WO2016086856A1 - 一种全光学化的流体质量流量监测装置和方法 - Google Patents

一种全光学化的流体质量流量监测装置和方法 Download PDF

Info

Publication number
WO2016086856A1
WO2016086856A1 PCT/CN2015/096187 CN2015096187W WO2016086856A1 WO 2016086856 A1 WO2016086856 A1 WO 2016086856A1 CN 2015096187 W CN2015096187 W CN 2015096187W WO 2016086856 A1 WO2016086856 A1 WO 2016086856A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing unit
fiber
mass flow
fluid
division multiplexer
Prior art date
Application number
PCT/CN2015/096187
Other languages
English (en)
French (fr)
Inventor
周斌
姜恒和
何赛灵
陈卓
高少锐
Original Assignee
华南师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南师范大学 filed Critical 华南师范大学
Publication of WO2016086856A1 publication Critical patent/WO2016086856A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material

Definitions

  • the invention relates to the field of fluid mass flow monitoring research, and in particular to an all-optical fluid mass flow monitoring device and method.
  • fluid mass flow monitoring technology is widely used in various fields such as industrial production, energy metering, environmental protection engineering and transportation.
  • This monitoring technology can be used for both fluid mass flow metering and process control.
  • Widely used in the market is a thermal mass flow meter.
  • the sensor in this flowmeter is composed of a thermistor, and the sensing unit is electrically heated during monitoring. Therefore, there is a safety hazard of sparking during the monitoring process, and the heating wire is also susceptible to corrosion.
  • Fiber Bragg Grating FBG
  • FBG Fiber Bragg Grating
  • An object of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide an all-optical fluid mass flow monitoring device, which has the advantages of full optics, miniaturization, and simple structure, and the entire sensing unit is made of optical fiber. It has a very strong corrosion resistance and has no hidden dangers of sparking. It has a wide range of applications, especially for the monitoring of flammable and explosive fluids.
  • Another object of the present invention is to provide a monitoring method based on the above-described all-optical fluid mass flow monitoring device, which preliminarily causes the sensing unit to maintain the pre-measurement while the fluid to be tested is at rest. It is stable after the temperature is fixed, and the mass flow rate is measured according to the change of the interference peak wavelength caused by the temperature change of the fluid to be tested flowing through the sensing unit, which has the advantages of accurate measurement, sensitivity, and stable operation.
  • an all-optical fluid mass flow monitoring device comprising a heating source, a detection source, a first filter wavelength division multiplexer, a sensing unit and a spectrum analysis device, first The filter wavelength division multiplexer is respectively connected to the detection light source, the heating light source and the sensing unit, and the sensing unit is connected to the spectrum analysis device;
  • the sensing unit is a composite structure of a single mode fiber-photothermal fiber-single mode fiber, A fiber grating is written on the two-stage single-mode fiber to form a Fabry-Perot cavity, and the photothermal fiber is a resonant cavity; when working, the heating light from the heating source is passed through the first filter-type wavelength division multiplexer.
  • the photothermal fiber in the sensing unit absorbs, and the light emitted by the detecting source passes through the first filter-type wavelength division multiplexer, enters the sensing unit, and then transmits the light into the spectrum analyzing device.
  • the invention utilizes a Fabry-Perot cavity composed of a pair of fiber gratings and a photothermal fiber to realize monitoring of fluid mass flow.
  • a second filter-type wavelength division multiplexer is further disposed between the sensing unit and the spectrum analysis device, and the second filter-type wavelength division multiplexer includes an energy output port that is not absorbed by the optical fiber.
  • the heated light exits the monitoring device via the energy output port, and the transmitted light enters the spectral analysis device via the second filtered wavelength division multiplexer. Because the energy of the heated light is relatively large, the second filter-type wavelength division multiplexer is added to guide the direction of the residual heated light energy, so that it leaves the monitoring device directly instead of entering the spectrum analysis device, thereby protecting the spectrum. Analytical equipment.
  • the length of the photothermal fiber does not exceed 2 mm.
  • the cavity of the Fabry-Perot cavity formed by the photothermal fiber the smaller the cavity length, the larger the wavelength interval between the resonant peaks of the Fabry-Perot cavity.
  • the length of the photothermal fiber does not exceed 2 mm, which can ensure that only one Fabry-Perot cavity resonance peak appears within the characteristic spectrum of the fiber grating, which brings convenience to the detection.
  • the fiber grating is a fiber Bragg grating (FBG) having a length of 2 mm to 6 mm.
  • FBG fiber Bragg grating
  • the fluid mass flow monitoring device comprises a plurality of sensing units having different interference peak wavelength positions, the sensing unit is placed at a plurality of monitoring points, and the sensing units are connected in series by an optical fiber. If the fluid mass flow rate of a monitoring point changes, the interference peak wavelength of the corresponding monitoring point will drift, so that multi-point monitoring measurement can be realized.
  • a monitoring method based on the above-mentioned all-optical fluid mass flow monitoring device wherein when the fluid to be tested is in a static state, the photothermal fiber on the sensing unit rises in temperature after absorbing the light energy emitted by the heating source, and is maintained after rising to a predetermined temperature. Stable; the fluid to be tested flows through the sensing unit and carries away heat, making Fabri - The effective cavity length of the Perot cavity changes and causes the drift of the interference peak, and the interference peak drift is detected. Through data calibration, the mass flow rate of the current fluid is finally calculated.
  • the sensing unit When the fluid to be tested flows through the sensing unit, it takes away the heat of the sensing unit and causes a change in its temperature, causing the effective cavity length of the Fabry-Perot cavity to change and causing the drift of the interference peak wavelength;
  • the light enters the sensing unit through the first filter-type wavelength division multiplexer, and then the transmitted light enters the spectrum analysis device through the second filter-type wavelength division multiplexer;
  • the wavelength of the heating light source is set in the absorption band of the photo-thermal fiber, And not covering the characteristic reflection wavelength of the fiber grating, and the wavelength range of the detection light source covers the characteristic reflection wavelength of the fiber grating;
  • the spectrum analysis device detects the transmission spectrum after the sensing unit, and obtains the interference peak drift amount. Through data calibration, the mass flow rate of the current fluid is finally calculated.
  • the sensitivity of the fluid mass flow monitoring is adjusted by adjusting the power of the heating source or by changing the photothermal absorption coefficient of the photothermal fiber.
  • the present invention has the following advantages and beneficial effects:
  • the invention can detect the mass flow rate of any fluid which does not corrode the optical fiber under the condition of the type and concentration of the fluid, in particular, it is suitable for the flammable and explosive fluid mass flow metering and the process control of the flammable and explosive fluid, and Compared with the conventional fluid mass flow meter, the sensing unit used in the present invention is a fiber sensing unit, which has a small size and adopts an all-optical design structure, and the sensing unit exposed to the flammable and explosive fluid does not need any electronic device. It will not be subject to external electromagnetic interference, nor will it cause safety hazards such as electric sparks.
  • the sensing unit of the present invention all adopts an optical fiber, and has the characteristics of being able to work stably in a corrosive environment for a long period of time compared with the heating wire.
  • the invention adopts the optical fiber structure, and the monitoring signal can transmit a long distance, and can perform remote online monitoring and measurement.
  • the present invention can place sensing units with different interference peak wavelength positions at different monitoring points, and connect the sensing units in series with optical fibers. If the mass flow rate of the flammable and explosive fluid at a monitoring point changes, the interference peak wavelength of the corresponding monitoring point will drift, thus achieving multi-point monitoring and measurement.
  • Figure 1 is a schematic view showing the structure of the apparatus of the present invention
  • Figure 2 is a schematic view showing the structure of a sensing unit in the apparatus of the present invention.
  • an all-optical fluid mass flow monitoring device of the present embodiment includes a heating source 1, a detecting light source 2, a first filtering type wavelength division multiplexer 3, a sensing unit 4, and a second filtering type.
  • the heating light source 1, the detecting light source 2, and the sensing unit 4 are respectively connected to the first filtering type wavelength division multiplexer 3, and the second filtering type wavelength division multiplexer 5 is respectively connected to the other end of the sensing unit 4, and the spectrum analyzing device. 6.
  • the structure of the sensing unit in this embodiment is as shown in FIG. 2, and the sensing unit 4 is a composite structure of a single mode fiber (4-1)-photothermal fiber (4-3)-single mode fiber (4-5). The three are welded by a fusion splicer.
  • the two-stage single-mode fibers 4-1 and 4-5 are respectively written with fiber Bragg gratings 4-2 and 4-4 to form a Fabry-Perot cavity, and the photothermal fiber 4-3 is a resonant cavity.
  • the photothermal fiber uses an optical fiber doped with Co (cobalt) element, which converts light energy propagating inside the fiber into thermal energy.
  • the lengths of the fiber Bragg gratings 4-2 and 4-4 are selected to be 6 mm, and the length of the optical fiber is 2 mm.
  • the first filter-type wavelength division multiplexer 3 includes three interfaces, wherein the heating light source 1 is optically connected to the 3-2 port of the first filter-type wavelength division multiplexer 3, and the detection light source 2 and the The filter-type wavelength division multiplexer 3 is optically connected to the 3-3 port, and the sensing unit 4 is optically connected to the 3-1 port of the first filter-type wavelength division multiplexer 3.
  • the second filter-type wavelength division multiplexer 5 also has three interfaces, wherein the 5-1 port of the second filter-type wavelength division multiplexer 5 is connected to the other end of the sensing unit 4, and the spectrum analysis device 6 and the second The filter-type wavelength division multiplexer 5 is connected to the 5-2 port, and the 5-3 port of the second filter-type wavelength division multiplexer 5 is an energy output port, and no heating device is connected to the device, and the heating light is not absorbed by the photothermal fiber. The energy output port leaves the monitoring device.
  • the monitoring method of the above all-optical fluid mass flow monitoring device comprises the following steps:
  • the sensing unit 4 is placed in a pipe through which the fluid to be tested flows.
  • the 5-3 end of the second filter-type wavelength division multiplexer 5 leaves the monitoring system; the light emitted by the detecting light source 2 passes through the first filter-type wavelength division multiplexer 3 to enter the sensing unit 4, and then transmits the light through the second The 5-2 end of the filter wavelength division multiplexer 5 enters the spectrum analysis device 6.
  • the wavelength of the heating source 1 is set within the absorption band of the photothermal fiber and does not cover the characteristic reflection wavelength of the fiber grating, and the wavelength range of the detection source 2 covers the characteristic reflection wavelength of the fiber grating.
  • the spectrum analysis device 6 detects the transmission spectrum after the sensing unit, and obtains the interference peak drift amount, and finally calculates the mass flow rate of the current fluid through data calibration.
  • the heating source 1, the detecting source 2, the first filtering type wavelength division multiplexer 3, the second filtering type wavelength division multiplexer 5, the spectrum analyzing device 6, and the single mode fiber 4 on the sensing unit 4 -1 and 4-5 and photothermal fiber 4-3 are mature products, and fiber gratings 4-2 and 4-4 are fabricated on single mode fibers 4-1 and 4-5 as mature techniques, and spectra detected by spectral analysis device 6 Data calibration algorithms with fluid mass flow are prior art.
  • This embodiment has the same structure as Embodiment 1 except for the following features:
  • the present embodiment is directed to a high-risk gas such as gas, carbon monoxide or acetylene or a corrosive gas such as chlorine gas or hydrogen chloride.
  • a high-risk gas such as gas, carbon monoxide or acetylene or a corrosive gas such as chlorine gas or hydrogen chloride.
  • the lengths of the fiber Bragg gratings 4-2 and 4-4 are selected to be 2 mm, and the length of the photothermal fiber 4-3 is selected to be 1 mm.
  • This embodiment has the same structure as Embodiment 1 except for the following features:
  • This embodiment is directed to a flammable and explosive liquid such as ethanol or isopropanone.
  • a flammable and explosive liquid such as ethanol or isopropanone.
  • the length of the fiber Bragg gratings 4-2 and 4-4 is selected to be 2 mm, and the length of the photothermal fiber 4-3 is selected to be 1 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种全光学化的流体质量流量监测装置,包括加热光源(1)、检测光源(2)、第一滤波式波分复用器(3)、传感单元(4)和光谱分析设备(6),传感单元(4)为单模光纤-光热光纤-单模光纤的复合结构,在两段单模光纤上都刻写有光纤光栅,形成法布里-珀罗腔,光热光纤为共振腔。还公开了一种基于全光学化的流体质量流量监测装置的监测方法。该装置和方法具有测量准确、灵敏、全光学化、小型化、安全等优点,尤其适用于易燃易爆流体的监测。

Description

一种全光学化的流体质量流量监测装置和方法 技术领域
本发明涉及流体质量流量监测研究领域,特别涉及一种全光学化的流体质量流量监测装置和方法。
背景技术
目前,流体质量流量监测技术被广泛的应用于工业生产、能源计量、环境保护工程和交通运输等各个领域。该监测技术既可以进行流体质量流量计量工作,也可用于过程控制。市场上广泛使用的是热式质量流量计,这种流量计中的传感器是由热敏电阻组成,在进行监测时,通过电学的方法对传感单元加热。因此在监测过程中存在出现电火花的安全隐患,同时电热丝还容易受到腐蚀。在存在汽油、煤油、液化石油气等易燃易爆的液体的环境,以及瓦斯气体、一氧化碳和乙炔等高危气体或者是氯气、氯化氢等腐蚀性气体的工作环境下,这类传统质量流量计就无法适用。
随着光纤技术的逐渐成熟,采用光纤进行监测成为研究热点。光纤主要由二氧化硅组成,具有非常强的抗腐蚀性,因此应用场合不受环境限制。同时光纤监测无需通过电子器件进行传感,因此避免了出现电火花的问题。在传感领域,光纤布拉格光栅(Fiber Bragg Grating,FBG)由于其对温度、应力、折射率变化非常敏感,而成为业内一个非常重要的传感器件。因此,寻求一种利用FBG特性,能够适用于各种流体,尤其是易燃易爆流体质量流量监测的装置和方法具有重要意义。
发明内容
本发明的一个目的在于克服现有技术的缺点与不足,提供一种全光学化的流体质量流量监测装置,该装置具有全光学化、小型化、结构简单的优点,整个传感单元皆由光纤构成,具有非常强的抗腐蚀性,并且无产生电火花的隐患,应用场合广泛,尤其是能应用于易燃易爆流体的监测。
本发明的另一目的在于提供一种基于上述全光学化的流体质量流量监测装置的监测方法,该方法是预先使传感单元在待测流体处于静止状态下维持在预 定温度后保持稳定,根据待测流体流过传感单元时温度的变化引起的干涉峰波长的变化来对质量流量进行测量,具有测量准确,灵敏,工作稳定的优点。
本发明的目的通过以下的技术方案实现:一种全光学化的流体质量流量监测装置,包括加热光源、检测光源、第一滤波式波分复用器、传感单元和光谱分析设备,第一滤波式波分复用器分别与检测光源、加热光源和传感单元连接,传感单元与光谱分析设备相连;所述传感单元为单模光纤-光热光纤-单模光纤的复合结构,在两段单模光纤上都刻写有光纤光栅,形成法布里-珀罗腔,光热光纤为共振腔;工作时,加热光源发出的加热光经第一滤波式波分复用器后被传感单元中的光热光纤吸收,检测光源发出的光经过第一滤波式波分复用器后进入传感单元,然后透射光进入光谱分析设备。本发明利用一对光纤光栅构成的法布里-珀罗腔以及光热光纤实现对流体质量流量的监测。
优选的,所述传感单元与光谱分析设备之间还设置一第二滤波式波分复用器,该第二滤波式波分复用器包括一能量输出端口,未被光热光纤吸收的加热光经能量输出端口离开监测装置,透射光经第二滤波式波分复用器进入光谱分析设备。因为加热光光能量比较大,增加这一第二滤波式波分复用器是为了引导残留的加热光光能量的方向,使其直接离开监测装置,而不是进入到光谱分析设备,进而保护光谱分析设备。
优选的,所述光热光纤长度不超过2mm。光热光纤构成的法布里-珀罗腔的腔体,腔体长度越小,法布里-珀罗腔的共振峰之间的波长间隔越大。光热光纤长度不超过2mm,能够保证光纤光栅的特征谱范围之内只出现一个法布里-珀罗腔的共振峰,给检测带来方便。
优选的,所述光纤光栅为光纤布拉格光栅(FBG),其长度为2mm到6mm。
优选的,所述流体质量流量监测装置包括若干个干涉峰波长位置不一样的传感单元,传感单元放置在若干个监控点,各个传感单元之间通过光纤串联。若某监控点流体质量流量发生变化,对应标注监控点干涉峰波长将发生漂移,从而可以实现多点监控测量。
一种基于上述全光学化的流体质量流量监测装置的监测方法,待测流体处于静止状态时传感单元上的光热光纤在吸收加热光源发出的光能后温度上升,上升到预定温度后保持稳定;待测流体流经传感单元并带走热量,使得法布里- 珀罗腔的有效腔长发生变化并引起干涉峰的漂移,检测干涉峰漂移量,通过数据标定,最终计算得到当前流体的质量流量。
具体的,包括以下步骤:
(1)将传感单元放置于待测流体流通的管道中;
(2)开启加热光源和检测光源,传感单元上的光热光纤吸收加热光源发出的光能,在待测液体处于静止状态下使得传感单元的温度上升到一预定温度后保持稳定,当待测流体流经传感单元时,带走传感单元的热量并引起其温度的变化,使得法布里-珀罗腔的有效腔长发生变化并引起干涉峰波长的漂移;检测光源发出的光经过第一滤波式波分复用器进入传感单元,然后透射光经第二滤波式波分复用器进入光谱分析设备;所述加热光源的波长设置在光热光纤的吸收带内,并且不覆盖光纤光栅的特征反射波长,检测光源的波长范围覆盖光纤光栅的特征反射波长;
(3)光谱分析设备检测经传感单元后的透射光谱,得到干涉峰漂移量,通过数据标定,最终计算得到当前流体的质量流量。
优选的,通过调节加热光源的功率或者改变光热光纤的光热吸收系数来调节流体质量流量监测的灵敏度。
本发明与现有技术相比,具有如下优点和有益效果:
1、本发明在预知流体的种类和浓度的情况下,可以检测任何不对光纤产生腐蚀的流体的质量流量,特别是适用于易燃易爆流体质量流量计量和易燃易爆流体过程控制,与传统的流体质量流量计相比,本发明采用的传感单元是光纤传感单元,尺寸很小,采用全光设计结构,暴露在易燃易爆流体中的传感单元不需要任何电子器件,不会受外界电磁干扰,也不会产生电火花等安全隐患。
2、本发明的传感单元全部采用光纤,与电热丝相比,具有能长期稳定地在腐蚀性环境下工作的特点。
3、本发明采用光纤结构,监测信号能传输很长的距离,可以做到远程在线监控测量。
4、本发明可以在不同的监控点处放置干涉峰波长位置不一样的传感单元,并将各传感单元用光纤串联。若某监控点易燃易爆流体质量流量发生变化,对应标注监控点干涉峰波长将发生漂移,从而实现多点监控测量。
附图说明
图1是本发明装置的结构示意图;
图2是本发明装置中传感单元的结构示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
如图1所示,本实施例一种全光学化的流体质量流量监测装置,包括加热光源1、检测光源2、第一滤波式波分复用器3、传感单元4、第二滤波式波分复用器5和光谱分析设备6。其中加热光源1、检测光源2、传感单元4均分别与第一滤波式波分复用器3连接,第二滤波式波分复用器5分别连接传感单元4另一端、光谱分析设备6。
本实施例中的传感单元结构如图2所示,传感单元4为单模光纤(4-1)-光热光纤(4-3)-单模光纤(4-5)的复合结构,三者通过熔接机熔接而成。两段单模光纤4-1和4-5上分别刻写有光纤布拉格光栅4-2和4-4,形成法布里-珀罗腔,光热光纤4-3为共振腔,本实施例中光热光纤采用掺杂了Co(钴)元素的光纤,该光纤可将在光纤内传播的光能转化为热能。本实施例针对汽油、煤油、液化石油气等易燃易爆的液体的环境,光纤布拉格光栅4-2和4-4的长度选择为6mm,光热光纤长度选择2mm。
如图1中所示,第一滤波式波分复用器3包括3个接口,其中加热光源1与第一滤波式波分复用器3的3-2端口光连接,检测光源2与第一滤波式波分复用器3的3-3端口光连接,传感单元4与第一滤波式波分复用器3的3-1端口光连接。第二滤波式波分复用器5同样有3个接口,其中,第二滤波式波分复用器5的5-1端口与传感单元4的另一端连接,光谱分析设备6与第二滤波式波分复用器5的5-2端口连接,第二滤波式波分复用器5的5-3端口为能量输出端口,不连接任何设备,未被光热光纤吸收的加热光经能量输出端口离开监测装置。
上述全光学化的流体质量流量监测装置的监测方法,包括以下步骤:
(1)将传感单元4置于待测流体流通的管道中。
(2)开启加热光源1和检测光源2,其中传感单元4上的光热光纤吸收加热光源1发出的光能,在待测流体处于静止状态下使得传感单元4的温度上升 到达一个相对高的温度,当待测流体流经传感单元4时,带走传感单元的热量并引起其温度的变化,使得法布里-珀罗腔的有效腔长发生变化;加热光最后经第二滤波式波分复用器5的5-3端离开监测系统;检测光源2发出的光经过第一滤波式波分复用器3进入传感单元4,然后透射光经第二滤波式波分复用器5的5-2端进入光谱分析设备6。加热光源1的波长设置在光热光纤的吸收带内,并且不覆盖光纤光栅的特征反射波长,检测光源2的波长范围覆盖光纤光栅的特征反射波长。
(3)光谱分析设备6检测经传感单元后的透射光谱,得到干涉峰漂移量,通过数据标定,最终计算得到当前流体的质量流量。
本实施例中,加热光源1、检测光源2、第一滤波式波分复用器3、第二滤波式波分复用器5、光谱分析设备6、传感单元4上的单模光纤4-1和4-5和光热光纤4-3为成熟产品,单模光纤4-1和4-5上制作光纤光栅4-2和4-4为成熟技术,光谱分析设备6检测到的光谱与流体质量流量的数据标定算法为现有技术。
实施例2
本实施例除下述特征外其他结构同实施例1:
本实施例针对瓦斯气体、一氧化碳和乙炔等高危气体或者是氯气、氯化氢等腐蚀性气体,光纤布拉格光栅4-2和4-4的长度选择为2mm,光热光纤4-3的长度选择1mm。
实施例3
本实施例除下述特征外其他结构同实施例1:
本实施例针对乙醇、异丙酮等易燃易爆液体,光纤布拉格光栅4-2和4-4的长度选择为2mm,光热光纤4-3的长度选择1mm。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

  1. 一种全光学化的流体质量流量监测装置,其特征在于,包括加热光源、检测光源、第一滤波式波分复用器、传感单元和光谱分析设备,第一滤波式波分复用器分别与检测光源、加热光源和传感单元连接,传感单元与光谱分析设备相连;所述传感单元为单模光纤-光热光纤-单模光纤的复合结构,在两段单模光纤上都刻写有光纤光栅,形成法布里-珀罗腔,光热光纤为共振腔;工作时,加热光源发出的加热光经第一滤波式波分复用器后被传感单元中的光热光纤吸收,检测光源发出的光经过第一滤波式波分复用器后进入传感单元,然后透射光进入光谱分析设备。
  2. 根据权利要求1所述的全光学化的流体质量流量监测装置,其特征在于,所述传感单元与光谱分析设备之间还设置一第二滤波式波分复用器,该第二滤波式波分复用器包括一能量输出端口,未被光热光纤吸收的加热光经能量输出端口离开监测装置,透射光经第二滤波式波分复用器进入光谱分析设备。
  3. 根据权利要求1所述的全光学化的流体质量流量监测装置,其特征在于,所述光热光纤长度不超过2mm。
  4. 根据权利要求1所述的全光学化的流体质量流量监测装置,其特征在于,所述光纤光栅为光纤布拉格光栅,其长度为2mm到6mm。
  5. 根据权利要求1所述的全光学化的流体质量流量监测装置,其特征在于,所述流体质量流量监测装置包括若干个干涉峰波长位置不一样的传感单元,传感单元放置在若干个监控点,各个传感单元之间通过光纤串联。
  6. 一种基于权利要求1-5任一项所述的全光学化的流体质量流量监测装置的监测方法,其特征在于,传感单元上的光热光纤在吸收加热光源发出的光能后温度上升,上升到预定温度后保持稳定;待测流体流经传感单元并带走热量,使得法布里-珀罗腔的有效腔长发生变化并引起干涉峰的漂移,检测干涉峰漂移量,通过数据标定,最终计算得到当前流体的质量流量。
  7. 根据权利要求6所述的监测方法,其特征在于,包括以下步骤:
    (1)将传感单元放置于待测流体流通的管道中;
    (2)开启加热光源和检测光源,传感单元上的光热光纤吸收加热光源发出的光能,在待测流体处于静止状态下使得传感单元的温度上升到一预定温度后保持稳定,当待测流体流经传感单元时,带走传感单元的热量并引起其温度的变化,使得法布里-珀罗腔的有效腔长发生变化并引起干涉峰波长的漂移;检测光源发出的光经过第一滤波式波分复用器进入传感单元,然后透射光经第二滤 波式波分复用器进入光谱分析设备;所述加热光源的波长设置在光热光纤的吸收带内,并且不覆盖光纤光栅的特征反射波长,检测光源的波长范围覆盖光纤光栅的特征反射波长;
    (3)光谱分析设备检测经传感单元后的透射光谱,得到干涉峰漂移量,通过数据标定,最终计算得到当前流体的质量流量。
  8. 根据权利要求6所述的监测方法,其特征在于,通过调节加热光源的功率或者改变光热光纤的光热吸收系数来调节流体质量流量监测的灵敏度。
PCT/CN2015/096187 2014-12-02 2015-12-01 一种全光学化的流体质量流量监测装置和方法 WO2016086856A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410725414.0 2014-12-02
CN201410725414.0A CN104390671B (zh) 2014-12-02 2014-12-02 一种全光学化的流体质量流量监测装置和方法

Publications (1)

Publication Number Publication Date
WO2016086856A1 true WO2016086856A1 (zh) 2016-06-09

Family

ID=52608606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096187 WO2016086856A1 (zh) 2014-12-02 2015-12-01 一种全光学化的流体质量流量监测装置和方法

Country Status (2)

Country Link
CN (1) CN104390671B (zh)
WO (1) WO2016086856A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2570332A (en) * 2018-01-22 2019-07-24 Ucl Business Plc A sensor for measuring a flow of a fluid
CN111855615A (zh) * 2020-07-30 2020-10-30 大连理工大学 一种用于监测混凝土中氯离子浓度的法珀腔式光纤传感器
CN115290925A (zh) * 2022-07-12 2022-11-04 厦门大学 一种高灵敏的流体流速光学测量传感器和测量方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390671B (zh) * 2014-12-02 2018-08-28 华南师范大学 一种全光学化的流体质量流量监测装置和方法
CN108731752A (zh) * 2018-05-29 2018-11-02 四川原皓源环境工程有限公司 一种中央空调用气量动态监控方法、装置及费用统计系统
CN109787076B (zh) * 2019-03-12 2024-04-19 中国工程物理研究院激光聚变研究中心 热致波导结构激光器及激光放大器
CN111007154B (zh) * 2019-12-02 2022-10-18 暨南大学 柔性超声换能器、制作方法及全光超声发射与检测方法
CN111174896B (zh) * 2019-12-25 2022-07-29 浙江大学 光纤声波传感器、制造方法和光纤声波传感系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010435A1 (en) * 1991-11-20 1993-05-27 The Board Of Regents For The University Of Oklahoma Method for on-line fiber flow measurement
CN2506985Y (zh) * 2001-11-08 2002-08-21 中国科学院西安光学精密机械研究所 光纤光栅流量传感器
CN102261934A (zh) * 2011-04-07 2011-11-30 大连理工大学 基于光学自补偿结构的光纤流量传感器
CN103196520A (zh) * 2012-01-06 2013-07-10 中国计量学院 异芯结构透射式光纤液位传感器
CN103759776A (zh) * 2014-01-24 2014-04-30 华南师范大学 一种全光学化的气体质量流量监测装置和方法
CN104390671A (zh) * 2014-12-02 2015-03-04 华南师范大学 一种全光学化的流体质量流量监测装置和方法
CN204286519U (zh) * 2014-12-02 2015-04-22 华南师范大学 一种全光学化的流体质量流量监测装置
CN104950133A (zh) * 2015-07-06 2015-09-30 浙江大学 微流体流速传感芯片、检测系统及检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2401430B (en) * 2003-04-23 2005-09-21 Sensor Highway Ltd Fluid flow measurement
CN100437036C (zh) * 2006-11-16 2008-11-26 国家纳米技术与工程研究院 同时测量液体温度和折射率的光纤传感装置
CN203053863U (zh) * 2013-01-05 2013-07-10 华南师范大学 一种利用光热光纤进行甲烷浓度传感的装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010435A1 (en) * 1991-11-20 1993-05-27 The Board Of Regents For The University Of Oklahoma Method for on-line fiber flow measurement
CN2506985Y (zh) * 2001-11-08 2002-08-21 中国科学院西安光学精密机械研究所 光纤光栅流量传感器
CN102261934A (zh) * 2011-04-07 2011-11-30 大连理工大学 基于光学自补偿结构的光纤流量传感器
CN103196520A (zh) * 2012-01-06 2013-07-10 中国计量学院 异芯结构透射式光纤液位传感器
CN103759776A (zh) * 2014-01-24 2014-04-30 华南师范大学 一种全光学化的气体质量流量监测装置和方法
CN104390671A (zh) * 2014-12-02 2015-03-04 华南师范大学 一种全光学化的流体质量流量监测装置和方法
CN204286519U (zh) * 2014-12-02 2015-04-22 华南师范大学 一种全光学化的流体质量流量监测装置
CN104950133A (zh) * 2015-07-06 2015-09-30 浙江大学 微流体流速传感芯片、检测系统及检测方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2570332A (en) * 2018-01-22 2019-07-24 Ucl Business Plc A sensor for measuring a flow of a fluid
GB2570332B (en) * 2018-01-22 2023-04-26 Ucl Business Ltd A system for measuring a flow of a fluid
CN111855615A (zh) * 2020-07-30 2020-10-30 大连理工大学 一种用于监测混凝土中氯离子浓度的法珀腔式光纤传感器
CN115290925A (zh) * 2022-07-12 2022-11-04 厦门大学 一种高灵敏的流体流速光学测量传感器和测量方法

Also Published As

Publication number Publication date
CN104390671A (zh) 2015-03-04
CN104390671B (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2016086856A1 (zh) 一种全光学化的流体质量流量监测装置和方法
US8467977B2 (en) Fiber optic carbon dioxide purity sensor package and system
JP6517373B2 (ja) 分布型光ファイバーで水理構造物の浸透流の形態を検知する集積システム
CN102323239B (zh) 一种基于非对称双芯光纤的折射率传感器
CN204718708U (zh) 一种基于球形和细芯光纤的温度和应变同时测量的传感器
CN103743675B (zh) 用于盐度测量的光纤探头及使用该光纤探头的测量装置
CN105424651B (zh) 一种可定位的甲烷泄漏监测系统
CN205655942U (zh) 一种应变和温度同时测量的光纤传感器
CN106404216A (zh) 折射率不敏感的级联型单模‑少模‑单模光纤温度传感器
CN103900994A (zh) 基于迈克尔逊干涉仪的全光纤折射率计、制作方法及系统
CN111238682A (zh) 基于光纤光栅的电力变压器油温度监测系统
CN106768474A (zh) 基于单Sagnac干涉环产生游标放大效应的方法及装置
CN102103075A (zh) 一种气体红外线吸收检测方法
Ke et al. Optical fiber evanescent-wave sensing technology of hydrogen sulfide gas concentration in oil and gas fields
CN103759776B (zh) 一种全光学化的气体质量流量监测装置和方法
CN114137273B (zh) Fbg级联光纤复合结构的消除温度敏感电流传感装置
CN204286519U (zh) 一种全光学化的流体质量流量监测装置
CN205719020U (zh) 一种温度与应变同时测量的保偏光纤传感器
CN103926020B (zh) 一种基于s型结构光纤和空气腔的温度传感器
CN201993310U (zh) 一种气体红外线吸收检测装置
CN112697231B (zh) 一种螺旋排列的光纤光栅液位传感器
CN205484032U (zh) 一种可定位的甲烷泄漏监测系统
CN103852190A (zh) 一种测量ArF准分子激光器腔内温度的光纤光栅传感器
CN206573479U (zh) 一种基于光纤耦合器的氢气传感器
CN102183481A (zh) 一种气体红外线吸收检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865586

Country of ref document: EP

Kind code of ref document: A1