WO2016201857A1 - 水工建筑物渗流性态分布式光纤感知集成系统与方法 - Google Patents

水工建筑物渗流性态分布式光纤感知集成系统与方法 Download PDF

Info

Publication number
WO2016201857A1
WO2016201857A1 PCT/CN2015/093368 CN2015093368W WO2016201857A1 WO 2016201857 A1 WO2016201857 A1 WO 2016201857A1 CN 2015093368 W CN2015093368 W CN 2015093368W WO 2016201857 A1 WO2016201857 A1 WO 2016201857A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
seepage
barrel
conductive
guiding
Prior art date
Application number
PCT/CN2015/093368
Other languages
English (en)
French (fr)
Inventor
苏怀智
杨孟
顾冲时
Original Assignee
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河海大学 filed Critical 河海大学
Priority to AU2015398793A priority Critical patent/AU2015398793B2/en
Priority to JP2017565685A priority patent/JP6517373B2/ja
Priority to US15/736,027 priority patent/US10571359B2/en
Priority to SG11201710520VA priority patent/SG11201710520VA/en
Priority to GB1720707.7A priority patent/GB2553254B/en
Publication of WO2016201857A1 publication Critical patent/WO2016201857A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/042Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid
    • G01M3/045Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means
    • G01M3/047Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means with photo-electrical detection means, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements

Definitions

  • the invention relates to a distributed optical fiber sensing integrated system and method for seepage flow in a hydraulic structure, and belongs to the field of safety monitoring of water conservancy and hydropower engineering.
  • seepage is one of the key factors affecting its safe service. Strengthening the effective perception of seepage behavior is of great significance for timely detecting safety hazards and ensuring the reliable operation of hydraulic structures.
  • distributed optical fiber sensing technology it has become an important research direction in engineering safety fields such as water conservancy and civil engineering by obtaining structural state information and sensing structural health.
  • distributed fiber sensing in the seepage behavior of hydraulic structures due to the particularity of the working environment and structural characteristics, there are still many technical problems that need to be solved and improved.
  • the sensing fiber is longer than 100 meters
  • the sensing fiber is longer than 100 meters
  • the method has the disadvantages of low efficiency, short length, light weight, difficult temperature rise and temperature, and difficult temperature control.
  • the long-distance and large-scale high-efficiency problem has become one of the important obstacles to the large-scale application and promotion of distributed sensing technology in seepage behavior perception of hydraulic structures.
  • the present invention provides a distributed optical fiber sensing integrated system and a sensing method for a seepage state of a hydraulic structure, which can complete high-efficiency determination of the long-distance optical fiber and reliable control of the bending curvature. And measurement, high-precision, high spatial resolution, high sensing speed, long-distance sensing hydraulic structure seepage behavior.
  • a seepage flow distributed optical fiber sensing integrated system for a hydraulic structure of the present invention comprises a seepage state identification device, a special optical fiber for measuring infiltration, an optical fiber rate determining device and an optical fiber laying device, and the measuring device After the special optical fiber has been qualified by the optical fiber rate determining device, it is installed in the area to be monitored through the optical fiber laying device, and is connected with the seepage state identification device;
  • the optical fiber routing device includes a bending platform and a guiding channel on the bending platform.
  • the guiding channel has a guiding groove in a middle portion thereof, and a special optical fiber for tomography is installed in the guiding groove, and the guiding channel includes the first a straight line segment, a second straight line segment and a curved section connecting the first straight line segment and the second straight line segment, the first straight line segment being fixed on the bending table by a plurality of sets of first locking devices, the inner side of the curved section and the variable diameter table Connection, one end of the variable diameter platform is connected with the variable diameter connecting column, the variable diameter connecting column passes through the circular guiding table, and the circular guiding column is provided with circular connecting columns which are screwed with the circular guide table on both sides, the circular connecting column and the round connecting column handle
  • the other end of the reducer is connected with a loose plug having a circular arc at the top end, and the loose plug is provided with a guide hole through which the guide track passes, and a push plate is
  • the push rod is screwed to the loose plug;
  • the second straight section is mounted with a second locking device,
  • the bottom of the second locking device has a boss extending, and the boss has a parallelogram with a 45° angle, and is bent a rail groove having an angle of 45° with the first straight line segment and the second straight line segment is provided on the stage, and the boss is along the guide rail slot
  • the boss is along the guide rail slot
  • the first radius ruler end has a first radius scale
  • the second radius ruler end has a second radius scale
  • the first locking device comprises a first connecting platform, a first locking rod and a first handle threadedly connected to the first guiding table
  • the first connecting platform is a rectangular block, in the first connection A first groove passing through the guide channel is disposed under the guide, and a first pressure plate is disposed in the first groove above the guide channel, and the first lock bar is connected to the first pressure plate a first handle is mounted above the first locking bar
  • the second locking device includes a second connecting platform, a second locking bar and a second handle threadedly connected to the second guiding table, in the second A second recess through which the guide passage passes is disposed under the guide, a second pressure plate is disposed in the second recess above the guide rail, and a lower portion of the second lock lever is connected to the second pressure plate
  • the second A second handle is mounted on the upper side of the locking rod, a boss is extending below the second connecting stage, and a lug extends on both sides of the second connecting stage.
  • the seepage flow distributed optical fiber sensing integrated system of the hydraulic structure comprises a heat insulating barrel and a plurality of rate determining modules located in the heat insulating barrel, and the plurality of rate determining modules are arranged circumferentially around the axis of the heat insulating barrel, and the rate determining module comprises
  • the shaft, the first electronic thermometer and the second electronic thermometer are wound with a special optical fiber for tormetric measurement on the through-axis, and the special optical fiber for measuring the permeability is connected with the optical fiber temperature demodulator outside the insulated barrel, first The electronic thermometer and the second electronic thermometer are respectively connected with the first temperature control table and the second temperature control meter outside the insulated barrel, and the temperature source hot wire for heating the water in the insulated barrel is provided in the barrel wall of the heat insulation barrel, and the temperature source hot wire is provided.
  • the first temperature control meter is connected to the first power-off spring and the second power-off spring through the first temperature-control meter wire, and the first power-off spring is connected to the first conductive magnet,
  • the first conductive magnet is simultaneously connected in series with the electromagnetic circuit switch and the second conductive magnet, the first conductive magnet is arranged opposite to the first conductive iron sensitive block, and the first conductive iron sensitive block is connected to the pump through the pump cable, the pump lie in In the water tank, the pump conveys the water in the circulating water tank to the insulated barrel through the pressure inlet pipe;
  • the second temperature control table is connected to the third power-off spring through the second temperature control meter wire, and the third power-off spring and the first
  • the three conductive magnets are connected, the third conductive magnet and the third conductive iron sensitive block are arranged opposite to each other, the third conductive magnet is connected to the power source through the resistance thermal switch, and the power source is connected with the electromagnetic circuit switch;
  • the power temperature control meter passes the power temperature control The wire is simultaneously
  • the heat insulation barrel comprises a barrel body and a barrel cover
  • the barrel body comprises an outer hard protection bucket, an insulation middle layer, a hot wire placement layer and an inner hard sheath from the outside to the inside
  • the barrel cover is an insulated hard shield
  • the barrel is The top of the body is provided with a guard plate groove, and a shield cross rail movable along the guard plate groove is installed under the insulating hard shield; the lower end of the through shaft is threadedly mounted on the inner hard cover layer, and the top end of the through shaft passes through the top plate thread and The top plate is connected, and the end plate on the top plate is connected to the cover net.
  • the cover net is arranged along the top plate and the through-axis, and the warm-source hot wire is arranged along the hot wire placement layer from the bottom to the high overall circumferential direction, and the heat-insulating middle layer and the inner hard cover layer are close to the warm source hot wire.
  • Metal protection is provided on one side.
  • the seepage flow distributed optical fiber sensing integrated system of the hydraulic structure comprises an optical path coupler and a synchronous controller, wherein the special optical fiber for the infiltration is vertically laid in the seepage state monitoring area of the hydraulic structure, and the measurement is performed.
  • the special optical fiber is connected to the optical path coupler, and a monitoring constant temperature room is arranged between the special optical fiber for measuring the infiltration and the optical path coupler.
  • Synchronous controller in turn with mode-locked laser, first wavelength division multiplexer, polarization beam splitter, isolator, nonlinear amplifier, grating pair, liquid crystal spatial light modulator, diffraction grating, mirror, beam splitter, non A linear crystal, a spectrometer, and a Michelson interferometer are connected.
  • the output of the Michelson interferometer is connected to the optical coupler, and the output of the optical coupler is respectively connected to the detector and the second optical splitter, and the detector is connected to the digital signal processor.
  • the second optical splitter is connected to the digital signal processor through an amplifying circuit, and the output end of the digital signal processor is respectively connected with the synchronous controller and the collector, and the output end of the collector is respectively connected with the synchronous controller and the computer, and the computer and the remote cloud are configured.
  • the modules of the database are connected, and the module configured with the remote cloud database collects and delivers the information to the monitoring information management and analysis evaluation module.
  • the amplifying circuit comprises a first amplifying circuit, a second amplifying circuit and a third amplifying circuit connected in parallel, the first amplifying circuit comprising a first photodiode, a third amplifier and a Stokes receiver connected in sequence
  • the second amplifying circuit comprises a second photodiode, a fourth amplifier and an anti-Stokes receiver connected in sequence
  • the third amplifying circuit comprises a third photodiode, a fifth amplifier and a Rayleigh optical receiver sequentially connected, the first photoelectric A diode, a second photodiode, and a third photodiode are coupled to the output of the second optical splitter, respectively.
  • the output of the Michelson interferometer is connected to the photoelectric switch
  • the photoelectric switch is arranged with L and R double-side switches
  • the L-side switch is connected with the main femtosecond pulse input end
  • the R-side switch is connected with the sub-femtosecond pulse
  • the main The main femtosecond pulse light of the femtosecond pulse enters the optical signal input end of the first amplifier
  • the sub-femtosecond pulse light of the sub femtosecond pulse passes through the optical signal input end of the second amplifier
  • the input ports of the first optical splitter are connected, and the output ports of the first optical splitter are respectively connected to the signal input port of the second optical filter and the signal input port of the third optical filter
  • the optical signal output port of the second amplifier is The optical signal input port of the first optical filter is connected, and the output ends of the first optical filter, the second optical filter and the third optical filter are connected to the input end of the second wavelength division multiple
  • the special optical fiber for measuring the infiltration is arranged in the form of a spiral strike to the optical fiber determining device, and the temperature coefficient of the special optical fiber to be used for measuring the infiltration is calibrated by the optical fiber determining device;
  • the number of the optical fiber laying devices is determined by design requirements, and then the special optical fiber for calibration and measuring is fixed to the area to be tested of the hydraulic building;
  • the special optical fiber for the infiltration measurement is driven by the seepage behavior identification device to collect and analyze information, and to identify the seepage behavior of the hydraulic structure.
  • the third conductive magnet, the second conductive magnet, and the first conductive magnet After the electromagnetic circuit switch is turned on, the third conductive magnet, the second conductive magnet, and the first conductive magnet The magnetism is instantaneously energized, and then the third conductive iron sensitive block, the second conductive iron sensitive block, and the first conductive iron sensitive block are respectively attracted to the corresponding conductive magnets, and the power temperature control table is connected into a path.
  • the resistance thermal switch in the connected circuit is disconnected, at this time, the third conductive magnet, the second The conductive magnet and the first conductive magnet lose their magnetic properties, and then the third conductive magnet, the second conductive magnet, and the first conductive material that lose magnetic properties are replaced by the compressed third power-off spring, the second power-off spring, and the first power-off spring.
  • the magnets are respectively bounced off from the third conductive iron sensitive block, the second conductive iron sensitive block, and the first conductive iron sensitive block, and are kept in an off state, and the heating is stopped to achieve temperature rise.
  • the power temperature control table When the circuit where the electromagnetic circuit switch is connected is connected, the power temperature control table is turned off, the pump is turned on, and the cold water is injected into the device through the pressure inlet pipe according to the set temperature that needs to be lowered, when the predetermined temperature drop value is reached.
  • the resistance thermal switch is disconnected, the third conductive magnet, the second conductive magnet, and the first conductive magnet lose magnetic properties, and the third power-off spring, the second power-off spring, and the first power-off spring lose the magnetic third conductive magnet
  • the second conductive magnet and the first conductive magnet are respectively bounced off from the third conductive iron sensitive block, the second conductive iron sensitive block, and the first conductive iron sensitive block, and are kept in an off state, and the water is stopped to achieve cooling.
  • the invention has the beneficial effects that the seepage flow distributed optical fiber sensing integrated system of the hydraulic structure of the invention integrates special optical fiber, optical fiber rate determining device, optical fiber laying device and seepage state identification device for measuring and measuring, and can realize long distance and large weight.
  • the temperature adjustment of the self-controlled heat source in the fiber rate setting and monitoring can efficiently and accurately realize the setting and layout of the bending curvature of the fiber, and can automatically raise and lower the temperature, and has the characteristics of high precision, high spatial resolution, high running speed, etc.
  • the accuracy and layout efficiency of the rate are improved, the visibility of the seepage is significantly improved, and the monitoring cost is reduced and the engineering practicality is outstanding.
  • Figure 1 is a schematic diagram of the principle of the present invention
  • FIG. 2 is a schematic structural view of the optical fiber laying device of FIG. 1;
  • Figure 3 is a schematic structural view of the first locking device of Figure 2;
  • Figure 4 is a front view showing the structure of the second locking device of Figure 2;
  • Figure 5 is a rear perspective view of the second locking device of Figure 4.
  • Figure 6 is a schematic structural view of the loose plug of Figure 1;
  • Figure 7 is a schematic structural view of the optical fiber rate determining device of Figure 1;
  • Figure 8 is a sectional view taken along line 1-1 of Figure 7;
  • Figure 9 is a schematic view of the seepage state identification device of Figure 1;
  • FIG. 10 is a schematic structural view of a special single-mode optical fiber for self-controlled heat source infiltration in FIG. 9;
  • Figure 11 is a detailed structural view of the outer sheath of Figure 10.
  • the seepage flow distributed optical fiber sensing integrated system of the hydraulic structure of the present invention comprises a special optical fiber 143 for measuring infiltration, an optical fiber rate determining device, an optical fiber laying device, and a seepage state identification device, and utilizes After the fiber rate determining device performs the on-site calibration of the special optical fiber 143 for measuring the infiltration, the laying and testing of the special optical fiber 143 for measuring the infiltration is carried out by means of the optical fiber laying device. After the test is successful, the seepage behavior identification device is connected to perform information collection and processing. analysis.
  • the optical fiber routing device includes a bending platform 1 and a guiding channel 3 on the bending platform 1.
  • the guiding channel 3 is made of flexible plastic, and a guiding groove is arranged in a middle portion of the guiding channel 3, and the guiding slot is installed in the guiding slot.
  • the optical fiber to be tested is a special optical fiber 143 for measuring the infiltration
  • the guiding channel 3 includes a first straight line segment, a second straight line segment, and a curved segment connecting the first straight line segment and the second straight line segment, the first
  • the straight line segment is fixed on the bending table 1 by a plurality of sets of first locking devices 4, and the inner side of the curved section is connected with the variable diameter table 6, one end of the variable diameter table 6 is connected with the variable diameter connecting column 12, and the variable diameter connecting column 12 passes through the circle.
  • the guide 19 and the two sides of the circular guide 19 are provided with a circular column 14 which is screwed to the circular guide 19, and the circular column 14 is connected with the circular column handle 13.
  • the other end of the reduction table 6 is provided with an arc.
  • the loose plug is connected, the loose plug is provided with a guiding hole 17 through which the guiding channel 3 passes, the pushing hole 17 is provided with a push plate 16, the push plate 16 is connected with the push rod 15, the push rod 15 and the loose plug a second locking device 50 is mounted on the second straight section, and a boss 504 is extended on the bottom of the second locking device 50.
  • the boss 504 has a parallelogram with a 45° angle.
  • a bending groove is formed on the bending table 1 at an angle of 45° with the first straight line segment and the second straight line segment, the boss moves along the rail groove, and the bending table 1 is provided with a vertical parallel to the second straight line segment.
  • the zero point of the vertical scale is the intersection of the special optical fiber to be permeable and the first right locking device 4.
  • the starting point of the guide groove is at the zero point of the vertical scale, and the intersection of the curved section and the first straight section is set.
  • the end of the first radius ruler 5 is sleeved with a first radius scale 8, and the end of the second radius rule 9 is sleeved with a second radius scale 7.
  • the first locking device 4 includes a first connecting platform 41, a first locking rod 42 and a first handle 43 screwed to the first connecting platform 41, and the first connecting platform 41 is a rectangular parallelepiped block. A first groove passing through the guide channel 3 is disposed below the first connecting platform 41.
  • the first groove is provided with a first pressing plate 44 above the guiding channel 3, and the lower side of the first locking rod 42 is The first pressure plate 44 is connected, and the first locking rod 42 is mounted with a first handle 43;
  • the second locking device 50 includes a second connecting platform 501 and a second locking threadedly connected to the second connecting platform 501.
  • the rod 505 and the second handle 506 are provided with a second recess through which the guide channel 3 passes under the second connecting guide 506, and a second pressing plate 502 located above the guiding lane 3 is disposed in the second recess.
  • a second handle 506 is mounted above the second locking bar 505, and a lug 503 extends from both sides of the second connecting stand 504.
  • a projection 104 is extended below the second connecting platform 501.
  • the cross section of the boss 504 is a parallelogram with an angle of 45°, and the second connecting platform 501 and the boss 104 are at an angle of 45°, so as to ensure the first straight line segment.
  • the angle between the second straight line segment and the second straight line segment is eliminated, and the angle error is eliminated.
  • the curved table 1 is provided with a rail groove having an angle of 45° with the first straight line segment and the second straight line segment, and the boss 504 moves along the guide groove.
  • the bending table 1 is provided with a vertical scale 11 parallel to the second straight line segment, and the zero point of the vertical scale 11 is the intersection of the optical fiber 2 to be tested and the rightmost first locking device 4, and the starting point of the rail groove is located on the vertical scale
  • a first radius rule 5 tangential to the curved section is provided at the intersection of the curved section and the first straight line segment
  • a second radius tangent to the curved section is provided at the intersection of the curved section and the second straight section
  • the ruler 9 has a first radius scale 8 at the end of the first radius rule 5 and a second radius scale 7 at the end of the second radius rule 9.
  • the fiber rate determining device comprises a heat insulating barrel, a plurality of rate determining modules located in the heat insulating barrel, and the plurality of rate determining modules are circumferentially distributed around the axis of the heat insulating barrel, and the rate determining module comprises a through shaft 313 and a first electronic thermometer.
  • the through-axis 313 is wrapped with a special optical fiber 143 for measuring permeability, and the special optical fiber 143 for measuring the infiltration is connected to the optical fiber temperature demodulator outside the insulated barrel, the first electronic thermometer 341 and the second electronic thermometer 345
  • the first temperature control table 306 and the second temperature control table 308 are connected to the outside of the heat insulation barrel, and the temperature source hot wire 353 for heating the water in the heat insulation barrel is provided in the barrel wall of the heat insulation barrel, and the heat source heat wire 353 and the heat insulation barrel are provided.
  • the external power temperature control table 310 is connected, and the first temperature control table 306 is connected to the first power-off spring 317 and the second power-off spring 318 through the first temperature control table 306, and the first power-off spring 317 and the first conductive
  • the magnet 325 is connected, and the first conductive magnet 325 is simultaneously connected in series with the electromagnetic circuit switch 329 and the second conductive magnet 323.
  • the first conductive magnet 325 is disposed opposite to the first conductive ferrosensitive block 324, and the first conductive ferrosensitive block 324 is passed through the pump.
  • Machine 334 cable 323 and pump 334 The pump 334 is located in the circulating water tank 331, and the pump 334 transports the water in the circulating water tank 331 into the heat insulating barrel through the pressure inlet pipe 330; the second temperature control table 308 passes through the second temperature control table 308 wire and the third The power-off spring 319 is connected, the third power-off spring 319 is connected to the third conductive magnet 320, the third conductive magnet 320 is disposed opposite to the third conductive iron-sensitive block 321 , and the third conductive magnet 320 passes through the resistance thermal switch 327 and the power source.
  • the power source is connected to the electromagnetic circuit switch 329; the power temperature control table 310 is simultaneously connected to the third conductive iron sensitive block 321 and the second conductive iron sensitive block 322 through the power temperature control wire, and the second conductive iron sensitive block 322 and the first
  • the three conductive iron sensitive blocks 321 are connected in series, the second conductive magnet 323 and the third conductive magnet 320 are connected in series, and the second conductive magnet 323 is connected in series with the second power-off spring 318.
  • the heat insulating barrel comprises a barrel body and a barrel cover
  • the barrel body comprises an outer hard protection barrel 337, an adiabatic middle layer 349, a hot wire placement layer 350 and an inner hard cover layer 356 from the outside to the inside
  • the barrel cover is
  • the heat insulating hard shield 300 is provided with a guard groove 301 at the top of the barrel body, and a shield cross rail 304 movable along the guard plate groove 301 is installed under the heat insulating hard shield 300;
  • the lower end of the through shaft 313 is threadedly mounted to the inner hard cover 356.
  • the top end of the through shaft 313 is connected to the top plate 302 by threads.
  • the upper end surface of the top plate 302 is connected to the cover net 339, and the lower end of the through shaft 313 is threaded to the inner hard cover 356.
  • the top end of the through shaft 313 is connected to the top plate 302 by threads, and the upper end surface of the top plate 302 is connected to the cover net 339.
  • the cover net 339 is circumferentially arranged along the top plate 302 and the through shaft 313, and the warm source hot wire 353 is arranged along the hot wire placement layer 350 from the bottom to the high overall circumferential direction.
  • the heat insulating middle layer 349 and the inner hard cover layer 356 are close to the warm source.
  • the hot wire 353 is provided with a metal sheath protection on one side.
  • the first electronic thermometer 341 and the second electronic thermometer 345 are respectively connected to the first temperature control table 306 and the second temperature control table 308 by electric wires, and the electric wires are located inside the inner hard cover 356.
  • the special optical fiber 143 for measuring permeability, the warm source hot wire 353 and the pressure inlet pipe 330 pass through the barrel wall of the heat insulating barrel, respectively.
  • the seepage state identification device includes an optical path coupler 127 and a synchronization controller 102, and the special optical fiber 143 for inspecting is vertically laid in the seepage state monitoring area 130 of the hydraulic structure, and the seepage is used.
  • the special optical fiber 143 is connected to the optical path coupler 127, and a monitoring thermostatic chamber 129 is disposed between the special optical fiber 143 for measuring the infiltration and the optical path coupler 127.
  • the synchronous controller 102 is sequentially combined with the mode-locked laser 103 and the first wavelength division multiplexing.
  • the Michelson interferometer 115 is connected, the output of the Michelson interferometer 115 is connected to the optical path coupler 127, and the output of the optical path coupler 127 is connected to the detector 128 and the second optical splitter 126, respectively, and the detector 128 and the digital signal processor 140 is connected, the second optical splitter 126 is connected to the digital signal processor 140 through an amplifying circuit, and the output of the digital signal processor 140 is connected to the synchronous controller 102 and the collector 141, respectively, and the output of the collector 141 Are connected to the synchronization controller 142 and the computer 102, the computer 142 and the remote module disposed cloud database 100 is connected, is disposed remote cloud database module 100 and conveyed to the information collection
  • the amplifying circuit includes a first amplifying circuit, a second amplifying circuit, and a third amplifying circuit connected in parallel, the first amplifying circuit including a first photodiode 131, a third amplifier 134, and Stoke connected in sequence
  • the second amplifying circuit comprises a second photodiode 132, a fourth amplifier 135 and an anti-Stokes receiver 138 connected in sequence
  • the third amplifying circuit comprising a third photodiode 133 and a fifth amplifier connected in sequence 136 and Rayleigh light receiver 137
  • the first photodiode 131, the second photodiode 132 and the third photodiode 133 are respectively connected to the output of the second optical splitter 126.
  • the output of the Michelson interferometer 115 is connected to the photoelectric switch 116, the photoelectric switch 116 is arranged with L and R double-side switches, the L-side switch is connected to the input terminal of the main femtosecond pulse 117, and the R-side switch and the pair are connected.
  • the femtosecond pulse 118 is connected, and the main femtosecond pulse light of the main femtosecond pulse 117 enters the optical signal input end of the first amplifier 119.
  • the sub-femtosecond pulse light of the sub femtosecond pulse 117 passes through the optical signal input end of the second amplifier 120, and the optical signal output port of the first amplifier 119 is connected to the input port of the first optical splitter 121.
  • the first optical splitter 121 The output ports are respectively connected to the signal input port of the second optical filter 123 and the signal input port of the third optical filter 124, and the optical signal output port of the second amplifier 120 is connected to the optical signal input port of the first optical filter 122.
  • the outputs of the first optical filter 122, the second optical filter 123, and the third optical filter 124 are connected to the input end of the second wavelength division multiplexer 125, and the output of the second wavelength division multiplexer 125 is The input of the second optical splitter 126 is connected.
  • the special optical fiber 143 for measuring permeability is provided with a single-core optical fiber 211, an inner protective elastic layer 210, an insulating steel ring 209, an inner layer filling ring 212, an elastic hard ring 213, and an anti-seepage from the inside to the outside.
  • the insulating hard collar 214, the single-core optical fiber 211 is respectively connected with a plurality of outer sleeve sheaths 201, and the outer sleeve sheath 201 sequentially passes through the inner protective elastic layer 210, the heat insulating steel ring 209, the inner layer filling ring 212,
  • the elastic hard ring 213 is connected to the anti-seepage insulating hard ring 214, and the outer round protective tube 201 is filled with a drainage water storage cotton sleeve 208, the drainage water storage cotton sleeve 208 is connected with the second filter net 206, and the second filter net 206 is arranged.
  • the elastic hard ring 213 and the anti-seepage insulating hard collar 214 are irregular quadrangular frames, and the four sides of the quadrangular frame are recessed inward, and the four corners of the quadrangular frame are rounded.
  • the first screen mesh through hole 204 disposed on the first screen 205 has a larger aperture than the second screen mesh through hole 207 disposed on the second screen 206, and the difference in aperture is More than 2 times.
  • a method for utilizing a seepage flow state sensing integrated system of a seepage flow state of a hydraulic structure to perform a percolation state sensing method in a test area includes:
  • the single-core optical fiber 211 is pressed into the heat insulating steel ring 209, the inner protective elastic layer 210, the inner layer filling ring 212, the elastic hard ring 213 and the anti-seepage insulating hard ring 214, and the outer sleeve protective tube is used.
  • the first filter 205, the second filter 206, the second filter mesh through hole 207 and the first filter mesh through hole 204 are assembled into a special optical fiber for measuring permeability with drainage, flow control, heat conduction and heat control functions. 143;
  • the insulating hard shield 300 with the shield cross rail 304 is pushed away along the guard groove 301 to remove the cover net 339, and the top plate 302 is unscrewed from the top plate thread 303 of the through shaft 313.
  • the through shaft 313 is unscrewed from the inner hard sheath 356, and the special optical fiber 143 for measuring permeability is spirally wound along the through shaft 313, and then passed through the cover net 339, the outer hard guard 337, the heat insulating middle layer 349, and the hot wire laying layer. 350 and inner hard cover 356 are led out of the rating device;
  • the through shaft 313 is screwed into the inner hard sheath 356, and the top plate 302 is screwed through the top plate thread 303.
  • the cover net 339 is screwed into the inner hard cover 356 to form an inner closed environment for heating, and the insulated hard cover with the guard rails 304 is pushed in the middle along the guard groove 301. 300.
  • the entire calibration device is closed, and the special optical fiber 143 for measuring the infiltration is led to the optical fiber temperature demodulator, and the optical fiber temperature demodulator is turned on;
  • the amount of water added is determined according to the length of the special optical fiber 143 for measuring the osmosis on the through shaft 313, and the first temperature control table 306 and the second temperature control table 308 are opened, the first temperature control table 306 and the second control unit.
  • the temperature in the water body of the special optical fiber 143 for measuring the infiltration is displayed in real time on the temperature meter 308, and the first temperature control table 306 and the second temperature control table 308 are adjusted to the temperature value to be heated, the power is turned on, and the third conductive magnet is used. 320.
  • the second conductive magnet 323 and the first conductive magnet 325 respectively adsorb the third conductive iron sensitive block 321 , the second conductive iron sensitive block 322 , and the first conductive iron sensitive block 324 , and pass the power temperature control table 310 to the warm source hot wire.
  • the third conductive magnet 320, the second conductive magnet 323, and the first conductive magnet 325 are demagnetized by the resistance thermal switch 327, and then passed through the third power-off spring 319, the second The power-off spring 318 and the first power-off spring 317 respectively connect the third conductive iron-sensitive block 321 , the second conductive-iron-sensitive block 322 and the first conductive-iron-sensitive block 324 from the third conductive magnet 320 and the second conductive magnet 323
  • a conductive magnet 325 is bounced off to maintain a constant temperature, and the rate begins;
  • the power is turned on, the power temperature control table 310 is turned off, and the magnetic force generated by the third conductive magnet 320, the second conductive magnet 323, and the first conductive magnet 325 is used by the pump 334 cable 323.
  • the pump 334 is opened, and the cold water in the circulating water tank 331 exchanges heat with the heated water body through the pressure inlet pipe 330 to achieve temperature reduction.
  • the heat is passed through the resistor.
  • the sensitive switch 327 causes the third conductive magnet 320, the second conductive magnet 323, and the first conductive magnet 325 to lose magnetism, and the temperature drop is constant by the third power-off spring 319, the second power-off spring 318, and the first power-off spring 317. Rate at the temperature drop value;
  • the result value obtained by the fiber temperature demodulation device is compared with the result value obtained by the first temperature control table 306 and the second temperature control table 308 based on the fiber temperature sensing formula, and the final completion rate is determined.
  • the special optical fiber 143 for measuring the infiltration is passed through the guiding channel 3, and the first straight line segment of the guiding channel 3 is fixed on the bending table 1 by using two sets of first locking devices 4, and the rotation is performed.
  • the guiding channel 3, according to the bending curvature radius required for the special optical fiber 143 for measuring the infiltration roughly puts the first locking device 4 into the rail groove through the vertical scale, and arranges at the intersection of the curved portion and the first straight line segment.
  • a first radius rule 5 tangential to the curved section, and a second radius rule 9 tangential to the curved section is disposed at the intersection of the curved section and the second straight section, according to the intersection of the first radius ruler 5 and the second radius ruler 9, Reading out the reading of the first radius ruler;
  • the circular column 14 is rotated, the variable diameter connecting column 12 is loosened, the variable diameter connecting column 12 and the second locking device 50 are moved, so that the readings of the first radius ruler 5 and the second radius ruler 9 are used for the measurement of the permeability.
  • the special optical fiber 143 bends the radius of curvature value; rotates the circular connecting column 14, locks the variable diameter connecting column 12, rotates the push rod 15, and the push plate 16 is fully contacted with the guiding track 3 by the movement of the push rod 15, and the guiding channel 3 is fixed.
  • the mounting lug 503 fixes the second locking device 50 to the bending table 1 by screws, and rotates the second locking lever 505 to fix the special optical fiber 143 for measuring permeability.
  • the synchronization controller 102 and the computer 142 are turned on to perform path verification on the special optical fiber 143 for measuring the infiltration, and then the lateral and vertical infiltration measurement is performed in the structural area to be tested.
  • the optical fiber 143 is laid to form a gridded optical fiber layout in the space to be tested, and the synchronous controller 102 and the computer 142 are turned on to perform secondary path detection on the laid special optical fiber 143 for inspecting, in a complex structure area.
  • a plurality of special optical fibers 143 for measuring infiltration are required to be arranged in parallel for standby, and the special optical fiber 143 for measuring the infiltration is connected to the optical path coupler 127 through the constant temperature chamber 129;
  • the switches to be tested in the seepage state identification device are turned on, the system is debugged, and the special optical fiber 143 for measuring the infiltration is connected, and the respective channels are tested and calibrated, and the respective channels are tested.
  • the synchronization controller 102 is used to prepare The pulsed light information of the special optical fiber 143 is measured, the pulsed light information data is collected by the collector 141, and the data information is collected into the computer 142 for feedback analysis, thereby regulating the synchronization controller 102 through the module configured with the remote cloud database.
  • 100 collects and delivers the information to the monitoring information management and analysis evaluation module 101;
  • the first screen mesh through hole 204 on the first screen 205 and the second screen mesh through hole on the second screen 206 are used.
  • the particulate impurities in the seepage water are subjected to double-layer variable diameter filtration, and the seepage water source is continuously contacted with the single-core optical fiber 211 from four directions by the storage, filtration and drainage function of the drainage water storage cotton sleeve 208, thereby forming an actual temperature difference;
  • the temperature difference field of the area to be tested of the hydraulic structure measured by the special optical fiber 143 for transverse and vertical infiltration is drawn, and in the flow area of the seepage water, heat exchange occurs between the seepage water and the area to be tested, and part of The heat will be taken away by the seepage water, and the temperature difference field will have a local abrupt change, which is the position where the infiltration occurs; further, when the seepage water forms a free surface channel in the area to be tested, the water body exchanges with the outside world.
  • the relative calorific value is basically the same everywhere in the channel. Therefore, the temperature difference is connected to the structural plane along the upstream and downstream of the hydraulic structure, and the intersection line with the structural plane from the upstream to the downstream of the hydraulic structure is the saturation line. Thereby achieving the perception of the seepage condition of the hydraulic structure.

Abstract

一种水工建筑物渗流性态分布式光纤感知集成系统,包括测渗用特制光纤(143)、光纤率定装置、光纤布设装置、渗流性态辨识装置,利用光纤率定装置对测渗用特制光纤(143)进行现场率定后,借助光纤布设装置实施测渗用特制光纤(143)的铺设和测试,测试成功后接入渗流性态辨识装置,进行信息采集、处理和分析。该系统可以完成长距离光纤的高效率定和弯曲曲率的可靠控制与量测,通过具有自控热源的测渗用特制光纤(143)与基于飞秒脉冲的渗流性态辨识技术的配套使用,可高精度、高空间分辨率、高传感速度、远距离的感知水工建筑物渗流性态。还有一种水工建筑物渗流特性分布式光纤感知集成方法。

Description

水工建筑物渗流性态分布式光纤感知集成系统与方法 技术领域
本发明涉及水工建筑物渗流性态分布式光纤感知集成系统及方法,属于水利与水电工程安全监测领域。
背景技术
对于水工建筑物而言,渗流是影响其安全服役的关键因素之一,加强渗流性态的高效感知对及时发现安全隐患、保障水工建筑物的可靠运行具有重大意义。随着分布式光纤传感技术的发展,借助其获取结构性态信息、感知结构健康状况,已成为水利、土木等工程安全领域重要的研究方向。但在水工建筑物渗流性态的分布式光纤感知实际工程应用中,由于工作环境、结构特点等的特殊性,尚有诸多技术问题需要解决和改进。
首先,应用传感光纤进行渗流监测时,目前多需要借助外接电路对光纤实施加热,且存在抗压性和协同变形差、渗流灵敏性低等方面的不足,迫切需要充分考虑水工渗流监测特点和特殊工作环境,着力于传感光纤本身的生产装配,研制具有自控热源的渗流监测专用光纤,以从源头上提升光纤测渗技术性能指标和实用能力。另外,目前最常用分布式光纤温度传感技术进行结构渗流性态的间接感知,其用反斯托克斯拉曼散射光作为测量温度信号,使用激光单脉冲作为泵浦信号,斯托克斯拉曼散射光作为测量温度参考通道,其缺点是脉冲宽度不容易调节,空间分辨率低,信噪比差。
其次,在传感光纤长于100米的监测应用中,目前多基于分段率定的思想,仅对其中某一段或某几段进行率定,用所选段温度系数的平均值作为整根传感光纤的温度系数,其精准度将随传感光纤长度的增长而不断降低,且该方法存在率定效率低、率定长度短、承载重量轻、升降温困难、温度不易控制等弊端。长距离大范围的高效率定问题,成为了分布式传感技术在水工建筑物渗流性态感知大规模应用和推广中的重要阻碍因素之一。
第三,在实际工程应用中,常出现所铺设光纤由于不合适的弯曲度或弯曲段未获得有效保护而致使监测精度降低或者测值失真严重、甚至无法获取测值;不恰当的光纤布设导致其不符合工程结构尺寸及施工布置等要求,且造成不必要的浪费。传感光纤的布设,特别是光纤弯曲曲率半径的合理调整及控制,已成为影响其监测精度、使用寿命以及施工进度等的重要技术问题,迫切需要研制一种适应能力强、便于操作的光纤弯曲曲 率控制与量测装置和方法,以尽量减少对铺设人员的依赖,提高铺设传感光纤的成活率,增加传感光纤的服役寿命,更加高效、准确的感知堤坝性态。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种水工建筑物渗流性态分布式光纤感知集成系统及感知方法,可完成长距离光纤的高效率定和弯曲曲率的可靠控制与量测,可高精度、高空间分辨率、高传感速度、远距离的感知水工建筑物渗流性态。
技术方案:为实现上述目的,本发明的水工建筑物渗流性态分布式光纤感知集成系统,包括渗流性态辨识装置、测渗用特制光纤、光纤率定装置和光纤布设装置,所述测渗用特制光纤经过光纤率定装置率定合格后,通过光纤布设装置安装在待监测区域,与渗流性态辨识装置连接;
所述光纤布设装置包括弯曲台和位于弯曲台上的导引道,所述导引道的中部设有导引槽,导引槽内安装有待布设测渗用特制光纤,导引道包含第一直线段、第二直线段和连接第一直线段与第二直线段的弯曲段,所述第一直线段通过若干组第一锁紧装置固定在弯曲台上,弯曲段中部内侧与变径台连接,变径台一端与变径连柱连接,变径连柱穿过圆导台,圆导台的两侧设有与圆导台螺纹连接的圆连柱,圆连柱与圆连柱柄连接,变径台另一端与顶端设有圆弧的松固塞连接,松固塞设有导引道穿过的导引孔,导引孔内设有推板,推板与推杆连接,推杆与松固塞螺纹连接;所述第二直线段上安装有第二锁紧装置,第二锁紧装置底部延伸有凸台,凸台截面为夹角为45°的平行四边形,在弯曲台上设有与第一直线段和第二直线段夹角为45°的导轨槽,凸台沿导轨槽移动,在弯曲台上设有与第二直线段平行的竖直刻度,竖直刻度的零点为待布设测渗用特制光纤与最右边的第一锁紧装置的交点,导轨槽的起点位于竖直刻度的零点,在弯曲段与第一直线段相交处设有与弯曲段相切的第一半径尺,在弯曲段与第二直线段相交处设有与弯曲段相切的第二半径尺。
作为优选,所述第一半径尺末端内套有第一半径缩尺,第二半径尺末端内套有第二半径缩尺。
作为优选,所述第一锁紧装置包含第一连导台、与第一连导台螺纹连接的第一锁紧杆和第一把手,所述第一连导台为长方体块,在第一连导台的下方设有导引道穿过的第一凹槽,第一凹槽内设有位于导引道上方的第一压板,第一锁紧杆的下方与第一压板连 接,第一锁紧杆的上方安装有第一把手;所述第二锁紧装置包含第二连导台、与第二连导台螺纹连接的第二锁紧杆和第二把手,在第二连导台的下方设有导引道穿过的第二凹槽,第二凹槽内设有位于导引道上方的第二压板,第二锁紧杆的下方与第二压板连接,第二锁紧杆的上方安装有第二把手,第二连导台下方延伸有凸台,第二连导台两侧延伸有凸耳。
作为优选,所述水工建筑物渗流性态分布式光纤感知集成系统包括绝热桶、位于绝热桶内的若干率定模块,若干率定模块绕绝热桶的轴线环向布置,率定模块包含通轴、第一电子温度计和第二电子温度计,通轴上缠绕着待率定的测渗用特制光纤,待率定的测渗用特制光纤与绝热桶外的光纤温度解调仪连接,第一电子温度计和第二电子温度计分别与绝热桶外的第一控温表和第二控温表连接,绝热桶的桶壁内设有用于加热绝热桶内水的温源热丝,温源热丝与绝热桶外的功率控温表连接,第一控温表通过第一控温表导线同时与第一断电弹簧和第二断电弹簧连接,第一断电弹簧与第一导电磁铁连接,第一导电磁铁同时与电磁电路开关和第二导电磁铁串联连接,第一导电磁铁与第一导电铁敏块对向布置,第一导电铁敏块通过泵机电缆线与泵机连接,泵机位于循环水箱内,泵机通过压力进水管将循环水箱内水输送到绝热桶内;所述第二控温表通过第二控温表导线与第三断电弹簧连接,第三断电弹簧与第三导电磁铁连接,第三导电磁铁与第三导电铁敏块对向布置,第三导电磁铁通过电阻热敏开关与电源连接,电源与电磁电路开关连接;所述功率控温表通过功率温控导线同时与第三导电铁敏块和第二导电铁敏块连接,第二导电铁敏块与第三导电铁敏块串联连接,第二导电磁铁和第三导电磁铁串联连接,第二导电磁铁与第二断电弹簧串联连接。
作为优选,所述绝热桶包含桶体和桶盖,所述桶体由外到内包含外硬护桶、绝热中层、热丝放置层和内硬护层,桶盖为绝热硬护板,桶体的顶部设有护板槽,绝热硬护板下方安装有可沿护板槽移动的护板横轨;所述通轴下端通过螺纹安装在内硬护层,通轴的顶端通过顶板螺纹与顶板连接,顶板上端面与罩网连接。
作为优选,所述罩网沿着顶板及通轴环向布置,温源热丝沿着热丝放置层进行从底到高的整体环向布置,绝热中层、内硬护层靠近温源热丝一侧均设有金属护层保护。
作为优选,所述水工建筑物渗流性态分布式光纤感知集成系统包含光路耦合器和同步控制器,所述测渗用特制光纤垂直交错铺设于水工建筑物渗流性态监测区中,测渗用特制光纤与光路耦合器连接,在测渗用特制光纤与光路耦合器之间设有监测恒温室,所 述同步控制器依次与锁模激光器、第一波分复用器、偏振分束器、隔离器、非线性放大器、光栅对、液晶空间光调制器、衍射光栅、反射镜、分束器、非线性晶体、光谱仪和迈克尔逊干涉仪连接,迈克尔逊干涉仪输出端与光路耦合器连接,光路耦合器的输出端分别与探测器和第二光分器连接,探测器与数字信号处理器连接,第二光分器通过放大电路与数字信号处理器连接,数字信号处理器输出端分别与同步控制器和采集器连接,采集器输出端分别与同步控制器和计算机连接,计算机与配置有远程云数据库的模块连接,配置有远程云数据库的模块将信息汇集并输送到监测信息管理与分析评估模块中。
作为优选,所述放大电路包含并联连接的第一放大电路、第二放大电路和第三放大电路,第一放大电路包含依次连接的第一光电二极管、第三放大器和斯托克斯接收器,第二放大电路包含依次连接的第二光电二极管、第四放大器和反斯托克斯接收器,第三放大电路包含依次连接的第三光电二极管、第五放大器和瑞利光接收器,第一光电二极管、第二光电二极管和第三光电二极管分别与第二光分器的输出端连接。
作为优选,所述迈克尔逊干涉仪输出端与光电开关连接,光电开关布置有L和R双侧开关,L侧开关与主飞秒脉冲输入端相连,R侧开关与副飞秒脉冲相连,主飞秒脉冲的主飞秒脉冲光会进入第一放大器的光信号输入端,副飞秒脉冲的副飞秒脉冲光会经过第二放大器的光信号输入端,第一放大器的光信号输出端口与第一光分器的输入端口相连,第一光分器的输出端口分别与第二光滤波器的信号输入端口和第三光滤波器的信号输入端口相连,第二放大器的光信号输出端口与第一光滤波器的光信号输入端口相接,第一光滤波器、第二光滤波器和第三光滤波器的输出端与第二波分复用器输入端连接,第二波分复用器的输出端与第二光分器输入端连接。
一种如上述的水工建筑物渗流性态分布式光纤感知集成系统的感知方法,包括以下步骤:
第一步,将测渗用特制光纤以螺旋走向的形式布设到光纤率定装置中,通过光纤率定装置标定待布设测渗用特制光纤的温度系数;
第二步,通过设计要求确定光纤布设装置的个数,后将标定好的测渗用特制光纤固定于水工建筑物的待测区域;
第三步,通过渗流性态辨识装置驱动已布设的测渗用特制光纤,进行信息采集、分析,辨识水工建筑物的渗流性态。
在本发明中,电磁电路开关打开后,第三导电磁铁、第二导电磁铁、第一导电磁铁 因瞬时通电产生磁性,后分别将第三导电铁敏块、第二导电铁敏块、第一导电铁敏块吸到对应的导电磁铁上,功率控温表会被连成通路,以此,对温源热丝进行加热,当达到第一控温表或者第二控温表上的温度数值时,在连通电路中的电阻热敏开关会断开,此时,第三导电磁铁、第二导电磁铁、第一导电磁铁失去磁性,后借助被压缩的第三断电弹簧、第二断电弹簧、第一断电弹簧,将失去磁性的第三导电磁铁、第二导电磁铁、第一导电磁铁分别从第三导电铁敏块、第二导电铁敏块、第一导电铁敏块上弹开,保持断开状态,停止加热,实现升温。当电磁电路开关所在的电路连通时,断开功率控温表,打开泵机,基于设定的需要降低的温度,通过压力进水管将冷水注入率定装置中,在达到预定的温降值时,电阻热敏开关断开,第三导电磁铁、第二导电磁铁、第一导电磁铁失去磁性,第三断电弹簧、第二断电弹簧、第一断电弹簧将失去磁性的第三导电磁铁、第二导电磁铁、第一导电磁铁分别从第三导电铁敏块、第二导电铁敏块、第一导电铁敏块上弹开,保持断开状态,停止加水,实现降温。
有益效果:本发明的水工建筑物渗流性态分布式光纤感知集成系统,融合测渗用特制光纤、光纤率定装置、光纤布设装置和渗流性态辨识装置,可实现远距离、大重量的光纤率定及监测中自控热源的温度调节,可高效精确地实现光纤弯曲曲率的设定及布设,可自行进行升温与降温,具有高精度、高空间分辨率、高运行速度等特点,极大地提高了率定精度和布设效率,显著提升了渗流的辨识度,在监测成本降低和工程实用化方面具有突出优势。
附图说明
图1为本发明的原理示意图;
图2为图1中光纤布设装置的结构示意图;
图3为图2中的第一锁紧装置的结构示意图;
图4为图2中的第二锁紧装置的主视结构示意图;
图5为图4中的第二锁紧装置的背视结构示意图;
图6为图1中松固塞的结构示意图;
图7为图1中光纤率定装置的结构示意图;
图8为图7中的1-1剖面图;
图9为图1中的渗流性态辨识装置的示意图;
图10为图9中自控热源测渗用特制单模光纤的结构示意图;
图11为图10中外圆套护管的细部结构图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1至图11所示,本发明的水工建筑物渗流性态分布式光纤感知集成系统,包括测渗用特制光纤143、光纤率定装置、光纤布设装置、渗流性态辨识装置,利用光纤率定装置对测渗用特制光纤143进行现场率定后,借助光纤布设装置实施测渗用特制光纤143的铺设和测试,测试成功后接入渗流性态辨识装置,进行信息采集、处理和分析。
所述光纤布设装置包括弯曲台1和位于弯曲台1上的导引道3,导引道3由柔性塑料制成,所述导引道3的中部设有导引槽,导引槽内安装有待测光纤2,待测光纤为测渗用特制光纤143,导引道3包含第一直线段、第二直线段和连接第一直线段与第二直线段的弯曲段,所述第一直线段通过若干组第一锁紧装置4固定在弯曲台1上,弯曲段中部内侧与变径台6连接,变径台6一端与变径连柱12连接,变径连柱12穿过圆导台19,圆导台19的两侧设有与圆导台19螺纹连接的圆连柱14,圆连柱14与圆连柱柄13连接,变径台6另一端与顶端设有圆弧的松固塞连接,松固塞设有导引道3穿过的导引孔17,导引孔17内设有推板16,推板16与推杆15连接,推杆15与松固塞螺纹连接;所述第二直线段上安装有第二锁紧装置50,第二锁紧装置50底部延伸有凸台504,凸台504截面为夹角为45°的平行四边形,在弯曲台1上设有与第一直线段和第二直线段夹角为45°的导轨槽,凸台沿导轨槽移动,在弯曲台1上设有与第二直线段平行的竖直刻度,竖直刻度的零点为待布设测渗用特制光纤与最右边的第一锁紧装置4的交点,导轨槽的起点位于竖直刻度的零点,在弯曲段与第一直线段相交处设有与弯曲段相切的第一半径尺5,在弯曲段与第二直线段相交处设有与弯曲段相切的第二半径尺9。
在本发明中,所述第一半径尺5末端内套有第一半径缩尺8,第二半径尺9末端内套有第二半径缩尺7。所述第一锁紧装置4包含第一连导台41、与第一连导台41螺纹连接的第一锁紧杆42和第一把手43,所述第一连导台41为长方体块,在第一连导台41的下方设有导引道3穿过的第一凹槽,第一凹槽内设有位于导引道3上方的第一压板44,第一锁紧杆42的下方与第一压板44连接,第一锁紧杆42的上方安装有第一把手43;所述第二锁紧装置50包含第二连导台501、与第二连导台501螺纹连接的第二锁紧杆505和第二把手506,在第二连导台506的下方设有导引道3穿过的第二凹槽,第二凹槽内设有位于导引道3上方的第二压板502,第二锁紧杆505的下方与第二压板502 连接,第二锁紧杆505的上方安装有第二把手506,第二连导台504两侧延伸有凸耳503。第二连导台501下方延伸有凸台104,凸台504截面为夹角为45°的平行四边形,第二连导台501与凸台104呈45°夹角,这样,保证第一直线段与第二直线段呈90°夹角,消除角度误差,在弯曲台1上设有与第一直线段和第二直线段夹角为45°的导轨槽,凸台504沿导轨槽移动,在弯曲台1上设有与第二直线段平行的竖直刻度11,竖直刻度11的零点为待测光纤2与最右边的第一锁紧装置4的交点,导轨槽的起点位于竖直刻度11的零点处,在弯曲段与第一直线段相交处设有与弯曲段相切的第一半径尺5,在弯曲段与第二直线段相交处设有与弯曲段相切的第二半径尺9,所述第一半径尺5末端内套有第一半径缩尺8,第二半径尺9末端内套有第二半径缩尺7。
在本发明中,所述光纤率定装置包括绝热桶、位于绝热桶内的若干率定模块,若干率定模块绕绝热桶的轴线环向分布,率定模块包含通轴313、第一电子温度计341和第二电子温度计345,通轴313上缠绕着测渗用特制光纤143,测渗用特制光纤143与绝热桶外的光纤温度解调仪连接,第一电子温度计341和第二电子温度计345分别与绝热桶外的第一控温表306和第二控温表308连接,绝热桶的桶壁内设有用于加热绝热桶内水的温源热丝353,温源热丝353与绝热桶外的功率控温表310连接,第一控温表306通过第一控温表306导线同时与第一断电弹簧317和第二断电弹簧318连接,第一断电弹簧317与第一导电磁铁325连接,第一导电磁铁325同时与电磁电路开关329和第二导电磁铁323串联连接,第一导电磁铁325与第一导电铁敏块324对向布置,第一导电铁敏块324通过泵机334电缆线323与泵机334连接,泵机334位于循环水箱331内,泵机334通过压力进水管330将循环水箱331内水输送到绝热桶内;所述第二控温表308通过第二控温表308导线与第三断电弹簧319连接,第三断电弹簧319与第三导电磁铁320连接,第三导电磁铁320与第三导电铁敏块321对向布置,第三导电磁铁320通过电阻热敏开关327与电源连接,电源与电磁电路开关329连接;所述功率控温表310通过功率温控导线同时与第三导电铁敏块321和第二导电铁敏块322连接,第二导电铁敏块322与第三导电铁敏块321串联连接,第二导电磁铁323和第三导电磁铁320串联连接,第二导电磁铁323与第二断电弹簧318串联连接。
在本发明中,所述绝热桶包含桶体和桶盖,所述桶体由外到内包含外硬护桶337、绝热中层349、热丝放置层350和内硬护层356,桶盖为绝热硬护板300,桶体的顶部设有护板槽301,绝热硬护板300下方安装有可沿护板槽301移动的护板横轨304;所述 通轴313下端通过螺纹安装在内硬护层356,通轴313的顶端通过螺纹与顶板302连接,顶板302上端面与罩网339连接,通轴313下端通过螺纹安装在内硬护层356,通轴313的顶端通过螺纹与顶板302连接,顶板302上端面与罩网339连接。罩网339沿着顶板302及通轴313环向布置,温源热丝353沿着热丝放置层350进行从底到高的整体环向布置,绝热中层349、内硬护层356靠近温源热丝353一侧均设有金属护层保护。第一电子温度计341和第二电子温度计345分别通过电导线与第一控温表306和第二控温表308连接,电导线位于内硬护层356内。测渗用特制光纤143、温源热丝353和压力进水管330分别穿过绝热桶的桶壁。
在本发明中,所述渗流性态辨识装置包括光路耦合器127和同步控制器102,所述测渗用特制光纤143垂直交错铺设于水工建筑物渗流性态监测区130中,测渗用特制光纤143与光路耦合器127连接,在测渗用特制光纤143与光路耦合器127之间设有监测恒温室129,所述同步控制器102依次与锁模激光器103、第一波分复用器104、偏振分束器105、隔离器106、非线性放大器107、光栅对108、液晶空间光调制器109、衍射光栅110、反射镜111、分束器112、非线性晶体113、光谱仪114和迈克尔逊干涉仪115连接,迈克尔逊干涉仪115输出端与光路耦合器127连接,光路耦合器127的输出端分别与探测器128和第二光分器126连接,探测器128与数字信号处理器140连接,第二光分器126通过放大电路与数字信号处理器140连接,数字信号处理器140输出端分别与同步控制器102和采集器141连接,采集器141的输出端分别与同步控制器102和计算机142连接,计算机142与配置有远程云数据库的模块100连接,配置有远程云数据库的模块100将信息汇集并输送到监测信息管理与分析评估模块101中。
在本发明中,所述放大电路包含并联连接的第一放大电路、第二放大电路和第三放大电路,第一放大电路包含依次连接的第一光电二极管131、第三放大器134和斯托克斯接收器139,第二放大电路包含依次连接的第二光电二极管132、第四放大器135和反斯托克斯接收器138,第三放大电路包含依次连接的第三光电二极管133、第五放大器136和瑞利光接收器137,第一光电二极管131、第二光电二极管132和第三光电二极管133分别与第二光分器126的输出端连接。
在本发明中,所述迈克尔逊干涉仪115输出端与光电开关116连接,光电开关116布置有L和R双侧开关,L侧开关与主飞秒脉冲117输入端相连,R侧开关与副飞秒脉冲118相连,主飞秒脉冲117的主飞秒脉冲光会进入第一放大器119的光信号输入端, 副飞秒脉冲117的副飞秒脉冲光会经过第二放大器120的光信号输入端,第一放大器119的光信号输出端口与第一光分器121的输入端口相连,第一光分器121的输出端口分别与第二光滤波器123的信号输入端口和第三光滤波器124的信号输入端口相连,第二放大器120的光信号输出端口与第一光滤波器122的光信号输入端口相接,第一光滤波器122、第二光滤波器123和第三光滤波器124的输出端与第二波分复用器125输入端连接,第二波分复用器125的输出端与第二光分器126输入端连接。
在本发明中,所述测渗用特制光纤143从内到外依次设有单芯光纤211、内护弹性层210、绝热钢环209、内层填护环212、弹性硬环213、防渗隔热硬套环214,单芯光纤211分别与若干根外圆套护管201连接,外圆套护管201依次穿过内护弹性层210、绝热钢环209、内层填护环212、弹性硬环213与防渗隔热硬套环214连接,外圆套护管201内装填有引流储水棉套208,引流储水棉套208与第二滤网206相连,第二滤网206上布设有第二滤网纱网通孔207,第二滤网206外侧与第一滤网205相连,第一滤网205上布设有第一滤网纱网通孔204。弹性硬环213和防渗隔热硬套环214为不规则的四边形框,四边形框的四个边向内凹陷,四边形框的四个角为圆角。
在本发明中,第一滤网205上布设的第一滤网纱网通孔204孔径要大于第二滤网206上布设的第二滤网纱网通孔207孔径,且其孔径的差值要在2倍以上。外圆套护管201有四根,分别位于单芯光纤211的0°、90°、180°、270°径向上。第一滤网205和第二滤网206均位于防渗隔热硬套环214内。
在本发明中,应用水工建筑物渗流性态分布式光纤感知集成系统进行待测区域渗流性态感知的方法,包括:
第一步,将单芯光纤211压制于绝热钢环209、内护弹性层210、内层填护环212、弹性硬环213与防渗隔热硬套环214中,使用外圆套护管201、第一滤网205、第二滤网206、第二滤网纱网通孔207和第一滤网纱网通孔204装配成具有引流、控流、导热、控热功能的测渗用特制光纤143;
第二步,沿着护板槽301向两边推开带护板横轨304的绝热硬护板300,将罩网339移除,将顶板302从通轴313的顶板螺纹303上旋出,将通轴313从内硬护层356中旋出,将测渗用特制光纤143沿着通轴313进行螺旋状缠绕,后经罩网339、外硬护桶337、绝热中层349、热丝放置层350和内硬护层356引出到率定装置外;
第三步,将通轴313旋入到内硬护层356中,将顶板302通过顶板螺纹303旋接到 通轴313上,后将罩网339旋入到内硬护层356中,构成内封闭环境,以待加热,沿着护板槽301向中间推入带护板横轨304的绝热硬护板300,最后,封闭整个率定装置,将测渗用特制光纤143引至光纤温度解调仪中,打开光纤温度解调仪;
第四步,根据通轴313上所缠绕的测渗用特制光纤143的长度,确定加水量,打开第一控温表306和第二控温表308,第一控温表306及第二控温表308上将实时显示测渗用特制光纤143所在水体中的温度,将第一控温表306及第二控温表308调至到需要加热的温度值,打开电源,利用第三导电磁铁320、第二导电磁铁323、第一导电磁铁325分别吸附第三导电铁敏块321、第二导电铁敏块322、第一导电铁敏块324,通过功率控温表310对温源热丝353进行通电加热,当达到设定温度时,通过电阻热敏开关327使得第三导电磁铁320、第二导电磁铁323、第一导电磁铁325失去磁性,后经第三断电弹簧319、第二断电弹簧318、第一断电弹簧317将第三导电铁敏块321、第二导电铁敏块322、第一导电铁敏块324分别从第三导电磁铁320、第二导电磁铁323、第一导电磁铁325上弹开,保持恒温,率定开始;
第五步,在需要降温时,打开电源,断开功率控温表310,通过第三导电磁铁320、第二导电磁铁323、第一导电磁铁325产生的磁性,利用泵机334电缆线323将泵机334打开,循环水箱331内的冷水通过压力进水管330对已加热水体进行热量交换,实现降温,待第一控温表306及第二控温表308达到待降温数值之后,通过电阻热敏开关327使得第三导电磁铁320、第二导电磁铁323、第一导电磁铁325失去磁性,通过第三断电弹簧319、第二断电弹簧318、第一断电弹簧317实现温降恒定,在该温降数值下进行率定;
第六步,将光纤温度解调仪获取的结果值与第一控温表306及第二控温表308上获取的结果值基于光纤温度传感公式进行比对分析,最终完成率定。
第七步,将率定完成的测渗用特制光纤143穿过导引道3,使用两组第一锁紧装置4将导引道3的第一直线段固定于弯曲台1上,转动第一锁紧杆42,固定测渗用特制光纤143,最靠近弯曲段的第一锁紧装置4的右端与竖直刻度对齐;将第二锁紧装置50套在导引道3上,折弯导引道3,根据测渗用特制光纤143需要的弯曲曲率半径,通过竖直刻度大概地将第一锁紧装置4放入到导轨槽中,在弯曲段与第一直线段相交处布置与弯曲段相切的第一半径尺5,在弯曲段与第二直线段相交处布置与弯曲段相切的第二半径尺9,根据第一半径尺5和第二半径尺9的交汇点,读出第一半径尺的读数;
第八步,转动圆连柱14,松开变径连柱12,移动变径连柱12和第二锁紧装置50,使得第一半径尺5和第二半径尺9的读数为测渗用特制光纤143弯曲曲率半径值;转动圆连柱14,锁紧变径连柱12,转动推杆15,通过推杆15的移动带动推板16与导引道3充分接触,固定导引道3,安装凸耳503通过螺钉将第二锁紧装置50固定在弯曲台1上,转动第二锁紧杆505,固定测渗用特制光纤143。
第九步,待测渗用特制光纤143布设完毕之后,打开同步控制器102与计算机142对测渗用特制光纤143进行通路验证,后在待测结构区域做横向与竖向的测渗用特制光纤143铺设,以在该待测空间中形成一种网格化的光纤布局,打开同步控制器102与计算机142,对铺设好的测渗用特制光纤143进行二次通路探测,在复杂结构区域需要平行布设多条测渗用特制光纤143以做备用,将测渗用特制光纤143通过恒温室129与光路耦合器127连接;
第十步,打开渗流性态辨识装置中各待测开关,对该系统进行调试,连接测渗用特制光纤143,进行校准及标定,测试各个通道,待无误之后,通过同步控制器102调制待测测渗用特制光纤143的脉冲光信息,通过采集器141采集脉冲光信息数据,后将数据信息汇集到计算机142中进行反馈分析,进而调控同步控制器102,通过配置有远程云数据库的模块100将信息汇集并输送到监测信息管理与分析评估模块101中;
第十一步,渗流水经过水工建筑物结构体待测区域时,借助第一滤网205上的第一滤网纱网通孔204和第二滤网206上的第二滤网纱网通孔207将渗流水中的颗粒杂质给予双层变径过滤,通过引流储水棉套208的存储、过滤及引流功能将渗流水源源不断地从四个方向与单芯光纤211直接接触,从而形成实际温差;
第十二步,绘制由横纵向测渗用特制光纤143测得的水工建筑物待测区域温差场,在渗流水流经区域中,由于渗流水与待测区域之间会产生热量交换,一部分热量将被渗流水带走,温差场将出现局部的突变,该处即为渗透产生的位置;进一步,当渗流水在待测区域中形成自由水面的通道时,水体与外界交换所带走的相对热量值在通道各处基本一样,因此,沿着水工建筑物上下游向结构面将温差值相同的地方连接,其与水工建筑物上下游向结构面的交线即为浸润线,从而实现水工建筑物渗流状况的感知。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 水工建筑物渗流性态分布式光纤感知集成系统,其特征在于:包括渗流性态辨识装置、测渗用特制光纤、光纤率定装置和光纤布设装置,所述测渗用特制光纤经过光纤率定装置率定合格后,通过光纤布设装置安装在待监测区域,与渗流性态辨识装置连接;
    所述光纤布设装置包括弯曲台和位于弯曲台上的导引道,所述导引道的中部设有导引槽,导引槽内安装有待布设的测渗用特制光纤,导引道包含第一直线段、第二直线段和连接第一直线段与第二直线段的弯曲段,所述第一直线段通过若干组第一锁紧装置固定在弯曲台上,弯曲段中部内侧与变径台连接,变径台一端与变径连柱连接,变径连柱穿过圆导台,圆导台的两侧设有与圆导台螺纹连接的圆连柱,圆连柱与圆连柱柄连接,变径台另一端与顶端设有圆弧的松固塞连接,松固塞设有导引道穿过的导引孔,导引孔内设有推板,推板与推杆连接,推杆与松固塞螺纹连接;所述第二直线段上安装有第二锁紧装置,第二锁紧装置底部延伸有凸台,凸台截面为夹角为45°的平行四边形,在弯曲台上设有与第一直线段和第二直线段夹角为45°的导轨槽,凸台沿导轨槽移动,在弯曲台上设有与第二直线段平行的竖直刻度,竖直刻度的零点为待布设测渗用特制光纤与最右边的第一锁紧装置的交点,导轨槽的起点位于竖直刻度的零点,在弯曲段与第一直线段相交处设有与弯曲段相切的第一半径尺,在弯曲段与第二直线段相交处设有与弯曲段相切的第二半径尺。
  2. 根据权利要求1所述的水工建筑物渗流性态分布式光纤感知集成系统,其特征在于:所述第一半径尺末端内套有第一半径缩尺,第二半径尺末端内套有第二半径缩尺。
  3. 根据权利要求2所述的水工建筑物渗流性态分布式光纤感知集成系统,其特征在于:所述第一锁紧装置包含第一连导台、与第一连导台螺纹连接的第一锁紧杆和第一把手,所述第一连导台为长方体块,在第一连导台的下方设有导引道穿过的第一凹槽,第一凹槽内设有位于导引道上方的第一压板,第一锁紧杆的下方与第一压板连接,第一锁紧杆的上方安装有第一把手;所述第二锁紧装置包含第二连导台、与第二连导台螺纹连接的第二锁紧杆和第二把手,在第二连导台的下方设有导引道穿过的第二凹槽,第二凹槽内设有位于导引道上方的第二压板,第二锁紧杆的下方与第二压板连接,第二锁紧杆的上方安装有第二把手,第二连导台下方延伸有凸台,第二连导台两侧延伸有凸耳。
  4. 根据权利要求3所述的水工建筑物渗流性态分布式光纤感知集成系统,其特征在于:所述光纤率定装置包括绝热桶、位于绝热桶内的若干率定模块,若干率定模块绕 绝热桶的轴线环向布置,率定模块包含通轴、第一电子温度计和第二电子温度计,通轴上缠绕着待率定的测渗用特制光纤,测渗用特制光纤与绝热桶外的光纤温度解调仪连接,第一电子温度计和第二电子温度计分别与绝热桶外的第一控温表和第二控温表连接,绝热桶的桶壁内设有用于加热绝热桶内水的温源热丝,温源热丝与绝热桶外的功率控温表连接,第一控温表通过第一控温表导线同时与第一断电弹簧和第二断电弹簧连接,第一断电弹簧与第一导电磁铁连接,第一导电磁铁同时与电磁电路开关和第二导电磁铁串联连接,第一导电磁铁与第一导电铁敏块对向布置,第一导电铁敏块通过泵机电缆线与泵机连接,泵机位于循环水箱内,泵机通过压力进水管将循环水箱内水输入到绝热桶内;所述第二控温表通过第二控温表导线与第三断电弹簧连接,第三断电弹簧与第三导电磁铁连接,第三导电磁铁与第三导电铁敏块对向布置,第三导电磁铁通过电阻热敏开关与电源连接,电源与电磁电路开关连接;所述功率控温表通过功率温控导线同时与第三导电铁敏块和第二导电铁敏块连接,第二导电铁敏块与第三导电铁敏块串联连接,第二导电磁铁和第三导电磁铁串联连接,第二导电磁铁与第二断电弹簧串联连接。
  5. 根据权利要求4所述的水工建筑物渗流性态分布式光纤感知集成系统,其特征在于:所述绝热桶包含桶体和桶盖,所述桶体由外到内包含外硬护桶、绝热中层、热丝放置层和内硬护层,桶盖为绝热硬护板,桶体的顶部设有护板槽,绝热硬护板下方安装有可沿护板槽移动的护板横轨;所述通轴下端通过螺纹安装在内硬护层,通轴的顶端通过顶板螺纹与顶板连接,顶板上端面与罩网连接。
  6. 根据权利要求5所述的水工建筑物渗流性态分布式光纤感知集成系统,其特征在于:所述罩网沿着顶板及通轴环向布置,温源热丝沿着热丝放置层进行从底到高的整体环向布置,绝热中层、内硬护层靠近温源热丝一侧均设有金属护层保护。
  7. 根据权利要求6所述的水工建筑物渗流性态分布式光纤感知集成系统,其特征在于:所述渗流性态辨识装置包含光路耦合器和同步控制器,所述测渗用特制光纤垂直交错铺设于水工建筑物渗流性态监测区中,测渗用特制光纤与光路耦合器连接,在测渗用特制光纤与光路耦合器之间设有监测恒温室,所述同步控制器依次与锁模激光器、第一波分复用器、偏振分束器、隔离器、非线性放大器、光栅对、液晶空间光调制器、衍射光栅、反射镜、分束器、非线性晶体、光谱仪和迈克尔逊干涉仪连接,迈克尔逊干涉仪输出端与光路耦合器连接,光路耦合器的输出端分别与探测器和第二光分器连接,探测器与数字信号处理器连接,第二光分器通过放大电路与数字信号处理器连接,数字信 号处理器输出端分别与同步控制器和采集器连接,采集器的输出端分别与同步控制器和计算机连接,计算机与配置有远程云数据库的模块连接,配置有远程云数据库的模块将信息汇集并输送到监测信息管理与分析评估模块中。
  8. 根据权利要求7所述的水工建筑物渗流性态分布式光纤感知集成系统,其特征在于:所述放大电路包含并联连接的第一放大电路、第二放大电路和第三放大电路,第一放大电路包含依次连接的第一光电二极管、第三放大器和斯托克斯接收器,第二放大电路包含依次连接的第二光电二极管、第四放大器和反斯托克斯接收器,第三放大电路包含依次连接的第三光电二极管、第五放大器和瑞利光接收器,第一光电二极管、第二光电二极管和第三光电二极管分别与第二光分器的输出端连接。
  9. 根据权利要求8所述的水工建筑物渗流性态分布式光纤感知集成系统,其特征在于:所述迈克尔逊干涉仪输出端与光电开关连接,光电开关布置有L和R双侧开关,L侧开关与主飞秒脉冲输入端相连,R侧开关与副飞秒脉冲相连,主飞秒脉冲的主飞秒脉冲光会进入第一放大器的光信号输入端,副飞秒脉冲的副飞秒脉冲光会经过第二放大器的光信号输入端,第一放大器的光信号输出端口与第一光分器的输入端口相连,第一光分器的输出端口分别与第二光滤波器的信号输入端口和第三光滤波器的信号输入端口相连,第二放大器的光信号输出端口与第一光滤波器的光信号输入端口相接,第一光滤波器、第二光滤波器和第三光滤波器的输出端与第二波分复用器输入端连接,第二波分复用器的输出端与第二光分器输入端连接。
  10. 一种如权利要求1至9任一项所述的水工建筑物渗流性态分布式光纤感知集成系统的感知方法,其特征在于,包括以下步骤:
    第一步,将测渗用特制光纤以螺旋走向的形式布设到光纤率定装置中,通过光纤率定装置标定待布设测渗用特制光纤的温度系数;
    第二步,通过设计要求确定光纤布设装置的个数,后将标定好的测渗用特制光纤固定于水工建筑物待测区域;
    第三步,通过渗流性态辨识装置驱动已布设的测渗用特制光纤,进行信息采集、分析,辨识水工建筑物的渗流性态。
PCT/CN2015/093368 2015-06-19 2015-10-30 水工建筑物渗流性态分布式光纤感知集成系统与方法 WO2016201857A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2015398793A AU2015398793B2 (en) 2015-06-19 2015-10-30 Integrated system for distributed optical fiber sensing of hydraulic structure seepage, and method therefor
JP2017565685A JP6517373B2 (ja) 2015-06-19 2015-10-30 分布型光ファイバーで水理構造物の浸透流の形態を検知する集積システム
US15/736,027 US10571359B2 (en) 2015-06-19 2015-10-30 Hydraulic structure seepage property distributed optical fiber sensing integrated system and method
SG11201710520VA SG11201710520VA (en) 2015-06-19 2015-10-30 Hydraulic structure seepage property distributed optical fiber sensing integrated system and method
GB1720707.7A GB2553254B (en) 2015-06-19 2015-10-30 Hydraulic structure seepage property distributed optical fiber sensing integrated system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510345172.7 2015-06-19
CN201510345172.7A CN105181362B (zh) 2015-06-19 2015-06-19 水工建筑物渗流性态分布式光纤感知集成系统与方法

Publications (1)

Publication Number Publication Date
WO2016201857A1 true WO2016201857A1 (zh) 2016-12-22

Family

ID=54903603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093368 WO2016201857A1 (zh) 2015-06-19 2015-10-30 水工建筑物渗流性态分布式光纤感知集成系统与方法

Country Status (7)

Country Link
US (1) US10571359B2 (zh)
JP (1) JP6517373B2 (zh)
CN (1) CN105181362B (zh)
AU (1) AU2015398793B2 (zh)
GB (1) GB2553254B (zh)
SG (1) SG11201710520VA (zh)
WO (1) WO2016201857A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729144A (zh) * 2020-12-18 2021-04-30 南京大学 一种基于分布式光纤传感的多路光电复合缆区分方法
CN113865743A (zh) * 2021-10-13 2021-12-31 广东感芯激光科技有限公司 一种光纤分布式电池多点测温系统及应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977233B (zh) * 2015-06-19 2016-01-27 河海大学 水工结构物及其基础渗流状况分布式光纤辨识系统与方法
CN105738140B (zh) * 2016-02-17 2018-01-19 河海大学 涉水结构物及其基础渗流性态光纤自适应辨识系统及方法
CN105716686B (zh) * 2016-02-19 2017-11-24 河海大学 复杂环境下堤坝浸润线分布式光纤感知系统及运行方法
CN105738652B (zh) * 2016-05-05 2017-11-03 河海大学 一种水工程渗流流速分布式光纤即时追踪系统及方法
CN105738147B (zh) * 2016-05-05 2018-03-20 河海大学 一种水工程渗流性态融合感知系统
CN105738268B (zh) * 2016-05-10 2017-06-16 河海大学 复杂环境下水工程渗流性态一体化监测系统及监测方法
CN105954171B (zh) * 2016-05-10 2018-08-21 河海大学 一种堤坝渗流性状时空监控装置及监测方法
CN105911638B (zh) * 2016-05-10 2018-10-23 河海大学 一种传感光纤测渗增敏装置及使用方法
CN105973533B (zh) * 2016-07-12 2018-04-20 中国水利水电科学研究院 特殊地层环境条件下的渗漏连续监测实验装置及方法
US10527587B2 (en) * 2017-12-05 2020-01-07 Hohai University Distributed sensing fiber acoustic emission apparatus and method for monitoring hydraulic engineering safety behavior
CN108871607B (zh) * 2018-08-13 2020-01-03 太原理工大学 一种面向分布式光纤拉曼传感器的高精度温度解调方法
CN114018484A (zh) * 2021-10-27 2022-02-08 上海建工二建集团有限公司 地墙围护开挖过程渗漏情况监测装置及方法
CN115199859B (zh) * 2022-07-14 2024-02-06 重庆大学 一种长距离地下管线渗漏的快速诊断方法
CN115950464B (zh) * 2023-01-05 2023-08-18 水利部交通运输部国家能源局南京水利科学研究院 贴壁式涉水结构体传感光纤区域感测装置及感测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654520A (en) * 1981-08-24 1987-03-31 Griffiths Richard W Structural monitoring system using fiber optics
US6526807B1 (en) * 1998-06-18 2003-03-04 Joseph Doumit Early warning water leak detection system
CN101490522A (zh) * 2006-07-13 2009-07-22 法国坦卡特土工合成材料公司 在水工建筑物中检测并定位故障的设备、系统和方法以及配备有该设备的水工建筑物
CN102720949A (zh) * 2012-06-11 2012-10-10 天津大学 一种光纤管道泄漏监测装置及其控制方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596578B2 (ja) * 1988-01-25 1997-04-02 株式会社フジクラ 光ファイバ浸水検知センサ
US4988155A (en) * 1989-06-22 1991-01-29 The Dow Chemical Company In-line fiber optic probe interface
JP3065769B2 (ja) * 1992-02-10 2000-07-17 住友電気工業株式会社 ケーブル引止め具
JP3258520B2 (ja) * 1994-12-12 2002-02-18 松下電器産業株式会社 光ファイバセンサ及びその製造方法
JP3633799B2 (ja) * 1995-07-31 2005-03-30 北川工業株式会社 光ケーブルの配線方法
AU7275398A (en) * 1997-05-02 1998-11-27 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
JPH11142281A (ja) * 1997-11-11 1999-05-28 Reideikku:Kk 地下水測定装置
DE10111640A1 (de) * 2001-03-10 2002-10-02 Airbus Gmbh Verfahren zur Ermittlung und Meldung von Überhitzungen und Feuern in einem Flugzeug
US6995899B2 (en) * 2002-06-27 2006-02-07 Baker Hughes Incorporated Fiber optic amplifier for oilfield applications
US7028543B2 (en) * 2003-01-21 2006-04-18 Weatherford/Lamb, Inc. System and method for monitoring performance of downhole equipment using fiber optic based sensors
JP4536114B2 (ja) * 2005-05-26 2010-09-01 三菱電機株式会社 光ファイバセンサ
JP5018324B2 (ja) * 2007-08-07 2012-09-05 株式会社大林組 遮水材の漏水監視システム及び遮水壁
CN201266096Y (zh) * 2008-07-25 2009-07-01 同济大学 光纤光栅水工渗压传感器
CN104570148B (zh) * 2014-12-29 2015-09-02 河海大学 涉水结构物渗漏无热源光纤定位定向系统及监测方法
CN204789002U (zh) * 2015-06-19 2015-11-18 河海大学 水工建筑物渗流性态分布式光纤感知集成系统
CN104977673B (zh) * 2015-06-19 2016-03-02 河海大学 一种水工测渗用自控热源特制单模光纤
CN104977233B (zh) * 2015-06-19 2016-01-27 河海大学 水工结构物及其基础渗流状况分布式光纤辨识系统与方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654520A (en) * 1981-08-24 1987-03-31 Griffiths Richard W Structural monitoring system using fiber optics
US6526807B1 (en) * 1998-06-18 2003-03-04 Joseph Doumit Early warning water leak detection system
CN101490522A (zh) * 2006-07-13 2009-07-22 法国坦卡特土工合成材料公司 在水工建筑物中检测并定位故障的设备、系统和方法以及配备有该设备的水工建筑物
CN102720949A (zh) * 2012-06-11 2012-10-10 天津大学 一种光纤管道泄漏监测装置及其控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729144A (zh) * 2020-12-18 2021-04-30 南京大学 一种基于分布式光纤传感的多路光电复合缆区分方法
CN113865743A (zh) * 2021-10-13 2021-12-31 广东感芯激光科技有限公司 一种光纤分布式电池多点测温系统及应用
CN113865743B (zh) * 2021-10-13 2023-01-31 广东感芯激光科技有限公司 一种光纤分布式电池多点测温系统及应用

Also Published As

Publication number Publication date
GB2553254A (en) 2018-02-28
US20180180510A1 (en) 2018-06-28
JP2018524579A (ja) 2018-08-30
CN105181362B (zh) 2016-04-13
GB2553254B (en) 2018-10-03
JP6517373B2 (ja) 2019-05-22
GB201720707D0 (en) 2018-01-24
AU2015398793B2 (en) 2019-07-18
SG11201710520VA (en) 2018-01-30
US10571359B2 (en) 2020-02-25
AU2015398793A1 (en) 2018-01-18
CN105181362A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2016201857A1 (zh) 水工建筑物渗流性态分布式光纤感知集成系统与方法
JP2018524579A5 (ja) 分布型光ファイバーで水理構造物の浸透流の形態を検知する集積システム
WO2014205996A1 (zh) 基于光纤光栅测温系统进行变压器寿命预测的方法
CN101297333A (zh) 火灾探测
WO2016086856A1 (zh) 一种全光学化的流体质量流量监测装置和方法
CN109856032B (zh) 点热源移动分布式渗流监测系统及其监测方法
CN106248174A (zh) 一种土石堤坝渗流浸润面光纤监测装置及方法
CN204903035U (zh) 一种双头结构的分布式光纤测温系统
CN104019923A (zh) 电伴热系统在线监测管理方案
CN104697665A (zh) 一种基于分布式光纤的高炉热风炉温度监测系统及方法
CN204789002U (zh) 水工建筑物渗流性态分布式光纤感知集成系统
CN204302180U (zh) 一种痕量气体传感器光路系统及气室
CN106199062A (zh) 地下水渗流速度及温度的微球测量装置
CN208223842U (zh) 便携式冷水热泵机组性能测试装置
CN109798448A (zh) 基于反斯托克斯光滤波的混凝土管道泄漏实验装置及方法
CN203298900U (zh) 一种可现场自动温度校准的分布式光纤温度传感系统
CN202533198U (zh) 分布式光纤布里渊应变和温度传感器
CN101949829A (zh) 一种核电氢浓度检测装置
WO2016201880A1 (zh) 涉水建筑物健康感知分布式光纤率定系统及方法
CN107315028B (zh) 金属反射型保温块导热性能的测量控制系统及测量方法
Bai et al. Multi-parameter cbm pipeline safety monitoring system based on optical fiber sensing
Li et al. Application of fiber optic sensors for vibration and ignition monitoring of a belt conveyor system
Li et al. Design of in-situ monitor system for lithium-ion battery based on multifunctional fiber
CN203798732U (zh) 一种污泥含水率的分析装置
CN103033282A (zh) 一种检测磁约束聚变装置偏滤器石墨瓦瞬态温度的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201720707

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20151030

WWE Wipo information: entry into national phase

Ref document number: 15736027

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017565685

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201710520V

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015398793

Country of ref document: AU

Date of ref document: 20151030

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15895426

Country of ref document: EP

Kind code of ref document: A1