CN109297519B - 一种基于级连光纤与内微腔结构的温度与应变同时检测系统 - Google Patents

一种基于级连光纤与内微腔结构的温度与应变同时检测系统 Download PDF

Info

Publication number
CN109297519B
CN109297519B CN201811294348.0A CN201811294348A CN109297519B CN 109297519 B CN109297519 B CN 109297519B CN 201811294348 A CN201811294348 A CN 201811294348A CN 109297519 B CN109297519 B CN 109297519B
Authority
CN
China
Prior art keywords
fiber
optical fiber
multimode
output
microcavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811294348.0A
Other languages
English (en)
Other versions
CN109297519A (zh
Inventor
陈慧芳
王海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201811294348.0A priority Critical patent/CN109297519B/zh
Publication of CN109297519A publication Critical patent/CN109297519A/zh
Application granted granted Critical
Publication of CN109297519B publication Critical patent/CN109297519B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/3538Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明公开了一种基于级连光纤与内微腔结构的温度与应变同时检测系统,该检测系统由宽带光源、输入光纤、输入多模光纤、内部微腔、输出多模光纤、输出光纤、光谱分析仪组成,其特征在于内部微腔是利用熔接放电技术,在输入多模光纤的右端形成。本发明检测系统输出信号中包含多种模式的干涉叠加,根据不同干涉衰减峰对温度和应变的不同灵敏度,可实现对温度和应变的同时测量。本发明解决了两个物理量之间的交叉敏感问题,并且具有结构简单可靠易加工等优点,在化学、物理和生物监测领域有广阔的应用前景。

Description

一种基于级连光纤与内微腔结构的温度与应变同时检测系统
技术领域
本发明属于光纤传感技术领域,特别涉及一种基于级连光纤与内微腔结构的温度与应变同时检测系统。
背景技术
近年来,随着光纤通信技术的快速发展,以光波为载体,光纤为媒介的新型光纤传感技术得到了广泛的关注。光纤传感技术可以监测温度、应变、溶液折射率、气体分子监测、弯曲曲率、磁场、PH数值等参量变化,这使得光纤传感器对各种物理、化学、和生物医学参数的测量更加方便。然而,传统的光纤传感器的工作原理是基于纤芯模式和高阶包层模式间的干扰,制作复杂。尺寸通常在毫米或厘米的数量级,结构强度低,灵敏度不高,并且大多数传统的光纤传感器只能用于单一物理量的测量,无法实现两个或两个以上的物理量的同时测量。
发明内容
针对目前基于芯模式和高阶包层模式间的干扰的光纤传感器体积大、灵敏度低、结构强度低、无法进行双参数测量等不足,本发明的目的在于提供一种结构简单、体积小、成本低、基于级连光纤与内微腔结构的温度与应变同时测量检测系统,其实际检测具有高灵敏度、结构强度高、使用灵活的特点。辅以干涉损耗峰的检测还可以同时解决温度交叉敏感的问题。
本发明通过以下技术方案实现:一种基于级连光纤与内微腔结构的温度与应变同时检测系统,由宽带光源(1)、输入光纤(2)、输入多模光纤(3)、内部微腔(4)、输出多模光纤(5)、输出光纤(6)、光谱分析仪(7)组成;宽带光源(1)与输入光纤(2)的左端相连,输入光纤(2)的右端与输入多模光纤(3)左端相连,输入多模光纤(3)的右端为内部微腔(4),内部微腔(4)与输出多模光纤(5)的左端相连,输出多模光纤(5)右端与输出光纤(6)左端相连,输出光纤(6)的右端与光谱分析仪(7)相连;其特征在于:所述的内部微腔(4)是结合飞秒激光烧蚀技术和熔接放电技术,在输入多模光纤(3)的右端与输出多模光纤(5)左端连接处形成;所述的宽带光源(1)发出的光经输入光纤(2)入射到输入多模光纤(3)时发生纤芯失配变为多模传输光,多模传输光到达内部微腔(4)时被分为两部分,一部分沿微腔壁继续传输,另一部分射入微腔传输并在微腔末端射入输出多模光纤(5)中,在输出多模光纤(5)中,沿腔壁传输的光与微腔内传输的光发生干涉,干涉信号由输出光纤(6)传输至光谱仪(7)中接收;由于干涉发生在多种传输模式之间,干涉信号中通常包含多个衰减峰,当外界温度发生改变或对器件施加纵向应变时,每个干涉衰减峰的波长发生相应改变且具有不同的变化率,通过检测光谱分析仪(7)上干涉衰减峰的波长变化,即可实现对温度和应变的同时测量。
所述的输入光纤(2),输出光纤(6)为普通单模光纤,纤芯直径为8.2μm;包层直径为125μm。
所述的内部微腔(4)由熔接放电工艺制成直径为83μm。
所述的输入多模光纤(3)、输出多模光纤(5)纤芯直径为105μm,包层直径为125μm。
所述的宽带光源(1)的光谱范围为650nm-1700nm。
所述的一种基于级连光纤与内微腔结构的温度与应变同时检测系统,其特征在于:所述的光谱仪(7)的光谱接收范围为600nm-1700nm。
本发明所具有的特点优势为:所述基于级连光纤与内微腔结构的温度与应变同时测量检测系统可实现温度和应变的同时测量,其实际检测具有高灵敏度、结构强度高、使用灵活的特点。与现有技术相比,所使用的材料都很普遍、体积小、成本低。并且辅以干涉损耗峰的检测还可以同时解决温度交叉敏感的问题。
附图说明
图1是本发明的一种基于级连光纤与内微腔结构的温度与应变同时检测系统示意图。
图2是本发明在施加纵向应变时的光谱演化图。
图3是本发明在施加纵向应变时的衰减峰波长变化情况。
图4是本发明的不同温度下的光谱演化图。
图5是本发明的不同温度下的衰减峰波长变化情况。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
参见附图1,一种基于级连光纤与内微腔结构的温度与应变同时检测系统,由宽带光源(1)、输入光纤(2)、输入多模光纤(3)、内部微腔(4)、输出多模光纤(5)、输出光纤(6)、光谱分析仪(7)组成;宽带光源(1)与输入光纤(2)的左端相连,输入光纤(2)的右端与输入多模光纤(3)左端相连,输入多模光纤(3)的右端为内部微腔(4),内部微腔(4)与输出多模光纤(5)的左端相连,输出多模光纤(5)右端与输出光纤(6)左端相连,输出光纤(6)的右端与光谱分析仪(7)相连。
利用飞秒激光将输入多模光纤(3)一端烧蚀一个缺口,然后利用熔接机的熔接放电技术将有缺口的输入多模光纤(3)与输出多模光纤(5)进行熔接,形成内部微腔(4)。熔接放电过程,采用藤仓FSM80S光纤熔接机,程序设置为多模熔接,放电时间为1200ms,放电强度为60bit。
参见附图2,图2是施加纵向应变时的光谱演化图,随着外界应变的增大,发生明显的蓝移现象。
参见附图3,图3是在施加纵向应变时的衰减峰波长变化情况,表示透射光衰减峰的波长值与外界不同应变值的拟合线性关系图。透射光衰减峰的波长值与外界不同应变量呈良好的线性关系,其中在1523nm和1546nm两处衰减峰,衰减峰1和衰减峰2的拟合系数分别为0.99731和0.99926,灵敏度分别为0.88pm/με和1.47pm/με。
参见附图4,图4是不同温度下的光谱演化图,随着外界温度的增大,发生明显的红移现象。
参见附图5,图5是不同温度下的衰减峰波长变化情况,表示透射光衰减峰的波长值与外界不同温度值的拟合线性关系图。透射光衰减峰的波长值与外界温度呈良好的线性关系,其中衰减峰1和衰减峰2的拟合系数分别为0.9861和0.9867,灵敏度分别为15.32pm/℃和24.34pm/℃
当应变和温度同时改变时,多模光纤的透射干涉光波长的变化为:
Figure GDA0003019215410000031
式中Δλ1和Δλ2分别为传感器的透射干涉光波长的变化量,KT1和KT2分别为传感器的温度和应变灵敏度,Δε和ΔT分别表示外界应变,温度变化量。通过上述公式,可以得到:
Figure GDA0003019215410000032
本领域的技术人员清楚地知道,根据本发明的方法,可以实现某些特定环境下应变、温度的检测,例如发电厂、化工等环境应变、温度系统的检测,装置结构可以进行优化设计,本发明的保护范围并不局限于以上实施例。

Claims (6)

1.一种基于级连光纤与内微腔结构的温度与应变同时检测系统,由宽带光源(1)、输入光纤(2)、输入多模光纤(3)、内部微腔(4)、输出多模光纤(5)、输出光纤(6)、光谱分析仪(7)组成;宽带光源(1)与输入光纤(2)的左端相连,输入光纤(2)的右端与输入多模光纤(3)左端相连,输入多模光纤(3)的右端为内部微腔(4),内部微腔(4)与输出多模光纤(5)的左端相连,输出多模光纤(5)右端与输出光纤(6)左端相连,输出光纤(6)的右端与光谱分析仪(7)相连;其特征在于:所述的内部微腔(4)是结合飞秒激光烧蚀技术和熔接放电技术,在输入多模光纤(3)右端与输出多模光纤(5)左端连接处形成;所述的宽带光源(1)发出的光经输入光纤(2)入射到输入多模光纤(3)时发生纤芯失配变为多模传输光,多模传输光到达内部微腔(4)时被分为两部分,一部分沿微腔壁继续传输,另一部分射入微腔传输并在微腔末端射入输出多模光纤(5)中,在输出多模光纤(5)中,沿腔壁传输的光与微腔内传输的光发生干涉,干涉信号由输出光纤(6)传输至光谱分析 仪(7)中接收;由于干涉发生在多种传输模式之间,干涉信号中通常包含多个衰减峰,当外界温度发生改变或对器件施加纵向应变时,每个干涉衰减峰的波长发生相应改变且具有不同的变化率,通过检测光谱分析仪(7)上干涉衰减峰的波长变化,即可实现对温度和应变的同时测量。
2.根据权利要求1所述的一种基于级连光纤与内微腔结构的温度与应变同时检测系统,其特征在于:所述的输入光纤(2)、 输出光纤(6)为普通单模光纤,纤芯直径为8.2μm;包层直径为125μm。
3.根据权利要求1所述的一种基于级连光纤与内微腔结构的温度与应变同时检测系统,其特征在于:所述的输入多模光纤(3)、输出多模光纤(5)纤芯直径为105μm,包层直径为125μm。
4.根据权利要求1所述的一种基于级连光纤与内微腔结构的温度与应变同时检测系统,其特征在于:所述的内部微腔(4)的制作方法为,先利用飞秒激光将输入多模光纤(3)一端烧蚀一个缺口,然后利用熔接机的放电技术将有缺口的输入多模光纤(3)与输出多模光纤(5)进行熔接,形成内部微腔(4),其直径为83μm。
5.根据权利要求1所述的一种基于级连光纤与内微腔结构的温度与应变同时检测系统,其特征在于:所述的宽带光源(1)的光谱范围为650nm-1700nm。
6.根据权利要求1所述的一种基于级连光纤与内微腔结构的温度与应变同时检测系统,其特征在于:所述的光谱分析 仪(7)的光谱接收范围为600nm-1700nm。
CN201811294348.0A 2018-11-01 2018-11-01 一种基于级连光纤与内微腔结构的温度与应变同时检测系统 Expired - Fee Related CN109297519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811294348.0A CN109297519B (zh) 2018-11-01 2018-11-01 一种基于级连光纤与内微腔结构的温度与应变同时检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811294348.0A CN109297519B (zh) 2018-11-01 2018-11-01 一种基于级连光纤与内微腔结构的温度与应变同时检测系统

Publications (2)

Publication Number Publication Date
CN109297519A CN109297519A (zh) 2019-02-01
CN109297519B true CN109297519B (zh) 2021-06-18

Family

ID=65145630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811294348.0A Expired - Fee Related CN109297519B (zh) 2018-11-01 2018-11-01 一种基于级连光纤与内微腔结构的温度与应变同时检测系统

Country Status (1)

Country Link
CN (1) CN109297519B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375777A (zh) * 2019-07-09 2019-10-25 中国电子科技集团公司电子科学研究院 一种光纤传感器及其制备和测量方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205655942U (zh) * 2016-05-06 2016-10-19 中国计量大学 一种应变和温度同时测量的光纤传感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013139783A1 (en) * 2012-03-22 2013-09-26 University Of Limerick A sensor for combined temperature, pressure, and refractive index detection
CN103439765B (zh) * 2013-06-26 2016-01-20 江苏金迪电子科技有限公司 一种全光纤型多径干涉仪
CN103453940A (zh) * 2013-09-13 2013-12-18 天津理工大学 基于多模结构的光纤传感器
CN105136336B (zh) * 2015-04-30 2018-08-24 中国计量学院 一种基于飞秒激光器的光纤空气环腔温度传感器
CN105277135B (zh) * 2015-09-22 2018-04-03 东北大学 一种具有温度不敏感特性的高灵敏度光纤曲率传感结构
CN207964137U (zh) * 2018-01-18 2018-10-12 中国计量大学 一种基于飞秒激光微加工的m-z应力传感器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205655942U (zh) * 2016-05-06 2016-10-19 中国计量大学 一种应变和温度同时测量的光纤传感器

Also Published As

Publication number Publication date
CN109297519A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
US11112316B2 (en) Optical fiber temperature sensor
CN102508337B (zh) 基于光纤熔锥的本征型法布里-珀罗器件及其制造方法
CN101979963A (zh) 一体成型光纤微传感器及其制作方法
CN110987230B (zh) 一种双参量光纤传感模块及系统
CN113324570B (zh) 一种基于气球形光纤mzi的传感装置及气球形光纤mzi传感器制作方法
CN103344277A (zh) 一种可同时检测双参量的法珀传感器及检测装置
CN105092536A (zh) 一种多模-单模结构光纤表面等离子体共振传感器及其检测方法
CN101464539A (zh) 基于同轴光纤的马赫曾德干涉仪
CN112414581B (zh) 一种基于多芯光纤的温度传感器
CN108692751B (zh) 基于光纤法布里玻罗腔的应变传感器及其制作方法
CN102768200A (zh) 一种湿度检测装置上用的光纤湿度传感器及其制作方法
CN101303300A (zh) 微型光纤f-p传感器及制作方法、基于传感器的液体测试仪
CN112697339B (zh) 一种高强度耐高温快响应光纤气压传感探头
CN103884364A (zh) 一种基于拉锥结构与球状结构级联的光纤干涉传感器
CN203908582U (zh) S型锥内嵌式光纤布拉格光栅双参数传感器
CN104266668A (zh) 一种用于温度和曲率双参量测量的光纤传感器
CN112666503A (zh) 一种并行双m-z光纤磁传感装置及其制作方法
CN204556023U (zh) 基于保偏光纤的双参量光纤传感器
CN109297519B (zh) 一种基于级连光纤与内微腔结构的温度与应变同时检测系统
CN114111857A (zh) 一种基于游标效应的光纤fpi级联mi传感装置
CN101982760A (zh) 一种光纤pH计
CN205826180U (zh) 一种高灵敏度的压力传感装置
CN202794029U (zh) 一种湿度检测装置上用的光纤湿度传感器
CN108267241B (zh) 一种基于混合型双花生结的高灵敏度光纤温度传感器
CN213397117U (zh) 一种双参数同时测量的光纤干涉仪传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210618

Termination date: 20211101