WO2014205996A1 - 基于光纤光栅测温系统进行变压器寿命预测的方法 - Google Patents

基于光纤光栅测温系统进行变压器寿命预测的方法 Download PDF

Info

Publication number
WO2014205996A1
WO2014205996A1 PCT/CN2013/087933 CN2013087933W WO2014205996A1 WO 2014205996 A1 WO2014205996 A1 WO 2014205996A1 CN 2013087933 W CN2013087933 W CN 2013087933W WO 2014205996 A1 WO2014205996 A1 WO 2014205996A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
life
temperature
fiber grating
wavelength
Prior art date
Application number
PCT/CN2013/087933
Other languages
English (en)
French (fr)
Inventor
张军六
周国华
熊莉娟
高欣
许强
任建功
王珊珊
梁嗣元
Original Assignee
国网山西省电力公司太原供电公司
国网电力科学研究院武汉南瑞有限责任公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网山西省电力公司太原供电公司, 国网电力科学研究院武汉南瑞有限责任公司, 国家电网公司 filed Critical 国网山西省电力公司太原供电公司
Priority to US14/901,716 priority Critical patent/US20160320324A1/en
Publication of WO2014205996A1 publication Critical patent/WO2014205996A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • G01K3/14Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of space
    • G01K2003/145Hotspot localization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Definitions

  • the invention belongs to the field of transformer online monitoring in power transmission and transformation equipment, and is precisely a method for detecting the actual temperature inside the transformer by using a fiber optic grating temperature measuring system, and evaluating and predicting the life of the insulation according to the insulation property of the transformer. Background technique
  • the internal temperature of the power transformer is an important parameter to characterize the thermal characteristics of the transformer, and is also the decisive factor for the insulation life of the transformer.
  • the loss of transformer insulation life can be known. It depends directly on the hottest temperature of the transformer and its duration. Due to the high voltage and strong electromagnetic field environment inside the transformer, the traditional temperature measurement method is difficult or impossible to obtain real test results. Therefore, researchers at home and abroad have carried out relevant research very early and have achieved certain results.
  • there are mainly three methods for obtaining the internal temperature of the transformer namely thermal analog measurement method, indirect calculation method and direct measurement method.
  • ⁇ 3 ⁇ 4 is the temperature difference of copper oil
  • t& is the top oil temperature
  • K is the hot spot coefficient.
  • the test system uses the current transformer to take the current ' (proportional to the load) and flows through the specially designed heating element in the temperature pack to obtain ⁇ ' ⁇ , plus the winding hot spot temperature.
  • thermal simulation measurement is that the top of the transformer tank, the top oil temperature in the winding and the transformer oil temperature are similar. This is not suitable for multi-channel system transformers; and the additional temperature rise generated by the simulation is calibrated, but the temperature rise process of the running winding is not the same as the simulation, and the error is large.
  • the French power grid has disabled the temperature measuring device. After analyzing the measurement error of the "thermal simulation method", it is considered that the strict design and selection of the "thermal simulation” winding thermometer and thermometer holder can improve the temperature measurement performance of the "thermal simulation method".
  • the most widely used indirect calculation method is the hotspot temperature calculation model recommended in IEEE Std C57.91 and IEC354 standards.
  • the hot spot temperature is calculated from the ambient temperature, the top or bottom oil temperature, and the temperature difference of the winding hot spot to the oil.
  • the prediction equation use for different load conditions The same load factor is corrected.
  • the corresponding winding index and oil index are used for correction.
  • the empirical model has a large error in calculation, especially the top oil temperature of the large-capacity transformer lags significantly behind the winding oil temperature.
  • the top oil temperature of the transformer needs to pass a delay due to the heat transfer response speed.
  • the indirect calculation method approximates the temperature of the transformer winding hot spot and can basically reflect the true heat conduction process. However, there is not enough response to the nonlinear characteristics of the transformer. All the important factors affecting the temperature distribution of the hot spot of the transformer winding are not covered in the thermal path. At the same time, many calculation parameters in the calculation formula are empirically obtained, and the generality is not strong, which causes the accuracy of the calculation result to be insufficient. Moreover, the thermal model method can only solve the hot spot temperature value, and the specific position of the hot spot cannot be obtained.
  • the direct measurement method is to install a temperature sensor in the transformer near the wire or in the wire cake to directly measure the hot spot temperature of the winding.
  • the sensor has various forms such as audio, crystalline quartz, fluorescent, infrared radiation excited, gallium arsenide crystal photoluminescence sensor and the like.
  • the embedding method has multiple points of embedding into the flow channel gap and only burying the outlet of the in-line cake gap.
  • the conventional electric sensor temperature measurement system cannot be used, and the infrared optical temperature measurement system can only be used for the measurement of the surface temperature of the object, and the internal temperature of the transformer with complicated structure cannot be performed.
  • the fiber optic temperature sensor has good electrical insulation, strong electromagnetic field interference capability and excellent reliability, so it is very suitable for temperature measurement inside the transformer.
  • the temperature measurement error of the distributed optical fiber temperature measurement system is generally several degrees Celsius, and the positioning error is about one meter.
  • the positioning error is obviously larger. If the accuracy of the positioning is lowered, the resolution of the temperature will be lowered. Therefore, the monitoring application of the temperature monitoring system in the internal temperature of the transformer needs further research.
  • Fiber Bragg Grating Temperature Measurement System is a quasi-distributed temperature measurement. It uses the spatial phase grating formed by the fiber core to measure the temperature of the fiber material. The sensing process uses the external parameters to modulate the center wavelength of the Bragg grating. The information is a wavelength-modulated fiber-optic sensor with excellent reliability and stability.
  • the fiber Bragg grating sensing system is connected in series with a plurality of fiber grating sensors in a single fiber. The working wavelengths of each grating are separated from each other.
  • the wavelength detection demodulation system After the reflected light is taken out by the 3dB coupler, the wavelength detection demodulation system simultaneously polarizes the wavelengths of the plurality of gratings. The measurement is performed to detect the corresponding measured size and spatial distribution.
  • each fiber grating reflects back a narrow band of light of a different Bragg wavelength. Any excitation effect on the fiber grating, such as temperature or strain, will result in a change in the Bragg wavelength of this fiber grating.
  • the distributed fiber Bragg grating demodulation system measures the change of the parameter to be measured at each point by measuring the fine changes in the wavelength of the reflected light of the fiber grating sensor at each test point.
  • the FBG sensor itself has quasi-distributed sensing fiber temperature monitoring.
  • the system also has the following advantages:
  • the quasi-distributed sensing fiber monitoring system can sense the change of the measured parameter along the length of the fiber in the form of a continuous function of the length of the continuous fiber, that is, any point of the fiber It is a "sensor", and its amount of information can be said to be massive information.
  • the measuring point can be set as required, that is, the distance of 2 m can be taken as one measuring point, or the distance of l m can be taken as one measuring point. Therefore, it is extremely convenient to monitor the disease location.
  • the present invention provides a method for predicting the life of a transformer based on a fiber grating temperature measurement system to meet practical application requirements.
  • the technical solution adopted by the present invention is: a method for predicting the life of a transformer based on a fiber grating temperature measuring system, which is characterized in that it comprises the following steps:
  • the fiber grating temperature measuring system comprises a transformer body, a terminal PC, a wavelength demodulating device and a plurality of fiber grating sensors arranged inside the transformer body, wherein the wavelength demodulating device comprises a broadband Light source, 3dB coupler, optical opening, FP filter, photoelectric conversion module, sawtooth generator, several optical fibers;
  • the working process of the fiber grating temperature measurement system is: the light emitted by the broadband light source passes through the 3dB coupler, and then Light-emitting light is irradiated into each of the optical fibers; a plurality of fiber grating sensors having different center wavelengths are reflected in series on each of the optical fibers, and the broadband light is irradiated to each of the fiber grating sensors to reflect the narrow-band light having different peak wavelengths, and then passed through the optical switch.
  • V n _ is the relative aging rate in the nth time interval:
  • N the ordinal number of each time interval during the period under consideration
  • the internal insulation aging degree of the transformer can be evaluated in a targeted manner, and the degree of influence of the insulation aging on the transformer at the position is determined according to the internal partial insulation position, thereby scientifically and effectively describing the life of the transformer.
  • the invention has the beneficial effects that: the method of the invention can calculate and evaluate the loss of the inner insulation life of the transformer and the rate of change thereof by using the fiber grating temperature measuring system, thereby guiding the operation and maintenance department to scientifically, safely and reliably improve the transformer operation and maintenance strategy.
  • the internal insulation degree of the transformer can be evaluated in a targeted manner, and the degree of influence of the insulation aging on the transformer at the position is determined according to the internal partial insulation position, thereby scientifically and effectively describing the life of the transformer.
  • Figure 1 is a structural view of a fiber grating temperature measuring system of the present invention. detailed description
  • the invention utilizes the fiber grating temperature measuring system to describe the internal temperature of the transformer in a quasi-distributed manner, and determines the hot spot position inside the transformer, and according to "GB 1094.7-2008 power transformer part 7: oil immersed power transformer load guide"
  • the internal area of the transformer is evaluated for life, and according to the life loss of each position of the transformer, the impact of the insulation characteristics of the transformer and the life of the part on the overall life of the transformer is combined to predict the life of the transformer.
  • the invention is described in detail below:
  • the structure of the fiber grating temperature measurement system is shown in Fig. 1. The whole system is composed of a transformer body 1, a terminal PC machine.
  • the light emitted from the broadband light source 5 passes through the 3dB coupler 6, and is then irradiated into each of the optical fibers 11 via the optical opening 7.
  • Each of the optical fibers 11 is connected in series with a plurality of fiber grating sensors 4 having different center wavelengths, and the broadband light is irradiated to each of the fiber grating sensors 4 to reflect the narrow-band light having different peak wavelengths, and then passed through the optical switch 7 and the 3dB coupler.
  • 6 Enters the FP filter 8 and the photoelectric conversion module 9, and converts the wavelength-coded sensing signal into a digital signal and sends it to the terminal PC 2 for arithmetic processing.
  • the reflection wavelength of the internally arranged FBG sensor 4 changes, and at the same time, the SCM of the sawtooth generator 10 supplies the piezoelectric ceramic sawtooth voltage, and the FP filter is changed.
  • the length of the cavity is matched with the wavelength of the FP filter 8.
  • the photodetector outputs a maximum value, and the scanning voltage of the piezoelectric ceramic is recorded.
  • the value, the scan voltage at that time and the wavelength of the fiber grating reflection constitute a data pair. According to the relationship between wavelength and temperature, the amount of change in wavelength can be measured to obtain the corresponding amount of temperature change, that is, the purpose of temperature measurement.
  • the six-degree rule can be used to calculate the internal insulation aging rate of the transformer. Out of its life loss, and according to the internal insulation position of the transformer, the impact on the transformer operation after the insulation aging of different positions of the transformer is different, so the loss life correction is needed to calculate the life loss of the transformer.
  • V n _ is the relative aging rate in the nth time interval
  • N the ordinal number of each time interval during the period under consideration
  • N The number of time intervals during the period under consideration.
  • the internal insulation aging degree of the transformer can be evaluated in a targeted manner, and the degree of influence of the insulation aging on the transformer at the position is determined according to the internal partial insulation position, thereby scientifically and effectively describing the life of the transformer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

一种基于光纤光栅测温系统进行变压器寿命预测的方法,利用光纤光栅温度测量系统,将变压器内部温度进行准分布式描述,确定变压器内部最热点位置,并对变压器内部局部区域进行寿命评估,并根据变压器各位置的寿命损耗,在结合变压器绝缘特性与该部位寿命对变压器整体寿命的影响,进行科学合理的变压器寿命预测。该方法能够利用光纤光栅温度测量系统,计算并评估变压器内部绝缘寿命的损耗与其变化速率,从而指导运维部门进行科学、安全可靠地改善变压器运维策略。

Description

基于光纤光栅测温系统进行变压器寿命预测的方法 技术领域
本发明属于输变电设备中变压器在线监测领域,准确的说是一种利用光纤光 栅温度测量系统,检测变压器内部实际温度情况, 并根据变压器绝缘特性对其绝 缘的寿命进行评估与预测。 背景技术
电力变压器的内部温度是表征变压器热特性的重要参数,也是变压器绝缘寿 命的决定因素, 根据《GB 1094.7-2008电力变压器第 7部分: 油浸式电力变压器 负载导则》, 可知变压器绝缘寿命的损耗直接取决于变压器运行过程中最热点温 度以及其持续时间。 由于变压器内部属于高电压、 强电磁场环境, 传统的测温方 法难于或根本无法得到真实的测试结果。因此国内外学者们很早就开展了相关的 研究, 并取得了一定的成果。 目前得到变压器内部温度主要有三种方法, 分别是 热模拟测量法, 间接计算法和直接测量法。
• 热模拟测量法 热模拟测量法以绕组热点温度^ = S^^e + 为基础。 式中 ^^¾为铜油温 差; t&为顶层油温; K为热点系数。 测试系统用电流互感器获取电流 ' (正比于 负荷), 流经温包内特别设计的加热元件以获取 Δί'^, 加上 即为绕组热点温度。
热模拟法测量的前提是变压器油箱顶层、 绕组内顶层油温和变压器油温近 似。这不适合多路系统变压器; 且模拟产生的附加温升^^虽已校准, 但运行绕 组的温升过程与模拟不尽相同, 误差较大, 法国电网已停用该测温装置。 对"热 模拟法"测量误差分析后, 认为严格设计与选型 "热模拟"绕组温度计与温度计 座可提高 "热模拟法" 的测温性能。
• 间接计算法
间接计算法中应用最为广泛的是 IEEE Std C57.91 和 IEC354 标准中推荐 的热点温度计算模型。在这两个模型中, 热点温度由环境温度, 顶油或底油温度 以及绕组热点对油的温差来计算得到。在预测方程中,针对不同负载情况采用不 同的负载系数进行修正,对于不同的冷却方式则采用相应的绕组指数和油指数进 行修正。但是, 经验模型在计算时误差较大, 尤其是大容量变压器顶层油温明显 滞后于绕组油温, 当变压器负荷快速增加时, 由于热传递响应速度的原因, 变压 器顶层油温需经过一段时延才能反映出绕组的工况变化,这种情况下此方法很难 能够反映绕组及匝间油道温度的快速变化,对变压器的允许过载及运行寿命评估 几乎没有实际意义。
因此,基于这两个预测模型又有学者提出了许多改进的热点温度模型,这类 模型是基于以上两标准中推荐的热点温度模型进行的改进。如通过对变压器不同 运行情况下试验发现当负载增加时,变压器绕组热点温度升高速度要比采用顶油 时间常数的指数方程预测值快, 因此其对标准中推荐方程进行了修正,在热点温 升系数上加入了过冲因子(overshoot factor )。还有, 在变压器短路热试验研究的 基础上对推荐方程进行了修改, 建立了基于底油温度的热点预测方程。 2001年, 加拿大 Manitoba 大学的 Swift 等人提出了一种基于热电类比的热点温度预测 模型。 此类模型中含有较多的非线性参数, 需要采用参数辨识方法来确定。
间接计算法可近似计算变压器绕组热点温度,能够基本反映真实的热传导过 程。但是对于变压器的非线性特征反应不足,在热路中没有涵盖影响变压器绕组 热点温度分布的全部重要因素, 同时计算公式中很多计算参数由经验得出,通用 性不强, 引起计算结果精度不足。且热模型法只能求解热点温度值, 不能得到热 点的具体位置。
• 直接测量法
直接测量法是在变压器靠近导线部位或导线线饼中安装温度传感器,直接测 量绕组的热点温度。 传感器有声频、 结晶石英、 莹光、 红外辐射激发式、 镓砷化 合物晶粒光致发光传感器等多种形式。埋入方法有多点埋入流道间隙及只埋在线 饼间隙流道出口处等多种。对变压器温度的直接检测不能采用常规的电传感器温 度测量系统, 而红外光学测温系统只能用于物体表面温度的测量,对结构复杂的 变压器内部温度无法进行。光纤温度传感器有良好的电绝缘性、极强的抗电磁场 干扰能力和优良的可靠性, 因此非常适合变压器内部的温度测量。
要获得一个一定跨度范围的整个温度信息,使用单点移动式或由多个单点组 成的准分布式传感方式既浪费资源又在布线上很困难。这时使用分布式光纤温度 传感器显然是最有效的方法。
分布式光纤温度传感器通常是将光纤沿温度场分布,借助于光在传输时光时 域后向散射 (optical time domain reflect简称 OTDR) 技术, 根据散射光所携带 的温度信息来测量温度。 目前研究最多, 最有影响力的基于散射机理的分布式光 纤温度传感器系统有: 基于光纤瑞利散射的光时域反射 (Rayliegh-OTDR) 测量 系统、 基于光纤喇曼散射的光时域反射(Raman-OTDR)测量系统和基于光纤布 里渊散射的光时域反射 (DOTDR-Brillouin OTDR) 测量系统。
由目前的研究成果来看, 分布式光纤测温系统的测温误差一般为几个摄氏 度, 定位误差为一米左右, 在电力系统主要应用于电缆的分布温度监测。对于变 压器内部温度的监测其定位误差显然较大,若提高其定位的精度就又会降低其对 温度的分辨率,所以这种温度监测系统在变压器内部温度的监测应用还需要进一 步研究。
近年来迅速发展的光纤光栅 (Fiber Bragg Grating-FBG) 传感器由于其特殊 的结构又为我们提供了一种新的温度监测系统。光纤光栅测温系统属于准分布式 温度测量, 是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测 温,传感过程则通过外界参量对布喇格光栅中心波长的调制来获取信息, 是一种 波长调制型光纤传感器, 具有非常好的可靠性和稳定性。光纤光栅传感系统在一 根光纤中串接多个光纤光栅传感器, 每个光栅的工作波长相互分开, 经 3dB耦合 器取出反射光后, 用波长探测解调系统同时对多个光栅的波长偏移进行测量, 从 而检测出相应被测量的大小和空间分布。当宽带光源照射光纤时,每一个光纤光 栅反射回一个不同布喇格波长的窄带光波。任何对光纤光栅的激励影响, 如温度 或应变, 都将导致这个光纤光栅布喇格波长的改变。分布式光纤光栅解调系统通 过测量各测试点光纤光栅传感器反射光波长的精细变化来测量各点的待测参量 的变化。
除了光纤光栅传感器本身具有的抗电磁干扰、 灵敏度高、 尺寸小、 易埋入、 利用复用技术易实现单纤多点、多参量准分布式测量等优点,准分布式传感型光 纤温度监测系统还有下列优点:
信息量大。 准分布式传感型光纤监测系统能在整个连续光纤的长度上以 距离的连续函数的形式传感出被测参数随光纤长度方向的变化,即光纤任一点都 是 "传感器", 它的信息量可以说是海量信息。
(b)结构简单、 可靠性高。 由于准分布式传感型光纤监测系统的光纤总线不 仅起传光作用而且起传感作用, 因此结构异常简单, 施工方便, 潜在故障少, 可 维护性好, 可靠性高。
(c)使用方便。 光纤埋设后, 测点可以按需要设定, 即可以取 2 m距离为 1 个测点, 也可以取 l m距离为 1个测点等。 因此, 在病害定位监测时极其方便。
有鉴于此,本发明提供一种基于光纤光栅测温系统进行变压器寿命预测的方 法, 以满足实际应用需要。 发明内容
本发明的目的是,克服现有技术的不足,发明一种基于光纤光栅测温系统进 行变压器寿命预测的方法。
本发明所采用的技术方案是:一种基于光纤光栅测温系统进行变压器寿命预 测的方法, 其特征在于, 包括如下步骤:
1 ) 提供一光纤光栅测温系统, 所述光纤光栅测温系统由变压器本体, 终端 PC机,波长解调仪和布置在变压器本体内部的若干光纤光栅传感器组成,其中, 波长解调仪包含宽带光源、 3dB耦合器、 光开光、 F-P滤波器、 光电转换模块、 锯齿波发生器、若干光纤; 所述光纤光栅测温系统的工作过程是: 由宽带光源发 出的光经 3dB耦合器, 再经光开光照射到各光纤中; 每根光纤上串联多个反射 中心波长不同的光纤光栅传感器,宽带光照射到每个光纤光栅传感器后将变为峰 值波长不同的窄带光反射回来, 再经光开关和 3dB耦合器进入 F-P滤波器以及 光电转换模块,将波长编码的传感信号转换为数字信号送入终端 PC机进行运算 处理;变压器本体工作中其内部温度会发生变化,导致内部布置的光纤光栅传感 器的反射波长发生变化,与此同时,锯齿波发生器的单片机提供给压电陶瓷锯齿 波电压, 改变 F-P滤波器腔长, 使通过 F-P滤波器的波长与之匹配, 当 F-P滤波 器的反射波长与光纤光栅传感器的反射波长相同时,光电探测器输出最大值,并 记录下压电陶瓷的扫描电压值,该时刻的扫描电压和光纤光栅反射波长构成了一 个数据对;根据波长与温度的关系,测出了波长变化量就能得到相应的温度变化 量, 即达到测温的目的;
2) 在布置光纤光栅温度测量系统时, 记录光纤光栅传感器布置位置, 计算 变压器内部绝缘老化率并得出其寿命损耗, 并根据变压器内部绝缘位置,针对变 压器不同位置绝缘老化后对变压器运行影响不尽相同,因此需要进行损失寿命矫 正, 从而计算变压器的寿命损耗:
老化率与温度关系如下表所示:
Figure imgf000007_0002
在一定时期变压器绝缘寿命损失 L为
Figure imgf000007_0001
式中:
Vn_为第 η个时间间隔内的相对老化率:
tn_第 η个时间间隔;
n—所考虑期间内每个时间间隔的序数;
Ν—所考虑期间内的时间间隔数。 则变压器寿命损失为: =:: k£
其中 k取值如下表所示:
Figure imgf000007_0003
通过该系统可以针对性的评估变压器内部绝缘老化程度,并根据内部局部绝 缘位置,判定该位置的绝缘老化对变压器的影响程度,从而科学有效的描述变压 器的寿命情况。
本发明的有益效果是: 本发明的方法能够利用光纤光栅温度测量系统,计算 并评估变压器内部绝缘寿命的损耗与其变化速率, 从而指导运维部门进行科学、 安全可靠地改善变压器运维策略。通过该系统可以针对性的评估变压器内部绝缘 老化程度, 并根据内部局部绝缘位置,判定该位置的绝缘老化对变压器的影响程 度, 从而科学有效的描述变压器的寿命情况。 附图说明
图 1是本发明的光纤光栅测温系统结构图。 具体实施方式
为了更好地理解本发明, 下面结合实施例进一步阐明本发明的内容,但本发 明的内容不仅仅局限于下面的实施例。本领域技术人员可以对本发明作各种改动 或修改, 这些等价形式同样在本申请所列权利要求书限定范围之内。
附图中的符号说明: 1-变压器本体、 2-终端 PC机、 3-波长解调仪、 4-光纤光 栅传感器、 5-宽带光源、 6-3dB耦合器、 7-光开光、 8- F-P滤波器、 9-光电转换 模块、 10-锯齿波发生器、 11-光纤。
本发明是利用光纤光栅温度测量系统, 将变压器内部温度进行准分布式描 述, 确定变压器内部最热点位置, 并根据《GB 1094.7-2008电力变压器 第 7部 分: 油浸式电力变压器负载导则》对变压器内部局部区域进行寿命评估, 并根据 变压器各位置的寿命损耗,在结合变压器绝缘特性与该部位寿命对变压器整体寿 命的影响, 进行科学合理的变压器寿命预测。 下面对本发明进行详细介绍: 光纤光栅测温系统结构如图 1所示, 整个系统由变压器本体 1, 终端 PC机
2, 波长解调仪 3和布置在变压器本体 1内部的若干光纤光栅传感器 4组成, 其 中, 波长解调仪 3包含宽带光源 5、 3dB耦合器 6、 光开光 7、 F-P滤波器 8、 光 电转换模块 9、 锯齿波发生器 10、 光纤 11等。
1. 光纤光栅测温系统
由宽带光源 5发出的光经 3dB耦合器 6,再经光开光 7照射到各光纤 11中。 每根光纤 11上串联多个反射中心波长不同的光纤光栅传感器 4, 宽带光照射到 每个光纤光栅传感器 4后将变为峰值波长不同的窄带光反射回来, 再经光开关 7 和 3dB耦合器 6进入 F-P滤波器 8以及光电转换模块 9,将波长编码的传感信号 转换为数字信号送入终端 PC机 2进行运算处理。变压器本体 1工作中其内部温 度会发生变化, 导致内部布置的光纤光栅传感器 4的反射波长发生变化, 与此同 时, 锯齿波发生器 10的单片机提供给压电陶瓷锯齿波电压, 改变 F-P滤波器 8 腔长, 使通过 F-P滤波器 8的波长与之匹配, 当 F-P滤波器的反射波长与光纤光 栅传感器 4的反射波长相同时,光电探测器输出最大值, 并记录下压电陶瓷的扫 描电压值, 该时刻的扫描电压和光纤光栅反射波长构成了一个数据对。根据波长 与温度的关系,测出了波长变化量就能得到相应的温度变化量, 即达到测温的目 的。
2. 寿命预测系统
在布置光纤光栅温度测量系统时,记录光纤光栅传感器布置位置,根据《GB 1094.7-2008电力变压器 第 7部分: 油浸式电力变压器负载导则》 规定六度法 则可以计算变压器内部绝缘老化率并得出其寿命损耗,并根据变压器内部绝缘位 置,针对变压器不同位置绝缘老化后对变压器运行影响不尽相同, 因此需要进行 损失寿命矫正, 从而计算变压器的寿命损耗。
老化率与温度关系如下表所示:
eh ( °ο 非热改性纸绝缘 V 热改性纸绝缘 V
80 0.125 0.036
86 0.25 0.073
92 0.5 0.145
98 1.0 0.282
104 2.0 0.536
110 4.0 1.0
116 8.0 1.83
122 16.0 3.29
128 32.0 5.8
134 64.0 10.1
140 128.0 17.2 在一定时期变压器绝缘寿命损失 L为
L =
Figure imgf000010_0001
式中:
Vn_为第 n个时间间隔内的相对老化率
tn_第 n个时间间隔;
n—所考虑期间内每个时间间隔的序数;
N—所考虑期间内的时间间隔数。
则变压器寿命损失为: 1 = msx kL
其中 k取值如下表所示:
Figure imgf000010_0002
通过该系统可以针对性的评估变压器内部绝缘老化程度,并根据内部局部绝 缘位置,判定该位置的绝缘老化对变压器的影响程度,从而科学有效的描述变压 器的寿命情况。
以上仅为本发明的实施例而已, 并不用于限制本发明, 因此, 凡在本发明的 精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明的权 利要求范围之内。

Claims

1、 一种基于光纤光栅测温系统进行变压器寿命预测的方法, 其特征在于, 包括如下步骤:
1 ) 提供一光纤光栅测温系统, 所述光纤光栅测温系统由变压器本体, 终端 PC机,波长解调仪和布置在变压器本体内部的若干光纤光栅传感器组成,其中, 波长解调仪包含宽带光源、 3dB耦合器、 光开光、 F-P滤波器、 光电转换模块、 锯齿波发生器、若干光纤; 所述光纤光栅测温系统的工作过程是: 由宽带光源发 出的光经 3dB耦合器, 再经光开光照射到各光纤中; 每根光纤上串联多个反射 中心波长不同的光纤光栅传感器,宽带光照射到每个光纤光栅传感器后将变为峰 值波长不同的窄带光反射回来, 再经光开关和 3dB耦合器进入 F-P滤波器以及 光电转换模块,将波长编码的传感信号转换为数字信号送入终端 PC机进行运算 处理;变压器本体工作中其内部温度会发生变化,导致内部布置的光纤光栅传感 器的反射波长发生变化,与此同时,锯齿波发生器的单片机提供给压电陶瓷锯齿 波电压, 改变 F-P滤波器腔长, 使通过 F-P滤波器的波长与之匹配, 当 F-P滤波 器的反射波长与光纤光栅传感器的反射波长相同时,光电探测器输出最大值,并 记录下压电陶瓷的扫描电压值,该时刻的扫描电压和光纤光栅反射波长构成了一 个数据对;根据波长与温度的关系,测出了波长变化量就能得到相应的温度变化 量, 即达到测温的目的;
2) 在布置光纤光栅温度测量系统时, 记录光纤光栅传感器布置位置, 计算 变压器内部绝缘老化率并得出其寿命损耗, 并根据变压器内部绝缘位置,针对变 压器不同位置绝缘老化后对变压器运行影响不尽相同,因此需要进行损失寿命矫 正, 从而计算变压器的寿命损耗:
老化率与温度关系如下表所示:
Figure imgf000011_0001
122 16.0 3.29
128 32.0 5.8
134 64.0 10.1
140 128.0 17.2 在一定时期变压器绝缘寿命损失 L为
L = I
Figure imgf000012_0001
或者
式中:
Vn_为第 η个时间间隔内的相对老化率:
tn_第 η个时间间隔;
n—所考虑期间内每个时间间隔的序数;
Ν—所考虑期间内的时间间隔数。 则变压器寿命损失为:
其中 k取值如下表所示:
Figure imgf000012_0002
通过该系统可以针对性的评估变压器内部绝缘老化程度,并根据内部局部绝 缘位置,判定该位置的绝缘老化对变压器的影响程度,从而科学有效的描述变压 器的寿命情况。
PCT/CN2013/087933 2013-06-28 2013-11-27 基于光纤光栅测温系统进行变压器寿命预测的方法 WO2014205996A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/901,716 US20160320324A1 (en) 2013-06-28 2013-11-27 Method for Predicting the Life of Transformer based on Fiber Grating Temperature Measurement System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310267539.9 2013-06-28
CN2013102675399A CN103364658A (zh) 2013-06-28 2013-06-28 基于光纤光栅测温系统进行变压器寿命预测的方法

Publications (1)

Publication Number Publication Date
WO2014205996A1 true WO2014205996A1 (zh) 2014-12-31

Family

ID=49366449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087933 WO2014205996A1 (zh) 2013-06-28 2013-11-27 基于光纤光栅测温系统进行变压器寿命预测的方法

Country Status (3)

Country Link
US (1) US20160320324A1 (zh)
CN (1) CN103364658A (zh)
WO (1) WO2014205996A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646017A (zh) * 2016-09-29 2017-05-10 国网山东省电力公司电力科学研究院 一种变压器重要度的划分方法
CN113804247A (zh) * 2021-08-03 2021-12-17 西安理工大学 基于法珀腔、光纤光栅的变压器油温油压多参量监测系统
CN116125147A (zh) * 2022-11-22 2023-05-16 西南交通大学 一种高温高湿环境下干式变压器绝缘材料的评估方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364658A (zh) * 2013-06-28 2013-10-23 国网电力科学研究院武汉南瑞有限责任公司 基于光纤光栅测温系统进行变压器寿命预测的方法
JP6037464B2 (ja) 2014-05-29 2016-12-07 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 電気機器の寿命を予測する装置及び方法
CN104122007A (zh) * 2014-07-03 2014-10-29 国家电网公司 基于光纤光栅温度传感器的gis设备触头温度监测系统
CN104089652B (zh) * 2014-07-14 2016-09-21 国家电网公司 一种光纤光栅变压器在线监测系统及其监测方法
CN104296859A (zh) * 2014-10-15 2015-01-21 北京交大创新科技中心 超高压电力变压器运行振动及温度状态监测装置
CN104515622A (zh) * 2014-12-26 2015-04-15 国家电网公司 变压器光纤光栅测温系统
CN104764950A (zh) * 2015-03-05 2015-07-08 广东电网有限责任公司电力科学研究院 油纸绝缘变压器的热寿命监测系统和方法
CN104655321B (zh) * 2015-03-19 2018-08-14 国家电网公司 一种电容器内熔丝温度测量装置
CN105092082A (zh) * 2015-08-14 2015-11-25 国网山东省电力公司电力科学研究院 高过载配电变压器的光纤光栅测温系统及方法
KR102558782B1 (ko) * 2016-05-04 2023-07-21 엘에스일렉트릭(주) 변압기의 손실 전력 예측 장치
CN106096256B (zh) * 2016-06-07 2018-08-14 四川大学 油浸式变压器固体混合绝缘系统分界温度及配置比例的计算方法
US20190011491A1 (en) * 2017-07-06 2019-01-10 Palo Alto Research Center Incorporated Optical monitoring for power grid systems
CN107765163A (zh) * 2017-09-07 2018-03-06 国营芜湖机械厂 一种基于光纤光栅温度传感器阵列的电路板故障诊断方法
CN109060158A (zh) * 2018-07-16 2018-12-21 深圳太辰光通信股份有限公司 油浸式变压器智能温度测量装置及其数据处理方法
CN109085198B (zh) * 2018-07-27 2022-04-12 昆明理工大学 一种测定变压器油对流换热系数的实验测量装置及使用方法
CN109165790A (zh) * 2018-09-03 2019-01-08 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 光电耦合器自然贮存寿命预测方法
CN109269543A (zh) * 2018-09-18 2019-01-25 浙江工业大学 一种传感光纤温度应变同时标定装置
CN110162860B (zh) * 2019-05-15 2022-11-11 山东航天电子技术研究所 一种星用光纤光栅应变传感器在轨超长寿命预测方法
CN111967730B (zh) * 2020-07-28 2024-05-28 国网江西省电力有限公司信息通信分公司 一种基于输电线路寿命的评估系统
CN112413616B (zh) * 2020-10-14 2022-11-18 湖北工业大学 一种高温锅炉自动温度场测量吹灰系统
CN112464408B (zh) * 2020-11-27 2023-03-24 四川长虹空调有限公司 贯流风道空调挂机风量与房间温度场均匀性仿真评估方法
CN112578236B (zh) * 2020-11-27 2023-04-28 深圳供电局有限公司 绝缘材料电老化测试系统
CN113125911A (zh) * 2021-04-26 2021-07-16 国网黑龙江省电力有限公司电力科学研究院 直流电老化试验装置
CN113325027B (zh) * 2021-08-02 2021-09-28 西南交通大学 一种压电陶瓷测量冻土未冻水含量的方法
CN113945299B (zh) * 2021-09-15 2024-07-02 广西电网有限责任公司电力科学研究院 一种变压器绕组温度分布与剩余寿命预测方法
CN113987909B (zh) * 2021-09-18 2023-05-02 广东电网有限责任公司广州供电局 油纸绝缘老化预测方法、装置、计算机设备和存储介质
CN114674457B (zh) * 2022-03-29 2024-01-23 苏州浪潮智能科技有限公司 一种印制电路板温度监测装置及方法
CN116227171B (zh) * 2023-02-08 2024-02-06 广东电网有限责任公司佛山供电局 一种油浸式变压器剩余寿命评估方法及装置
CN118226295B (zh) * 2024-05-23 2024-08-23 厦门和储能源科技有限公司 基于单光纤传感的电芯电压、温度采样的储能系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055858A (ja) * 2002-07-22 2004-02-19 Hitachi Ltd 油入り変圧器の劣化・余寿命診断システム
CN200989791Y (zh) * 2006-10-31 2007-12-12 东莞圣太光电技术有限公司 多通道光纤光栅解调器
CN101447048A (zh) * 2008-12-30 2009-06-03 上海发电设备成套设计研究院 一种变压器绝缘寿命预测的方法与寿命管理系统
CN101949744A (zh) * 2010-09-06 2011-01-19 国网电力科学研究院武汉南瑞有限责任公司 一种基于光纤光栅的变压器内部温度检测系统
CN102096030A (zh) * 2010-12-10 2011-06-15 西安交通大学 一种基于运行数据评估电力变压器绝缘剩余寿命的方法
CN103364658A (zh) * 2013-06-28 2013-10-23 国网电力科学研究院武汉南瑞有限责任公司 基于光纤光栅测温系统进行变压器寿命预测的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623265A (en) * 1984-09-26 1986-11-18 Westinghouse Electric Corp. Transformer hot-spot temperature monitor
EP0232720A1 (en) * 1986-01-10 1987-08-19 Omron Tateisi Electronics Co. Multi channel temperature controller utilizing electronic multiplexer
NO310125B1 (no) * 1999-05-06 2001-05-21 Leiv Eiriksson Nyfotek As System for overvåking av höyspentkabler i luftstrekk
DE10012291C1 (de) * 2000-03-14 2001-09-20 Reinhausen Maschf Scheubeck Verfahren zur faseroptischen Temperaturmessung und faseroptischer Temperatursensor
DE10037501C1 (de) * 2000-08-01 2001-11-29 Reinhausen Maschf Scheubeck Verfahren und Vorrichtung zur Wellenlängendetektion
US6751241B2 (en) * 2001-09-27 2004-06-15 Corning Incorporated Multimode fiber laser gratings
US7263245B2 (en) * 2005-03-14 2007-08-28 The Boeing Company Method and apparatus for optically powering and multiplexing distributed fiber optic sensors
JP5218648B2 (ja) * 2009-05-01 2013-06-26 富士通株式会社 温度測定システム及び温度測定方法
CN101813529A (zh) * 2009-11-06 2010-08-25 武汉烽火富华电气有限责任公司 光纤光栅测温系统及多点测温方法
US9120286B2 (en) * 2011-03-31 2015-09-01 Fos Llc Fiber optic sensor thermally matched support tubes for distributed fiber optic sensing
CN102494801B (zh) * 2011-12-07 2013-05-29 电子科技大学 一种分布式光延迟光纤温度传感器
CN103425149A (zh) * 2013-06-28 2013-12-04 国网电力科学研究院武汉南瑞有限责任公司 基于利用光纤光栅技术测量的热点温度的变压器负荷控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055858A (ja) * 2002-07-22 2004-02-19 Hitachi Ltd 油入り変圧器の劣化・余寿命診断システム
CN200989791Y (zh) * 2006-10-31 2007-12-12 东莞圣太光电技术有限公司 多通道光纤光栅解调器
CN101447048A (zh) * 2008-12-30 2009-06-03 上海发电设备成套设计研究院 一种变压器绝缘寿命预测的方法与寿命管理系统
CN101949744A (zh) * 2010-09-06 2011-01-19 国网电力科学研究院武汉南瑞有限责任公司 一种基于光纤光栅的变压器内部温度检测系统
CN102096030A (zh) * 2010-12-10 2011-06-15 西安交通大学 一种基于运行数据评估电力变压器绝缘剩余寿命的方法
CN103364658A (zh) * 2013-06-28 2013-10-23 国网电力科学研究院武汉南瑞有限责任公司 基于光纤光栅测温系统进行变压器寿命预测的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646017A (zh) * 2016-09-29 2017-05-10 国网山东省电力公司电力科学研究院 一种变压器重要度的划分方法
CN113804247A (zh) * 2021-08-03 2021-12-17 西安理工大学 基于法珀腔、光纤光栅的变压器油温油压多参量监测系统
CN113804247B (zh) * 2021-08-03 2024-05-14 西安理工大学 基于法珀腔、光纤光栅的变压器油温油压多参量监测系统
CN116125147A (zh) * 2022-11-22 2023-05-16 西南交通大学 一种高温高湿环境下干式变压器绝缘材料的评估方法
CN116125147B (zh) * 2022-11-22 2024-01-16 西南交通大学 一种高温高湿环境下干式变压器绝缘材料的评估方法

Also Published As

Publication number Publication date
CN103364658A (zh) 2013-10-23
US20160320324A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
WO2014205996A1 (zh) 基于光纤光栅测温系统进行变压器寿命预测的方法
WO2014161476A1 (zh) 基于线型感温技术的电缆载流量分析系统及计算方法
CN109855759A (zh) 一种高温超导电缆温度测量系统
TW500912B (en) Method to sense the stress and temperature distribution of fiber simultaneously
CN104697664B (zh) 调整变压器绕组热点温度在线监测的方法
CN109595470B (zh) 一种分布式管道检测方法
CN102103173A (zh) 基于分布式光纤测温方法的电缆载流量监测方法及系统
CN103499768A (zh) 一种电力电缆实时状态监测和运行管理系统及电缆温度测量方法
CN103076108A (zh) 一种基于fbg的新型电力电缆导体温度测量传感器
CN109000822A (zh) 分布式光纤测温装置
CN107422215A (zh) 一种基于分布式光纤测温技术的电缆载流量监测方法及系统
Yang et al. Internal temperature measurement and conductor temperature calculation of XLPE power cable based on optical fiber at different radial positions
CN111238682A (zh) 基于光纤光栅的电力变压器油温度监测系统
CN103487162A (zh) 基于光纤网络的高压设备触点温度在线监测系统
US9541458B2 (en) Method for determining a temperature in a winding of subconductors of an electric machine
Zhang et al. Real-time temperature monitoring system using FBG sensors on an oil-immersed power transformer
CN201955411U (zh) 基于分布式光纤测温方法的电缆载流量监测系统
CN103913251A (zh) 内置光纤的电缆测温系统
CN202511922U (zh) 一种Oppc光缆应力和载流量测量计算系统
Wei-Gen et al. The measuring method for internal temperature of power transformer based on FBG sensors
CN2844873Y (zh) 一种基于分布式光纤的对电缆温度检测装置
CN203132737U (zh) 一种基于fbg的新型电力电缆导体温度测量传感器
CN204389060U (zh) 变压器光纤光栅测温系统
Dechun et al. The study of temperature measurement on optical fiber in OPGW based on stimulated Brillouin scattering
CN104034442A (zh) 变压器油温度在线监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14901716

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13888158

Country of ref document: EP

Kind code of ref document: A1