CN205655942U - 一种应变和温度同时测量的光纤传感器 - Google Patents

一种应变和温度同时测量的光纤传感器 Download PDF

Info

Publication number
CN205655942U
CN205655942U CN201620421589.7U CN201620421589U CN205655942U CN 205655942 U CN205655942 U CN 205655942U CN 201620421589 U CN201620421589 U CN 201620421589U CN 205655942 U CN205655942 U CN 205655942U
Authority
CN
China
Prior art keywords
fibre
input
temperature
lumbar vertebra
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201620421589.7U
Other languages
English (en)
Inventor
王钏文
王东宁
徐贲
陈未萍
刘烨
杨玉邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201620421589.7U priority Critical patent/CN205655942U/zh
Application granted granted Critical
Publication of CN205655942U publication Critical patent/CN205655942U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本实用新型涉及一种应变和温度同时测量的光纤传感器,所述系统由宽带光源、输入光纤、输入腰椎多模光纤、传输光纤、输出腰椎多模光纤、输出光纤、光谱仪构成;从宽带光源发出的光经输入光纤入射到输入腰椎多模光纤后发生马赫‑曾特干涉,部分光耦合到传输光纤的包层进行传输,激发起对外界敏感的包层模式和高阶模式,在输出腰椎多模光纤中包层模式和高阶模式发生耦合,通过输出光纤入射到光谱仪上;当外界应变、温度改变时,干涉衰减峰的波长位置会发生相应改变,通过检测光谱仪上透射光干涉衰减峰的波长值来实现对外界应变、温度的同时测量。该传感器具有结构简单、体积小、灵敏度高等诸多优点。

Description

一种应变和温度同时测量的光纤传感器
技术领域
本实用新型涉及应变、温度检测技术、光纤传感技术,利用的是腰椎多模光纤对外界应变、温度变化的灵敏特性以及不同外界应变、温度会使透射光衰减峰的波长值发生改变的方法,具有结构简单、体积小、响应速度快、灵敏度高、安全可靠等诸多优点,它属于光纤应变、温度传感领域。
背景技术
光纤传感器与传统的电、化学传感器相比具有很多优点,特别是光纤工作频率宽,动态范围大,是一种低损耗传输线,并且由于体积小、质量轻、抗辐射性好等特点,成为替代传统传感器的商品。光纤传感器自问世以来,开始逐渐适用于电力系统、建筑、化工、海洋开发等领域,并已取得了许多实际应用成果。
当前研发和应用于应变、温度的光纤传感器主要有分布式光纤传感器、光纤光栅传感器、光子晶体传感器等,但是这些传感器在实际应用中还需考虑许多因素,比如传感器的制作成本,使用的寿命长短,测量的精度,光检测器波长分辨率的大小等问题。
实用新型内容
本实用新型的目的是为了克服上述产生的问题,满足实际的工作需求,提出一种应变和温度同时测量的光纤传感器,该系统结构简单、设计合理,成本低廉、直接实时、结果有效准确。
为实现上述目的,本实用新型采用的技术方案是:一种应变和温度同时测量的光纤传感器,由宽带光源、输入光纤、输入腰椎多模光纤、传输光纤、输出腰椎多模光纤、输出光纤、光谱仪构成;从宽带光源发出的光经输入光纤入射 到输入腰椎多模光纤后发生马赫-曾特干涉,部分光耦合到传输光纤的包层进行传输,并激发起对外界参数敏感的包层模式和一系列的高阶模式,在输出腰椎多模光纤中包层模和高阶模发生耦合,通过输出光纤入射到光谱仪上;当外界应变、温度改变时,干涉衰减峰的波长位置会发生相应改变,通过检测光谱仪上透射光干涉衰减峰的波长值来实现对外界应变、温度的同时测量。
透射谱干涉满足的条件为:
式中为多模光纤纤芯的有效折射率,为多模光纤包层中第j阶模式的有效折射率,L为多模光纤的长度,λD为干涉衰减峰对应的波长值,则λD可以表示为
随着外界应变、温度的改变,干涉谱中的峰值波长变化量可以表示为
其中,
ΔL=LαΔT+LΔε
上式中ncore、nclad分别表示纤芯、包层的有效折射率,ξclad、ξclad是表示包层、纤芯有效的热光系数,ΔT、Δε分别表示外界应变、温度变化量,ΔL表示多模光纤长度的变化量;α表示光纤表面二氧化硅的热膨胀系数,
将上式联立,并利用波长值变化量Δλ对应变、温度分别求导,可以得到
可以得出波长值变化量与应变、温度分别成不同的比例,即应变、温度的灵敏度不同,因此可以通过透射谱上的波长漂移量,并结合灵敏度系数矩阵实现对应变、温度的同时测量。
本实用新型所述的输入腰椎多模光纤、输出腰椎多模光纤是利用光纤熔接机对多模光纤端面进行电流放电制作出来的,用于腰椎放大的多模光纤包层直径是125μm,纤芯直径是105μm。
本实用新型所述的宽带光源的光谱范围为650nm-1700nm,能够包含由输入光纤、输入腰椎多模光纤、传输光纤、输出腰椎多模光纤、输出光纤构成的马赫-曾特干涉所形成的透射光干涉衰减峰波长值。
本实用新型所述的光谱仪能测得不同应变、温度下透射光干涉衰减峰波长值,波长分辨率是0.01nm。
本实用新型所具有的特点优势为:1.所有仪器材料都很普遍,系统结构简单;2.外界环境应变、温度变化直接实时检测,且操作简单;3.所有操作都没涉及危险药品,安全可靠。
附图说明
图1为本实用新型的结构示意图
图2为本实用新型的不同应变下的光谱图
图3为本实用新型的不同应变下的实验结果图
图4为本实用新型的不同温度下的光谱图
图5为本实用新型的不同温度下的实验结果图
具体实施方式
本实用新型适用的温湿度条件为:>5℃,0-90%RH。
如图1所示,它是一种应变和温度同时测量的光纤传感器。
用商业熔接机将一根包层直径125μm,纤芯直径是105μm的传输多模光纤(4)按照光纤重叠参量为150μm,放电时间为2000ms,放电强度为标准的方法,分别制作成输入腰椎多模光纤(3)、输出腰椎多模光纤(5),通过手动方式完成跟输入光纤(2)、输出光纤(6)末端的连接,构成腰椎放大的多模结构光纤传感器;将输入光纤(2)、输出光纤(6)分别与宽带光源(1)和光谱仪(7)连接好,构成光纤传感系统。
在实验室进行不同外界应变的仿真测量时,多模光纤传感器固定在应变测试的两个夹具中间,两个夹具中间的距离S为140mm,每次螺母向外旋转dS=0.025mm,则每次所受的应变可以表示为一共向外依次转动6圈,既实现从0με到1048.95με应变的测量。观察并记录不同应变下光谱仪(7)上透射光的衰减峰波长值变化情况,拟合计算出透射光衰减峰波长值与外界应变变化的关系,从而达到检测外界应变的目的。在实验室进行不同外界温度的仿真测量时,在球形和单模细芯的光纤传感器下放置一块加热板,加热板的温度可控范围是18℃-150℃,其精确温度值是0.1℃。通过改变加热板的温度,从25℃到85℃对光纤传感器进行加热,观察并记录不同温度下光谱仪(9)上透射光的衰减峰波长值变化情况。拟合计算出透射光衰减峰波长值与外界温度变化的关系,从而达到检测外界温度的目的。
如图2所示,不同外界应变的仿真测量实验光谱图,随着外界应变的增大,发生明显的蓝移现象。
如图3所示,为不同外界应变的仿真测量实验结果图,表示透射光衰减峰的波长值与外界不同应变值的拟合线性关系图。透射光衰减峰的波长值与外界不同应变量呈良好的线性关系,其中在1545.1nm和1554.8nm两处波谷1和波谷2的拟合系数分别为0.9869和0.9771,灵敏度分别为0.75pm/με和1.39pm/με。
如图4所示,不同外界温度的仿真测量实验光谱图,随着外界温度的增大,发生明显的红移现象。
如图5所示,为不同外界温度的仿真测量实验结果图,表示透射光衰减峰的波长值与外界不同温度值的拟合线性关系图。透射光衰减峰的波长值与外界温度呈良好的线性关系,其中波谷1和波谷2的拟合系数分别为0.9861和0.9867,灵敏度分别为53.86pm/℃和47.51pm/℃。
当应变和温度同时改变的时候,多模光纤的透射干涉光波长的变化为
式中Δλ1、Δλ2分别为多模光纤的透射干涉光波长的变化量,kT1、kT2和kε 1、kε 2分别为多模光纤的温度和应变灵敏度,ΔT、Δε分别为温度和应变的变化量。通过装置,可以得到
本领域技术人员清楚地知道,根据本实用新型的方法,可以实现在某些特定环境下对应变、温度的检测,例如化工、发电厂、变电站等环境应变、温度系统的检测等,宽带光源、输入光纤、输入腰椎多模光纤、传输光纤、输出腰椎多模光纤、输出光纤和光谱仪等可以进行新的统一搭配,装置结构可以进行优化设计,本实用新型的保护范围并不局限于以上实施例。

Claims (4)

1.一种应变和温度同时测量的光纤传感器,其特征是:由宽带光源(1)、输入光纤(2)、输入腰椎多模光纤(3)、传输光纤(4)、输出腰椎多模光纤(5)、输出光纤(6)、光谱仪(7)构成;从宽带光源(1)发出的光经输入光纤(2)入射到输入腰椎多模光纤(3)后发生马赫-曾特干涉,部分光耦合到传输光纤(4)的包层进行传输,并激发起对外界参数敏感的包层模式和一系列的高阶模式,在输出腰椎多模光纤(5)中包层模和高阶模发生耦合,通过输出光纤(6)入射到光谱仪(7)上;当外界应变、温度改变时,干涉衰减峰的波长位置会发生相应改变,通过检测光谱仪(7)上透射光干涉衰减峰的波长值来实现对外界应变、温度的同时测量。
2.根据权利要求1所述的一种应变和温度同时测量的光纤传感器,其特征是:所述输入腰椎多模光纤(3)、输出腰椎多模光纤(5)是利用光纤熔接机对多模光纤端面进行电流放电制作出来的,用于腰椎放大的多模光纤包层直径是125μm,纤芯直径是105μm。
3.根据权利要求1所述的一种应变和温度同时测量的光纤传感器,其特征是:所述宽带光源(1)的光谱范围为650nm-1700nm,能够包含由输入光纤(2)、输入腰椎多模光纤(3)、传输光纤(4)、输出腰椎多模光纤(5)、输出光纤(6)构成的马赫-曾特干涉所形成的透射光干涉衰减峰波长值。
4.根据权利要求1所述的一种应变和温度同时测量的光纤传感器,其特征是:所述光谱仪(7)能测得不同应变、温度下透射光干涉衰减峰波长值,波长分辨率是0.01nm。
CN201620421589.7U 2016-05-06 2016-05-06 一种应变和温度同时测量的光纤传感器 Expired - Fee Related CN205655942U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620421589.7U CN205655942U (zh) 2016-05-06 2016-05-06 一种应变和温度同时测量的光纤传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620421589.7U CN205655942U (zh) 2016-05-06 2016-05-06 一种应变和温度同时测量的光纤传感器

Publications (1)

Publication Number Publication Date
CN205655942U true CN205655942U (zh) 2016-10-19

Family

ID=57402173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620421589.7U Expired - Fee Related CN205655942U (zh) 2016-05-06 2016-05-06 一种应变和温度同时测量的光纤传感器

Country Status (1)

Country Link
CN (1) CN205655942U (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706030A (zh) * 2016-11-22 2017-05-24 西北工业大学 利用单根光纤布拉格光栅实现温度、应变和折射率同时传感的方法
CN106768049A (zh) * 2016-12-21 2017-05-31 中国计量大学 一种基于马赫‑曾德干涉仪的温度与折射率同步测量的光纤传感器
CN107894292A (zh) * 2017-11-17 2018-04-10 中国计量大学 基于光纤表面等离子体共振的折射率温度双参数测量方法及装置
CN108593119A (zh) * 2018-04-11 2018-09-28 南京大学 一种连续分布式微结构光纤生化传感器和信号处理方法
CN109060169A (zh) * 2018-08-29 2018-12-21 厦门大学 一种基于细径光纤的高温传感器
CN109297519A (zh) * 2018-11-01 2019-02-01 中国计量大学 一种基于级连光纤与内微腔结构的温度与应变同时检测系统
CN117073731A (zh) * 2023-10-18 2023-11-17 广东海洋大学 基于长周期光纤光栅的光纤迈克尔逊干涉装置及制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706030A (zh) * 2016-11-22 2017-05-24 西北工业大学 利用单根光纤布拉格光栅实现温度、应变和折射率同时传感的方法
CN106706030B (zh) * 2016-11-22 2019-03-01 西北工业大学 利用单根光纤布拉格光栅实现温度、应变和折射率同时传感的方法
CN106768049A (zh) * 2016-12-21 2017-05-31 中国计量大学 一种基于马赫‑曾德干涉仪的温度与折射率同步测量的光纤传感器
CN107894292A (zh) * 2017-11-17 2018-04-10 中国计量大学 基于光纤表面等离子体共振的折射率温度双参数测量方法及装置
CN107894292B (zh) * 2017-11-17 2023-12-29 中国计量大学 基于光纤表面等离子体共振的折射率温度双参数测量方法及装置
CN108593119A (zh) * 2018-04-11 2018-09-28 南京大学 一种连续分布式微结构光纤生化传感器和信号处理方法
CN108593119B (zh) * 2018-04-11 2020-10-30 南京大学 一种连续分布式微结构光纤生化传感器和信号处理方法
CN109060169A (zh) * 2018-08-29 2018-12-21 厦门大学 一种基于细径光纤的高温传感器
CN109297519A (zh) * 2018-11-01 2019-02-01 中国计量大学 一种基于级连光纤与内微腔结构的温度与应变同时检测系统
CN109297519B (zh) * 2018-11-01 2021-06-18 中国计量大学 一种基于级连光纤与内微腔结构的温度与应变同时检测系统
CN117073731A (zh) * 2023-10-18 2023-11-17 广东海洋大学 基于长周期光纤光栅的光纤迈克尔逊干涉装置及制备方法
CN117073731B (zh) * 2023-10-18 2023-12-22 广东海洋大学 基于长周期光纤光栅的光纤迈克尔逊干涉装置及制备方法

Similar Documents

Publication Publication Date Title
CN205655942U (zh) 一种应变和温度同时测量的光纤传感器
CN204718708U (zh) 一种基于球形和细芯光纤的温度和应变同时测量的传感器
CN103575331A (zh) 一种高温结构温度和应变的同时测试方法及标定装置
CN105928469B (zh) 一种高灵敏可判别弯曲方向的无温度交叉灵敏的光纤曲率传感器
CN108279029A (zh) 基于lpfg和fbg级联结构的双参数光纤传感器及其制备方法
CN201331395Y (zh) 光纤光栅温度补偿传感器
CN106568466A (zh) 细芯微结构光纤干涉仪传感器及其温度、应变检测方法
CN104330101A (zh) 一种可同时测量温度和微位移的光纤传感器
CN103148956B (zh) 一种基于涂覆微纳光纤进行温度测量的装置及方法
CN206974565U (zh) 一种基于选择填充光子晶体光纤的温度与应力同时测量的双参数传感器
CN106198611B (zh) 基于光纤应变转换矩阵的复合材料板热膨胀系数计算方法
CN205719020U (zh) 一种温度与应变同时测量的保偏光纤传感器
CN204881905U (zh) 一种球形结构光纤的温度传感器
CN203908582U (zh) S型锥内嵌式光纤布拉格光栅双参数传感器
CN106768474A (zh) 基于单Sagnac干涉环产生游标放大效应的方法及装置
CN108225603A (zh) 基于lpfg与fbg级联的双参数光纤传感器及其制备方法
Li et al. Simultaneous measurement of RI and temperature based on a composite interferometer
CN106932364A (zh) 宏弯曲错位拉锥型光纤液体折射率传感器
CN114137273B (zh) Fbg级联光纤复合结构的消除温度敏感电流传感装置
CN203224440U (zh) 一种基于多模干涉msm结构的湿度传感器
CN107340004A (zh) 一种基于介质超表面的双参数检测系统
CN207263335U (zh) 一种镀pmds膜光纤温度传感器
CN114137446B (zh) Fbg级联光纤复合结构的消除温度敏感磁场传感装置
CN103134627B (zh) 一种基于低双折射pm-flm的温度不敏感应力传感器
CN115452196A (zh) 一种光纤敏感环高精度温度灵敏度系数测试的装置及方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161019

Termination date: 20180506