CN207263335U - 一种镀pmds膜光纤温度传感器 - Google Patents
一种镀pmds膜光纤温度传感器 Download PDFInfo
- Publication number
- CN207263335U CN207263335U CN201721325469.8U CN201721325469U CN207263335U CN 207263335 U CN207263335 U CN 207263335U CN 201721325469 U CN201721325469 U CN 201721325469U CN 207263335 U CN207263335 U CN 207263335U
- Authority
- CN
- China
- Prior art keywords
- pmds
- thin
- optical fiber
- single mode
- core fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本实用新型公开了一种镀PMDS膜光纤温度传感器。将一小截经过微拉后镀PMDS膜的细芯光纤两端分别与单模光纤熔接,构成一个马赫‑曾德尔干涉仪。当温度发生变化时,PMDS的折射率随着温度的改变而改变,细芯光纤包层的折射率随着PMDS折射率的改变而改变,从而导致干涉仪的透射光谱发生漂移,因而通过对透射光谱进行波长解调,可以实现温度的高灵敏度测量。
Description
技术领域
本实用新型属于光纤传感器领域,具体涉及一种镀PMDS膜光纤温度传感器。
背景技术
温度是表征物体冷热程度的物理量,是在工业生产和科学实验中都必须加以严格控制的最重要的参数之一,因为它直接影响到材料的性能及产品的质量,因此对温度的自动检测己经成为工业自动化生产中的关键环节。另外,随着科学技术的发展,各个工程领域对测温元件的性能和效率提出越来越高的要求,同时也对测温方法及测温元件结构的优化提出了更大的挑战。
与传统的温度传感器相比较,光纤温度传感器具有电绝缘,抗电磁干扰,灵敏度高,体积小、重量轻、可挠曲,低成本,高稳定性,远距离监控等优点。当前光纤温度传感器主要有分布式光纤温度传感器,光纤光栅温度传感器。
分布式光纤温度传感器能实现远距离测量与监控,单位信息成本显著降低;测量范围宽,具有高空间分辨率和高精度,但是存在温敏信号即自发拉曼散射的反斯托克斯光非常微弱的缺点。光纤光栅温度传感器,但由于光纤光栅的温度系数较小,单独用它做温度传感元件,其灵敏度不高。
发明内容
为了解决上述现有技术的不足,本实用新型公开了一种镀PMDS膜光纤温度传感器。
本实用新型所采用的技术方案是:该传感器包括单模光纤1、细芯光纤2,PMDS 3,单模光纤4,其特征在于:所述的光纤传感器是将一小截细芯光纤的两端分别与单模光纤熔接,其中细芯光纤经过微拉后镀PMDS膜。进一步,所述的单模光纤1与单模光纤4均为通信用单模光纤,其包层直径为125微米;所述的细芯光纤为Nufern的405-HP,内径为2.1微米,外径为125微米,其长度为20-50毫米;所述的PMDS的厚度为10-50微米。
本实用新型的具体工作原理是:经过微拉后镀PMDS膜的细芯光纤两端分别与单模光纤熔接,构成一个马赫-曾德尔干涉仪,当温度改变时,PMDS的折射率随着温度的改变而发生变化,而细芯光纤包层的折射率随着PMDS折射率的改变而改变,从而导致干涉仪的透射光谱发生漂移,因而通过对透射光谱进行波长解调,可以实现温度的测量。
本实用新型的有益效果是:
1)传感器由单模光纤和细芯光纤组成,制备过程中只需使用光纤熔接机,具有成本低、制备简单的优点。
2)传感器尺寸小,细芯光纤微拉后很细,具有较好的韧性,不易发生折断。
3)巧妙利用PMDS的折射率与温度之间的关系,实现了温度的高灵敏度测量。
附图说明
下面结合附图及具体方式对本实用新型作进一步说明。
图1是本实用新型的结构示意图。图中:
1. 单模光纤,2.细芯光纤,3. PMDS膜,4. 单模光纤。
具体实施方式
如图1,制备传感器的步骤为:第一步,将一小截细芯光纤单模光纤1直接熔接;第二步,将细芯光纤的另一端与单模光纤4熔接;第三步,在细芯光纤微拉至所需的粗度;第四步,在微拉后的细芯光纤包层外涂覆PMDS。其特征为:所述的单模光纤1与单模光纤2均为通信用单模光纤,其包层直径为125微米;所述的细芯光纤为Nufern的405-HP,内径为2.1微米,外径为125微米,其长度为20-50毫米;所述的PMDS的厚度为10-50微米。
使用时,传感器的两端单模光纤分别与宽带光源和光谱仪相连。当温度改变时,PMDS的折射率随着温度的改变而发生变化,而细芯光纤包层的折射率随着PMDS折射率的改变而改变,从而导致干涉仪的透射光谱发生漂移,因而通过对透射光谱进行波长解调,可以实现温度的测量。
Claims (2)
1.一种镀PMDS膜光纤温度传感器,该传感器包括单模光纤、细芯光纤、PMDS 、单模光纤,其特征在于:所述的光纤传感器是将一小截细芯光纤的两端分别与单模光纤熔接而成,其中细芯光纤经过微拉后并镀有PMDS膜。
2.根据权利要求1所述的一种镀PMDS膜光纤温度传感器,其特征在于:所述的单模光纤与单模光纤均为通信用单模光纤,其包层直径为125微米;所述的细芯光纤长度为20-50毫米;所述的PMDS膜的厚度为10-50微米。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201721325469.8U CN207263335U (zh) | 2017-10-16 | 2017-10-16 | 一种镀pmds膜光纤温度传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201721325469.8U CN207263335U (zh) | 2017-10-16 | 2017-10-16 | 一种镀pmds膜光纤温度传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN207263335U true CN207263335U (zh) | 2018-04-20 |
Family
ID=61917570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201721325469.8U Expired - Fee Related CN207263335U (zh) | 2017-10-16 | 2017-10-16 | 一种镀pmds膜光纤温度传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN207263335U (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113125041A (zh) * | 2021-04-15 | 2021-07-16 | 武汉理工大学 | 一种双重増敏的高灵敏度fbg温度传感器和制造方法 |
CN113340456A (zh) * | 2021-07-15 | 2021-09-03 | 中南大学 | 一种光纤温度传感器及其测量方法 |
-
2017
- 2017-10-16 CN CN201721325469.8U patent/CN207263335U/zh not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113125041A (zh) * | 2021-04-15 | 2021-07-16 | 武汉理工大学 | 一种双重増敏的高灵敏度fbg温度传感器和制造方法 |
CN113125041B (zh) * | 2021-04-15 | 2022-01-11 | 武汉理工大学 | 一种双重増敏的高灵敏度fbg温度传感器和制造方法 |
CN113340456A (zh) * | 2021-07-15 | 2021-09-03 | 中南大学 | 一种光纤温度传感器及其测量方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | High-sensitivity SPR temperature sensor based on hollow-core fiber | |
Pu et al. | Ultrasensitive refractive-index sensors based on tapered fiber coupler with Sagnac loop | |
Wang et al. | High sensitivity and low loss open-cavity Mach-Zehnder interferometer based on multimode interference coupling for refractive index measurement | |
Hou et al. | Simultaneous measurement of refractive index and temperature based on half-tapered SMS fiber structure with fringe-visibility difference demodulation method | |
Tong et al. | Large measurement range and high sensitivity temperature sensor with FBG cascaded Mach-Zehnder interferometer | |
CN107121083A (zh) | 一种不对称粗锥结构少模光纤应变传感器 | |
CN105698858B (zh) | 一种可判别弯曲方向的曲率和温度同时测量的光纤传感器 | |
Zhao et al. | An ultra-sensitive gas pressure sensor based on tapered fiber coated with PDMS film working at TAP | |
Dhara et al. | Effect of MMF stub on the sensitivity of a photonic crystal fiber interferometer sensor at 1550 nm | |
Tong et al. | Simultaneous measurement of RH and temperature based on FBG and balloon-like sensing structure with inner embedded up-tapered MZI | |
CN108195493A (zh) | 一种基于pcf马赫-泽德干涉仪(mzi)的高灵敏度应力传感装置 | |
Tong et al. | Research on simultaneous measurement of refractive index and temperature comprising few mode fiber and spherical structure | |
CN105928469A (zh) | 一种高灵敏可判别弯曲方向的无温度交叉灵敏的光纤曲率传感器 | |
Zhao et al. | In-fiber Mach–Zehnder interferometer based on up-taper fiber structure with Er3+ doped fiber ring laser | |
CN102944328B (zh) | 折射率不敏感的温度传感器的制备方法及测量装置 | |
CN203908582U (zh) | S型锥内嵌式光纤布拉格光栅双参数传感器 | |
CN109632133A (zh) | 一种基于光纤的温度测量装置及方法 | |
Li et al. | Simultaneous measurement of RI and temperature based on a composite interferometer | |
CN207263335U (zh) | 一种镀pmds膜光纤温度传感器 | |
Zhuang et al. | A curvature sensor based on single mode-no-core-twisted single mode fiber structure | |
Wu et al. | Fiber optic hybrid structure based on an air bubble and thin taper for measurement of refractive index, temperature, and transverse load | |
Liu et al. | Ultrasensitive parallel double-FPIs sensor based on Vernier effect and Type II fiber Bragg grating for simultaneous measurement of high temperature and strain | |
Zhao et al. | Mach–Zehnder interferometer formed by a large core-offset splicing fiber for temperature and displacement measurement | |
Zi et al. | Ultrasensitive and stable pressure sensor based on tapered optical fibres | |
Liu et al. | Investigations on seven-core fiber based interferometric all-fiber sensor for curvature and temperature measurements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180420 Termination date: 20181016 |