n of the steel segments 121, and finely adjust the spacing ⁇ h between the ventilation channel segments 121 of the plurality of ventilation channels 12, and the height h of the partial ventilation channels 12 and the width w of the portion of the ventilation slots 12 may also be adjusted.
- the layout of the plurality of ventilation channels 12 may be the same or different, that is, the layout of the plurality of ventilation channels 12 may adopt one or a combination of the following layouts: the segmental linear arrangement and the diagram shown in FIG. The segment staggered arrangement shown in Fig. 8, the segmented word arrangement shown in Fig. 9, and the segmented inverted word arrangement shown in Fig. 10.
- the number n of the ventilation channel steel segments 121 in the plurality of ventilation channels 12 and/or the spacing ⁇ h between the ventilation channel steel segments 121 and/or the layout of the plurality of ventilation channels 12 can be adjusted.
- the impedance R of the plurality of ventilation grooves 13 gradually increases from the both ends of the motor to the middle of the motor, thereby improving the balance of the air volume Q flowing through the plurality of ventilation grooves 13.
- the air volume Q flowing through the plurality of ventilation grooves 13 can be made the same.
- the radial ventilation cooling structure of the motor of the embodiment of the invention adjusts the number n of the ventilation channel steel segments in the plurality of ventilation channels and/or the spacing ⁇ h between the ventilation channel steel segments and/or the layout of the plurality of ventilation channels Therefore, the impedance of the plurality of ventilation grooves is gradually increased along the two ends of the motor to the middle of the motor, thereby improving the balance of the air volume flowing through the plurality of ventilation grooves, thereby increasing the temperature of the coil and the plurality of core segments along the axial direction of the motor. Balance, without changing the total flow of the wind, reduce the maximum temperature value, effectively avoid the motor shutdown failure caused by the local temperature rise too high, while reducing the thermal deformation of the core bracket to ensure the normal operation of the motor.
- a plurality of ventilation channel sections can effectively suppress the growth of the boundary layer, thereby enhancing heat exchange and further reducing the temperature of the coil and the plurality of core segments.
- the radial ventilation cooling structure of the motor of the present embodiment is based on the first embodiment or the second embodiment, and the plurality of ventilation channels 12 are set as an integral S shape, and a plurality of ventilations are adjusted.
- the ventilation channel steel 12 in this embodiment is an integral S-shaped strip ventilation channel steel.
- the bending angles ⁇ of the plurality of turns in the same ventilation channel steel 12 are the same.
- the impedance R of the corresponding ventilation groove 13 is increased (reduced), so that the maximum width w max of the plurality of ventilation channels 12 can be adjusted along both ends of the motor
- the direction to the middle of the motor is gradually increased, so that the impedance R of the plurality of ventilation grooves 13 gradually increases from the both ends of the motor to the middle of the motor.
- the impedance R of the corresponding ventilation groove 13 is increased (reduced), so that the number of turns in the plurality of ventilation channels 12 can be adjusted along the ends of the motor.
- the direction to the middle of the motor is gradually increased, so that the impedance R of the plurality of ventilation grooves 13 gradually increases from the both ends of the motor to the middle of the motor.
- the impedance R of the corresponding ventilation groove 13 is decreased (increased), so that the bending angle ⁇ of the turning in the plurality of ventilation channels 12 can be adjusted along the motor
- the two ends are gradually reduced in the middle direction of the motor, so that the impedance R of the plurality of ventilation grooves 13 gradually increases from the both ends of the motor to the middle of the motor.
- each ventilation channel 12 may be adopted, or the number m of turns in each ventilation channel 12 may be separately adjusted, or each ventilation slot may be separately adjusted.
- the maximum width w max of the plurality of ventilation channels 12 and the number m of the turns it is also possible to adjust the maximum width w max of the plurality of ventilation channels 12 and the number m of the turns, or to adjust the maximum width of the plurality of ventilation channels 12 at the same time.
- max and the bending angle ⁇ of the corner it is also possible to adjust the number of turns in the plurality of ventilation channels 12 and the bending angle ⁇ of the turning, or to adjust the maximum width of the plurality of ventilation channels 12 at the same time.
- the maximum width w max of the partial ventilation duct 12, the number of turns in the partial ventilation duct 12, and the bending of the turning in the partial ventilation duct 12 may also be adopted in the manner of max , the number of turns m, and the bending angle ⁇ of the turning.
- the angle ⁇ is such that the impedance R of the plurality of ventilation grooves 13 gradually increases from the both ends of the motor to the middle of the motor.
- the maximum width w max of the plurality of ventilation channels 12 and/or the number of turns m and/or the bending angle ⁇ of the bend are adjusted to adjust the impedance R of the plurality of ventilation grooves 13 along the ends of the motor to the motor.
- the intermediate direction is gradually increased, and the balance of the air volume Q flowing through the plurality of ventilation grooves 13 can be improved.
- the air volume Q flowing through the plurality of ventilation grooves 13 can be made the same.
- the radial ventilation cooling structure of the motor of the embodiment of the present invention by adjusting the maximum width w max of the plurality of ventilation channels and/or the number of turns m and/or the bending angle ⁇ of the bend, so that the impedance of the plurality of ventilation grooves is along the motor
- the end of the motor gradually increases in the middle direction, which can improve the balance of the air volume flowing through the plurality of ventilation grooves, thereby improving the balance of the temperature distribution of the coil and the plurality of core segments along the axial direction of the motor, without changing the total flow of the wind.
- the maximum temperature value is lowered, and the motor shutdown failure caused by the excessive local temperature rise is effectively avoided, and the thermal deformation of the core bracket is reduced to ensure the normal operation of the motor.
- a plurality of ventilation channels are arranged in an overall S shape, which can effectively suppress the growth of the boundary layer, thereby enhancing heat exchange and further reducing the temperature of the coil and the plurality of core segments.
- the radial ventilation cooling structure of the motor of the present embodiment is based on the first embodiment or the second embodiment, and the plurality of ventilation grooves 13 are provided by connecting a plurality of ventilation grooves 13
- the impedance R gradually increases from the two ends of the motor to the middle of the motor.
- the radial ventilation cooling structure of the motor of the present embodiment adds a vent hole 111 to the foundation of FIG.
- the core segment 11 between any two ventilation grooves 13 is provided with a vent hole 111 in the axial direction of the motor, and the vent hole 111 is for communicating the two ventilation grooves 13 on both sides of the core segment 11 as shown in FIG. It is ensured that the plurality of ventilation grooves 13 are in communication with each other, and the ventilation channel steel 12 can be arranged in sections.
- each of the ventilation grooves 13 and the ventilation holes 111 are not blocked after vacuum pressure impregnation VPI baking, and the diameter of each ventilation hole 111 should be between 4 mm and 8 mm.
- the number of vent holes 111 on each core tooth portion should be no more than three.
- the vent hole 111 is provided in a portion of the core segment 11 near the air inlet of the ventilation groove 13, that is, a portion close to the air gap 14.
- venting holes 111 in the different core segments 11 are different in height in the radial direction of the motor.
- the radial ventilation cooling structure of the motor of the embodiment of the invention by connecting a plurality of ventilation grooves, and adjusting the diameter of the plurality of ventilation holes and/or the number of ventilation holes and/or the height of the ventilation holes in the core segment, so that The impedance of the ventilation grooves gradually increases from the two ends of the motor to the middle of the motor, which can improve the balance of the air volume flowing through the plurality of ventilation grooves, thereby improving the balance of the temperature distribution of the coil and the plurality of core segments along the axial direction of the motor. Without changing the total flow of the wind, the maximum temperature value is lowered, and the motor shutdown failure caused by the local temperature rise is effectively avoided, and the thermal deformation of the core bracket is reduced to ensure the normal operation of the motor.
- the radial ventilation cooling structure of the motor of the present embodiment is based on the first embodiment or the second embodiment, and a plurality of ventilations are provided by providing the plurality of core segments 11 with a chamfered structure 112.
- the impedance R of the groove 13 gradually increases from the both ends of the motor to the middle of the motor.
- the radial ventilation cooling structure of the motor of the present embodiment is provided with a chamfered structure 112 for the plurality of core segments 11 on the basis of FIG. 1 .
- the chamfered structure 112 is disposed at a portion of the core section 11 near the air inlet of the ventilation groove 13, that is, a portion close to the air gap 14, to reduce local resistance at the air inlet of the plurality of ventilation grooves 13.
- the opening width of the plurality of chamfered structures 112 gradually decreases along the two ends of the motor to the middle of the motor, and the local resistance at the air inlets of the plurality of ventilation grooves 13 gradually decreases along the two ends of the motor to the middle of the motor, so that multiple ventilations are provided.
- the impedance R of the groove 13 gradually increases from the both ends of the motor to the middle of the motor, and the balance of the air volume Q flowing through the plurality of ventilation grooves 13 can be improved. By further adjustment, the air volume Q flowing through the plurality of ventilation grooves 13 can be made the same.
- the pitch radial height of each of the punching pieces 113 can be adjusted so that the laminated core segments 11 form a stepped chamfered structure 112. .
- the radial ventilation cooling structure of the motor of the embodiment of the invention provides a chamfering structure for the plurality of core segments, so that the impedance of the plurality of ventilation grooves gradually increases along the two ends of the motor to the middle of the motor, thereby improving the flow through the plurality of ventilation grooves.
- the balance of the air volume thereby increasing the balance of the temperature of the coil and the plurality of core segments along the axial distribution of the motor, reducing the maximum temperature value without changing the total flow of the wind, effectively avoiding the local temperature rise is too high
- the motor stops the fault, and at the same time reduces the thermal deformation of the core bracket to ensure the normal operation of the motor.
- Ventilation channel steel 12 can be divided into multiple groups. As shown in FIG. 16, in the first embodiment or the embodiment On the basis of two, the ventilation channel steel 12 is divided into a plurality of groups, and the ventilation channel steel in each of the broken line frames in Fig. 16 is a group, and each group includes at least one ventilation channel steel 12, and ventilation in each group
- the channel 12 is of the same shape and layout, and the ventilation channels 12 of the plurality of groups are in combination of one or more of the following shapes and layouts: the overall inline as shown in Figure 5, and the one shown in Figure 7. Segmental linear arrangement, segmented staggered arrangement shown in Fig. 8, segmented product arrangement shown in Fig. 9, segmented inverted word arrangement shown in Fig. 10, overall S type shown in Fig. .
- the ventilation channel 12 may take the form of one or more of the following shapes and layouts: the overall inline as shown in FIG. 5, the segmented linear arrangement shown in FIG. 7, and the segmented staggered arrangement shown in FIG. The cloth, the segmentation word arrangement shown in FIG. 9, the segmentation product arrangement shown in FIG. 10, and the overall S type shown in FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Motor Or Generator Frames (AREA)
Abstract
一种电机径向通风冷却结构,包括至少三个铁心段(11),相邻的铁心段(11)之间设置有通风槽钢(12),相邻的铁心段(11)与通风槽钢(12)之间形成通风沟(13),多个通风沟(13)的阻抗沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟(13)的风量的均衡性,从而提高线圈和多个铁心段(11)的温度沿电机轴向分布的均衡性,在不改变风的总流量的情况下,降低最高温度值,有效避免因局部温升过高导致的电机停机故障,同时降低铁心支架热变形,保证电机正常运行。
Description
本发明涉及电机技术领域,尤其涉及一种电机径向通风冷却结构。
电机在运行时,会在线圈、铁心等部件上产生能量损耗,这部分损耗最终以热能的形式散发出去。径向通风冷却形式是电机的常用冷却形式之一,这种冷却方式可增加散热面积,提高发电机的功率密度,因此得到了广泛的应用。
如图1所示,电机的铁心被分成多个铁心段11,在相邻的铁心段11之间沿电机的径向设有通风槽钢12,通风槽钢12在对铁心段11起到支撑作用的同时,将相邻铁心段11之间的空间分隔成通风沟13,其循环通风路径为冷风从绕组(未示出)的端部进入气隙14,经过通风沟13(例如图中的支路通风沟1~8)到达两个铁心支架15之间的空腔,最后通过管道将空腔中的热空气抽出到电机外的换热器,经换热器变成冷空气后,再进入电机内部。如图2所示,现有的电机径向通风冷却结构中通风槽钢12为横截面呈矩形的条形通风槽钢,通风沟13在电机轴向方向上的高度,即通风槽钢12在电机轴向方向上的高度h(如图1、2中所示),与相邻铁心段11之间在电机轴向方向上的间距相等。
在实现上述通风冷却的过程中,发明人发现现有技术中至少存在如下问题:气流进入气隙后,由于通风沟的分流、局部及沿程阻力等原因,导致气流的速度越来越小,这样从气隙进口处到气隙中间位置,静压越来越大,动压越来越小。但由于多个通风槽钢和多个铁心段的结构相同,因此导致多个通风沟的阻抗相同,从而导致流经多个通风沟的风量越来越大。由于电机内部热源(线圈、铁心等部件)产生的热量沿电机轴向分布是均匀的,而通过多个通风沟的风量分布是不均匀的,从而导致线圈和多个铁心段的温度沿电机轴向分布是不均匀的,且从气隙进口处到气隙中间位置温度越来越低。线圈和多个铁心段的温度沿电机轴向分布不均匀,最高温度值较大,容易产生局部温升过高现象,导致电机停机故障,同时容易导致铁心支架热变形,影响电机正常运行。
发明内容
本发明的实施例提供一种电机径向通风冷却结构,可提高流经多个通风沟的风量的均衡性,从而提高线圈和多个铁心段的温度沿电机轴向分布的均衡性,在不改变风的总流量的情况下,降低最高温度值,有效避免因局部温升过高导致的电机停机故障,同时降低铁心支架热变形,保证电机正常运行。
为达到上述目的,本发明提供一种电机径向通风冷却结构,包括至少三个铁心段,相邻的所述铁心段之间设置有通风槽钢,相邻的所述铁心段与所述通风槽钢之间形成通风沟,多个所述通风沟的阻抗沿电机两端到电机中间方向逐渐增大。
本发明提供的电机径向通风冷却结构,多个通风沟的阻抗沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟的风量的均衡性,从而提高线圈和多个铁心段的温度沿电机轴向分布的均衡性,在不改变风的总流量的情况下,降低最高温度值,有效避免因局部温升过高导致的电机停机故障,同时降低铁心支架热变形,保证电机正常运行。
图1为现有的电机径向通风冷却结构的结构示意图;
图2为现有的电机径向通风冷却结构中通风槽钢的结构示意图;
图3为本发明提供的电机径向通风冷却结构的等效示意图;
图4为本发明提供的电机径向通风冷却结构一实施例中通风槽钢调整尺寸后的结构示意图;
图5为图4所示的电机径向通风冷却结构中通风槽钢的结构示意图;
图6为调整通风槽钢的尺寸后流经多个通风沟的风量的分布示意图;
图7为本发明提供的电机径向通风冷却结构另一实施例中通风槽钢分段直线排布的结构示意图;
图8为本发明提供的电机径向通风冷却结构另一实施例中通风槽钢分段交错排布的结构示意图;
图9为本发明提供的电机径向通风冷却结构另一实施例中通风槽钢分段品字排布的结构示意图;
图10为本发明提供的电机径向通风冷却结构另一实施例中通风槽钢分段倒品字排布的结构示意图;
图11为本发明提供的电机径向通风冷却结构另一实施例中通风槽钢整体S型的结构示意图;
图12为本发明提供的电机径向通风冷却结构另一实施例中多个通风沟相连通的结构示意图;
图13为图12所示的电机径向通风冷却结构中通风槽钢的结构示意图;
图14为本发明提供的电机径向通风冷却结构另一实施例中铁心段设置倒角结构的结构示意图;
图15为图14所示的电机径向通风冷却结构中铁心段设置的倒角结构的结构示意图;
图16为本发明提供的电机径向通风冷却结构另一实施例中通风槽钢分组的结构示意图;
其中,11-铁心段;111-通风孔;112-倒角结构;113-冲片;12-通风槽钢;121-通风槽钢段;13-通风沟;1~8-支路通风沟;14-气隙;15-铁心支架。
下面结合附图对本发明实施例的电机径向通风冷却结构进行详细描述。
实施例一
参照图1所示的现有的电机径向通风冷却结构,本发明实施例的电机径向通风冷却结构同样包括至少三个铁心段11,相邻的铁心段11之间设置有通风槽钢12,相邻的铁心段11与通风槽钢12之间形成通风沟13,但与现有的电机径向通风冷却结构不同的是,由于多个通风槽钢12和/或多个铁心段11的结构不同,导致多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
具体的,通风沟13的阻抗R即通风沟13对气流的阻力(包括局部阻力和沿程阻力)。本实施例的电机径向通风冷却结构中的通风沟13可以等效为流体力学中的并联管路。如图3所示(仅示出了电机对
称结构中的一半),节点a为气隙14的进风口,节点a1、a2、……、a8分别为支路通风沟1、2、……、8的进风口,节点b为支路通风沟1、2、……、8的出风口。气流进入气隙14后,由于通风沟13的分流、局部及沿程阻力等原因,导致气流的速度越来越小,这样从气隙14进口处到气隙14中间位置,即沿电机两端到电机中间方向,气流在节点a1、a2、……、a8的静压U1、U2、……、U8越来越大,动压越来越小。假设气流在节点b(即通风沟13的出风口)的静压为U0,根据流体力学中并联管路的流量分配规律:
其中,Q1、Q2、……、Q8分别为流经支路通风沟1、2、……、8的风量。
可知,多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大,即支路通风沟1、2、……、8的阻抗R1、R2、……、R8逐渐增大(支路通风沟1的阻抗R1最小,支路通风沟8的阻抗R8最大),可提高流经多个通风沟13的风量Q的均衡性,通过调整多个通风沟13的阻抗R,可使得流经多个通风沟13的风量Q相同。通风沟13的阻抗R的调整原则为:如果通风沟13的流量大(小),则增大(减小)通风沟13的阻抗R,多个通风沟13的阻抗R之和不变。
本发明实施例的电机径向通风冷却结构,多个通风沟的阻抗沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟的风量的均衡性,从而提高线圈和多个铁心段的温度沿电机轴向分布的均衡性,在不改变风的总流量的情况下,降低最高温度值,有效避免因局部温升过高导致的电机停机故障,同时降低铁心支架热变形,保证电机正常运行。
实施例二
参照图1所示的现有的电机径向通风冷却结构,本发明实施例的电机径向通风冷却结构同样包括至少三个铁心段11,相邻的铁心段11之间设置有通风槽钢12,相邻的铁心段11与通风槽钢12之间形成通风沟13,但与现有的电机径向通风冷却结构不同的是,由于多个通风槽钢12和/或多个铁心段11的结构不同,导致多个通风沟13的阻抗R沿
电机两端到电机中间方向逐渐增大,且多个通风沟13所在的通风路径的阻抗S相等。其中,通风路径的阻抗S等于通风路径中的通风沟13的阻抗R和通风路径中的气隙14的阻抗之和。
具体的,参照图3,支路a→a1→b、a→a2→b、……、a→a8→b分别为支路通风沟1、2、……、8所在的通风路径。由于在流体力学中并联管路的流量分配规律如下:
因此,支路通风沟1、2、……、8所在的支路通风路径的阻抗S1、S2、……、S8相等,可使得流经支路通风沟1、2、……、8的风量Q1、Q2、……、Q8相同,即多个通风沟13所在的通风路径的阻抗S相等,可使得流经多个通风沟13的风量Q相同。
本发明实施例的电机径向通风冷却结构,多个通风沟的阻抗沿电机两端到电机中间方向逐渐增大,且多个通风沟所在的通风路径的阻抗相等,可使得流经多个通风沟的风量相同,提高流经多个通风沟的风量的均衡性,从而提高线圈和多个铁心段的温度沿电机轴向分布的均衡性,在不改变风的总流量的情况下,降低最高温度值,有效避免因局部温升过高导致的电机停机故障,同时降低铁心支架热变形,保证电机正常运行。
实施例三
如图4、图5所示,本实施例的电机径向通风冷却结构在实施例一或实施例二的基础上,给出了通过调整通风槽钢12的尺寸(包括在电机轴向方向上的高度h和/或在电机圆周方向上的宽度w)的方式,使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
具体的,本实施例中的通风槽钢12仍为整体一字型的条形通风槽钢。
由于通风槽钢12的高度h增大(减小),对应的通风沟13的阻抗R减小(增大),因此可调整多个通风槽钢12的高度h沿电机两端到电机中间方向逐渐减小,从而使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。优选地,为不影响电机的电磁性能,调整后多个通风槽钢12的高度h之和不变。
由于通风槽钢12的宽度w增大(减小),对应的通风沟13的阻抗R增大(减小),因此可调整多个通风槽钢12的宽度w沿电机两端到电机中间方向逐渐增大,从而使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
优选地,为尽量不影响电机的电磁性能,各通风槽钢12的高度h不能过大,应不大于10mm。
优选地,为使各通风沟13在真空压力浸渍(Vacuum Pressure Impregnating,简称VPI)烘培后不堵塞,各通风槽钢12的宽度w不能过大,应比铁心齿宽小12mm以上,各通风槽钢12的高度h不能过小,应不小于6mm。
此处需要说明的是,可以采用单独调整各通风槽钢12的高度h的方式,也可以采用单独调整各通风槽钢12的宽度w的方式,也可以采用同时调整多个通风槽钢12的高度h和宽度w的方式(例如先调整多个通风槽钢12的高度h,再微调多个通风槽钢12的宽度w),也可以采用调整部分通风槽钢12的高度h和部分通风槽钢12的宽度w的方式,使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
例如,同时调整多个通风槽钢12的高度h和宽度w的方式下,多个通风槽钢12的尺寸如表1所示:
表1多个通风槽钢的尺寸
如图6所示为按表1中多个通风槽钢的高度h和宽度w调整后流经多个通风沟的风量的仿真计算结果与调整前流经多个通风沟的风量
对比示意图,由图6可知,通过调整多个通风槽钢的高度h和宽度w,以调整多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟13的风量Q的均衡性。通过进一步调整,可使得流经多个通风沟13的风量Q相同。
本发明实施例的电机径向通风冷却结构,通过调整多个通风槽钢的高度h和/或宽度w,使得多个通风沟的阻抗沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟的风量的均衡性,从而提高线圈和多个铁心段的温度沿电机轴向分布的均衡性,在不改变风的总流量的情况下,降低最高温度值,有效避免因局部温升过高导致的电机停机故障,同时降低铁心支架热变形,保证电机正常运行。
实施例四
如图7~图10所示,本实施例的电机径向通风冷却结构在实施例一或实施例二的基础上,给出了通过将通风槽钢12分段(段的数量n和/或在电机径向方向上的段间间距△h不同)不同布局(包括分段直线排布、分段交错排布、分段品字排布、分段倒品字排布)的方式,使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
具体的,本实施例中的通风槽钢12包括分离的多个结构相同的通风槽钢段121,通风槽钢段121为整体一字型的条形通风槽钢段,同一通风槽钢12中在电机径向方向上相邻的通风槽钢段121之间的间距△h相同。通风槽钢12的布局可以为图7所示的分段直线排布,也可以为图8所示的分段交错排布,也可以为图9所示的分段品字排布,也可以为图10所示的分段倒品字排布。
由于通风槽钢12中通风槽钢段121的数量n增大(减小),对应的通风沟13的阻抗R增大(减小),因此可调整多个通风槽钢12中通风槽钢段121的数量n沿电机两端到电机中间方向逐渐增大,从而使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
由于同一通风槽钢12中通风槽钢段121之间的间距△h增大(减小),对应的通风沟13的阻抗R减小(增大),因此可调整多个通风槽钢12中通风槽钢段121之间的间距△h沿电机两端到电机中间方向逐渐减小,从而使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
此处需要说明的是,可以采用单独调整各通风槽钢12中通风槽钢段121的数量n的方式,也可以采用单独调整各通风槽钢12中通风槽钢段121之间的间距△h的方式,也可以采用同时调整多个通风槽钢12中通风槽钢段121的数量n和通风槽钢段121之间的间距△h的方式(例如先调整多个通风槽钢12中通风槽钢段121的数量n,再微调多个通风槽钢12中通风槽钢段121之间的间距△h),也可以采用调整部分通风槽钢12的高度h和部分通风槽钢12的宽度w的方式,使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。其中,多个通风槽钢12的布局可以相同或不同,即多个通风槽钢12的布局可以采用以下布局中的一种或几种的组合:图7所示的分段直线排布、图8所示的分段交错排布、图9所示的分段品字排布、图10所示的分段倒品字排布。
通过仿真计算可知,通过调整多个通风槽钢12中通风槽钢段121的数量n和/或通风槽钢段121之间的间距△h和/或多个通风槽钢12的布局,以调整多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟13的风量Q的均衡性。通过进一步调整,可使得流经多个通风沟13的风量Q相同。
本发明实施例的电机径向通风冷却结构,通过调整多个通风槽钢中通风槽钢段的数量n和/或通风槽钢段之间的间距△h和/或多个通风槽钢的布局,使得多个通风沟的阻抗沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟的风量的均衡性,从而提高线圈和多个铁心段的温度沿电机轴向分布的均衡性,在不改变风的总流量的情况下,降低最高温度值,有效避免因局部温升过高导致的电机停机故障,同时降低铁心支架热变形,保证电机正常运行。另外,多个通风槽钢分段,可有效抑制边界层的增长,从而强化换热,进一步降低线圈和多个铁心段的温度。
实施例五
如图11所示,本实施例的电机径向通风冷却结构在实施例一或实施例二的基础上,给出了通过将多个通风槽钢12设置为整体S型,并调整多个通风槽钢12在电机圆周方向上的最大宽度wmax和/或拐弯的
数量m和/或拐弯的弯曲角度θ的方式,使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
具体的,本实施例中的通风槽钢12为整体S型的条形通风槽钢。同一通风槽钢12中多个拐弯的弯曲角度θ相同。
由于通风槽钢12的最大宽度wmax增大(减小),对应的通风沟13的阻抗R增大(减小),因此可调整多个通风槽钢12的最大宽度wmax沿电机两端到电机中间方向逐渐增大,从而使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
由于通风槽钢12中拐弯的数量m增大(减小),对应的通风沟13的阻抗R增大(减小),因此可调整多个通风槽钢12中拐弯的数量m沿电机两端到电机中间方向逐渐增大,从而使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
由于通风槽钢12中拐弯的弯曲角度θ增大(减小),对应的通风沟13的阻抗R减小(增大),因此可调整多个通风槽钢12中拐弯的弯曲角度θ沿电机两端到电机中间方向逐渐减小,从而使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
此处需要说明的是,可以采用单独调整各通风槽钢12的最大宽度wmax的方式,也可以采用单独调整各通风槽钢12中拐弯的数量m的方式,也可以采用单独调整各通风槽钢12中拐弯的弯曲角度θ的方式,也可以采用同时调整多个通风槽钢12的最大宽度wmax和拐弯的数量m的方式,也可以采用同时调整多个通风槽钢12的最大宽度wmax和拐弯的弯曲角度θ的方式,也可以采用同时调整多个通风槽钢12中拐弯的数量m和拐弯的弯曲角度θ的方式,也可以采用同时调整多个通风槽钢12的最大宽度wmax、拐弯的数量m和拐弯的弯曲角度θ的方式,也可以采用调整部分通风槽钢12的最大宽度wmax、部分通风槽钢12中拐弯的数量m、部分通风槽钢12中拐弯的弯曲角度θ的方式,使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
通过仿真计算可知,通过调整多个通风槽钢12的最大宽度wmax和/或拐弯的数量m和/或拐弯的弯曲角度θ,以调整多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟13的
风量Q的均衡性。通过进一步调整,可使得流经多个通风沟13的风量Q相同。
本发明实施例的电机径向通风冷却结构,通过调整多个通风槽钢的最大宽度wmax和/或拐弯的数量m和/或拐弯的弯曲角度θ,使得多个通风沟的阻抗沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟的风量的均衡性,从而提高线圈和多个铁心段的温度沿电机轴向分布的均衡性,在不改变风的总流量的情况下,降低最高温度值,有效避免因局部温升过高导致的电机停机故障,同时降低铁心支架热变形,保证电机正常运行。另外,多个通风槽钢设置为整体S型,可有效抑制边界层的增长,从而强化换热,进一步降低线圈和多个铁心段的温度。
实施例六
如图12所示,本实施例的电机径向通风冷却结构在实施例一或实施例二的基础上,给出了通过将多个通风沟13相连通的方式,使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
具体的,本实施例的电机径向通风冷却结构在图1的基础上增加了通风孔111。位于任意两个通风沟13之间的铁心段11中设置有沿电机轴向方向的通风孔111,通风孔111用于连通铁心段11两侧的两个通风沟13如图13所示,为保证多个通风沟13之间相连通,通风槽钢12可分段设置。
优选地,为尽量不影响电机的电磁性能,各通风沟13及通风孔111在真空压力浸渍VPI烘培后不堵塞,各通风孔111的直径应位于4mm~8mm之间。每个铁心齿部上通风孔111的数量应不大于3个。
优选地,通风孔111设置于铁心段11中靠近通风沟13的进风口的部分,即靠近气隙14的部分。
可选地,不同铁心段11中的通风孔111在电机径向上高度不同。
通过仿真计算可知,通过调整多个通风孔111的直径和/或通风孔111的数量和/或通风孔111在铁心段11中的高度,以调整多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟13的风量Q的均衡性。通过进一步调整,可使得流经多个通风沟13的风量Q相同。
本发明实施例的电机径向通风冷却结构,通过将多个通风沟相连通,并调整多个通风孔的直径和/或通风孔的数量和/或通风孔在铁心段中的高度,使得多个通风沟的阻抗沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟的风量的均衡性,从而提高线圈和多个铁心段的温度沿电机轴向分布的均衡性,在不改变风的总流量的情况下,降低最高温度值,有效避免因局部温升过高导致的电机停机故障,同时降低铁心支架热变形,保证电机正常运行。
实施例七
如图14所示,本实施例的电机径向通风冷却结构在实施例一或实施例二的基础上,给出了通过为多个铁心段11设置倒角结构112的方式,使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大。
具体的,本实施例的电机径向通风冷却结构在图1的基础上,为多个铁心段11设置了倒角结构112。倒角结构112设置于铁心段11靠近通风沟13的进风口的部分,即靠近气隙14的部分,以减小多个通风沟13的进风口处的局部阻力。且多个倒角结构112的开口宽度沿电机两端到电机中间方向逐渐减小,多个通风沟13的进风口处的局部阻力沿电机两端到电机中间方向逐渐减大,使得多个通风沟13的阻抗R沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟13的风量Q的均衡性。通过进一步调整,可使得流经多个通风沟13的风量Q相同。
如图15所示,由于铁心段11由多个冲片113叠压形成,因此可通过调整各冲片113的齿径向高度,使得叠压后的铁心段11形成阶梯状的倒角结构112。
本发明实施例的电机径向通风冷却结构,通过为多个铁心段设置倒角结构,使得多个通风沟的阻抗沿电机两端到电机中间方向逐渐增大,可提高流经多个通风沟的风量的均衡性,从而提高线圈和多个铁心段的温度沿电机轴向分布的均衡性,在不改变风的总流量的情况下,降低最高温度值,有效避免因局部温升过高导致的电机停机故障,同时降低铁心支架热变形,保证电机正常运行。
实施例八
通风槽钢12可分为多个分组。如图16所示,在实施例一或实施例
二的基础上,将通风槽钢12分为多个分组,图16中每个虚线框中的通风槽钢为一个分组,每个分组中包括至少一个通风槽钢12,每个分组中的通风槽钢12采用相同的形状和布局设置,多个分组中的通风槽钢12采用如下形状和布局中的一种或多种的组合:图5所示的整体一字型、图7所示的分段直线排布、图8所示的分段交错排布、图9所示的分段品字排布、图10所示的分段倒品字排布、图11所示的整体S型。优选地,还可以结合图12~图13所示的实施例六中多个通风沟13之间相连通的方案和/或结合图14~图15所示的实施例七中为多个铁心段11设置倒角结构112的方案。
实施例九
通风槽钢12可采用如下形状和布局中的一种或多种的组合:图5所示的整体一字型、图7所示的分段直线排布、图8所示的分段交错排布、图9所示的分段品字排布、图10所示的分段倒品字排布、图11所示的整体S型。优选地,还可以结合图12~图13所示的实施例六中多个通风沟13之间相连通的方案和/或结合图14~图15所示的实施例七中为多个铁心段11设置倒角结构112的方案。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (11)
- 一种电机径向通风冷却结构,包括至少三个铁心段(11),相邻的所述铁心段(11)之间设置有通风槽钢(12),相邻的所述铁心段(11)与所述通风槽钢(12)之间形成通风沟(13),其特征在于,多个所述通风沟(13)的阻抗沿电机两端到电机中间方向逐渐增大。
- 根据权利要求1所述的电机径向通风冷却结构,其特征在于,多个所述通风沟(13)所在的通风路径的阻抗相等,所述通风路径的阻抗等于所述通风路径中的所述通风沟(13)的阻抗和所述通风路径中的气隙的阻抗之和。
- 根据权利要求1或2所述的电机径向通风冷却结构,其特征在于,所述通风槽钢(12)包括多个分组,每个分组中包括至少一个通风槽钢(12),每个分组采用如下结构中的一个:整体一字型、分段直线排布、分段交错排布、分段品字排布、分段倒品字排布和整体S型;在通风槽钢(12)的数量为多个的同一分组中,按照如下处理方式设置所述通风槽钢(12)的结构参数,所述处理方式包括如下方式中的一个或多个的组合:在电机轴向方向上的高度沿电机两端到电机中间方向逐渐减小;在电机圆周方向上的宽度沿电机两端到电机中间方向逐渐增大;包含通风槽钢段(121)的数量沿电机两端到电机中间方向逐渐增大;在电机径向方向上相邻的所述通风槽钢段(121)之间的间距沿电机两端到电机中间方向逐渐减小;在电机圆周方向上的最大宽度沿电机两端到电机中间方向逐渐增大;包含拐弯的数量沿电机两端到电机中间方向逐渐增大;拐弯的弯曲角度沿电机两端到电机中间方向逐渐减小。
- 根据权利要求1或2所述的电机径向通风冷却结构,其特征在于,每个所述通风槽钢(12)采用如下结构中的一个:整体一字型、分段直线排布、分段交错排布、分段品字排布、分段倒品字排布和整体S型。
- 根据权利要求1或2所述的电机径向通风冷却结构,其特征在于,所述通风槽钢(12)为整体一字型的条形通风槽钢,且多个所述通风槽钢(12)在电机轴向方向上的高度沿电机两端到电机中间方向逐渐减小和/或在电机圆周方向上的宽度沿电机两端到电机中间方向逐渐增大。
- 根据权利要求1或2所述的电机径向通风冷却结构,其特征在于,所述通风槽钢(12)包括分离的多个结构相同的通风槽钢段(121),所述通风槽钢段(121)为整体一字型的条形通风槽钢段,同一所述通风槽钢(12)中在电机径向方向上相邻的所述通风槽钢段(121)之间的间距相同,且多个所述通风槽钢(12)中通风槽钢段(121)的数量沿电机两端到电机中间方向逐渐增大和/或多个所述通风槽钢(12)中在电机径向方向上相邻的所述通风槽钢段(121)之间的间距沿电机两端到电机中间方向逐渐减小。
- 根据权利要求6所述的电机径向通风冷却结构,其特征在于,所述通风槽钢(12)的布局为分段直线排布、分段交错排布、分段品字排布或分段倒品字排布。
- 根据权利要求1或2所述的电机径向通风冷却结构,其特征在于,所述通风槽钢(12)为整体S型的条形通风槽钢,同一所述通风槽钢(12)中多个拐弯处的弯曲角度相同,且多个所述通风槽钢(12)满足以下条件中的一个或多个的组合:在电机圆周方向上的最大宽度沿电机两端到电机中间方向逐渐增大;拐弯的数量沿电机两端到电机中间方向逐渐增大;拐弯的弯曲角度沿电机两端到电机中间方向逐渐减小。
- 根据权利要求1或2所述的电机径向通风冷却结构,其特征在于,所述铁心段(11)中设置有沿电机轴向方向的通风孔(111),所述通风孔(111)连通所述铁心段(11)两侧的两个所述通风沟(13)。
- 根据权利要求9所述的电机径向通风冷却结构,其特征在于,所述通风孔(111)设置于所述铁心段(11)中靠近所述通风沟(13)的进风口的部分。
- 根据权利要求1或2所述的电机径向通风冷却结构,其特征在于,所述铁心段(11)靠近所述通风沟(13)的进风口的部分设置为倒角结构(112),多个所述倒角结构(112)的开口宽度沿电机两端到电机中间方向逐渐减小。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15895444.6A EP3261229B1 (en) | 2015-06-17 | 2015-11-17 | Radial ventilation cooling structure for motor |
AU2015398808A AU2015398808B2 (en) | 2015-06-17 | 2015-11-17 | Radial ventilation cooling structure for motor |
ES15895444T ES2783573T3 (es) | 2015-06-17 | 2015-11-17 | Estructura de enfriamiento por ventilación radial para motor |
US15/549,316 US10756597B2 (en) | 2015-06-17 | 2015-11-17 | Radial ventilation cooling structure for motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510337278.2 | 2015-06-17 | ||
CN201510337278.2A CN104953766B (zh) | 2015-06-17 | 2015-06-17 | 电机径向通风冷却结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016201877A1 true WO2016201877A1 (zh) | 2016-12-22 |
Family
ID=54168206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/094824 WO2016201877A1 (zh) | 2015-06-17 | 2015-11-17 | 电机径向通风冷却结构 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10756597B2 (zh) |
EP (1) | EP3261229B1 (zh) |
KR (1) | KR101749815B1 (zh) |
CN (1) | CN104953766B (zh) |
AU (1) | AU2015398808B2 (zh) |
ES (1) | ES2783573T3 (zh) |
WO (1) | WO2016201877A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110690792A (zh) * | 2019-09-03 | 2020-01-14 | 哈尔滨理工大学 | 一种具有鱼骨状气腔的通风槽钢 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104953766B (zh) * | 2015-06-17 | 2018-11-13 | 北京金风科创风电设备有限公司 | 电机径向通风冷却结构 |
CN106253527A (zh) * | 2016-08-29 | 2016-12-21 | 哈尔滨理工大学 | 具有工字形截面槽钢的电机转子通风结构 |
CN106300708B (zh) * | 2016-08-29 | 2019-02-22 | 北京航空航天大学 | 一种安装三根槽钢的电机转子通风结构 |
CN106329760A (zh) * | 2016-08-29 | 2017-01-11 | 哈尔滨理工大学 | 采用多结构多分布的定子通风槽钢结构 |
CN106230155B (zh) * | 2016-08-29 | 2019-05-17 | 哈尔滨理工大学 | 多结构槽钢匹配的电机通风结构 |
CN106300744A (zh) * | 2016-08-29 | 2017-01-04 | 哈尔滨理工大学 | 同时带有多种类型槽钢的转子通风结构 |
CN106253512A (zh) * | 2016-08-29 | 2016-12-21 | 哈尔滨理工大学 | 利于散热的大型电机定子通风槽钢结构 |
CN106357022A (zh) * | 2016-08-29 | 2017-01-25 | 哈尔滨理工大学 | 具有工字形截面流线型槽钢的电机定子通风结构 |
CN106374659A (zh) * | 2016-08-29 | 2017-02-01 | 哈尔滨理工大学 | 电机转子槽钢不同组合下的转子散热结构 |
CN106329781A (zh) * | 2016-08-29 | 2017-01-11 | 哈尔滨理工大学 | 带有多结构组合式槽钢的电机转子通风结构 |
CN107070019A (zh) * | 2016-08-29 | 2017-08-18 | 哈尔滨理工大学 | 具有矩形截面槽钢的电机定子通风结构 |
CN106329758B (zh) * | 2016-08-29 | 2019-03-01 | 北京航空航天大学 | 一种电机定子通风槽钢结构 |
CN106230149B (zh) * | 2016-08-29 | 2019-05-17 | 哈尔滨理工大学 | 具有工字形截面和矩形截面组合槽钢的定子通风结构 |
CN106329759A (zh) * | 2016-08-29 | 2017-01-11 | 哈尔滨理工大学 | 兼具导流和通风功能的定子通风槽钢结构 |
CN106300745A (zh) * | 2016-08-29 | 2017-01-04 | 哈尔滨理工大学 | 具有工字形截面直线型和流线型槽钢的转子通风结构 |
CN106300746A (zh) * | 2016-08-29 | 2017-01-04 | 哈尔滨理工大学 | 改变槽钢安装方式的电机转子散热结构 |
CN106357032A (zh) * | 2016-08-29 | 2017-01-25 | 哈尔滨理工大学 | 电机通风用转子槽钢的设计及安装结构 |
CN107070018B (zh) * | 2016-08-29 | 2019-05-17 | 哈尔滨理工大学 | 具有矩形截面流线型槽钢的电机定子通风结构 |
CN106357021A (zh) * | 2016-08-29 | 2017-01-25 | 哈尔滨理工大学 | 一种大型电机径向通风槽钢改进结构 |
CN106329782A (zh) * | 2016-08-29 | 2017-01-11 | 哈尔滨理工大学 | 改善槽钢形状的转子通风结构 |
CN107070020A (zh) * | 2016-08-29 | 2017-08-18 | 哈尔滨理工大学 | 多槽钢多分布的定子通风结构 |
CN106329761A (zh) * | 2016-08-30 | 2017-01-11 | 江苏微特利电机股份有限公司 | 一种电机双槽钢定子通风结构 |
CN106787294B (zh) * | 2016-12-21 | 2018-11-20 | 北京金风科创风电设备有限公司 | 用于电机的定子以及电机 |
EP3553920A1 (en) * | 2018-04-10 | 2019-10-16 | Siemens Gamesa Renewable Energy A/S | Cooling device for a stator of an electrical generator |
CN110635625B (zh) * | 2018-08-31 | 2020-11-13 | 北京金风科创风电设备有限公司 | 风力发电机组、电磁装置及其铁心的换热装置 |
EP3869670A1 (en) * | 2020-02-21 | 2021-08-25 | Siemens Gamesa Renewable Energy A/S | Generator for an electrical machine having improved cooling system, and wind turbine |
CN112953052B (zh) * | 2021-04-26 | 2022-07-19 | 哈动国家水力发电设备工程技术研究中心有限公司 | 一种永磁直驱风力发电机定子铁心段叠片高度的确定方法 |
CN113922534B (zh) * | 2021-09-11 | 2023-02-10 | 西安中车永电捷力风能有限公司 | 一种焊接式笼型转子结构及其组装方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1289167A (zh) * | 1999-09-17 | 2001-03-28 | 株式会社日立制作所 | 旋转式电力发电机 |
JP2001095205A (ja) * | 1999-09-20 | 2001-04-06 | Hitachi Ltd | 電動機 |
CN1784818B (zh) * | 2003-04-16 | 2010-06-23 | 西门子公司 | 带有被冷却的定子叠片铁心和转子叠片铁心及绕组的电机 |
CN103701238A (zh) * | 2013-12-12 | 2014-04-02 | 大连天元电机股份有限公司 | 5mw双馈空-水冷风力发电机的自循环散热装置 |
CN204669165U (zh) * | 2015-06-17 | 2015-09-23 | 北京金风科创风电设备有限公司 | 电机径向通风冷却结构 |
CN104953766A (zh) * | 2015-06-17 | 2015-09-30 | 北京金风科创风电设备有限公司 | 电机径向通风冷却结构 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5513617B2 (zh) | 1974-06-13 | 1980-04-10 | ||
JPS5763450U (zh) | 1980-10-03 | 1982-04-15 | ||
JPS5866543A (ja) | 1981-10-12 | 1983-04-20 | Fuji Electric Co Ltd | エアダクト付かご形回転子 |
JPS60210138A (ja) | 1984-04-04 | 1985-10-22 | Hitachi Ltd | 回転電機の通風装置 |
JPH01136538A (ja) | 1987-11-19 | 1989-05-29 | Fuji Electric Co Ltd | 回転電機の回転子 |
KR100297603B1 (ko) | 1998-08-13 | 2001-08-07 | 윤종용 | 과소거방지용플래시형불휘발성반도체메모리장치 |
US6204580B1 (en) * | 2000-02-09 | 2001-03-20 | General Electric Co. | Direct gas cooled rotor endwinding ventilation schemes for rotating machines with concentric coil rotors |
DE10059387A1 (de) | 2000-11-30 | 2002-06-06 | Alstom Switzerland Ltd | Rotor für eine elektrische rotierende Maschine |
US6777836B2 (en) * | 2000-12-20 | 2004-08-17 | General Electric Company | Heat transfer enhancement at generator stator core space blocks |
JP4542864B2 (ja) | 2004-10-05 | 2010-09-15 | 株式会社東芝 | 回転電機及び回転電機の電機子巻線 |
JP4682893B2 (ja) * | 2006-03-27 | 2011-05-11 | 株式会社日立製作所 | 回転電機の回転子 |
JP4482001B2 (ja) | 2007-01-15 | 2010-06-16 | 株式会社日立製作所 | 強制冷却型回転電機 |
JP5631742B2 (ja) * | 2008-11-27 | 2014-11-26 | 株式会社東芝 | 回転電機とその固定子 |
WO2010097837A1 (ja) | 2009-02-27 | 2010-09-02 | 株式会社日立製作所 | 永久磁石式発電機 |
US8049379B2 (en) * | 2009-04-23 | 2011-11-01 | General Electric Company | Dynamoelectric machine rotors having enhanced heat transfer and method therefor |
JP5260591B2 (ja) * | 2010-03-30 | 2013-08-14 | 株式会社日立製作所 | 永久磁石式回転電機及び風力発電システム |
DK2375545T3 (da) * | 2010-04-06 | 2013-05-27 | Ge Energy Power Conversion Technology Ltd | Elektriske maskiner |
CN102290922B (zh) * | 2011-09-06 | 2013-07-10 | 永济新时速电机电器有限责任公司 | 一种双馈风力发电机 |
JP2014023265A (ja) | 2012-07-18 | 2014-02-03 | Fuji Electric Co Ltd | 永久磁石式回転電機の回転子 |
CN103746485B (zh) * | 2013-12-24 | 2016-08-31 | 上海电机系统节能工程技术研究中心有限公司 | 一种永磁同步电机的冷却结构 |
CN104410190B (zh) * | 2014-12-05 | 2017-11-21 | 东方电气集团东方电机有限公司 | 一种发电机转子通风槽结构 |
CN204290622U (zh) * | 2014-12-26 | 2015-04-22 | 四川宏华电气有限责任公司 | 一种电机通风散热结构 |
CN204243930U (zh) * | 2014-12-26 | 2015-04-01 | 北京金风科创风电设备有限公司 | 通风槽钢、通风结构及电机 |
-
2015
- 2015-06-17 CN CN201510337278.2A patent/CN104953766B/zh active Active
- 2015-09-30 KR KR1020150137470A patent/KR101749815B1/ko active IP Right Grant
- 2015-11-17 WO PCT/CN2015/094824 patent/WO2016201877A1/zh active Application Filing
- 2015-11-17 EP EP15895444.6A patent/EP3261229B1/en active Active
- 2015-11-17 ES ES15895444T patent/ES2783573T3/es active Active
- 2015-11-17 US US15/549,316 patent/US10756597B2/en active Active
- 2015-11-17 AU AU2015398808A patent/AU2015398808B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1289167A (zh) * | 1999-09-17 | 2001-03-28 | 株式会社日立制作所 | 旋转式电力发电机 |
JP2001095205A (ja) * | 1999-09-20 | 2001-04-06 | Hitachi Ltd | 電動機 |
CN1784818B (zh) * | 2003-04-16 | 2010-06-23 | 西门子公司 | 带有被冷却的定子叠片铁心和转子叠片铁心及绕组的电机 |
CN103701238A (zh) * | 2013-12-12 | 2014-04-02 | 大连天元电机股份有限公司 | 5mw双馈空-水冷风力发电机的自循环散热装置 |
CN204669165U (zh) * | 2015-06-17 | 2015-09-23 | 北京金风科创风电设备有限公司 | 电机径向通风冷却结构 |
CN104953766A (zh) * | 2015-06-17 | 2015-09-30 | 北京金风科创风电设备有限公司 | 电机径向通风冷却结构 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3261229A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110690792A (zh) * | 2019-09-03 | 2020-01-14 | 哈尔滨理工大学 | 一种具有鱼骨状气腔的通风槽钢 |
Also Published As
Publication number | Publication date |
---|---|
CN104953766A (zh) | 2015-09-30 |
EP3261229B1 (en) | 2020-03-18 |
US10756597B2 (en) | 2020-08-25 |
EP3261229A1 (en) | 2017-12-27 |
EP3261229A4 (en) | 2018-09-12 |
KR20160149127A (ko) | 2016-12-27 |
CN104953766B (zh) | 2018-11-13 |
KR101749815B1 (ko) | 2017-06-21 |
ES2783573T3 (es) | 2020-09-17 |
AU2015398808B2 (en) | 2018-08-02 |
AU2015398808A1 (en) | 2017-08-24 |
US20180034347A1 (en) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016201877A1 (zh) | 电机径向通风冷却结构 | |
CN204669165U (zh) | 电机径向通风冷却结构 | |
US20150041111A1 (en) | Heat Exchange Plate, Heat Exchanger, and Communication Base Station Cabinet | |
CN103746480A (zh) | 电机定子径向通风装置 | |
JP2014155314A (ja) | 回転電機 | |
CA3116099A1 (en) | Transformer cooling system and transformer installation | |
JP2011071190A (ja) | 多重変圧器装置 | |
JP6220178B2 (ja) | 回転電機 | |
JP2008108802A (ja) | ガス絶縁変圧器 | |
TW202010222A (zh) | 部份遮擋式轉子組件 | |
JP2009077626A (ja) | 冷却流分岐部材を有する発電機及び冷却流を制御する方法 | |
KR20160079611A (ko) | 통풍 홈형강, 그 제조 방법, 통풍 구조 및 모터 | |
CN113890234B (zh) | 一种具有转子孔间循环对流的封闭式电机冷却装置 | |
JP7313729B2 (ja) | 発電機ロータ及び風力発電機 | |
CN203747524U (zh) | 电机定子径向通风装置 | |
CN107834774A (zh) | 一种定子带通风槽口的电机 | |
CN114498990A (zh) | 一种电机转子的内冷却结构 | |
WO2016145984A1 (zh) | 电机 | |
WO2015015545A1 (ja) | 熱交換器及び空気調和機 | |
US20240313609A1 (en) | Induction motor cooling system | |
CN107070019A (zh) | 具有矩形截面槽钢的电机定子通风结构 | |
CN106787294B (zh) | 用于电机的定子以及电机 | |
KR101759630B1 (ko) | 전폐형 공랭식 전동기 | |
JPH11173785A (ja) | 熱交換器 | |
KR101720159B1 (ko) | 통풍 홈형강, 그 제조 방법, 통풍 구조 및 모터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15895444 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015895444 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015398808 Country of ref document: AU Date of ref document: 20151117 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |