WO2016199961A1 - Power generation facility using water flow and hydroelectric power generation device - Google Patents

Power generation facility using water flow and hydroelectric power generation device Download PDF

Info

Publication number
WO2016199961A1
WO2016199961A1 PCT/KR2015/005897 KR2015005897W WO2016199961A1 WO 2016199961 A1 WO2016199961 A1 WO 2016199961A1 KR 2015005897 W KR2015005897 W KR 2015005897W WO 2016199961 A1 WO2016199961 A1 WO 2016199961A1
Authority
WO
WIPO (PCT)
Prior art keywords
water flow
shaft member
facility
power generation
water
Prior art date
Application number
PCT/KR2015/005897
Other languages
French (fr)
Korean (ko)
Inventor
박유진
박덕풍
박민철
박기철
Original Assignee
박유진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박유진 filed Critical 박유진
Priority to JP2018517104A priority Critical patent/JP6556944B2/en
Priority to CN201590001551.8U priority patent/CN209292983U/en
Priority to PCT/KR2015/005897 priority patent/WO2016199961A1/en
Publication of WO2016199961A1 publication Critical patent/WO2016199961A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/08Tide or wave power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a hydroelectric power generation apparatus and a power generation facility, and more particularly, to a power generation facility using water flow that can produce electric energy by using water flow itself.
  • hydroelectric power generation refers to a device that generates electric energy by driving a power generation device using potential energy caused by falling water or flowing kinetic energy.
  • such a hydroelectric generator produces electric energy by constructing a power plant at a location where a large drop in the river or river is formed, and recently, researches for generating electric energy using wave force or buoyancy in water have been actively conducted. Is going on.
  • the present invention in order to solve the above problems, provides a hydroelectric power generation apparatus that can produce electrical energy using the kinetic energy of the water flow moving through the water supply or drainage facilities provided in each building and a power generation facility using the same. To do this.
  • the present invention provides a dry matter, a water flow unit connected to the dry water to supply the water flow to the dry from the outside or drain water flow from the dry and the kinetic energy of the water flowing through the water flow facility It provides a power generation facility including a power generation unit for producing electrical energy using.
  • the water flow facility unit may include at least one or more pipelines through which water flow passes, and the power generation unit may be provided inside the pipeline.
  • the pipe portion of the water flow facility may be installed to be inclined downward in the direction in which the water flow moves.
  • the water flow facility may further comprise a power source for moving the water flow along the pipeline.
  • the power generation unit is fixedly installed in the conduit, the shaft member having a coil wound around, the shaft member is rotatably installed on the axis by the flow of water passing through the conduit, and is opposed to the wound coil It may be configured to include a rotating member having a permanent magnet disposed in position.
  • the rotating member may be configured to include a hollow body is formed therein the shaft member is accommodated therein and a wing portion is installed in a spiral form along the outside of the body portion.
  • both sides of the conduit portion further comprises a connecting portion which is formed with an opening having a shape corresponding to the inner conduit of the conduit portion, it is configured to be provided with a support frame in which both ends of the shaft member is fixed.
  • the support frame is provided in the center of the inner opening includes a fastening portion to which the shaft member is fitted and installed extending in the outward direction of the fastening portion to support the fastening portion and the shaft member.
  • the fastening part and the support part may be electrically connected to the shaft member, and electrical energy produced by the coil of the shaft member may be provided to the building or the water flow facility part through the fastening part and the support part. have.
  • the power generation facility may further include a solar panel installed on the roof of the building to generate electrical energy using solar light.
  • the building may be a farm facility to form a space for aquatic products.
  • the dried material may be formed in a multilayer structure.
  • an object of the present invention described above is a pipe part for forming a passage through which water flows through, the shaft member is fixed to the inside of the pipe portion, the coil having a coil wound, the shaft by the water flow passing through the pipe portion
  • the member is rotatably installed on an axis, and includes a rotating member having a permanent magnet disposed at a position opposite to the wound coil, and electrically connected to the wound coil to transfer electrical energy generated from the coil to the outside. It can also be achieved by a hydroelectric generator including a power transmission provided to.
  • the present invention it is possible to increase the energy self-sufficiency by producing electric energy by using the water flow of the water supply and drainage facilities installed in the building, the advantage that can be installed and operated in the area where the power is not provided enough There is this.
  • FIG. 1 is a cross-sectional view schematically showing a power plant according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view illustrating a front surface of a building inside of a power generation facility in FIG. 1;
  • FIG. 3 is a cross-sectional view showing the side inside the building of the power generation facility of FIG.
  • FIG. 4 is a schematic view showing the structure of the culture tank of FIG.
  • FIG. 5 is a cross-sectional view showing the configuration of the transfer unit of FIG.
  • FIG. 6 is a cross-sectional view showing a cross section of a pipeline unit in which the power generation unit of FIG. 1 is installed;
  • FIG. 7 is a cross-sectional view showing a cross section of the shaft member and the rotating member in FIG.
  • FIG. 8 is a front view showing the connecting portion in FIG.
  • FIG. 9 is a front view illustrating a state in which a plurality of pipe sections are installed and connected according to the present embodiment
  • FIG. 10 is a plan view showing another embodiment in which a plurality of pipe sections are installed and connected according to the present embodiment
  • FIG. 11 is a view showing a pipeline of a power generation facility according to a second embodiment of the present invention.
  • FIG. 12 is a view showing a power plant in accordance with a third embodiment of the present invention.
  • FIG. 13 is a view showing a power plant in accordance with a fourth embodiment of the present invention.
  • FIG. 14 is a view showing the front of a power generation facility according to a fifth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a power plant according to an embodiment of the present invention.
  • the power generation facility according to the present embodiment is connected to the building 100 and the building to provide a water flow to the building from the outside, or a water flow facility unit for draining the water generated from the building 100 to the outside ( 200, and a power generation unit 230 for producing electrical energy using the kinetic energy of the water flow passing through the water flow facility.
  • the building 100 may be various facilities built on the ground or underground.
  • farm facilities may be used as a building.
  • the building can be constructed by using facilities for various purposes such as water supply facilities or drainage facilities such as houses, factories, malls, schools, barns, greenhouses, and apartment houses.
  • FIG. 2 is a cross-sectional view illustrating a front surface of the building of the power plant in FIG. 1
  • FIG. 3 is a cross-sectional view illustrating a side surface of the building of the power plant of FIG. 1.
  • the building may be composed of a single-layered farm facility 1000.
  • the farm facility 1000 is formed with a wall structure 1001 that forms sidewalls on all sides, and a roof structure 1003 formed on an upper side of the wall structure.
  • a plurality of aquaculture tank 1100 is provided inside the farm facility 1000.
  • Each aquaculture tank holds water inside and forms a space for aquaculture.
  • the water contained in the aquaculture tank 1100 may vary depending on the type of aquaculture products. In this embodiment, it will be described using aquaculture facilities for farming seafood, the water accommodated in the aquaculture tank may be sea water ( ⁇ ). For the sake of convenience, however, water contained in aquaculture tanks shall be referred to collectively as sea water and broth.
  • the plurality of aquaculture tanks 1100 are disposed in a lattice shape, and a walking passage 1200 through which a worker can pass is formed between the plurality of aquaculture tanks. 2 and 3, a plurality of aquaculture tanks 1100 are continuously arranged in the longitudinal direction of the complex facility, and the walk passage 1200 for every one or two aquaculture tanks in the width direction of the complex facility. Is formed. Thus, the worker can proceed with the work for each aquaculture tank while moving along the walking passage.
  • the aquaculture tank 1100 is configured in the form of a tank, the upper side is opened, the water for aquatic products are contained therein. And, it comprises a water supply 1110 for supplying the water contained in the culture tank 1100 and a drain 1120 for draining the received water to the outside.
  • the water supply 1110 may be configured to receive water through a water supply facility of the water supply unit described later to provide water to the aquaculture tank 1100.
  • the water supply unit 1110 may be configured to receive water directly from the water supply facility to supply water to the aquaculture tank 1100, and to pump water stored in a separate reservoir tank (not shown) to form the aquaculture tank 1100. It is also possible to supply water.
  • the drainage part 1120 is formed below the aquaculture tank 1100 and drains the water stored in the aquaculture tank to an external or separate drainage tank through a drainage facility of a water flow facility to be described later.
  • the bottom of the culture tank 1100 may be configured to be inclined downward toward the drain 1120 so that water can be smoothly drained to the drain.
  • a mesh filter 1121 having a mesh structure may be installed at an upper side of the drain to prevent the seafood from escaping through the drain 1120.
  • the water stored in the culture tank 1100 may be periodically replaced through the operation of the water supply 1110 and the drain 1120.
  • the flow path of the water moving through the water supply and the drainage can be formed so that the water pumped from the sea, river, lake, etc. is supplied and drained to the outside without reuse, and the water is circulated through a separate reservoir It is also possible to form a circulating flow path, and may be configured in the form of a combination of the two flow paths described above.
  • the water stored in the aquaculture tank 1100 needs to be managed to maintain a suitable aquaculture environment according to the type of seafood.
  • environmental conditions such as water temperature, salinity and dissolved oxygen, which are suitable for the growing environment of the aquatic product, should be maintained, and if these conditions are out of appropriate levels, it may result in the collective death of aquatic products.
  • the farm facility 1000 has a temperature sensor 1130 for measuring the water temperature for each aquaculture tank 1100, a salinity sensor 1140 for measuring the salinity of water, and a dissolved oxygen amount for measuring the amount of dissolved oxygen in the water.
  • a temperature sensor 1130 for measuring the water temperature for each aquaculture tank 1100
  • a salinity sensor 1140 for measuring the salinity of water
  • a dissolved oxygen amount for measuring the amount of dissolved oxygen in the water.
  • the farm facility 1000 may further include a light irradiation unit 1160 for irradiating light into the culture tank 1100.
  • the light irradiator 1160 is configured to adjust the illumination of the aquaculture tank, thereby providing an advantageous growth environment according to the type of aquatic products.
  • the light irradiation unit 1160 may be composed of a plurality of light emitting diodes provided on the inner surface of the culture tank, it may be configured in the form of a lamp using a light emitting diode on the upper side of the culture tank.
  • the aquaculture tank 1100 may further include an oxygen supply unit 1170 for increasing the dissolved oxygen amount of the received water.
  • the oxygen supply unit 1170 includes an oxygen tank, and may be configured to provide oxygen in a bubble form to the inside of the culture tank, or to provide water including oxygen bubbles into the culture tank. Therefore, the oxygen supply unit 1170 may be driven to supply oxygen into the culture tank at a predetermined cycle or when the dissolved oxygen amount is detected to be low.
  • the culture tank 1100 further includes a water flow generating unit 1180.
  • the water flow generating unit 1180 generates water flow in the water accommodated in the aquaculture tank 1100 to create an environmental condition similar to a sea environment or a fresh water environment, thereby increasing the vitality of the aquaculture products to improve the quality, the bottom By continuously floating the feed precipitated to prevent the decay of water and has the effect of reducing the feed consumption.
  • This water flow generator can be configured in a variety of ways to provide water flow inside the aquaculture tank. For example, it is possible to float a substance such as feed precipitated on the floor while generating a stream of water by spraying strong compressed air. Alternatively, it is also possible to generate water flow by moving a member, such as a separate water flow generating plate, in the aquaculture tank. In addition, the water flow generating unit may be configured using various methods.
  • the aquaculture tank 1100 is supplied with water and drained by the water supply unit 1110 and the drainage unit 1120, the light irradiation unit 1160, oxygen supply unit 1170,
  • the aquaculture generator 1180 may be used to create a suitable farming environment.
  • the farm facility 1000 may further include a transfer unit 1350 capable of transporting various items necessary for aquaculture operations, such as aquatic products or feed collected from aquaculture tanks (see FIGS. 2 and 3).
  • the transfer unit 1350 is installed to be movable along the walking passage 1200 where the worker can move. Therefore, the worker can easily proceed with the various operations made inside the farm using the transfer unit 1350.
  • FIG. 5 is a cross-sectional view showing the configuration of the transfer unit of FIG. As shown in FIG. 5, a guide rail 1310 extending in a walking passage direction is formed below the ceiling structure 1002. In addition, a moving part 1320 installed to be movable along the guide rail is inserted into the guide rail 1310.
  • the moving unit 1320 is configured to include a wheel member 1321 rotatably installed at both sides and a drive motor 1322 for rotating the wheel member.
  • the bottom of the guide rail 1310 has flanges 1311 formed on both sides of the slit 1312 that is linearly opened. Accordingly, the wheel member 1321 of the moving unit 1320 may move while rotating along both flanges of the bottom surface of the guide rail.
  • the lower side of the moving unit 1320 is provided with a cylinder 1330 is wound around the wire 1340.
  • the cylinder 1330 is configured to be rotatable using power.
  • the wire 1340 may be wound or hang down.
  • the transfer unit 1350 may be detachably installed at the lower end of the wire.
  • the transfer unit 1350 may move in the horizontal direction along the walking path while the moving unit 1320 moves, and may move up and down while the cylinder 1330 rotates.
  • driving of the driving motor 1322 and the cylinder 1330 of the moving unit 1320 may be controlled by an operator's input signal. Therefore, the operator can easily proceed while adjusting the position and height of the transfer unit according to the work position and the work content.
  • the farm facility provides an environment suitable for aquaculture by using various components provided in a plurality of pumping tanks, and provides an advantageous working environment by providing a transport unit moving along and walking along a walking path. It is possible.
  • the water flow facility unit 200 is connected to the building 100 to provide a water flow to the building from the outside, or a configuration for draining the water flow generated from the building to the outside. Therefore, the water supply facility 200 according to the present embodiment is provided with a water supply facility 210 and a drainage facility 220 for providing water flow to the building. However, it may be configured with only one of the water supply facility and the drainage facility according to the use of the building.
  • the water supply facility 210 of the water flow facility unit 200 receives water (eg, water) from an external water supply source such as an ocean, a river, a lake, or other water supply facilities, and flows into a dry water. To supply.
  • the water supply facility 210 may be connected to the water supply unit of the above-described pumping tank to supply water flow.
  • the water supply facility is composed of a plurality of conduits 2100, and may further include a power source such as a pump pump P, a motor, and various valves. As shown in FIG. 1, the water supply may be configured by the potential energy using the conduit portion 2100 inclined from an external water supply source located at a high position.
  • the drainage facility 220 of the water flow facility unit 200 drains the water flow discharged from the building 100 to an external sewage facility.
  • the drainage facility 220 may be connected to the drain of the above-described pumping tank to discharge the water flow.
  • the drainage facility 220 may also be configured with a plurality of conduits 2100, and may further include various power sources such as pumps and motors and various valves.
  • the water flow facility is buried underground, but the present invention is not limited thereto, and the water flow may be configured to form a path through which the water flows through the pipeline exposed to the surface or installed on the ground. .
  • the power generation unit 230 is configured to produce electrical energy by using the kinetic energy of the water flow moving through the water flow facility unit 200.
  • most buildings also have a water supply and drainage system, through which water flows are common.
  • the kinetic energy of the water flow passing through the water supply / drainage facility was left, but according to the present invention, the advantage of maximizing energy utilization by producing electrical energy by using the kinetic energy of the water flow is provided. have.
  • the power generation facility provides electrical energy produced by the power generation unit 230 to the building 100 or the water flow facility unit 200, thereby providing various components (for example, a light irradiation unit, It can be utilized to drive and drive various components (for example, a motor, a pump, a valve, etc.) provided in a water flow generating part, a conveying part, etc. or a water flow installation part.
  • various components for example, a light irradiation unit, It can be utilized to drive and drive various components (for example, a motor, a pump, a valve, etc.) provided in a water flow generating part, a conveying part, etc. or a water flow installation part.
  • FIG. 6 is a cross-sectional view illustrating a cross section of a conduit unit in which the power generation unit of FIG. 1 is installed.
  • the power generation unit according to the present exemplary embodiment includes a conduit portion 2100 through which water flow passes, a shaft member 2110 and a rotation member 2120 installed inside the conduit portion, and a conduit portion 2100. It may be configured as a hydro power generation apparatus including a connection portion 2200 installed on both sides of the.
  • the pipeline 2100 is formed in a cylindrical tubular shape similar to the pipeline of the water flow facility.
  • the conduit portion forms a conduit 2101 through which water flow passes, and major components of the power generation portion are installed in the conduit portion 2100.
  • Both ends of the conduit portion 2100 is formed with a flange 2130 protruding outward, it is configured to be connected to the connection portion 2200 to be described later through the flange 2130.
  • the conduit portion of the power generation unit may be configured using some or all of the plurality of conduits constituting the above-described water supply and drainage facilities.
  • the power generation unit is configured to be installed in each of the water supply facility and the drainage facility of the water flow facility unit (see FIG. 1).
  • the power generation unit may be installed only in the water supply facility, or the power generation unit may be installed in the drainage facility. It is also possible to install only.
  • the shaft member 2110 and the rotating member 2120 is configured to be installed in the conduit portion 2100, and is configured to produce electrical energy using the kinetic energy of the water flow passing through the conduit portion 2100.
  • the shaft member 2110 is fixedly installed in the conduit part 2100, and the rotating member 2120 is connected to the shaft member 2110 by the kinetic energy of water flow passing through the conduit part 2100. It is configured to be rotatable on the axis.
  • the rotating member 2120 is configured to include a body portion 2121 and the wing portion 2122 is installed along the outside of the body portion 2121.
  • Body portion 2121 is composed of a cylindrical member extending in the longitudinal direction of the rotation member 2120, a hollow is formed therein to form a space in which the shaft member 2110 is accommodated to form the shaft member 2110 It can be rotated about an axis. At this time, at least one bearing 2141 is formed between the inner surface of the body portion 2121 of the rotating member 2120 and the outer surface of the shaft member 2110, thereby minimizing friction generated during rotation.
  • the wing portion 2122 is configured to spirally wound along the outer surface of the body portion 2121.
  • the wing portion 2122 is arranged in the form of a spiral having a water flow of 40 degrees or more relative to the longitudinal direction and the perpendicular direction of the body portion 2121, a streamlined curved surface to obtain the maximum rotation as the water flow progresses It can be formed to have.
  • the wing 2122 is formed to protrude to the outside of the body portion 2121, the end of the wing portion 2122 may be configured to form a constant radius from the central axis of the body portion 2121. At this time, the wing portion 2122 is configured such that the length from the center of the shaft member (the center of the body portion) to the end portion is 0.75 times or more of the inner radius of the conduit portion so that the maximum rotational force can be ensured as the flow of water proceeds. Experimental results show that the maximum rotational motion can be induced in the case of 0.85 to 0.95 times.
  • the wing portion 2122 extends to a portion adjacent to the pipeline radius, it is possible to perform a rotational movement even when there is little water flow through the pipeline, and to prevent a foreign substance or the like from settling in the pipeline.
  • the water flow is continuously mixed in the pipeline when rotated by the wing, and by this process the water flow is frequently exposed to the air there is an advantage that the dissolved oxygen in the water flow increases, the state of the water flow is good.
  • the shaft member 2110 is disposed to penetrate the inside of the body portion 2121 of the rotating member 2120, and both ends thereof may be fixedly installed at the support frame 2210 of the connection portion to be described later. Therefore, as the rotating member 2120 rotates during the flow of water, relative rotational movement with the rotating member 2120 is possible, and electrical energy can be produced using the relative rotational movement.
  • FIG. 7 is a cross-sectional view of the shaft member 2110 and the rotating member 2120 of FIG. 6.
  • a coil 2111 wound around the shaft member 2110 may be provided, and a permanent magnet 2123 may be provided on the rotating member 2120. Accordingly, the magnetic field changes while the permanent magnet 2123 and the wound coil 2111 relatively move when the rotating member 2120 rotates, and accordingly, current flows on the wound coil 2111 to produce electrical energy. have.
  • a coil is wound around the shaft member 2110 and the permanent magnet 2123 is provided on the rotating member 2120.
  • the permanent magnet is disposed on the shaft member. It is also possible to comprise a structure in which a coil is wound around the rotating member.
  • the coil provided in the shaft member 2110 may be wound along the outer side of the shaft member 2110.
  • the wound coil may be coated with a waterproof material 2142.
  • the permanent magnet 2123 of the rotating member 2120 is disposed along the inner surface of the body portion 2121 of the rotating member 2120, and considering the flow of water that may flow into the hollow of the body portion 2121, the permanent magnet The exposed portion 2123 may be coated with a waterproof material 2142.
  • the coil 2111 is configured to be wound inside the shaft member 2110 so as not to be exposed to the outside, and is permanent.
  • the magnet 2123 may also be configured to be provided inside the body portion 2121 of the rotating member so as not to be exposed to the outside.
  • both ends of the rotating member 2120 may be disposed between the shaft member 2110 or the support frame 2210 at both ends of the rotating member 2120 to prevent water flow into the hollow portion of the rotating member 2120 in which the shaft member 2110 is accommodated. It is also possible to configure the space of the watertight packing.
  • FIG. 8 is a front view illustrating the connection part in FIG. 6.
  • the connection part 2200 is configured to be coupled to both sides of the conduit part 2100 as described above.
  • the connection part 2200 may be configured in a block shape having a shape corresponding to both flanges 2130 of the conduit part 2100, and may be configured to be coupled to the flange 2130 of the conduit part 2100.
  • an opening having a shape corresponding to the conduit of the conduit part 2100 may be formed inside the connection part 2200, and a space in which water flows along with the conduit of the conduit part 2100 may be formed.
  • connection part 2200 has at least one support frame 2210 formed inside the opening 2201.
  • the support frame 2210 may include a fastening part 2211 to which the shaft member 2110 is fixed and a support part 2212 to support the fastening part 2211.
  • the fastening part 2211 may be configured as a cylindrical member having a hollow having a predetermined length in the longitudinal direction of the shaft member 2110, and an end of the shaft member 2110 may be inserted into and fixed to the fastening part 2211.
  • the support part 2212 extends from the inner wall surface of the opening portion 2201 to the outside of the fastening part 2211 and is configured to support the fastening part 2211.
  • the fastening part 2211 is configured to be electrically connected to the coil 2111 of the shaft member 2110 in a state where the end of the shaft member 2110 is installed, and transfers electrical energy generated from the coil 2111. I can receive it. Electrical energy delivered to the fastening part 2211 may be transmitted to the outside along the electric lines formed in the fastening part 2211 and the support part 2212, and may be provided to various components of the building and the water flow facility as described above.
  • connection unit 2200 may be configured in various forms in addition to the above-described structure.
  • the connection portion may be configured in one block form, and the upper structure and the lower structure may be formed in a removable structure.
  • one support frame is provided in one connection part, and two shaft members of each conduit part disposed on both sides of the connection part are fixed to one support frame.
  • this is an example, and it is also possible to be configured to have two support frames to fix the shaft members of the conduit arranged on both sides, respectively.
  • shape of the fastening portion and the support portion can be variously modified in consideration of the shaft member and the water flow characteristics.
  • FIG. 9 is a front view illustrating a state in which a plurality of pipelines are connected and installed according to the present embodiment
  • FIG. 10 is a plan view illustrating another state in which a plurality of pipelines are connected and installed according to the present embodiment.
  • both ends of the connection part 2200 are configured to be connected to adjacent conduit parts (also possibly a conduit part of the water flow generator).
  • the plurality of pipe parts 2100 may be connected and installed through the connection part 2200. Therefore, the plurality of pipe parts 2100 and the plurality of connecting parts 2200 are alternately arranged to form electric flow paths through which water flows, and thereby produce electrical energy using the kinetic energy of the flow paths.
  • connection part 2200 may be configured as a straight block to be connected to the plurality of pipe parts to form a straight flow path (see FIG. 9).
  • connection part may be formed of a block having a bent flow path, so that the bent flow path may be formed by being connected to the plurality of conduits (see FIG. 10).
  • the flange 2130 and the connection portion 2200 of the conduit portion 2100 are selectively detachably installed by separate fastening members (not shown). Therefore, not only is it easy to manufacture and install, but it is possible to comprise various flow paths using the connection part of various structures.
  • the construction can easily replace some of the pipeline portion of the water flow unit installed already in the power generation unit, and furthermore, there is an advantage that can easily proceed to perform or replace the maintenance work.
  • the power generation facility can improve the energy self-sufficiency of the building by producing electric energy by itself using water flow inside the water supply / drainage facility that has not been used before.
  • the power generation unit having a pipe-type structure has been described with reference to a structure installed in the water flow unit of the power generation facility, but the power generation unit illustrated in FIGS. 6 to 10 is an independent hydro power generation device, in addition to the power generation facility. Can be installed and used in various pipelines that are buried in.
  • the power generation facility has been described mainly for producing electric energy using kinetic energy of water flow.
  • the electric power plant may be configured to produce electric energy using an energy source other than hydropower to improve energy self-sufficiency. Can be.
  • the power plant according to the present embodiment may have a plurality of solar panels 110 installed above the roof structure 103 of the building.
  • the solar panel 110 produces electrical energy using sunlight. This electrical energy can be used to drive various components of the building or various conveying elements of the hydro power generation unit, similar to the electrical energy produced in the above-described power generation unit.
  • the plurality of solar panels 1010 are arranged to form a plurality of rows having the same height on the support frame 1020 (see FIGS. 2 and 3). Since the solar panel is installed in an exposed state, frequent maintenance is required, but in the conventional case, it was difficult to maintain a specific area because the solar panel is installed close to the roof slope as a large structure. On the other hand, in this embodiment, the solar panel is composed of a plurality of rows, so that maintenance work can be performed through each row, and in particular, the support frame on which the solar panel is installed performs a function as a walking path for the worker. Therefore, there is an advantage that can easily proceed with the maintenance work. Although not separately illustrated in the drawings, it is also possible to further include a separate work panel which is installed to be movable by using a rail or the like on the support frame so that the worker can easily move on the support frame.
  • the solar panel 1010 and the support frame 1020 are installed on the roof structure by the plurality of panel supports 1030.
  • the panel support 1030 includes a first member 1031 connecting the roof structure and the support frame and a second member 1032 connecting the support frame and the solar panel.
  • An upper end of the first member 1031 may be fastened to fix the support frame 1020, and a lower end of the first member 1031 may be installed using a flange and a separate fastener installed in close contact with the upper surface of the roof structure 1003.
  • an upper end of the second member 1032 may be installed to support the solar panel 1010, and a lower end of the second member 1032 may be installed to be fixed to the support frame 1020.
  • the solar panel 1010 is fixedly installed with the roof frame 1004 by the support frame 1020 and the panel support 1030 to maintain a more firmly coupled state.
  • a fan 1040 for generating electrical energy by using kinetic energy of air traveling downward of the solar panel 1010 may be separately formed on the roof frame 1004. Can be. Since the flow of air increases the flow velocity at the portion where the path is narrowed, by installing a fan 1040 along the longitudinal direction of the roof structure 1003 between the roof structure and the solar panel 1010, which is relatively fast air flows For example, wind power can be used to produce electrical energy. Such a fan may be disposed along the inclined surface of the roof to generate electricity by using the kinetic energy of the airflow rising on the inclined surface.
  • the upper side of the roof frame 1004 may further include a wind fan that generates electrical energy using exhaust wind exhausted from the power generation facility to the outside.
  • a wind fan that generates electrical energy using exhaust wind exhausted from the power generation facility to the outside.
  • an exhaust unit for exhausting air in the facility may be formed.
  • the exhaust unit discharges air inside the facility through the exhaust fan 1061, and has a foreign matter processing unit 1062 provided therein to allow the air inside the facility to pass through the air inside the facility to remove the foreign matter and to exhaust it to the outside through an opening formed in the upper side of the exhaust unit. have.
  • the wind fan 1050 is installed on the upper side of the exhaust opening, it is possible to produce electrical energy using the kinetic energy of the exhaust wind.
  • the wind fan may be composed of a rotating shaft is installed in the vertical direction and the rotating portion of the curved shape provided in a form surrounding the rotating shaft in a spiral form.
  • a wind fan may be composed of a rotating shaft is installed in the vertical direction and the rotating portion of the curved shape provided in a form surrounding the rotating shaft in a spiral form.
  • the wind fan 1050 may be provided in plural in the other positions of the roof structure as well as the upper side of the opening of the exhaust portion, and may be configured to produce electric energy using wind energy of natural wind.
  • the power generation facility produces electric energy using solar energy and wind energy as well as the kinetic energy of the water flow in the water flow facility, thereby increasing the energy self-sufficiency and building the facility even in an area where power supply is difficult. It has the advantage of being possible to operate. Furthermore, it is also possible to provide electrical energy produced from power generation facilities to external facilities or to sell electrical energy.
  • FIG. 11 is a view illustrating a pipeline of a power generation facility according to a second embodiment of the present invention.
  • a pipe part including a pipe part of a hydraulic facility part and a pipe part of a power generation part
  • the pipe portion may be buried in the inclined form so that the water flow inside it can move in a specific direction by the potential energy.
  • the conduit portion 2100 of the hydroelectric generator may have a small sized hollow 2102 along its outer surface.
  • the size of the hollow 2102 may be configured to have a diameter small enough to pass through the foreign matter, such as soil, and water. Therefore, rainwater flowing through the ground surface or groundwater present in the basement may be introduced into the conduit 2100 to be used for hydro power generation.
  • the plurality of hollows 2102 may be formed only on the upper side of the conduit portion 2100 so as to prevent the water flow passing through the conduit from leaking to the outside.
  • Figure 13 is a view showing a power generation facility according to a fourth embodiment of the present invention.
  • the pipe portion of the water flow facility portion is buried in an inclined form, and the water flow moves by the potential energy.
  • the conduit portion 2100 of the water flow facility unit 200 may be formed in a horizontal direction, and the water flow may proceed by a power source such as a pump P.
  • FIG. 13 illustrates a method of supplying water from the ground water source.
  • the water flow facility unit 200 may pump the groundwater to the upper side by using the pump (P) and then provide the water flow to the building side.
  • the drive source such as a pump compared to the structure that proceeds along the horizontal pipe after pumping in the vertical direction The number of can be minimized.
  • the power generation facility is configured using a single-layered building made of aquaculture facilities, but in the present embodiment, the power generation facility may be configured by using a building having a multilayer structure.
  • the first layer and the second layer may be composed of different facilities.
  • the first floor may be composed of the farm facility 1000
  • the second floor may be composed of the barn facility 3000, and in addition to this, a variety of buildings such as a farm, a barn, and a greenhouse may be combined. Let's find out.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

The present invention relates to a power generation facility comprising: a structure; a water flow facility unit which is connected to the structure and is for supplying a water flow from outside to the structure or draining the water flow from the structure; and a power generation unit which is for generating electrical energy by means of motion energy of the water flow moving by means of the water flow facility unit. The present invention enables generation of electrical energy by means of a water flow in a supply facility and drain facility provided in a building, thereby increasing energy self-sufficiency. And a facility can be provided and operated even in regions in which electricity is not sufficiently provided.

Description

수력 발전 장치 및 수류를 이용한 발전 시설물Hydroelectric Generators and Power Plants Using Water Flow
본 발명은 수력 발전 장치 및 발전 시설물에 관한 것으로, 구체적으로는 수류를 이용하여 전기 에너지를 자체 생산할 수 있는 수류를 이용한 발전 시설물에 관한 것이다.The present invention relates to a hydroelectric power generation apparatus and a power generation facility, and more particularly, to a power generation facility using water flow that can produce electric energy by using water flow itself.
일반적으로 수력 발전이라 함은 유수의 낙차에 따른 위치 에너지 또는 유수의 운동 에너지를 이용하여 발전 장치를 구동하여 전기 에너지를 발전시키는 장치를 의미한다.In general, the term "hydroelectric power generation" refers to a device that generates electric energy by driving a power generation device using potential energy caused by falling water or flowing kinetic energy.
이러한 수력 발전 장치는 강이나 하천 가운데 지형적으로 큰 낙차를 형성하는 위치에 발전소를 건설하여 전기 에너지를 생산하는 것이 일반적이었고, 최근에는 파력이나 물에서의 부력을 이용하여 전기 에너지를 생산하는 연구가 활발하게 진행되고 있다.In general, such a hydroelectric generator produces electric energy by constructing a power plant at a location where a large drop in the river or river is formed, and recently, researches for generating electric energy using wave force or buoyancy in water have been actively conducted. Is going on.
특히, 최근 원자력 발전소 및 화력 발전소로 인한 환경오염의 위험이 크게 대두됨에 따라, 환경오염의 우려가 없는 수력 발전 방식에 대해 보다 관심을 기울이고 있는 실정이다.In particular, as the risk of environmental pollution caused by nuclear power plants and thermal power plants has recently emerged, attention has been paid to hydroelectric power generation methods without concern for environmental pollution.
다만, 종래의 수력 발전은 주로 지형적인 조건을 이용하는 방식이거나 대규고 공사를 수반하는 방식으로 이루어져 왔기 때문에, 전력 수요가 필요한 위치로부터 원거리에 위치하여 발전을 수행하므로 전력 손실이 야기될 수 밖에 없었고, 대규모 공사를 통한 대규모 발전 방식이었기 때문에 민간 차원에서 발전 설비를 구비하여 전기 에너지를 생산하는 것이 매우 곤란한 문제가 있었다.However, since the conventional hydroelectric power generation has been mainly made by using a geographic condition or a method involving large-scale construction, power loss is inevitable because power generation is performed remotely from a location where power demand is needed. Since it was a large-scale power generation method through large-scale construction, it was very difficult to produce electric energy with power generation facilities at the private level.
본 발명은 상기와 같은 문제를 해결하기 위해, 각각의 건조물에 구비되는 급수 시설 또는 배수 시설을 통해 이동하는 수류의 운동 에너지를 이용하여 전기 에너지를 생산할 수 있는 수력 발전 장치 및 이를 이용한 발전 시설물을 제공하기 위함이다.The present invention, in order to solve the above problems, provides a hydroelectric power generation apparatus that can produce electrical energy using the kinetic energy of the water flow moving through the water supply or drainage facilities provided in each building and a power generation facility using the same. To do this.
상기한 목적을 달성하기 위해, 본 발명은 건조물, 상기 건조물과 연결되어 외부로부터 수류를 상기 건조물로 공급하거나 상기 건조물로부터 수류를 배수하기 위한 수류 시설부 그리고, 상기 수류 시설부를 통해 이동하는 수류의 운동 에너지를 이용하여 전기 에너지를 생산하는 발전부를 포함하는 발전 시설물을 제공한다.In order to achieve the above object, the present invention provides a dry matter, a water flow unit connected to the dry water to supply the water flow to the dry from the outside or drain water flow from the dry and the kinetic energy of the water flowing through the water flow facility It provides a power generation facility including a power generation unit for producing electrical energy using.
여기서, 상기 수류 시설부는 내부에 수류가 통과하는 적어도 하나 이상의 관로부를 포함하여 구성되며, 상기 발전부는 상기 관로부의 내측에 구비될 수 있다.Here, the water flow facility unit may include at least one or more pipelines through which water flow passes, and the power generation unit may be provided inside the pipeline.
여기서, 상기 수류 시설부의 상기 관로부는 상기 수류가 이동하는 방향으로 하향 경사지도록 설치될 수 있다.Here, the pipe portion of the water flow facility may be installed to be inclined downward in the direction in which the water flow moves.
또는, 상기 수류 시설부는 상기 관로를 따라 상기 수류를 이동시키기 위한 동력원을 더 포함하여 구성될 수 있다.Alternatively, the water flow facility may further comprise a power source for moving the water flow along the pipeline.
한편, 상기 발전부는 상기 관로부 내부에 고정 설치되며, 권선된 코일을 구비하는 축 부재, 상기 관로부를 통과하는 수류에 의해 상기 축 부재를 축으로 회전 가능하게 설치되며, 상기 권선된 코일과 대향되는 위치에 배치되는 영구자석이 구비된 회전부재를 포함하여 구성될 수 있다.On the other hand, the power generation unit is fixedly installed in the conduit, the shaft member having a coil wound around, the shaft member is rotatably installed on the axis by the flow of water passing through the conduit, and is opposed to the wound coil It may be configured to include a rotating member having a permanent magnet disposed in position.
여기서, 상기 회전부재는 내부에 상기 축 부재가 수용되는 중공이 형성된 몸체부 및 상기 몸체부의 외측을 따라 나선 형태로 설치되는 날개부를 포함하여 구성될 수 있다.Here, the rotating member may be configured to include a hollow body is formed therein the shaft member is accommodated therein and a wing portion is installed in a spiral form along the outside of the body portion.
나아가, 상기 관로부의 양측에는 상기 관로부의 내부 관로에 대응되는 형상의 개구부가 형성되는 연결부를 더 포함하고, 상기 연결부의 내부에는 상기 축 부재의 양단이 고정 설치되는 지지 프레임이 설치되도록 구성된다.Further, both sides of the conduit portion further comprises a connecting portion which is formed with an opening having a shape corresponding to the inner conduit of the conduit portion, it is configured to be provided with a support frame in which both ends of the shaft member is fixed.
여기서, 상기 지지 프레임은 내측 개구부의 중심에 구비되어 상기 축 부재가 끼움 설치되는 체결부 및 상기 체결부의 외측 방향으로 연장 설치되어 상기 체결부 및 상기 축 부재를 지지파는 지지부를 포함하여 구성된다. 그리고, 상기 체결부 및 상기 지지부는 상기 축 부재와 전기적으로 연결되며, 상기 축 부재의 상기 코일에서 생산되는 전기 에너지는 상기 체결부 및 상기 지지부를 통해 상기 건조물 또는 상기 수류 시설부로 제공되도록 구성할 수 있다.Here, the support frame is provided in the center of the inner opening includes a fastening portion to which the shaft member is fitted and installed extending in the outward direction of the fastening portion to support the fastening portion and the shaft member. The fastening part and the support part may be electrically connected to the shaft member, and electrical energy produced by the coil of the shaft member may be provided to the building or the water flow facility part through the fastening part and the support part. have.
한편, 발전 시설물은 건조물의 지붕 상측에 설치되어, 태양광을 이용하여 전기 에너지를 생산하는 태양광 패널을 더 포함할 수 있다.Meanwhile, the power generation facility may further include a solar panel installed on the roof of the building to generate electrical energy using solar light.
그리고, 상기 건조물은 수산물을 양식하는 공간을 형성하는 양식장 시설물일 수 있다. 나아가, 상기 건조물은 다층 구조로 형성될 수 있다.And, the building may be a farm facility to form a space for aquatic products. Furthermore, the dried material may be formed in a multilayer structure.
한편, 상기한 본 발명의 목적은 내부에 수류가 통과하는 관로를 형성하는 관로부, 상기 관로부 내부에 고정 설치되며, 권선된 코일을 구비하는 축 부재, 상기 관로부를 통과하는 수류에 의해 상기 축부재를 축으로 회전 가능하게 설치되며, 상기 권선된 코일과 대향되는 위치에 배치되는 영구 자석이 구비되는 회전 부재, 그리고 상기 권선된 코일과 전기적으로 연결되어 상기 코일로부터 발생되는 전기 에너지가 전달되어 외부로 제공되는 전력 전달부를 포함하는 수력 발전장치에 의해서도 달성될 수 있다.On the other hand, an object of the present invention described above is a pipe part for forming a passage through which water flows through, the shaft member is fixed to the inside of the pipe portion, the coil having a coil wound, the shaft by the water flow passing through the pipe portion The member is rotatably installed on an axis, and includes a rotating member having a permanent magnet disposed at a position opposite to the wound coil, and electrically connected to the wound coil to transfer electrical energy generated from the coil to the outside. It can also be achieved by a hydroelectric generator including a power transmission provided to.
본 발명에 의할 경우, 건물에 설치되는 급수 시설 및 배수 시설의 수류를 이용하여 전기 에너지를 생산함으로서 에너지 자급율을 높일 수 있으며, 전력이 충분히 제공되지 않는 지역에도 시설물을 설치하여 운영할 수 있는 장점이 있다.According to the present invention, it is possible to increase the energy self-sufficiency by producing electric energy by using the water flow of the water supply and drainage facilities installed in the building, the advantage that can be installed and operated in the area where the power is not provided enough There is this.
특히 본 발명에 따른 수력 발전 장치를 이용하는 경우, 인접한 위치에 배치되는 배수관, 급수관 등의 관로를 이용하거나 강이나 산, 계곡, 하천 등과 인접한 지역에 관로를 매설하여 수력 발전을 진행할 수 있어, 대규모의 시공 없이 전기 에너지를 생산하는 것이 가능하며, 전력 수요가 많은 도심 지역에서도 수력 발전을 진행할 수 있는 장점이 있다.In particular, in the case of using the hydroelectric power generation apparatus according to the present invention, by using a pipeline such as a drain pipe, a water supply pipe disposed in an adjacent position or by laying a pipeline in an area adjacent to a river, a mountain, a valley, a river, etc. It is possible to produce electric energy without construction, and there is an advantage in that hydroelectric power generation can proceed in urban areas where power demand is high.
또한, 관로 내부에 구비되는 회전 부재에 의해 발전이 진행됨과 동시에 관로 내부에 침전물이 형성되는 것을 최소화시킬 수 있으며, 관로 내부에 이상 발생시 해당 위치만을 분리하여 용이하게 유지 보수를 진행하거나 교체를 할 수 있는 장점이 있다.In addition, it is possible to minimize the formation of sediment in the pipeline at the same time as the power generation is progressed by the rotating member provided in the pipeline, and when an abnormality occurs in the pipeline, it is possible to easily maintain or replace the corresponding location. There is an advantage.
도 1는 본 발명의 일 실시예에 따른 발전 시설물을 개략적으로 도시한 단면도,1 is a cross-sectional view schematically showing a power plant according to an embodiment of the present invention,
도 2은 도 1에서 발전 시설물의 건조물 내부의 정면을 도시한 단면도,FIG. 2 is a cross-sectional view illustrating a front surface of a building inside of a power generation facility in FIG. 1;
도 3은 도 1의 발전 시설물의 건조물 내부의 측면을 도시한 단면도,3 is a cross-sectional view showing the side inside the building of the power generation facility of FIG.
도 4는 도 2의 양식 탱크의 구조를 도시한 개략도,4 is a schematic view showing the structure of the culture tank of FIG.
도 5는 도 3의 이송부의 구성을 도시한 단면도,5 is a cross-sectional view showing the configuration of the transfer unit of FIG.
도 6은 도 1의 발전부가 설치되는 관로부의 단면을 도시한 단면도,6 is a cross-sectional view showing a cross section of a pipeline unit in which the power generation unit of FIG. 1 is installed;
도 7은 도 6에서 축 부재 및 회전 부재의 단면을 도시한 단면도,7 is a cross-sectional view showing a cross section of the shaft member and the rotating member in FIG.
도 8은 도 6에서 연결부를 도시한 정면도,8 is a front view showing the connecting portion in FIG.
도 9는 본 실시예에 따른 복수개의 관로부가 연결 설치되는 일 모습을 도시한 정면도,9 is a front view illustrating a state in which a plurality of pipe sections are installed and connected according to the present embodiment;
도 10은 본 실시예에 따른 복수개의 관로부가 연결 설치되는 다른 모습을 도시한 평면도,10 is a plan view showing another embodiment in which a plurality of pipe sections are installed and connected according to the present embodiment;
도 11은 본 발명의 제2 실시예에 따른 발전 시설물의 관로부를 도시한 도면,11 is a view showing a pipeline of a power generation facility according to a second embodiment of the present invention;
도 12은 본 발명의 제3 실시예에 따른 발전 시설물을 도시한 도면, 12 is a view showing a power plant in accordance with a third embodiment of the present invention;
도 13은 본 발명의 제4 실시예에 따른 발전 시설물을 도시한 도면,13 is a view showing a power plant in accordance with a fourth embodiment of the present invention;
도 14는 본 발명의 제5 실시예에 따른 발전 시설물의 정면을 도시한 도면이다.14 is a view showing the front of a power generation facility according to a fifth embodiment of the present invention.
이하에서는 도면을 참고하여 본 발명의 실시예에 따른 발전 시설물에 대해 구체적으로 설명하도록 한다. 아래의 설명에서 각 구성요소의 위치 관계는 원칙적으로 도면을 기준으로 설명한다. 그리고 도면은 설명의 편의를 위해 발명의 구조를 단순화하거나 필요할 경우 과장 또는 생략하여 표시될 수 있다. 따라서, 본 발명이 이에 한정되는 것은 아니며 이 이외에도 각종 장치를 부가하거나, 변경 또는 생략하여 실시할 수 있음은 물론이다.Hereinafter, with reference to the drawings will be described in detail for the power generation facilities according to an embodiment of the present invention. In the following description, the positional relationship of each component is explained based on the drawings in principle. In addition, the drawings may be displayed by simplifying the structure of the invention or by exaggerating or omitting if necessary for the convenience of description. Therefore, the present invention is not limited thereto, and various other devices may be added, modified or omitted.
도 1는 본 발명의 일 실시예에 따른 발전 시설물을 개략적으로 도시한 단면도이다. 도 1에 도시된 바와 같이, 본 실시예에 따른 발전 시설물은 건조물(100), 건조물과 연결되어 외부로부터 건조물에 수류를 제공하거나 건조물(100)로부터 발생되는 수류를 외부로 배유하기 위한 수류 시설부(200), 그리고 수류 시설부를 통과하는 수류의 운동 에너지를 이용하여 전기 에너지를 생산하는 발전부(230)를 포함하여 구성될 수 있다.1 is a cross-sectional view schematically showing a power plant according to an embodiment of the present invention. As shown in FIG. 1, the power generation facility according to the present embodiment is connected to the building 100 and the building to provide a water flow to the building from the outside, or a water flow facility unit for draining the water generated from the building 100 to the outside ( 200, and a power generation unit 230 for producing electrical energy using the kinetic energy of the water flow passing through the water flow facility.
건조물(100)은 지상 또는 지하에 축조되는 각종 시설물일 수 있다. 본 실시예에서는 일 예로서 건조물로서 양식장 시설물을 이용할 수 있다. 다만, 이는 일 예에 불과하며, 주택, 공장, 상가, 학교, 축사, 온실, 공동 주택 등 급수 시설 또는 배수 시설이 요구되는 다양한 용도의 시설물을 이용하여 건조물을 구성할 수 있음을 밝혀둔다.The building 100 may be various facilities built on the ground or underground. In this embodiment, for example, farm facilities may be used as a building. However, this is only an example, and it is clarified that the building can be constructed by using facilities for various purposes such as water supply facilities or drainage facilities such as houses, factories, malls, schools, barns, greenhouses, and apartment houses.
도 2은 도 1에서 발전 시설물의 건조물 내부의 정면을 도시한 단면이고, 도 3은 도 1의 발전 시설물의 건조물 내부의 측면을 도시한 단면도이다.FIG. 2 is a cross-sectional view illustrating a front surface of the building of the power plant in FIG. 1, and FIG. 3 is a cross-sectional view illustrating a side surface of the building of the power plant of FIG. 1.
도 2 및 도 3에 도시된 바와 같이, 건조물은 단층 구조의 양식장 시설물(1000)로 구성될 수 있다. 양식장 시설물(1000)은 사방의 측벽을 형성하는 벽체 구조물(1001) 및 벽체 구조물의 상측에 형성되는 지붕 구조물(1003)이 형성된다.As shown in Figures 2 and 3, the building may be composed of a single-layered farm facility 1000. The farm facility 1000 is formed with a wall structure 1001 that forms sidewalls on all sides, and a roof structure 1003 formed on an upper side of the wall structure.
한편, 양식장 시설물(1000)의 내부에는 다수개의 양식 탱크(1100)가 구비된다. 각각의 양식 탱크는 내부에 물이 수용되며, 수산물이 양식되는 공간을 형성한다. 양식 탱크(1100)에 수용되는 물은 양식되는 수산물의 종류에 따라 달라질 수 있다. 본 실시예에서는 해산물을 양식하는 양식장 시설물을 이용하여 설명하며, 양식 탱크에 수용되는 물은 해수(海水)일 수 있다. 다만, 설명의 편의를 위하여 양식 탱크에 수용되는 물은 해수(海水)와 육수(陸水)를 통칭하는 것으로 한다.On the other hand, a plurality of aquaculture tank 1100 is provided inside the farm facility 1000. Each aquaculture tank holds water inside and forms a space for aquaculture. The water contained in the aquaculture tank 1100 may vary depending on the type of aquaculture products. In this embodiment, it will be described using aquaculture facilities for farming seafood, the water accommodated in the aquaculture tank may be sea water (海水). For the sake of convenience, however, water contained in aquaculture tanks shall be referred to collectively as sea water and broth.
다수개의 양식 탱크(1100)는 격자 형상으로 배치되며, 다수개의 양식 탱크 사이에는 작업자가 통행할 수 있는 보행 통로(1200)가 형성된다. 도 2 및 도 3에 도시된 바와 같이, 복합 시설물의 길이 방향으로는 다수개의 양식 탱크(1100)가 연속적으로 배치되며, 복합 시설물의 폭 방향으로는 하나 또는 두 개의 양식 탱크 마다 보행 통로(1200)가 형성된다. 따라서, 작업자는 보행 통로를 따라 이동하면서 각각의 양식 탱크를 대상으로 작업을 진행할 수 있다.The plurality of aquaculture tanks 1100 are disposed in a lattice shape, and a walking passage 1200 through which a worker can pass is formed between the plurality of aquaculture tanks. 2 and 3, a plurality of aquaculture tanks 1100 are continuously arranged in the longitudinal direction of the complex facility, and the walk passage 1200 for every one or two aquaculture tanks in the width direction of the complex facility. Is formed. Thus, the worker can proceed with the work for each aquaculture tank while moving along the walking passage.
도 4는 도 2의 양식 탱크의 구조를 도시한 개략도이다. 양식 탱크(1100)는 상측이 개방된 수조 형태로 구성되며, 내부에 수산물을 양식하기 위한 물이 수용된다. 그리고, 양식 탱크(1100)에 수용되는 물을 공급하기 위한 급수부(1110) 및 수용된 물을 외부로 배수하기 위한 배수부(1120)를 포함하여 구성된다.4 is a schematic view showing the structure of the culture tank of FIG. The aquaculture tank 1100 is configured in the form of a tank, the upper side is opened, the water for aquatic products are contained therein. And, it comprises a water supply 1110 for supplying the water contained in the culture tank 1100 and a drain 1120 for draining the received water to the outside.
급수부(1110)는 후술할 수류 시설부의 급수 시설을 통해 물을 공급받아 양식 탱크(1100)에 물을 제공하도록 구성될 수 있다. 이러한 급수부(1110)는 급수 시설로부터 직접 물을 제공 받아 양식 탱크(1100)에 물을 공급하도록 구성하는 것도 가능하고, 별도의 저수 탱크(미도시)에 저장된 물을 양수하여 양식 탱크(1100)에 물을 공급하는 것도 가능하다.The water supply 1110 may be configured to receive water through a water supply facility of the water supply unit described later to provide water to the aquaculture tank 1100. The water supply unit 1110 may be configured to receive water directly from the water supply facility to supply water to the aquaculture tank 1100, and to pump water stored in a separate reservoir tank (not shown) to form the aquaculture tank 1100. It is also possible to supply water.
배수부(1120)는 양식 탱크(1100)의 하측에 형성되며, 양식 탱크에 저장된 물을 후술할 수류 시설부의 배수 시설을 통해 외부 또는 별도의 배수조로 배수한다. 이때, 양식 탱크(1100)의 저면은 배수부로 물이 원활하게 배수될 수 있도록 배수부(1120) 방향으로 하향 경사지도록 구성될 수 있다. 그리고, 배수부(1120)를 통해 수산물이 빠져나가는 것을 방지할 수 있도록 배수부의 상측에는 메쉬 구조의 필터(1121)가 설치될 수 있다.The drainage part 1120 is formed below the aquaculture tank 1100 and drains the water stored in the aquaculture tank to an external or separate drainage tank through a drainage facility of a water flow facility to be described later. At this time, the bottom of the culture tank 1100 may be configured to be inclined downward toward the drain 1120 so that water can be smoothly drained to the drain. In addition, a mesh filter 1121 having a mesh structure may be installed at an upper side of the drain to prevent the seafood from escaping through the drain 1120.
이와 같이, 양식 탱크(1100) 내부에 저장된 물은 급수부(1110)와 배수부(1120)의 운전을 통해 주기적으로 교체될 수 있다. 다만, 급수부와 배수부를 통해 이동하는 물의 유로는, 바다, 강, 호수 등 에서 양수된 물이 공급되어 재사용 없이 외부로 배수되도록 유로를 형성하는 것도 가능하고, 별도의 저수조를 매개로 물이 순환하는 순환 유로를 형성하는 것도 가능하며, 전술한 두 가지의 유로가 조합된 형태로 구성되는 것도 가능하다.As such, the water stored in the culture tank 1100 may be periodically replaced through the operation of the water supply 1110 and the drain 1120. However, the flow path of the water moving through the water supply and the drainage can be formed so that the water pumped from the sea, river, lake, etc. is supplied and drained to the outside without reuse, and the water is circulated through a separate reservoir It is also possible to form a circulating flow path, and may be configured in the form of a combination of the two flow paths described above.
한편, 양식 탱크(1100)에 저장되는 물은 수산물의 종류에 따라 적합한 양식 환경을 유지하도록 관리될 필요가 있다. 구체적으로, 수산물의 생장 환경에 맞는 수온, 염도 및 용존 산소량 등의 환경 조건을 유지해야하며, 이러한 조건들이 적정 수준을 벗어날 경우 양식중인 수산물의 집단 폐사도 초래할 수 있다.On the other hand, the water stored in the aquaculture tank 1100 needs to be managed to maintain a suitable aquaculture environment according to the type of seafood. Specifically, environmental conditions, such as water temperature, salinity and dissolved oxygen, which are suitable for the growing environment of the aquatic product, should be maintained, and if these conditions are out of appropriate levels, it may result in the collective death of aquatic products.
따라서, 본 실시예에 따른 양식장 시설물(1000)은 각각의 양식 탱크(1100)마다 수온을 측정하는 온도 센서(1130), 물의 염도를 측정하는 염도 센서(1140) 및 물의 용존 산소량을 측정하는 용존 산소량 감지센서(1150)를 설치하여, 양식 탱크의 환경 정보를 관리하도록 구성될 수 있다. Therefore, the farm facility 1000 according to the present embodiment has a temperature sensor 1130 for measuring the water temperature for each aquaculture tank 1100, a salinity sensor 1140 for measuring the salinity of water, and a dissolved oxygen amount for measuring the amount of dissolved oxygen in the water. By installing the sensor 1150, it can be configured to manage the environmental information of the aquaculture tank.
한편, 양식장 시설물(1000)은 양식 탱크(1100) 내부로 광을 조사하는 광 조사부(1160)를 더 구비할 수 있다. 광 조사부(1160)는 양식 탱크 내부 조도를 조절하도록 구성되어, 수산물의 종류에 따라 유리한 성장 환경을 제공할 수 있다. 이러한 광 조사부(1160)는 양식 탱크의 내면에 설치되는 복수개의 발광 다이오드로 구성되는 것도 가능하며, 양식 탱크의 상측에 발광 다이오드를 이용한 전등 형태로 구성하는 것도 가능하다.On the other hand, the farm facility 1000 may further include a light irradiation unit 1160 for irradiating light into the culture tank 1100. The light irradiator 1160 is configured to adjust the illumination of the aquaculture tank, thereby providing an advantageous growth environment according to the type of aquatic products. The light irradiation unit 1160 may be composed of a plurality of light emitting diodes provided on the inner surface of the culture tank, it may be configured in the form of a lamp using a light emitting diode on the upper side of the culture tank.
또한, 양식 탱크(1100)는 수용된 물의 용존 산소량을 높이기 위한 산소 공급부(1170)를 더 구비할 수 있다. 산소 공급부(1170)는 산소 탱크를 포함하여 구성되며, 양식 탱크의 내부에 기포 형태로 산소를 제공하거나, 산소 기포를 포함하는 물을 양식 탱크 내부로 제공하도록 구성될 수 있다. 따라서, 산소 공급부(1170)는 소정 주기로 또는 용존 산소량이 낮아진 것이 감지되면 양식 탱크 내부로 산소를 공급하도록 구동될 수 있다.In addition, the aquaculture tank 1100 may further include an oxygen supply unit 1170 for increasing the dissolved oxygen amount of the received water. The oxygen supply unit 1170 includes an oxygen tank, and may be configured to provide oxygen in a bubble form to the inside of the culture tank, or to provide water including oxygen bubbles into the culture tank. Therefore, the oxygen supply unit 1170 may be driven to supply oxygen into the culture tank at a predetermined cycle or when the dissolved oxygen amount is detected to be low.
나아가, 본 실시예에 따른 양식 탱크(1100)는 수류 발생부(1180)를 더 포함하여 구성된다. 수류 발생부(1180)는 양식 탱크(1100)에 수용되는 물에 수류를 발생시켜 바다 환경 또는 민물 환경과 유사한 환경 조건을 조성함으로써, 양식되는 수산물의 활력을 증가시켜 품질을 개선시킬 수 있고, 바닥으로 침전되는 사료를 지속적으로 부유시켜 물의 부패를 방지하고 사료 사용량을 절감할 수 있는 효과를 갖는다.Furthermore, the culture tank 1100 according to the present embodiment further includes a water flow generating unit 1180. The water flow generating unit 1180 generates water flow in the water accommodated in the aquaculture tank 1100 to create an environmental condition similar to a sea environment or a fresh water environment, thereby increasing the vitality of the aquaculture products to improve the quality, the bottom By continuously floating the feed precipitated to prevent the decay of water and has the effect of reducing the feed consumption.
이러한 수류 발생부는 다양한 방식으로 구성되어 양식 탱크 내부에 수류를 제공하는 것이 가능하다. 일 예로, 강한 압축 공기를 분사하여 수류를 발생시키면서 바닥에 침전되는 사료 등의 물질을 부유시킬 수 있다. 또는, 별도의 수류 발생판과 같은 부재를 양식 탱크 내에서 이동시키는 방식으로 수류를 발생시키는 것도 가능하다. 그리고, 이 이외에도 다양한 방식을 이용하여 수류 발생부를 구성할 수 있음은 물론이다.This water flow generator can be configured in a variety of ways to provide water flow inside the aquaculture tank. For example, it is possible to float a substance such as feed precipitated on the floor while generating a stream of water by spraying strong compressed air. Alternatively, it is also possible to generate water flow by moving a member, such as a separate water flow generating plate, in the aquaculture tank. In addition, the water flow generating unit may be configured using various methods.
이상에서 설명한 바와 같이, 본 실시예에 따른 양식 탱크(1100)는 급수부(1110) 및 배수부(1120)에 의해 물의 급수 및 배수가 이루어지며, 광 조사부(1160), 산소 공급부(1170), 수류 발생부(1180) 등을 이용하여 적합한 양식 환경을 조성할 수 있다.As described above, the aquaculture tank 1100 according to the present embodiment is supplied with water and drained by the water supply unit 1110 and the drainage unit 1120, the light irradiation unit 1160, oxygen supply unit 1170, The aquaculture generator 1180 may be used to create a suitable farming environment.
한편, 양식장 시설물(1000)은 양식 탱크에서 채집된 수산물 또는 사료 등과 같이 양식 작업에 필요한 각종 물품을 이송할 수 있는 이송부(1350)를 더 포함할 수 있다(도 2 및 도 3 참조). 이러한 이송부(1350)는 작업자가 이동할 수 있는 보행 통로(1200)을 따라 이동 가능하게 설치된다. 따라서, 작업자는 이송부(1350)를 이용하여 양식장 내부에서 이루어지는 각종 작업을 용이하게 진행할 수 있다. Meanwhile, the farm facility 1000 may further include a transfer unit 1350 capable of transporting various items necessary for aquaculture operations, such as aquatic products or feed collected from aquaculture tanks (see FIGS. 2 and 3). The transfer unit 1350 is installed to be movable along the walking passage 1200 where the worker can move. Therefore, the worker can easily proceed with the various operations made inside the farm using the transfer unit 1350.
도 5는 도 3의 이송부의 구성을 도시한 단면도이다. 도 5에 도시된 바와 같이, 천정 구조물(1002)의 하측에는 보행 통로 방향으로 연장 형성되는 가이드 레일(1310)이 형성된다. 그리고, 가이드 레일(1310)의 내부에는 가이드 레일을 따라 이동 가능하게 설치되는 이동부(1320)가 삽입 설치된다.5 is a cross-sectional view showing the configuration of the transfer unit of FIG. As shown in FIG. 5, a guide rail 1310 extending in a walking passage direction is formed below the ceiling structure 1002. In addition, a moving part 1320 installed to be movable along the guide rail is inserted into the guide rail 1310.
여기서, 이동부(1320)는 양측에서 회전 가능하게 설치되는 바퀴 부재(1321) 및 상기 바퀴부재를 회전시키는 구동모터(1322)를 포함하여 구성된다. 그리고, 가이드 레일(1310)의 저면은 선형으로 개구된 슬릿(1312)의 양측으로 각각 플랜지(1311)가 형성된다. 따라서, 이동부(1320)의 바퀴 부재(1321)는 가이드 레일 저면의 양측 플렌지를 따라 회전하면서 이동할 수 있다.Here, the moving unit 1320 is configured to include a wheel member 1321 rotatably installed at both sides and a drive motor 1322 for rotating the wheel member. The bottom of the guide rail 1310 has flanges 1311 formed on both sides of the slit 1312 that is linearly opened. Accordingly, the wheel member 1321 of the moving unit 1320 may move while rotating along both flanges of the bottom surface of the guide rail.
한편, 이동부(1320)의 하측에는 와이어(1340)가 권취되는 실린더(1330)가 구비된다. 여기서, 실린더(1330)는 동력을 이용하여 회동 가능하게 구성된다. 따라서, 실린더(1330)가 회동함에 따라 와이어(1340)를 권취하거나 늘어뜨릴 수 있다. 그리고 와이어의 하단에는 이송부(1350)가 착탈 가능하게 설치될 수 있다.On the other hand, the lower side of the moving unit 1320 is provided with a cylinder 1330 is wound around the wire 1340. Here, the cylinder 1330 is configured to be rotatable using power. Thus, as the cylinder 1330 rotates, the wire 1340 may be wound or hang down. The transfer unit 1350 may be detachably installed at the lower end of the wire.
따라서, 이송부(1350)는 이동부(1320)가 이동하면서 보행 통로를 따라 수평 방향으로 이동이 가능하고, 실린더(1330)가 회동하면서 상하 방향으로 승강할 수 있다. 이때, 이동부(1320)의 구동모터(1322) 및 실린더(1330)는 작업자의 입력 신호에 의해 운전이 제어될 수 있다. 따라서, 작업자는 작업 위치 및 작업 내용에 따라 이송부의 위치 및 높이를 조절하면서 용이하게 작업을 진행하는 것이 가능하다.Therefore, the transfer unit 1350 may move in the horizontal direction along the walking path while the moving unit 1320 moves, and may move up and down while the cylinder 1330 rotates. In this case, driving of the driving motor 1322 and the cylinder 1330 of the moving unit 1320 may be controlled by an operator's input signal. Therefore, the operator can easily proceed while adjusting the position and height of the transfer unit according to the work position and the work content.
이상에서 설명한 바와 같이, 양식장 시설물은 다수개의 양수 탱크에 구비되는 각종 구성요소를 이용하여 양식에 적합한 환경을 제공함과 동시에, 보행통로를 따라 이동하고 승강되는 이송부를 구비함으로써 유리한 작업 환경을 제공하는 것이 가능하다.As described above, the farm facility provides an environment suitable for aquaculture by using various components provided in a plurality of pumping tanks, and provides an advantageous working environment by providing a transport unit moving along and walking along a walking path. It is possible.
이상에서는, 본 실시예에 따른 발전 시설물의 건조물의 구성을 상세하게 설명하였다. 이하에서는 도면을 참조하여 발전 시설물의 수류 시설부(200) 및 발전부(230)의 구성에 대해 보다 구체적으로 설명하도록 한다.In the above, the structure of the dry matter of the power generation facility which concerns on a present Example was demonstrated in detail. Hereinafter, the configuration of the water flow facility unit 200 and the power generation unit 230 of the power generation facility will be described in more detail with reference to the accompanying drawings.
전술한 바와 같이, 수류 시설부(200)는 건조물(100)과 연결되어 외부로부터 건조물에 수류를 제공하거나 건조물로부터 발생되는 수류를 외부로 배유하기 위한 구성이다. 따라서, 본 실시예에 따른 수류 시설부(200)는 건조물에 수류를 제공하기 위한 급수 시설(210) 및 배수 시설(220)이 구비된다. 다만, 건조물의 용도에 따라 급수 시설과 배수 시설 중 어느 하나만을 구비하여 구성될 수도 있다.As described above, the water flow facility unit 200 is connected to the building 100 to provide a water flow to the building from the outside, or a configuration for draining the water flow generated from the building to the outside. Therefore, the water supply facility 200 according to the present embodiment is provided with a water supply facility 210 and a drainage facility 220 for providing water flow to the building. However, it may be configured with only one of the water supply facility and the drainage facility according to the use of the building.
도 1을 참고하여 설명하면, 수류 시설부(200)의 급수 시설(210)은 바다, 강, 호수 또는 기타 상수 시설과 같은 외부의 급수원으로부터 수류(예를 들어, 물)를 제공받아 건조물로 수류를 공급한다. 이러한 급수 시설(210)은 전술한 양수 탱크의 급수부와 연결되어 수류를 공급할 수 있다. 급수 시설은 복수개의 관로부(2100)로 구성되며, 양수 펌프(P), 모터 등의 동력원 및 각종 밸브를 더 포함할 수 있다. 도 1에 도시된 바와 같이 높은 위치에 위치한 외부 급수원으로부터 경사 배치되는 관로부(2100)를 이용하여 위치 에너지에 의해 급수가 이루어지도록 구성할 수 있다.Referring to FIG. 1, the water supply facility 210 of the water flow facility unit 200 receives water (eg, water) from an external water supply source such as an ocean, a river, a lake, or other water supply facilities, and flows into a dry water. To supply. The water supply facility 210 may be connected to the water supply unit of the above-described pumping tank to supply water flow. The water supply facility is composed of a plurality of conduits 2100, and may further include a power source such as a pump pump P, a motor, and various valves. As shown in FIG. 1, the water supply may be configured by the potential energy using the conduit portion 2100 inclined from an external water supply source located at a high position.
한편, 수류 시설부(200)의 배수 시설(220)은 건조물(100)로부터 배출되는 수류를 외부의 하수 시설로 배수시킨다. 이러한 배수 시설(220)은 전술한 양수 탱크의 배수부와 연결되어 수류를 배출시킬 수 있다. 배수 시설(220) 또한 복수개의 관로부(2100)로 구성되며, 펌프, 모터 등의 각종 동력원 및 각종 밸브를 더 포함하여 구성될 수 있다.On the other hand, the drainage facility 220 of the water flow facility unit 200 drains the water flow discharged from the building 100 to an external sewage facility. The drainage facility 220 may be connected to the drain of the above-described pumping tank to discharge the water flow. The drainage facility 220 may also be configured with a plurality of conduits 2100, and may further include various power sources such as pumps and motors and various valves.
다만, 도 1에서는 수류 시설부가 지하에 매립되어 있는 것으로 도시하고 있으나, 본 발명이 이에 한정되는 것은 아니며 지표면에 노출되거나 지상에 설치되는 관로부를 통해 수류가 이동하는 경로를 형성하도록 구성되는 것도 가능하다.However, in FIG. 1, the water flow facility is buried underground, but the present invention is not limited thereto, and the water flow may be configured to form a path through which the water flows through the pipeline exposed to the surface or installed on the ground. .
한편, 발전부(230)는 수류 시설부(200)를 통해 이동하는 수류의 운동 에너지를 이용하여 전기 에너지를 생산하도록 구성된다. 양식장 시설물 이외에도 대부분의 건조물에는 급수 시설 및 배수 시설이 구비되며, 이를 통해 수류가 이동하는 것이 일반적이다. 다만, 종래의 경우 이러한 급/배수 시설을 통과하는 수류의 운동 에너지를 방치하였으나, 본 발명에 의할 경우 이러한 수류의 운동 에너지를 활용하여 전기 에너지를 생산함으로서 에너지 활용성을 극대화시킬 수 있는 장점이 있다.On the other hand, the power generation unit 230 is configured to produce electrical energy by using the kinetic energy of the water flow moving through the water flow facility unit 200. In addition to aquaculture facilities, most buildings also have a water supply and drainage system, through which water flows are common. However, in the conventional case, the kinetic energy of the water flow passing through the water supply / drainage facility was left, but according to the present invention, the advantage of maximizing energy utilization by producing electrical energy by using the kinetic energy of the water flow is provided. have.
특히, 본 실시예에 따른 발전 시설물은 발전부(230)에서 생산하는 전기 에너지를 건조물(100) 또는 수류 시설부(200)에 제공함으로써, 건조물에 구비되는 각종 구성요소(예를 들어, 광 조사부, 수류 발생부, 이송부 등) 또는 수류 시설부에 구비되는 각종 구성요소(예를 들어, 모터, 펌프, 밸브 등)를 구동하고 운전하는데 활용할 수 있다.In particular, the power generation facility according to the present embodiment provides electrical energy produced by the power generation unit 230 to the building 100 or the water flow facility unit 200, thereby providing various components (for example, a light irradiation unit, It can be utilized to drive and drive various components (for example, a motor, a pump, a valve, etc.) provided in a water flow generating part, a conveying part, etc. or a water flow installation part.
이하에서는 도면을 참조하여 발전부의 구성에 대해 보다 구체적으로 설명하도록 한다. Hereinafter, the configuration of the power generation unit will be described in more detail with reference to the accompanying drawings.
도 6은 도 1의 발전부가 설치되는 관로부의 단면을 도시한 단면도이다. 도 6에 도시된 바와 같이, 본 실시예에 따른 발전부는 수류가 통과하는 관로부(2100), 관로부 내부에 설치되는 축 부재(2110) 및 회전 부재(2120), 그리고, 관로부(2100)의 양측에 설치되는 연결부(2200)를 포함하는 수력 발전 장치로 구성될 수 있다.FIG. 6 is a cross-sectional view illustrating a cross section of a conduit unit in which the power generation unit of FIG. 1 is installed. As shown in FIG. 6, the power generation unit according to the present exemplary embodiment includes a conduit portion 2100 through which water flow passes, a shaft member 2110 and a rotation member 2120 installed inside the conduit portion, and a conduit portion 2100. It may be configured as a hydro power generation apparatus including a connection portion 2200 installed on both sides of the.
관로부(2100)는 수류 시설부의 관로와 마찬가지로 원통형의 관형으로 형성된다. 관로부는 내부를 따라 수류가 통과하는 관로(2101)를 형성하며, 발전부의 주요 구성 요소들은 관로부(2100) 내부에 설치된다. 관로부(2100)의 양단에는 외측으로 돌출되는 플랜지(2130)가 형성되며, 플랜지(2130)를 통해 후술할 연결부(2200)와 연결될 수 있도록 구성된다.The pipeline 2100 is formed in a cylindrical tubular shape similar to the pipeline of the water flow facility. The conduit portion forms a conduit 2101 through which water flow passes, and major components of the power generation portion are installed in the conduit portion 2100. Both ends of the conduit portion 2100 is formed with a flange 2130 protruding outward, it is configured to be connected to the connection portion 2200 to be described later through the flange 2130.
본 실시예에서, 발전부의 관로부는 전술한 급수 시설 및 배수 시설을 구성하는 복수의 관로부 중 일부 또는 전부를 이용하여 구성할 수 있다. 일 예로서, 본 실시예에서는 발전부가 수류 시설부의 급수 시설 및 배수 시설에 각각 설치되는 구성하고 있으나(도 1 참조), 이 이외에도, 발전부를 급수 시설에만 설치하는 것도 가능하고, 또는 발전부를 배수 시설에만 설치하는 것도 가능하다.In the present embodiment, the conduit portion of the power generation unit may be configured using some or all of the plurality of conduits constituting the above-described water supply and drainage facilities. As an example, in the present embodiment, the power generation unit is configured to be installed in each of the water supply facility and the drainage facility of the water flow facility unit (see FIG. 1). In addition, the power generation unit may be installed only in the water supply facility, or the power generation unit may be installed in the drainage facility. It is also possible to install only.
한편, 축 부재(2110) 및 회전 부재(2120)는 관로부(2100) 내부에 설치되는 구성으로, 관로부(2100)를 통과하는 수류의 운동 에너지를 이용하여 전기 에너지를 생산하는 구성이다. 도 6에 도시된 바와 같이 축 부재(2110)는 관로부(2100) 내부에 고정 설치되며, 회전 부재(2120)는 관로부(2100)를 통과하는 수류의 운동 에너지에 의해 축 부재(2110)를 축으로 회전 가능하게 구성된다. On the other hand, the shaft member 2110 and the rotating member 2120 is configured to be installed in the conduit portion 2100, and is configured to produce electrical energy using the kinetic energy of the water flow passing through the conduit portion 2100. As shown in FIG. 6, the shaft member 2110 is fixedly installed in the conduit part 2100, and the rotating member 2120 is connected to the shaft member 2110 by the kinetic energy of water flow passing through the conduit part 2100. It is configured to be rotatable on the axis.
여기서, 회전 부재(2120)는 몸체부(2121) 및 몸체부(2121)의 외측을 따라 설치되는 날개부(2122)를 포함하여 구성된다. Here, the rotating member 2120 is configured to include a body portion 2121 and the wing portion 2122 is installed along the outside of the body portion 2121.
몸체부(2121)는 회전 부재(2120)의 길이 방향을 따라 길게 연장 형성되는 원통형 부재로 구성되며, 내부에 중공이 형성되어 축 부재(2110)가 수용되는 공간을 형성하여 축 부재(2110)를 축으로 회전될 수 있다. 이때, 회전 부재(2120)의 몸체부(2121)의 내면 및 축 부재(2110)의 외면 사이에는 적어도 하나 이상의 베어링(2141)이 형성되어, 회전시 발생되는 마찰을 최소화 시킬 수 있다. Body portion 2121 is composed of a cylindrical member extending in the longitudinal direction of the rotation member 2120, a hollow is formed therein to form a space in which the shaft member 2110 is accommodated to form the shaft member 2110 It can be rotated about an axis. At this time, at least one bearing 2141 is formed between the inner surface of the body portion 2121 of the rotating member 2120 and the outer surface of the shaft member 2110, thereby minimizing friction generated during rotation.
그리고, 날개부(2122)는 도 6에 도시된 것과 같이, 몸체부(2121)의 외면을 따라 나선형으로 감기는 형태로 구성된다. 이러한 날개부(2122)는 수류가 몸체부(2121)의 길이 방향과 직각 방향을 기준으로 40도 이상의 경사를 갖는 나선 형태로 배치되며, 수류가 진행함에 따라 최대의 회전을 얻을 수 있도록 유선형 곡면을 갖도록 형성될 수 있다.And, as shown in Figure 6, the wing portion 2122 is configured to spirally wound along the outer surface of the body portion 2121. The wing portion 2122 is arranged in the form of a spiral having a water flow of 40 degrees or more relative to the longitudinal direction and the perpendicular direction of the body portion 2121, a streamlined curved surface to obtain the maximum rotation as the water flow progresses It can be formed to have.
이러한 날개부(2122)는 몸체부(2121)의 외측으로 돌출 형성되며, 날개부(2122)의 단부는 몸체부(2121)의 중심축으로부터 일정한 반경을 형성하도록 구성될 수 있다. 이때, 수류가 진행함에 따라 최대의 회전력을 확보하는 것이 가능하도록, 날개부(2122)는 축 부재의 중심(몸체부의 중심)으로부터 단부까지의 길이가, 관로부의 내부 반경의 0.75배 이상을 갖도록 구성될 수 있으며, 실험 결과 0.85 내지 0.95배에 해당하는 경우 최대의 회전 운동을 유도할 수 있는 것으로 나타났다. 이와 같이, 날개부(2122)가 관로 반경과 인접한 부분까지 연장 설치되는 경우, 관로를 통과하는 수류가 적은 경우에도 회전 운동을 하는 것이 가능하며, 관로 내부에 이물질 등이 침전되는 현상을 방지할 수 있는 장점이 있다. 나아가, 수류는 날개부에 의해 회전시 지속적으로 관로 내부에서 뒤섞이게 되고, 이러한 과정에 의해 수류가 공기에 빈번하게 노출되면서 수류 내부의 용존 산소량이 증가하게 되어 수류의 상태가 양호해지는 장점이 있다.The wing 2122 is formed to protrude to the outside of the body portion 2121, the end of the wing portion 2122 may be configured to form a constant radius from the central axis of the body portion 2121. At this time, the wing portion 2122 is configured such that the length from the center of the shaft member (the center of the body portion) to the end portion is 0.75 times or more of the inner radius of the conduit portion so that the maximum rotational force can be ensured as the flow of water proceeds. Experimental results show that the maximum rotational motion can be induced in the case of 0.85 to 0.95 times. As such, when the wing portion 2122 extends to a portion adjacent to the pipeline radius, it is possible to perform a rotational movement even when there is little water flow through the pipeline, and to prevent a foreign substance or the like from settling in the pipeline. There is an advantage. In addition, the water flow is continuously mixed in the pipeline when rotated by the wing, and by this process the water flow is frequently exposed to the air there is an advantage that the dissolved oxygen in the water flow increases, the state of the water flow is good.
한편, 축 부재(2110)는 회전 부재(2120)의 몸체부(2121) 내부를 관통하는 형태로 배치되며, 양단은 후술할 연결부의 지지 프레임(2210)에 고정 설치될 수 있다. 따라서, 회전 부재(2120)가 수류 진행시 회전함에 따라 회전 부재(2120)와 상대적인 회전 운동이 가능하며, 이러한 상대 회전 운동을 이용하여 전기 에너지를 생산하는 것이 가능하다.Meanwhile, the shaft member 2110 is disposed to penetrate the inside of the body portion 2121 of the rotating member 2120, and both ends thereof may be fixedly installed at the support frame 2210 of the connection portion to be described later. Therefore, as the rotating member 2120 rotates during the flow of water, relative rotational movement with the rotating member 2120 is possible, and electrical energy can be produced using the relative rotational movement.
도 7은 도 6에서 축 부재(2110) 및 회전 부재(2120)의 단면을 도시한 단면도이다. 도 7의 a에 도시된 바와 같이, 축 부재(2110)에는 권선된 코일(2111)이 구비되고, 회전 부재(2120)에는 영구 자석(2123)이 구비될 수 있다. 따라서, 회전 부재(2120)의 회전시 영구 자석(2123)과 권선된 코일(2111)이 상대적으로 이동하면서 자기장이 변화하고, 이에 따라 권선된 코일(2111)상에 전류가 흐르면서 전기 에너지를 생산할 수 있다.FIG. 7 is a cross-sectional view of the shaft member 2110 and the rotating member 2120 of FIG. 6. As illustrated in FIG. 7A, a coil 2111 wound around the shaft member 2110 may be provided, and a permanent magnet 2123 may be provided on the rotating member 2120. Accordingly, the magnetic field changes while the permanent magnet 2123 and the wound coil 2111 relatively move when the rotating member 2120 rotates, and accordingly, current flows on the wound coil 2111 to produce electrical energy. have.
본 실시예에서는 축 부재(2110)에 코일이 권선되고, 회전 부재(2120)에 영구 자석(2123)이 구비되는 구조를 중심으로 설명하였으나, 이는 일 예에 불과하며 다른 예로서 축 부재에 영구자석이 구비되고 회전 부재에 코일이 권선되는 구조로 구성하는 것도 가능하다.In the present embodiment, a coil is wound around the shaft member 2110 and the permanent magnet 2123 is provided on the rotating member 2120. However, this is only an example, and as another example, the permanent magnet is disposed on the shaft member. It is also possible to comprise a structure in which a coil is wound around the rotating member.
구체적으로, 도 7의 a에 도시된 바와 같이, 축 부재(2110)에 구비되는 코일은 축 부재(2110)의 외측을 따라 권선될 수 있다. 그리고 회전 부재와 축부재 사이로 유입될 수 있는 수류를 고려하여, 권선된 코일은 방수성 재질(2142)로 코팅처리 될 수 있다.Specifically, as shown in FIG. 7A, the coil provided in the shaft member 2110 may be wound along the outer side of the shaft member 2110. In addition, in consideration of the water flow that may flow between the rotating member and the shaft member, the wound coil may be coated with a waterproof material 2142.
회전 부재(2120)에 구비되는 영구 자석(2123)은 회전 부재(2120)의 몸체부(2121) 내면을 따라 배치되며, 몸체부(2121)의 중공으로 유입될 수 있는 수류를 고려하여, 영구 자석(2123)이 노출되는 부분은 방수성 재질(2142)로 코팅처리 될 수 있다.The permanent magnet 2123 of the rotating member 2120 is disposed along the inner surface of the body portion 2121 of the rotating member 2120, and considering the flow of water that may flow into the hollow of the body portion 2121, the permanent magnet The exposed portion 2123 may be coated with a waterproof material 2142.
다만, 이러한 구조는 본 실시예에 따른 일 예이며, 이 이외에도 도 7의 b에 도시된 바와 같이, 코일(2111)이 외부로 노출되지 않도록 축 부재(2110)의 내측에 권선되도록 구성하고, 영구 자석(2123) 또한 외부로 노출되지 않도록 회전 부재의 몸체부(2121) 내부에 구비되도록 구성하는 것도 가능하다. 또는, 축 부재(2110)가 수용되는 회전 부재(2120)의 중공부로 수류가 유입되는 것을 원천적으로 방지하도록, 회전 부재(2120)의 양측 단부에는 축 부재(2110) 또는 지지 프레임(2210)과 사이의 공간을 수밀 패킹처리하도록 구성하는 것도 가능하다.However, this structure is an example according to the present embodiment, and in addition to this, as shown in b of FIG. 7, the coil 2111 is configured to be wound inside the shaft member 2110 so as not to be exposed to the outside, and is permanent. The magnet 2123 may also be configured to be provided inside the body portion 2121 of the rotating member so as not to be exposed to the outside. Alternatively, both ends of the rotating member 2120 may be disposed between the shaft member 2110 or the support frame 2210 at both ends of the rotating member 2120 to prevent water flow into the hollow portion of the rotating member 2120 in which the shaft member 2110 is accommodated. It is also possible to configure the space of the watertight packing.
도 8은 도 6에서 연결부를 도시한 정면도이다. 전술한 바와 같이, 연결부(2200)는 전술한 바와 같이 관로부(2100)의 양측에 결합되는 구성이다. 연결부(2200)는 관로부(2100)의 양단 플랜지(2130)와 대응되는 형상을 갖는 블록 형태로 구성되며, 관로부(2100)의 플랜지(2130)와 결합이 이루어지도록 구성될 수 있다. 그리고 연결부(2200)의 내측에는 관로부(2100)의 관로에 대응되는 형상의 개구가 형성되며, 관로부(2100)의 관로와 함께 수류가 진행하는 공간을 형성할 수 있다.FIG. 8 is a front view illustrating the connection part in FIG. 6. As described above, the connection part 2200 is configured to be coupled to both sides of the conduit part 2100 as described above. The connection part 2200 may be configured in a block shape having a shape corresponding to both flanges 2130 of the conduit part 2100, and may be configured to be coupled to the flange 2130 of the conduit part 2100. In addition, an opening having a shape corresponding to the conduit of the conduit part 2100 may be formed inside the connection part 2200, and a space in which water flows along with the conduit of the conduit part 2100 may be formed.
연결부(2200)는 개구부(2201) 내측으로 형성되는 적어도 하나 이상의 지지 프레임(2210)이 형성된다. 도 8에 도시된 바와 같이, 지지 프레임(2210)은 축 부재(2110)가 고정 설치되는 체결부(2211) 및 체결부(2211)를 지지하는 지지부(2212)를 포함하여 구성될 수 있다.The connection part 2200 has at least one support frame 2210 formed inside the opening 2201. As shown in FIG. 8, the support frame 2210 may include a fastening part 2211 to which the shaft member 2110 is fixed and a support part 2212 to support the fastening part 2211.
체결부(2211)는 축 부재(2110)의 길이 방향으로 소정 길이를 갖는 중공이 형성된 원통형 부재로 구성되며, 축 부재(2110)의 단부는 체결부(2211)에 삽입 설치되어 고정될 수 있다. 그리고, 지지부(2212)는 개구부(2201)의 내벽면으로부터 체결부(2211)의 외측까지 연장 형성되어 체결부(2211)를 지지하도록 구성된다.The fastening part 2211 may be configured as a cylindrical member having a hollow having a predetermined length in the longitudinal direction of the shaft member 2110, and an end of the shaft member 2110 may be inserted into and fixed to the fastening part 2211. The support part 2212 extends from the inner wall surface of the opening portion 2201 to the outside of the fastening part 2211 and is configured to support the fastening part 2211.
이때, 체결부(2211)는 축 부재(2110)의 단부가 설치된 상태에서, 축 부재(2110)의 코일(2111)과 전기적으로 연결될 수 있도록 구성되어, 코일(2111)로부터 발생된 전기 에너지를 전달받을 수 있다. 체결부(2211)로 전달된 전기 에너지는 체결부(2211) 및 지지부(2212)에 형성된 전기 선로를 따라 외부로 전달되어, 전술한 바와 같이 건조물 및 수류 시설부의 각종 구성요소로 제공될 수 있다.At this time, the fastening part 2211 is configured to be electrically connected to the coil 2111 of the shaft member 2110 in a state where the end of the shaft member 2110 is installed, and transfers electrical energy generated from the coil 2111. I can receive it. Electrical energy delivered to the fastening part 2211 may be transmitted to the outside along the electric lines formed in the fastening part 2211 and the support part 2212, and may be provided to various components of the building and the water flow facility as described above.
도 8에서는 본 실시예에 따른 연결부의 일 예를 단순화하여 도시하고 있으나, 연결부(2200)는 전술한 구조 이외에도 다양한 형태로 구성할 수 있음은 물론이다. 예를 들어, 연결부는 하나의 블록 형태로 구성되는 것도 가능하며, 상부 구조 및 하부 구조가 분리 가능한 구조로 형성될 수도 있다. 그리고, 도 8에서는 하나의 연결부에 하나의 지지 프레임이 구비되어, 연결부 양측에 배치된 각 관로부의 두 축 부재가 하나의 지지 프레임에 고정 설치되는 구조로 구성된다. 다만, 이는 일 예이며, 연결부가 양 측에 배치되는 관로의 축 부재를 각각 고정시키기 위해 2 개의지지 프레임을 구비하도록 구성되는 것도 가능하다. 또한, 체결부 및 지지부의 형상은 축 부재 및 수류 특성을 고려하여 다양하게 변형실시 할 수 있음은 물론이다.In FIG. 8, an example of the connection unit according to the present embodiment is simplified and illustrated, but the connection unit 2200 may be configured in various forms in addition to the above-described structure. For example, the connection portion may be configured in one block form, and the upper structure and the lower structure may be formed in a removable structure. In FIG. 8, one support frame is provided in one connection part, and two shaft members of each conduit part disposed on both sides of the connection part are fixed to one support frame. However, this is an example, and it is also possible to be configured to have two support frames to fix the shaft members of the conduit arranged on both sides, respectively. In addition, the shape of the fastening portion and the support portion can be variously modified in consideration of the shaft member and the water flow characteristics.
도 9는 본 실시예에 따른 복수개의 관로부가 연결 설치되는 일 모습을 도시한 정면도이고, 도 10은 본 실시예에 따른 복수개의 관로부가 연결 설치되는 다른 모습을 도시한 평면도이다.FIG. 9 is a front view illustrating a state in which a plurality of pipelines are connected and installed according to the present embodiment, and FIG. 10 is a plan view illustrating another state in which a plurality of pipelines are connected and installed according to the present embodiment.
도 9 및 도 10에 도시된 바와 같이, 연결부(2200)의 양단은 각각 인접한 관로부(수류 발생부의 관로부도 가능)와 각각 연결되도록 구성된다. 복수개의 관로부(2100)는 연결부(2200)를 매개로하여 연결 설치될 수 있다. 따라서, 복수개의 관로부(2100)와 복수개의 연결부(2200)가 교대로 배치되어, 수류가 진행하는 유로를 형성하면서, 유로의 운동 에너지를 이용하여 전기 에너지를 생산할 수 있다.As shown in FIGS. 9 and 10, both ends of the connection part 2200 are configured to be connected to adjacent conduit parts (also possibly a conduit part of the water flow generator). The plurality of pipe parts 2100 may be connected and installed through the connection part 2200. Therefore, the plurality of pipe parts 2100 and the plurality of connecting parts 2200 are alternately arranged to form electric flow paths through which water flows, and thereby produce electrical energy using the kinetic energy of the flow paths.
이 때, 연결부(2200)는 복수개의 관로부와 연결되어 직선 방향의 유로를 형성하도록 직선형 블록으로 구성되는 것도 가능하다(도 9 참조). 또는, 연결부가 절곡된 유로를 갖는 블록으로 구성되어, 복수개의 관로부와 연결되어 절곡된 유로를 형성하는 것도 가능하다(도 10 참조).In this case, the connection part 2200 may be configured as a straight block to be connected to the plurality of pipe parts to form a straight flow path (see FIG. 9). Alternatively, the connection part may be formed of a block having a bent flow path, so that the bent flow path may be formed by being connected to the plurality of conduits (see FIG. 10).
전술한 바와 같이, 관로부(2100)의 플랜지(2130)와 연결부(2200)는 각각 별도의 체결부재(미도시)에 의해 선택적으로 분리 가능하게 설치된다. 따라서, 제조 및 설치가 용이할 뿐 아니라, 다양한 구조의 연결부를 이용하여 다양한 형태의 유로를 구성하는 것이 가능하다. 또한, 이미 설치된 수류 시설부의 관로부 중 일부를 발전부로 교체하는 시공이 용이하며, 나아가 유지 보수 작업을 수행하거나 교체하는 작업을 용이하게 진행할 수 있는 장점이 있다.As described above, the flange 2130 and the connection portion 2200 of the conduit portion 2100 are selectively detachably installed by separate fastening members (not shown). Therefore, not only is it easy to manufacture and install, but it is possible to comprise various flow paths using the connection part of various structures. In addition, there is an advantage that the construction can easily replace some of the pipeline portion of the water flow unit installed already in the power generation unit, and furthermore, there is an advantage that can easily proceed to perform or replace the maintenance work.
이상에서 검토한 바와 같이, 본 실시예에 따른 발전 시설물은 종전에 이용하고 있지 않던 급/배수 시설 내부의 수류를 이용하여 전기 에너지를 자체적으로 생산함으로서, 건물의 에너지 자급률을 향상시킬 수 있다. 이 경우, 전기가 공급되기 어려운 산간, 오지 및 도서 지방에서도 자체적으로 에너지를 생산하여 시설물을 운영하는 것이 가능한 장점이 있다.As discussed above, the power generation facility according to the present embodiment can improve the energy self-sufficiency of the building by producing electric energy by itself using water flow inside the water supply / drainage facility that has not been used before. In this case, there is an advantage that it is possible to operate the facilities by producing energy on its own in mountainous, remote and island regions where electricity is hard to be supplied.
한편, 본 실시예에서는 관로 형태의 구조를 갖는 발전부가 발전 시설물의 수류 시설부에 설치되는 구조를 중심으로 설명하였으나, 도 6 내지 도 10에 도시된 발전부는 독립된 수력 발전 장치로서 발전 시설물 이외에도 지상 또는 지하에 매립 설치되는 다양한 관로에 설치되어 사용될 수 있다.Meanwhile, in the present embodiment, the power generation unit having a pipe-type structure has been described with reference to a structure installed in the water flow unit of the power generation facility, but the power generation unit illustrated in FIGS. 6 to 10 is an independent hydro power generation device, in addition to the power generation facility. Can be installed and used in various pipelines that are buried in.
이상에서는 본 실시예에의 발전 시설물이 수류의 운동 에너지를 이용하여 전기 에너지를 생산하는 것을 중심으로 설명하였으나, 에너지 자급율을 향상시킬 수 있도록 수력 이외의 에너지원을 이용하여 전기 에너지를 생산하도록 구성할 수 있다.In the above description, the power generation facility according to the present embodiment has been described mainly for producing electric energy using kinetic energy of water flow. However, the electric power plant may be configured to produce electric energy using an energy source other than hydropower to improve energy self-sufficiency. Can be.
다시 도 2를 중심으로 설명하면, 본 실시예에 따른 발전 시설물은 건조물의 지붕 구조물(103) 상측에 복수개의 태양광 패널(110)이 설치될 수 있다. 태양광 패널(110)은 태양광을 이용하여 전기에너지를 생산한다. 이러한 전기 에너지는 전술한 발전부에서 생산된 전기 에너지와 마찬가지로, 건조물의 각종 구성요소 또는 수력 발전부의 각종 구송요소를 운전하는데 사용될 수 있다.Referring back to FIG. 2, the power plant according to the present embodiment may have a plurality of solar panels 110 installed above the roof structure 103 of the building. The solar panel 110 produces electrical energy using sunlight. This electrical energy can be used to drive various components of the building or various conveying elements of the hydro power generation unit, similar to the electrical energy produced in the above-described power generation unit.
복수개의 태양광 패널(1010)은 지지 프레임(1020) 상에 동일한 높이를 갖는 복수개의 열을 형성하도록 배치된다(도 2 및 도 3 참조). 이러한 태양광 패널은 외부에 노출된 상태에서 설치되므로 잦은 유지 보수가 요구되나, 종래의 경우 태양광 패널이 지붕 경사면에 대형 구조물로 밀착 설치되어 특정 구역을 유지보수 하는 것이 어려웠다. 이에 비해, 본 실시예에서는 태양광 패널이 복수개의 열로 구성되어 있어 각각의 열 사이를 통해 유지 보수 작업을 진행하는 것이 가능하며, 특히 태양광 패널이 설치된 지지 프레임이 작업자의 보행 통로로 기능을 수행하므로 유지 보수 작업을 용이하게 진행할 수 있는 장점이 있다. 도면에는 별도로 도시하지 않았으나, 작업자가 지지 프레임 상에서 이동이 용이하도록 지지 프레임 상에 레일 등을 이용하여 이동 가능하게 설치되는 별도의 작업 패널을 더 구비하는 것도 가능하다.The plurality of solar panels 1010 are arranged to form a plurality of rows having the same height on the support frame 1020 (see FIGS. 2 and 3). Since the solar panel is installed in an exposed state, frequent maintenance is required, but in the conventional case, it was difficult to maintain a specific area because the solar panel is installed close to the roof slope as a large structure. On the other hand, in this embodiment, the solar panel is composed of a plurality of rows, so that maintenance work can be performed through each row, and in particular, the support frame on which the solar panel is installed performs a function as a walking path for the worker. Therefore, there is an advantage that can easily proceed with the maintenance work. Although not separately illustrated in the drawings, it is also possible to further include a separate work panel which is installed to be movable by using a rail or the like on the support frame so that the worker can easily move on the support frame.
이러한 태양광 패널(1010) 및 지지 프레임(1020)은 복수개의 패널 지지부(1030)에 의해 지붕 구조물의 상측에 설치된다. 도 2에 도시된 바와 같이 패널 지지부(1030)는 지붕 구조물과 지지 프레임을 연결하는 제1 부재(1031) 및 지지 프레임과 태양광 패널을 연결하는 제2 부재(1032)를 포함한다.The solar panel 1010 and the support frame 1020 are installed on the roof structure by the plurality of panel supports 1030. As illustrated in FIG. 2, the panel support 1030 includes a first member 1031 connecting the roof structure and the support frame and a second member 1032 connecting the support frame and the solar panel.
제1 부재(1031)의 상단은 지지 프레임(1020)을 고정시키도록 체결되고, 하단에는 지붕 구조물(1003)의 상면과 밀착되어 설치되는 플렌지 및 별도의 체결구를 이용하여 설치될 수 있다. 그리고, 제2 부재(1032)의 상단은 태양광 패널(1010)을 지지하도록 설치되고, 하단은 지지 프레임(1020)에 고정되도록 설치될 수 있다. 이와 같이, 태양광 패널(1010)은 지지 프레임(1020) 및 패널 지지부(1030)에 의해 지붕 프레임(1004)과 일체로 고정 설치됨으로써 보다 견고한 결합 상태를 유지할 수 있다.An upper end of the first member 1031 may be fastened to fix the support frame 1020, and a lower end of the first member 1031 may be installed using a flange and a separate fastener installed in close contact with the upper surface of the roof structure 1003. In addition, an upper end of the second member 1032 may be installed to support the solar panel 1010, and a lower end of the second member 1032 may be installed to be fixed to the support frame 1020. As described above, the solar panel 1010 is fixedly installed with the roof frame 1004 by the support frame 1020 and the panel support 1030 to maintain a more firmly coupled state.
그리고, 도 2 및 도 3에 도시된 바와 같이 지붕 프레임(1004) 상측에는 태양광 패널(1010)의 하측으로 진행하는 공기의 운동 에너지를 이용하여 전기 에너지를 생산하는 팬(1040)이 별도로 형성될 수 있다. 공기의 유동은 경로가 좁아지는 부분에서 유속이 증가하므로, 상대적으로 공기가 빠르게 진행하는 지붕 구조물과 태양광 패널(1010) 사이에 지붕 구조물(1003)의 길이 방향을 따라 팬(1040)을 설치함으로써, 풍력을 이용하여 전기 에너지를 생산할 수 있다. 이러한 팬은 지붕의 경사면을 따라 배치하여 경사면을 타고 상승하는 기류의 운동 에너지를 이용하여 전기를 생산하는 것도 가능하다. 2 and 3, a fan 1040 for generating electrical energy by using kinetic energy of air traveling downward of the solar panel 1010 may be separately formed on the roof frame 1004. Can be. Since the flow of air increases the flow velocity at the portion where the path is narrowed, by installing a fan 1040 along the longitudinal direction of the roof structure 1003 between the roof structure and the solar panel 1010, which is relatively fast air flows For example, wind power can be used to produce electrical energy. Such a fan may be disposed along the inclined surface of the roof to generate electricity by using the kinetic energy of the airflow rising on the inclined surface.
또한, 도 3에 도시된 바와 같이 지붕 프레임(1004)의 상측에는 발전 시설물로부터 외부로 배기되는 배기풍을 이용하여 전기 에너지를 생산하는 풍력팬을 더 포함할 할 수 있다. 발전 시설물의 후측에는 시설물 내부의 공기를 배기하기 위한 배기부가 형성될 수 있다. 배기부는 배기팬(1061)을 통해 시설물 내부의 공기가 토출되며, 이물질 처리부(1062)가 구비되어 시설물 내부의 공기를 통과시켜 이물질을 제거한 상태로 배기부의 상측에 형성된 개구부를 통해 외부로 배기시킬 수 있다. 이때, 배기가 이루어지는 개구부의 상측에는 풍력팬(1050)이 설치되어, 배기풍의 운동 에너지를 이용하여 전기 에너지를 생산하는 것이 가능하다. 이러한 풍력팬은 상하 방향으로 설치되는 회전축 및 회전축을 나선 형태로 둘러싸는 형태로 구비되는 곡면 형상의 회전부로 구성될 수 있다. 다만, 이러한 구조 이외에도 다양한 구조를 이용하여 풍력팬을 구성하는 것도 가능하다.In addition, as shown in FIG. 3, the upper side of the roof frame 1004 may further include a wind fan that generates electrical energy using exhaust wind exhausted from the power generation facility to the outside. At the rear side of the power generation facility, an exhaust unit for exhausting air in the facility may be formed. The exhaust unit discharges air inside the facility through the exhaust fan 1061, and has a foreign matter processing unit 1062 provided therein to allow the air inside the facility to pass through the air inside the facility to remove the foreign matter and to exhaust it to the outside through an opening formed in the upper side of the exhaust unit. have. At this time, the wind fan 1050 is installed on the upper side of the exhaust opening, it is possible to produce electrical energy using the kinetic energy of the exhaust wind. The wind fan may be composed of a rotating shaft is installed in the vertical direction and the rotating portion of the curved shape provided in a form surrounding the rotating shaft in a spiral form. However, in addition to such a structure, it is also possible to configure a wind fan using various structures.
이러한 풍력팬(1050)은 배기부의 개구부 상측 뿐 아니라 지붕 구조물의 기타 위치에도 복수개로 구비되어 자연풍의 풍력 에너지를 이용하여 전기 에너지를 생산하도록 구성하는 것도 가능하다.The wind fan 1050 may be provided in plural in the other positions of the roof structure as well as the upper side of the opening of the exhaust portion, and may be configured to produce electric energy using wind energy of natural wind.
이와 같이, 본 실시예에 따른 발전 시설물은 수류 시설부의 수류의 운동 에너지 뿐 아니라, 태양광 에너지 및 풍력 에너지를 이용하여 전기 에너지를 생산함으로써, 에너지 자급율을 높이고, 전력 수급이 곤란한 지역에서도 시설물을 건축하여 운영하는 것이 가능한 장점이 있다. 나아가, 발전 시설물로부터 생산된 전기 에너지를 외부 시설물에 제공하거나 전기 에너지를 판매하는 것도 가능하다.As described above, the power generation facility according to the present embodiment produces electric energy using solar energy and wind energy as well as the kinetic energy of the water flow in the water flow facility, thereby increasing the energy self-sufficiency and building the facility even in an area where power supply is difficult. It has the advantage of being possible to operate. Furthermore, it is also possible to provide electrical energy produced from power generation facilities to external facilities or to sell electrical energy.
다만, 이상에서 설명한 발전 시설물은 본 발명에 대한 하나의 실시예에 불과하며, 이 이외에도 다양한 방식으로 변형 실시할 수 있다. 아래에서는 다양한 변형 실시예 중 일부를 도면을 참고하여 설명하도록 한다.However, the power generation facility described above is just one embodiment of the present invention, in addition to this can be modified in various ways. Hereinafter, some of the various modified embodiments will be described with reference to the drawings.
도 11은 본 발명의 제2 실시예에 따른 발전 시설물의 관로부를 도시한 도면이다. 도 11에 도시된 바와 같이, 관로부(수력 시설부의 관로부 및 발전부의 관로부 포함)는 지표면으로부터 매립되어 설치될 수 있다. 이때, 관로부는 내부의 수류가 위치에너지에 의해 특정 방향으로 이동할 수 있도로 경사진 형태로 매립될 수 있다.11 is a view illustrating a pipeline of a power generation facility according to a second embodiment of the present invention. As illustrated in FIG. 11, a pipe part (including a pipe part of a hydraulic facility part and a pipe part of a power generation part) may be installed to be embedded from the ground surface. At this time, the pipe portion may be buried in the inclined form so that the water flow inside it can move in a specific direction by the potential energy.
그리고, 수력 발전 장치의 관로부(2100)는 외면을 따라 작은 크기의 중공(2102)이 형성될 수 있다. 이 때, 중공(2102)의 크기는 흙과 같은 이물질은 통과하지 못하고, 물은 통과할 수 있을 정도로 적은 직경을 갖도록 구성될 수 있다. 따라서, 지표면을 통해 유입되는 빗물 또는 지하에 존재하는 지하수들이 관로부(2100) 내측으로 유입되어 수력 발전에 이용될 수 있다. 이때, 관로 내부를 통과하는 수류가 외부로 누수되는 것을 방지할 수 있도록 복수개의 중공(2102)은 관로부(2100)의 상측에만 형성되도록 구성될 수 있다.In addition, the conduit portion 2100 of the hydroelectric generator may have a small sized hollow 2102 along its outer surface. At this time, the size of the hollow 2102 may be configured to have a diameter small enough to pass through the foreign matter, such as soil, and water. Therefore, rainwater flowing through the ground surface or groundwater present in the basement may be introduced into the conduit 2100 to be used for hydro power generation. In this case, the plurality of hollows 2102 may be formed only on the upper side of the conduit portion 2100 so as to prevent the water flow passing through the conduit from leaking to the outside.
이에 의할 경우, 관로를 통과하는 수류의 양이 적은 지역에서도 지하에 존재하는 물이 유입되어 수력 발전에 기여하는 것이 가능하며, 나아가 외부의 급수원이 충분하지 못하여 급수가 원활하지 않는 경우에도, 매설된 지층을 통해 유입되는 물을 이용하여 수력 발전을 진행하는 것이 가능하다. In this case, even in a region where the amount of water flowing through the pipeline is small, it is possible to contribute to the hydropower by introducing water existing in the basement, and even when the water supply is not smooth due to insufficient external water supply. It is possible to proceed with hydroelectric power using water flowing through buried strata.
도 12은 본 발명의 제3 실시예에 따른 발전 시설물을 도시한 도면, 도 13은 본 발명의 제4 실시예에 따른 발전 시설물을 도시한 도면이다.12 is a view showing a power generation facility according to a third embodiment of the present invention, Figure 13 is a view showing a power generation facility according to a fourth embodiment of the present invention.
전술한 제1 실시예에서는 수류 시설부의 관로부가 경사진 형태로 매설되어 위치 에너지에 의해 수류가 이동하는 구성이다. 다만, 도 12에 도시된 바와 같이 수류 시설부(200)의 관로부(2100)가 수평 방향으로 형성되고, 펌프(P) 등과 같은 동력원에 의해 수류가 진행하도록 구성하는 것도 가능하다. In the above-described first embodiment, the pipe portion of the water flow facility portion is buried in an inclined form, and the water flow moves by the potential energy. However, as shown in FIG. 12, the conduit portion 2100 of the water flow facility unit 200 may be formed in a horizontal direction, and the water flow may proceed by a power source such as a pump P.
또한, 전술한 실시예에서는 지표면에 노출된 급수원으로부터 수류를 제공받는 방식을 도시하고 있으나, 도 13에서는 지하수원으로부터 급수되는 방식을 도시하고 있다. 이 경우, 수류 시설부(200)는 펌프(P)를 이용하여 지하수를 상측으로 펌핑한 후 건조물 측으로 수류를 제공할 수 있다. 이 경우, 지하수를 수직 방향으로 펌핑한 후 이후 경사 설치된 관로부(2100)를 따라 건조물 측으로 진행할 수 있도록 구성함으로서, 수직 방향으로 펌핑한 후 수평 방향의 관로를 따라 진행하는 구조에 비해 펌프 등의 구동원의 수를 최소화시킬 수 있다.In addition, although the above-described embodiment shows a method of receiving water flow from the water supply source exposed to the ground surface, FIG. 13 illustrates a method of supplying water from the ground water source. In this case, the water flow facility unit 200 may pump the groundwater to the upper side by using the pump (P) and then provide the water flow to the building side. In this case, by pumping the ground water in the vertical direction, and then configured to proceed to the building side along the inclined pipe portion 2100, the drive source such as a pump compared to the structure that proceeds along the horizontal pipe after pumping in the vertical direction The number of can be minimized.
도 14는 본 발명의 제5 실시예에 따른 발전 시설물의 정면을 도시한 도면이다. 전술한 제1 실시예에서는 양식장 시설물로 이루어진 단층의 건조물을 이용하여 발전 시설물을 구성하였으나, 본 실시예에서는 복층 구조를 갖는 건조물을 이용하여 발전 시설물을 구성하는 것도 가능하다. 이 경우, 제1 층 및 제2 층은 서로 상이한 시설물로 구성할 수 있다. 예를 들어, 제1 층은 양식장 시설물(1000)로 구성하고, 제2 층은 축사 시설물(3000)로 구성하는 것도 가능하며, 이 이외에도 양식장, 축사, 온실 등의 다양한 건조물을 조합하여 구성할 수 있음을 밝혀둔다.14 is a view showing the front of a power generation facility according to a fifth embodiment of the present invention. In the above-described first embodiment, the power generation facility is configured using a single-layered building made of aquaculture facilities, but in the present embodiment, the power generation facility may be configured by using a building having a multilayer structure. In this case, the first layer and the second layer may be composed of different facilities. For example, the first floor may be composed of the farm facility 1000, the second floor may be composed of the barn facility 3000, and in addition to this, a variety of buildings such as a farm, a barn, and a greenhouse may be combined. Let's find out.
이상에서는 수류 시설부의 수류를 이용하여 전기 에너지를 생산할 수 있는 발전 시설물의 다양한 실시예에 대해 설명하였다. 다만, 전술한 실시예는 본 발명을 구현하기 위한 일 예로서 이 이외에도 다양한 방식으로 변경 설계하여 적용할 수 있음은 물론이다. 따라서, 본 발명에서 청구하는 권리범위는 실시예에 기재된 사항에 국한되는 것이 아니라, 청구항에 기재된 특징을 실시하는지 여부로 판단해야 할 것이다.In the above, various embodiments of the power generation facility capable of producing electrical energy using the water flow in the water flow unit have been described. However, the above-described embodiment may be modified and applied in various manners as an example for implementing the present invention. Accordingly, the scope of rights claimed in the present invention should not be limited to the matters described in the embodiments, but should be determined by whether the features described in the claims are implemented.

Claims (21)

  1. 건조물;Dry matter;
    상기 건조물과 연결되어 외부로부터 수류를 상기 건조물로 공급하거나 상기 건조물로부터 수류를 배수하기 위한 수류 시설부; 그리고,A water flow facility unit connected to the building to supply water from the outside to the building or to drain the water from the building; And,
    상기 수류 시설부를 통해 이동하는 수류의 운동 에너지를 이용하여 전기 에너지를 생산하는 발전부를 포함하는 발전 시설물.A power plant comprising a power generation unit for producing electrical energy using the kinetic energy of the water flow moving through the water flow facility.
  2. 제1항에 있어서,The method of claim 1,
    상기 수류 시설부는 내부에 수류가 통과하는 적어도 하나 이상의 관로부를 포함하여 구성되며,The water flow facility unit includes at least one pipeline through which water flow passes,
    상기 발전부는 상기 관로부의 내측에 구비되는 것을 특징으로 하는 발전 시설물.The power generation unit is characterized in that provided in the inner pipe portion.
  3. 제2항에 있어서,The method of claim 2,
    상기 수류 시설부의 상기 관로부는 상기 수류가 이동하는 방향으로 하향 경사지도록 구비되는 것을 특징으로 하는 발전 시설물.The pipeline unit of the water flow facility unit is characterized in that the power plant is provided to be inclined downward in the direction of the flow.
  4. 제2항에 있어서,The method of claim 2,
    상기 수류 시설부는 상기 관로를 따라 상기 수류를 이동시키기 위한 동력원을 더 포함하는 것을 특징으로 하는 발전 시설물.The water flow facility unit further comprises a power source for moving the water flow along the pipeline.
  5. 제2항에 있어서, 상기 발전부는 According to claim 2, wherein the power generation unit
    상기 관로부 내부에 고정 설치되며, 권선된 코일을 구비하는 축 부재;A shaft member fixedly installed in the conduit and having a coil wound thereon;
    상기 관로부를 통과하는 수류에 의해 상기 축 부재를 축으로 회전 가능하게 설치되며, 상기 권선된 코일과 대향되는 위치에 배치되는 영구자석이 구비된 회전부재를 포함하여 구성되는 것을 특징으로 하는 발전 시설물.And a rotating member rotatably installed on the shaft member by the flow of water passing through the conduit and provided with a permanent magnet disposed at a position opposite to the wound coil.
  6. 제5항에 있어서,The method of claim 5,
    상기 회전부재는 내부에 상기 축 부재가 수용되는 중공이 형성된 몸체부 및 상기 몸체부의 외측을 따라 나선 형태로 설치되는 날개부를 포함하여 구성되는 것을 특징으로 하는 발전 시설물.The rotating member is a power generation facility characterized in that it comprises a hollow body is formed therein the shaft member is accommodated therein and a wing portion is installed in a spiral form along the outside of the body portion.
  7. 제6항에 있어서,The method of claim 6,
    상기 관로부의 양측에는 상기 관로부의 내부 관로에 대응되는 형상의 개구부가 형성되는 연결부를 더 포함하고,Both sides of the conduit further comprises a connecting portion is formed in the opening of the shape corresponding to the inner conduit of the conduit,
    상기 연결부의 내부에는 상기 축 부재의 양단이 고정 설치되는 지지 프레임이 설치되는 것을 특징으로 하는 발전 시설물.The power generation facility, characterized in that the support frame is installed inside the connecting portion fixed to both ends of the shaft member.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 지지 프레임은 내측 개구부의 중심에 구비되어 상기 축 부재가 끼움 설치되는 체결부 및 상기 체결부의 외측 방향으로 연장 설치되어 상기 체결부 및 상기 축 부재를 지지파는 지지부를 포함하여 구성되며,The support frame is provided in the center of the inner opening includes a fastening portion to which the shaft member is fitted and installed extending in the outward direction of the fastening portion to support the fastening portion and the shaft member,
    상기 체결부 및 상기 지지부는 상기 축 부재와 전기적으로 연결되며, 상기 축 부재의 상기 코일에서 생산되는 전기 에너지는 상기 체결부 및 상기 지지부를 통해 상기 건조물 또는 상기 수류 시설부로 제공되는 것을 특징으로 하는 발전 시설물.The fastening part and the support part are electrically connected to the shaft member, and electrical energy produced by the coil of the shaft member is provided to the building or the water flow facility part through the fastening part and the support part. facility.
  9. 제1항에 있어서,The method of claim 1,
    상기 건조물의 지붕 상측에 설치되어, 태양광을 이용하여 전기 에너지를 생산하는 태양광 패널을 더 포함하는 것을 특징으로 하는 발전 시설물.The power plant is installed on the roof top of the building, characterized in that it further comprises a solar panel for producing electrical energy using sunlight.
  10. 제1항에 있어서,The method of claim 1,
    상기 건조물은 수산물을 양식하는 공간을 형성하는 양식장 시설물인 것을 특징으로 하는 발전 시설물.The building is a power plant, characterized in that the farm facilities to form a space for aquaculture products.
  11. 제1항에 있어서,The method of claim 1,
    상기 건조물은 다층 구조로 형성되는 것을 특징으로 하는 발전 시설물.The power plant is characterized in that the building is formed in a multi-layer structure.
  12. 내부에 수류가 통과하는 관로를 형성하는 관로부;A pipeline unit forming a pipeline through which water flow passes;
    상기 관로부 내부에 고정 설치되며, 권선된 코일을 구비하는 축 부재;A shaft member fixedly installed in the conduit and having a coil wound thereon;
    상기 관로부를 통과하는 수류에 의해 상기 축부재를 축으로 회전 가능하게 설치되며, 상기 권선된 코일과 대향되는 위치에 배치되는 영구 자석이 구비되는 회전 부재; 그리고,A rotating member rotatably installed on the shaft member by the flow of water passing through the conduit, and having a permanent magnet disposed at a position opposite to the wound coil; And,
    상기 권선된 코일과 전기적으로 연결되어 상기 코일로부터 발생되는 전기 에너지가 전달되어 외부로 제공되는 전력 전달부;를 포함하는 수력 발전장치.And a power transmission unit electrically connected to the wound coil to transmit electric energy generated from the coil to be provided to the outside.
  13. 제12항에 있어서,The method of claim 12,
    상기 회전부재는 내부에 상기 축 부재가 수용되는 중공이 형성된 몸체부 및 상기 몸체부의 외측을 따라 나선 형태로 설치되는 날개부를 포함하여 구성되는 것을 특징으로 하는 수력 발전 장치.The rotating member is a hydroelectric generator characterized in that it comprises a hollow body is formed therein the shaft member is accommodated therein and a wing portion is installed in a spiral form along the outside of the body portion.
  14. 제12항에 있어서, The method of claim 12,
    상기 축부재의 중심으로부터 상기 날개부의 외경까지의 거리는 상기 관로부의 0.75배 이상인 것을 특징으로 하는 수력 발전 장치.And a distance from the center of the shaft member to the outer diameter of the wing portion is 0.75 times or more.
  15. 제13항에 있어서,The method of claim 13,
    상기 관로부의 양측에는 상기 관로부의 내부 관로에 대응되는 형상의 개구부가 형성되는 연결부를 더 포함하고,Both sides of the conduit further comprises a connecting portion is formed in the opening of the shape corresponding to the inner conduit of the conduit,
    상기 연결부의 내부에는 상기 축 부재의 양단이 고정 설치되는 지지 프레임이 설치되는 것을 특징으로 하는 수력 발전 장치.Hydroelectric generator characterized in that the support frame is fixed to both ends of the shaft member is installed inside the connecting portion.
  16. 제15항에 있어서,The method of claim 15,
    상기 지지 프레임은 내측 개구부의 중심에 구비되어 상기 축 부재가 끼움 설치되는 체결부 및 상기 체결부의 외측 방향으로 연장 설치되어 상기 체결부 및 상기 축 부재를 지지하는 지지부를 포함하여 구성되며,The support frame is provided in the center of the inner opening includes a fastening portion to which the shaft member is fitted and installed extending in the outward direction of the fastening portion to support the fastening portion and the shaft member,
    상기 축 부재는 상기 체결부 및 상기 지지부를 통해 상기 전력 전달부와 전기적으로 연결되는 것을 특징으로 하는 수력 발전 장치.And the shaft member is electrically connected to the power transmission unit through the fastening unit and the support unit.
  17. 제15항에 있어서,The method of claim 15,
    상기 관로부는 상기 연결부에 착탈 가능하게 설치되며, 상기 복수개의 관로부가 상기 연결부를 매개로 연결되는 것을 특징으로 하는 수력 발전 장치.The pipeline is detachably installed in the connecting portion, the hydroelectric generator, characterized in that the plurality of pipelines are connected via the connecting portion.
  18. 제13항에 있어서,The method of claim 13,
    상기 축 부재와 상기 회전 부재 사이에는 적어도 하나 이상의 베어링이 설치되는 것을 특징으로 하는 수력 발전 장치.And at least one bearing is provided between the shaft member and the rotating member.
  19. 제13항에 있어서,The method of claim 13,
    상기 축 부재의 외면에 권선되는 코일 또는 상기 회전 부재의 내부에 설치되는 영구 자석은 방수성 재질로 코팅되는 것을 특징으로 하는 수력 발전 장치.Hydroelectric device, characterized in that the coil wound on the outer surface of the shaft member or the permanent magnet installed inside the rotating member is coated with a waterproof material.
  20. 제13항에 있어서,The method of claim 13,
    상기 코일은 상기 축 부재의 외면에 노출되지 않도록 내부에 권선되거나, 상기 영구자석은 상기 회전 부재의 중공 내벽에 노출되지 않도록 상기 회전 부재의 내측에 배치되는 것을 특징으로 하는 수력 발전 장치.The coil is wound inside so as not to be exposed to the outer surface of the shaft member, or the permanent magnet is disposed inside the rotating member so as not to be exposed to the hollow inner wall of the rotating member.
  21. 제16항에 있어서,The method of claim 16,
    상기 회전 부재의 양 측 단부에는 내부의 중공으로 수류가 유입되는 것을 방지할 수 있도록, 상기 축 부재 또는 상기 지지 프레임과 인접한 위치에 수밀 패킹이 형성된 것을 특징으로 하는 수력 발전 장치.Hydroelectric power generation apparatus characterized in that the watertight packing is formed in a position adjacent to the shaft member or the support frame to prevent the flow of water into the hollow inside the rotating member.
PCT/KR2015/005897 2015-06-11 2015-06-11 Power generation facility using water flow and hydroelectric power generation device WO2016199961A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018517104A JP6556944B2 (en) 2015-06-11 2015-06-11 Hydroelectric power generation equipment and power generation facilities using water flow
CN201590001551.8U CN209292983U (en) 2015-06-11 2015-06-11 Hydroelectric installation and the power generating equipment for utilizing water flow
PCT/KR2015/005897 WO2016199961A1 (en) 2015-06-11 2015-06-11 Power generation facility using water flow and hydroelectric power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/005897 WO2016199961A1 (en) 2015-06-11 2015-06-11 Power generation facility using water flow and hydroelectric power generation device

Publications (1)

Publication Number Publication Date
WO2016199961A1 true WO2016199961A1 (en) 2016-12-15

Family

ID=57503820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005897 WO2016199961A1 (en) 2015-06-11 2015-06-11 Power generation facility using water flow and hydroelectric power generation device

Country Status (3)

Country Link
JP (1) JP6556944B2 (en)
CN (1) CN209292983U (en)
WO (1) WO2016199961A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172988A (en) * 2007-01-11 2008-07-24 Shinyo Sangyo Kk Hybrid power generating device system
KR20110104628A (en) * 2010-03-17 2011-09-23 송명섭 Water-power generation device for pipe
KR20130011881A (en) * 2011-07-22 2013-01-30 박재원 Hydroelectric power generator with spiral waterway
KR101257803B1 (en) * 2012-08-28 2013-05-15 농업회사법인 팜앤팜스(주) An combined facility for agriculture
KR20150070642A (en) * 2013-12-17 2015-06-25 박유진 Hydraulic generating apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193952A (en) * 2001-12-26 2003-07-09 Hitachi Ltd Generator integrated type water turbine
JP2003201947A (en) * 2001-12-28 2003-07-18 Toshiba Eng Co Ltd Power generation facility of small scale
JP4535753B2 (en) * 2004-03-23 2010-09-01 カヤバ工業株式会社 Power generation system
CN1973128A (en) * 2004-05-06 2007-05-30 Az工程股份公司 Modular hydraulic or hydroelectric machine
JP2007146820A (en) * 2005-10-24 2007-06-14 Tatsumi Akamine Hydraulic rotating device and power generator using the device or power generating system using head in building
JP5508069B2 (en) * 2010-03-12 2014-05-28 株式会社竹中工務店 Wastewater transfer system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172988A (en) * 2007-01-11 2008-07-24 Shinyo Sangyo Kk Hybrid power generating device system
KR20110104628A (en) * 2010-03-17 2011-09-23 송명섭 Water-power generation device for pipe
KR20130011881A (en) * 2011-07-22 2013-01-30 박재원 Hydroelectric power generator with spiral waterway
KR101257803B1 (en) * 2012-08-28 2013-05-15 농업회사법인 팜앤팜스(주) An combined facility for agriculture
KR20150070642A (en) * 2013-12-17 2015-06-25 박유진 Hydraulic generating apparatus

Also Published As

Publication number Publication date
CN209292983U (en) 2019-08-23
JP2018518620A (en) 2018-07-12
JP6556944B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
WO2016056707A1 (en) Floating-type water purification apparatus
KR101440774B1 (en) Wide-range multi-functional water circulation system using photovoltaic power generation and plants island
WO2015129974A1 (en) Water surface floating high efficiency waterwheel generator
CN106976982A (en) Floating type interim purified in situ device for Drain contamination for river channel mouthful
CN102092865A (en) Integrated buoy type solar driven stream-making aerator and water body in-situ remediation method
WO2011102618A2 (en) Water tank having electricity generation function
CN202625942U (en) Up-flow mixing lift for generating high waterflow in water
WO2016199961A1 (en) Power generation facility using water flow and hydroelectric power generation device
CN103420486B (en) Potted-landscape-type aerating ecological wetland device and method for purifying black and smelly riverway by using same
CN204752313U (en) Receive pollution karst water prosthetic devices
CN111533282A (en) Dredging and purifying method for drainage pipe and canal
KR20170044980A (en) System for removing and monitoring green tide and method thereof
KR101576867B1 (en) Hydraulic generating apparatus
KR101576868B1 (en) Power generating facility using water flow
KR100986618B1 (en) The quality of water purification equipment of eco-friendly moving-type using sunlight
CN201106520Y (en) Wind power hydropower synthetic generating station
WO2021029496A1 (en) Self-powered remote control system for smart valve
CN110407341A (en) A kind of aerating type Water Ecological Recovery carbon fiber ecology water plant aerator
CN207581391U (en) A kind of modularization composite multifunction creek abatement equipment
CN101225789B (en) Wind-power hydropower combined power generation system
WO2014092317A1 (en) Tide pump, and power generation system using same
CN214299513U (en) Ecological restoration device for urban polluted water body
CN108770768A (en) Automatically control buoyancy module aerator
CN210796136U (en) Surrounding type rural constructed wetland system
CN218709810U (en) Buried aeration structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018517104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895029

Country of ref document: EP

Kind code of ref document: A1