WO2016199804A1 - Led light source device and projector - Google Patents

Led light source device and projector Download PDF

Info

Publication number
WO2016199804A1
WO2016199804A1 PCT/JP2016/067034 JP2016067034W WO2016199804A1 WO 2016199804 A1 WO2016199804 A1 WO 2016199804A1 JP 2016067034 W JP2016067034 W JP 2016067034W WO 2016199804 A1 WO2016199804 A1 WO 2016199804A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source device
led light
led
reflector
Prior art date
Application number
PCT/JP2016/067034
Other languages
French (fr)
Japanese (ja)
Inventor
榎本 實
政道 石原
達 伊藤
Original Assignee
株式会社Steq
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Steq filed Critical 株式会社Steq
Publication of WO2016199804A1 publication Critical patent/WO2016199804A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the present invention relates to an LED light source device and a projector, and for example, has excellent luminous flux distribution and directivity, and the total luminous flux value from three light sources is 2000 lumens (lm) or more (preferably 3000 lm or more). And a projector including the light source device.
  • Patent Document 1 proposes a projector having an optical configuration shown in FIG.
  • Reference numeral 10R is an LED for red light
  • reference numeral 10G is an LED for green light
  • reference numeral 10B is an LED for blue light
  • the light from each LED is collimated by the collimator lens 12
  • the light enters each liquid crystal light valve 100, is modulated, and enters the dichroic prism 14.
  • the light synthesized by the dichroic prism 14 is projected onto a screen from a projection lens 16 having a zoom ring 17.
  • Patent Document 2 a light guide body in which the areas of the light incident end face and the light exit end face facing each other are relatively larger than the area of the display region in the irradiated body, and the light incident end face of the light guide body. And a light source having a light emitting area substantially equal to the area of the light incident end face, and the light exit end face of the light guide has a first area having an area substantially equal to the area of the display region of the irradiated object.
  • a light output side reflecting member is provided in a region other than the first opening, and the light output side reflection is provided on the light incident side of the light guide in the optical axis direction from the light source.
  • Patent Document 2 the size of the projector body must be huge.
  • the degree of integration of the LED elements is increased, there is a problem that a doughening phenomenon occurs in which the amount of light at the light emission center portion, in which heat dissipation becomes worse, is particularly reduced. Therefore, the applicants in Patent Document 3 apply a liquid material containing SiO 2 particles having an average particle diameter of several nanometers to several hundred nanometers and a white inorganic pigment at least on the surface of a substrate whose surface is a metal, and firing.
  • a semiconductor device that can solve the doughening phenomenon by forming a laminated structure of a white insulating layer and a metal layer has been proposed.
  • the present invention provides an LED light source device having a light distribution angle of 30 degrees or less (preferably 26 degrees or less, more preferably 20 degrees or less) and excellent in luminous flux distribution and directivity, and a desktop projector including the light source device.
  • the purpose is to provide.
  • Another object of the present invention is to provide an LED light source device having a total luminous flux value of 2000 lumens (lm) or more and a desktop projector including the light source device.
  • a mounting substrate having at least a metal surface, a first insulating layer formed on the surface of the mounting substrate, a wiring layer formed as an upper layer of the first insulating layer, and a mounting substrate
  • An LED light source device comprising a plurality of LED chips of the same specification, which are surface-mounted on a matrix, and having a reflector block having the same number of micro-reflectors as the LED chips, the micro-reflector having a bottom portion
  • a first opening formed by applying and heating a metal paste containing a resin and metal powder that penetrates and hardens into the insulating layer, and has an opening and an upper opening having a diameter larger than that of the bottom opening;
  • An LED light source device comprising: a conductive layer; and a second conductive layer having a lower resistance than the first conductive layer formed on the upper surface of the first conductive layer.
  • a second invention is characterized in that, in the first invention, the second insulating layer functioning as a reflective layer as an upper layer of the wiring layer is formed so as to leave an exposed portion exposing the wiring layer.
  • the first insulating layer is a porous material obtained by applying a liquid material containing nanoparticulated SiO 2 and a white inorganic pigment and heating at 160 to 250 ° C. It is characterized by comprising an inorganic white insulating layer.
  • the second insulating layer is a porous material obtained by applying a liquid material containing nanoparticulated SiO 2 and a white inorganic pigment and heating at 160 to 250 ° C.
  • the upper opening of the micro-reflector is enlarged in diameter by 70 to 85 ° with respect to the bottom opening, and the distance between the bottom opening and the upper opening is 4 It is ⁇ 8 mm.
  • the micro reflectors are arranged in a staggered manner, the distance between the centers of the micro reflectors is smaller than the diameter of the upper opening, and the upper openings overlap each other. It does not fit.
  • the LED chip is connected to the wiring layer through the opening within the range of the pitch upper opening of the micro reflector where the LED chip is disposed.
  • An eighth invention is characterized in that, in any one of the second to seventh inventions, the light distribution angle is 30 degrees or less, the total luminous flux value is 500 lumens or more, and the projector is used.
  • a ninth invention is characterized in that, in the eighth invention, the LED chip has a substantially square shape in a top view and a maximum rated current of 300 mA or more.
  • a tenth aspect of the invention is characterized in that, in the ninth aspect of the invention, the reflector block is made of an integrally molded resin material, and a reflective layer made of a metal material is formed on the inner peripheral surface of the micro reflector.
  • a metal is integrally formed on a core material of the reflector block, a resin is integrally formed on an outer peripheral portion, and a reflective layer made of a metal material is formed on an inner peripheral surface of the micro reflector. It is characterized by.
  • the micro-reflector includes an upper opening, a bottom opening in which the LED chip is disposed in the vicinity, and a reflecting surface
  • the reflecting surface includes: A first inner peripheral surface that is located on the bottom opening side and acts to collect the irradiation light from the LED chip toward the central axis, and a central axis that is located on the upper opening side than the first inner peripheral surface A second inner peripheral surface having a narrow angle with respect to the second inner peripheral surface, and a third inner peripheral surface located on the upper opening side of the second inner peripheral surface and having a narrow angle with respect to the central axis, To do.
  • a fourteenth aspect of the invention is a red light LED light source device, a red light transmissive liquid crystal panel that modulates light emitted from the red light LED light source device, a green light LED light source device, and the green light light source device.
  • a light source device and the LED light source device for blue light are constituted by the LED light source device according to any one of the second to thirteenth inventions. It is.
  • the total light flux value of the red light LED light source device, the green light LED light source device, and the blue light LED light source device is 2000 lumens or more.
  • a sixteenth aspect of the invention is characterized in that, in the fourteenth or fifteenth aspect of the invention, an irradiation surface formed by the micro reflector is configured to be slightly larger than each of the liquid crystal panels.
  • a seventeenth invention is characterized in that, in the first to seventh inventions, the plurality of LED chips emit ultraviolet light.
  • An eighteenth aspect of the invention is a UV ink curing device having a light source formed by connecting a plurality of LED light source devices according to the seventeenth aspect of the invention.
  • a nineteenth aspect of the invention is a UV sterilization apparatus having a light source formed by connecting a plurality of LED light source devices according to the seventeenth aspect of the invention.
  • a twentieth invention is characterized in that, in the first to seventh inventions, the plurality of LED chips emit infrared light.
  • a twenty-first invention is a reflector block used in the LED light source device of the first to thirteenth inventions.
  • an LED light source device having a light distribution angle of 30 degrees or less, excellent light flux distribution and directivity, and having a total light flux value of 2000 lumens (lm) or more, and a desktop projector including the light source device. It becomes possible to provide.
  • A The top view of the reflector block which concerns on 1st embodiment
  • (A) shows a case without a reflector
  • (b) shows a case with a reflector (without a lens)
  • (b) shows a case with a reflector (with a lens).
  • (A1) is the principal part enlarged view of (a)
  • (b1) is the principal part enlarged view of (b).
  • (b) The top view of the LED light source device which concerns on 3rd embodiment.
  • (A1) is a schematic side view showing the shape of the microreflector 91a according to the fourth embodiment
  • (b1) is a schematic side view showing the shape of the microreflector 92 according to Comparative Example 1
  • (a2) is the fourth embodiment
  • (b2) is the directivity simulation result of the LED light source device which concerns on the comparative example 1.
  • FIG. It is a top view of the LED light source device which concerns on 5th embodiment. It is a side surface schematic diagram which shows the shape of the micro reflector which concerns on 5th embodiment. It is a structure side view of the comparative example 2 which is a well-known LED light source device.
  • FIG. 1 is a configuration diagram of a projector 1 according to the first embodiment.
  • the LED light source device of the present embodiment includes three LED light source devices 21, three collimator lenses 22, three liquid crystal light valves 23, a dichroic prism 31, and a projection optical system 32.
  • the LED light source device 21, the collimator lens 22, and the liquid crystal light valve 23 are for emitting R (red), G (green), and B (blue) light to the dichroic prism 31.
  • Red light (R light) from the LED light source device 21R is collimated by the collimator lens 22R and light-modulated by the liquid crystal light valve 23R.
  • the liquid crystal light valve 23R is a transmissive liquid crystal panel (HTPS liquid crystal panel) arranged in a matrix, and is a known light modulator that modulates R light for each pixel in accordance with a video signal.
  • HTPS liquid crystal panel transmissive liquid crystal panel
  • the green light (G light) from the LED light source device 21G and the blue light (B light) from the LED light source device 21B which are collimated by the collimator lenses 22G and 22B, and are made known by the known liquid crystal light valves 23G and 23B. Light modulated.
  • the dichroic prism 31 has two dichroic films arranged so as to be orthogonal to each other, and one dichroic film 14 reflects R light, but transmits G light and B light other than R light, The dichroic film 14 reflects B light, but transmits R light and G light other than B light.
  • the projection optical system 32 includes a plurality of projection lenses on which the light synthesized by the dichroic prism 31 is incident and a projection lens housing that accommodates the plurality of projection lenses. The projection optical system 32 emits the projection light L and displays a color image on the screen. Enlarge and project.
  • the configuration of the LED light source device 21 will be described in detail with reference to FIG. FIG. 2 is a schematic diagram for explaining the structure, and does not accurately show the arrangement of the LED chips 46 in the present embodiment.
  • the LED light source device 21 includes a mounting substrate 41, an inorganic white insulating layer 42 applied on the upper surface of the mounting substrate 41, a wiring layer 43 applied and formed on the upper surface of the inorganic white insulating layer 42, an insulating layer 44, The mounting part 45, the LED chip 46, the translucent resin layer 47, and the reflector block 50 are provided.
  • the mounting substrate 41 is a plate material made of a metal having a surface excellent in thermal conductivity and electrical characteristics.
  • a material having a low thermal conductivity such as a glass epoxy resin cannot be employed because a doughening phenomenon in which the amount of light at the light emission center portion, in particular, the heat dissipation becomes poor, occurs.
  • an inorganic white insulating layer 42 that also serves as a reflective material is provided.
  • the inorganic white insulating layer 42 preferably has an average reflectance of 70% or more and more preferably 80% or more in the visible light wavelength region.
  • the inorganic white insulating layer 42 is an ink in which white inorganic powder (white inorganic pigment) and silicon dioxide (SiO 2 ) are main components and these are mixed with a solvent of diethylene glycol monobutyl ether containing organic phosphoric acid (hereinafter referred to as “white”). It may be formed by applying and firing (for example, heating at 160 to 250 ° C.).
  • the thickness of the inorganic white insulating layer 42 is preferably thin from the viewpoint of heat dissipation characteristics, but a certain thickness is required from the viewpoint of withstand voltage and tear strength.
  • the withstand voltage of the insulating film required for LED mounting is generally 1.5 to 5 kV, and the white inorganic insulator is about 1 KV / 10 ⁇ m.
  • the thickness is preferably 15 ⁇ m or more.
  • the inorganic white insulating layer 42 has a certain thickness or less. That is, the thickness of the inorganic white insulating layer 42 is set in the range of 10 to 80 ⁇ m, for example, and preferably in the range of 25 to 50 ⁇ m.
  • the white inorganic pigment for example, titanium oxide (TiO 2 ), zinc oxide, alumina, or a combination thereof is used.
  • the content of the white inorganic pigment in the formed white insulating layer is appropriately adjusted depending on the required reflectance, but is preferably 40 to 70% by weight, more preferably 50 to 65% by weight. This is because if it is 40% by weight or more, a sufficient reflection effect can be obtained, and if it is 70% by weight or less, the fluidity of the ink necessary for forming a uniform film can be secured.
  • the white inorganic powder preferably has an average particle size of 100 ⁇ m or less, and more preferably has an average particle size of 50 ⁇ m or less.
  • the white inorganic powder having such a particle size is suitable for application by screen printing, ink jet method, dispenser method or spray coating method.
  • the above-described liquid material is a highly thermally conductive filler made of an inorganic material (for example, silicon carbide (SiC) coated with an nm-size alumina film). May be mixed.
  • a white inorganic ink made of such an insulating material is applied onto a metal plate and heated at, for example, 160 to 250 ° C., so that nano-sized insulating particles dispersed in the solvent are arranged following the unevenness of the substrate surface.
  • the solvent evaporates to form a dense white insulating layer (film).
  • the nano-sized ceramic mixed powder is heated under atmospheric pressure while in direct contact with the metal surface, sintered in situ, and the metal surface is bonded at the bonding interface using the diffusion state due to the nano-size effect.
  • At least a part of the system white insulating layer forms a laminated structure with the metal layer.
  • the inorganic white insulating layer 42 is superior in thermal conductivity by about an order of magnitude compared to glass epoxy, and therefore has a high heat dissipation performance.
  • the heat dissipation performance is 2 to 5 times higher. Is estimated to have Furthermore, the sulfidation phenomenon can be suppressed by covering the metal surface on the substrate with the inorganic white insulating layer 42.
  • a wiring layer 43 is drawn and formed at a necessary position on the inorganic white insulating layer 42.
  • the wiring layer 43 is formed by drawing and applying a conductive metal ink (for example, silver ink or a hybrid ink in which silver and copper are mixed) by screen printing, an ink jet method, a dispenser method, or the like, and then baking and metallizing. .
  • the wiring layer 43 may be drawn after the primer treatment.
  • the insulating layer 44 may have the same composition as that of the inorganic white insulating layer 42, or may be selected from organic resins (for example, polyimide resins, olefin resins, polyester resins, and mixtures or modified products thereof). 1 or more types of resins).
  • the thickness of the insulating layer 44 is determined from the balance between insulating properties and thermal conductivity, and is, for example, 10 to 60 ⁇ m, preferably 10 to 30 ⁇ m.
  • polyimide resin examples include polyimide having an imide ring structure, polyamideimide, and polyesterimide.
  • olefin resin examples include polyethylene, polypropylene, polyisobutylene, polybutadiene, polyisoprene, cycloolefin resin, and copolymers of these resins.
  • polyester resin examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and liquid crystal polyester.
  • the mounting portion 45 is made of the same material as the wiring material or a member having excellent thermal conductivity.
  • the mounting portion 45 may be formed by applying and baking a metal paste material such as a copper paste, a silver paste, or a solder paste. good.
  • the mounting portion 45 may not be provided, and the upper surface of the inorganic white insulating layer 42 or the mounting substrate 41 may be exposed.
  • the LED chip 46 emits light from, for example, gallium nitride (GaN, AlGaN, InGaN), gallium phosphide (GaP, GaAsP), gallium arsenide (GaAs, AlGaAs, AlGaInP), or zinc oxide (ZnO). It is a surface mount type LED bare chip selected according to the above. A large number of LED chips 3 are arranged in a matrix in n rows ⁇ m columns (for example, 6 series ⁇ 7 parallels, 4 series ⁇ 4 parallels) in the reflector block, and so-called COB (Chip On Board) mounting.
  • COB Chip On Board
  • the LED chip 46 uses, for example, an LED chip having a maximum rated current of 300 mA or more, preferably a maximum rated current of 400 mA or more, and more preferably a maximum rated current of 500 mA or more.
  • the size of the LED chip 46 is 3 to 4 mm square or less (preferably 1.5 mm square or less), and all have the same specifications in units of emission colors.
  • an LED chip having 1.0 ⁇ 1.0 ⁇ 0.15 mm and a light distribution angle of 150 degrees was used.
  • Table 1 shows an arrangement example of LED chips for realizing 3000 lm, 4000 lm, and 5000 lm.
  • the external size in Table 1 refers to the size of the mounting substrate on which the LED chip is mounted (or the mounting area on which the LED chip is mounted). [Table 1]
  • the translucent resin layer 47 is a transparent resin layer made of, for example, an epoxy resin or a silicone resin. In order to emit desired R light, G light, and B light, red, green, and / or blue light is used. A phosphor may be mixed.
  • a convex lens microwaves formed of a transparent resin (for example, an epoxy resin or a silicone resin) on the upper surface of the translucent resin layer 47 and having a spherical surface (side-view arcuate shape) for focusing light emitted from the LED chip 46. It may be provided. By providing this convex lens, it is possible to easily realize the light distribution angle within a target value (for example, 10 to 30 degrees).
  • the reflector block 50 includes 20 micro reflectors 51 and a reflective layer (reflective surface) 52 formed on the inner peripheral surface of the micro reflector 51.
  • the plate-like reflector block 50 is integrally formed.
  • the plate-like reflector block 50 is manufactured by injection molding an organic resin.
  • the manufacture of the reflector block 50 is not limited to injection molding, and the reflector block 50 may be manufactured by cutting resin or metal.
  • the reflector block 50 may have a structure in which a metal (for example, 42 alloy or copper) is used as a core material, an outer peripheral portion is covered with an organic resin, and a surface is subjected to a reflective material treatment.
  • the 20 micro reflectors 51 are arranged in 5 rows ⁇ 4 columns at a pitch of 3 mm in the vertical direction and a pitch of 3 mm in the horizontal direction.
  • the micro-reflector 51 is a frustoconical space expanded from the bottom toward the upper end (outgoing side) (see FIG. 3B), and has a bottom diameter of 2 mm, an upper end diameter of 3.05 mm, and a high height. It has a thickness of 4 mm and an expansion angle of 7.5 °, and has a linearly inclined reflective layer (inner peripheral surface) 52.
  • a reflective layer 52 is formed on the inner peripheral surface of the micro reflector 51 by electrolytic polishing of aluminum or aluminum vapor deposition.
  • the bottom of the micro-reflector 51 for the projector has a LED chip side ratio of 1.5 to 3 times (preferably 1.5 to 2 times) and a diameter of 3 mm or less, and the height is 2 to 10 LED chip side ratio.
  • the upper end portion has a diameter of 3 to 6 times (preferably 4 to 5 times) in terms of the LED chip side ratio.
  • the arrangement pitch of the micro reflectors 51 is preferably 6 mm or less in both vertical and horizontal directions, and more preferably 5 mm or less. From another aspect, LED chip, so that it can position the LED chips with one or more density per 12.25mm 2 (preferably one or more density per 9 mm 2), determines the arrangement pitch of the micro reflectors 51 . However, in order to obtain a desired light flux distribution, it is preferable that the micro reflectors 51 are provided so as not to overlap each other (have an independent upper opening).
  • each micro reflector 51 In the center of the bottom of each micro reflector 51, an LED chip 46 is arranged. LED chips 46 arranged on five micro reflectors 51 arranged on four straight lines extending vertically in FIG. 3 are connected in series, and the five LED chip groups connected in series are connected in parallel. (5 series x 4 parallel).
  • the light distribution angle formed by the 20 LED chips 46 arranged in a matrix is preferably 30 degrees or less, more preferably 5 to 20 degrees or 10 to 15 degrees.
  • FIG. 3 illustrates an example in which 20 micro reflectors 51 are provided. However, the number of micro reflectors 51 is not limited to this, and for example, 8 to 100 (preferably 12 to 100, more). Preferably, it may be 16-50. As shown in FIG.
  • the reflector block 50 is slightly larger than the liquid crystal light valve 23 (for example, the area ratio is 1.21 times or more, preferably 1.44 times or more, more preferably 1.69 times or more). It is preferable to make it the magnitude
  • FIGS. 5A and 5B are a plan view and a side view of a modified example of the reflector 25 having 42 micro reflectors 51.
  • the reflector block 50 includes a pair of left and right outer frame portions 53, and three partition frames 54 provided in the upper part of the figure and two in the lower part of the figure.
  • the reflective layer 52 by electrolytic polishing of aluminum or aluminum deposition is provided on the inner peripheral surface of the micro reflector 51 as in FIG.
  • the outer dimensions of the reflector block 50 of FIG. 5 are 24 mm ⁇ 24 mm, and the LED chips 46 are arranged with a pitch of 2.6 mm in the left-right direction and a pitch of 3.0 mm in the up-down direction. , Are arranged alternately.
  • the micro reflectors 51 are arranged in a staggered manner or a honeycomb so that the pitch between the centers of the micro reflectors is narrowed to increase the degree of integration. That is, the centers of the upper openings of the three micro reflectors 51 that are in contact with each other are arranged so as to form the apex of an equilateral triangle.
  • the top view shape of the micro-reflector 51 is not limited to the illustrated circular shape, and may be, for example, a regular polygon of a hexagon or more. In this case, the bottom opening and the top opening are preferably similar and concentric.
  • FIG. 6 shows a perspective view of the LED light source device 21 including the reflector block 50 of FIG.
  • the inorganic white layer 42 is exposed at the micro reflector 51 of the reflex letter 50, the cutout portion surrounded by the partition frame, and the outer portion of the outer frame portion 53.
  • Three LED light source devices 21 having the same specifications are provided as described above, and are used as light sources for emitting red light (R light), green light (G light), and blue light (B light). .
  • the reflector block 50A used here is a micro reflector 51 having the same shape as that shown in FIG. 3B (that is, a bottom diameter of 2 mm, an upper end diameter of 3.05 mm, a height of 4 mm, and an expansion angle of 7.5 °). It has a model without lens.
  • FIG. 7 is a diagram illustrating an example of a light distribution angle simulation analysis result different from Table 2.
  • 7A shows a case where there is no reflector
  • FIG. 7B shows a case where a reflector block 50A (without a lens) is used
  • FIG. 7C shows a case where a reflector block 50B (with a lens) is used.
  • (A1) is the principal part enlarged view of (a)
  • (b1) is the principal part enlarged view of (b).
  • FRED Photo Engineering LLC was used as the analysis software.
  • the illuminance is 524,922 (lx) and the spread angle is 75 ° at (a), and the illuminance is 1,552,104 (lx) and the spread angle is (b).
  • 30 ° (10 ° for the condensing part (the dark part of the line))
  • the illuminance is 2,734,062 (lx) and the divergence angle is 30 ° (the condensing part is compared to (b)) It was even darker).
  • FIG. 8 is a schematic side view showing the shape of the micro reflector 61 of the second embodiment.
  • the micro reflector 61 includes a bottom opening 62 in which the LED chip 46 is disposed at the center, a small diameter body 63, a reflecting surface (64, 65, 66, 67), and an upper opening 68.
  • the diameter of the bottom opening 62 is 1.8 mm
  • the diameter of the top opening 68 is 4.0 mm
  • the distance (height) from the bottom opening 62 to the top opening 68 is 5.0 mm.
  • the cylindrical small-diameter cylinder 63 has a bottom end 62 that constitutes a bottom opening 62 and an upper end that is continuous with a reflective surface (first inner peripheral surface 64).
  • the reflecting surface is composed of first to fourth inner peripheral surfaces (64, 65, 66, 67) and has a structure in which the diameter is increased upward while the angle with respect to the central axis is gradually reduced. . That is, the first inner peripheral surface 64 has an enlarged diameter of 60 °, the second inner peripheral surface 65 has a 65 °, the third inner peripheral surface 66 has a 70 °, and the fourth inner peripheral surface 67 has a 85 ° diameter. The angle with respect to the central axis is gradually reduced from 62 toward the upper opening 68.
  • the first to fourth inner peripheral surfaces (64, 65, 66, 67) all act so as to collect the irradiation light from the LED chip 46 toward the central axis side of the micro reflector 61.
  • the reflecting surface may be constituted by three or five inner peripheral surfaces having different angles, and in this case as well, the angle with respect to the central axis is narrowed stepwise in a range of 60 ° to 85 °, for example. However, the diameter is increased upward.
  • FIG. 9 shows the reflector effect when the light is emitted from the left end (a), the center (b), and the right end (c) of the LED chip.
  • the emitted light from the center of the LED chip is reflected by the inner peripheral surface of the reflector 61, and most of the light becomes parallel light.
  • FIG. 10A is a plan view of the reflector block 60 according to the second embodiment.
  • the rectangular reflector block 60 includes 20 reflectors 61 arranged in 4 series and 5 parallel in 4 mm pitches in the vertical and horizontal directions.
  • the structure of the reflector block 60 is the same as that of the first embodiment.
  • FIG. 10B is a plan view of the LED light source device 70 according to the third embodiment.
  • the circular reflector block 71 includes 16 reflectors 72 arranged in 4 series and 4 parallel at 4 mm pitches in the vertical and horizontal directions.
  • the structure of the reflector block 71 is the same as in the first and second embodiments.
  • the LED light source device 70 includes an external reflector 73 having a height of 30 mm.
  • the external reflector 73 has a reflecting structure on the inner peripheral surface surrounding the reflector block 71 and has a shape that is expanded in diameter upward.
  • a light source unit in which 20 LED chips are arranged in each opening of the reflector block 60 and a light source unit in which the reflector block 60 is removed from the light source unit are simulated. Carried out.
  • FIG. 11 is a schematic side view showing the shapes of the micro reflectors 91a to 91c of the fourth embodiment.
  • the micro reflectors 91a to 91c of the fourth embodiment are the same as those of the first to third embodiments, and 20 reflectors are arranged in an array on the reflector block (see FIG. 10A).
  • the output of the LED chip is set to 1 lm for convenience, but an LED chip having an equivalent size of 250 to 2600 lm is commercially available. By mounting this LED chip, three light sources are provided. Can be set to 2000 lm or 3000 lm or more.
  • FIG. 12 is a side view for explaining the inner peripheral surface shape of the micro reflector 91a according to the fourth embodiment.
  • a portion indicated by a point in the figure is a bending point, and a portion (inner peripheral surface) sandwiched between two points is linear.
  • the micro reflector 91a has a reflective surface composed of seven inner peripheral surfaces having different angles.
  • the reflection layer is constituted by a large number of inner peripheral surfaces having a linear cross section, so that it is possible to secure a constant area at the central portion where the light density is highest.
  • the reflector reflection layer is formed of a smooth peripheral surface (smooth curved surface), the area of the portion having a high light density tends to be too small.
  • FIG. 13 (a1) is a schematic side view showing the shape of the micro reflector 91a according to the fourth embodiment, (b1) is a schematic side view showing the shape of the micro reflector 92 according to Comparative Example 1, and (a2) is the fourth embodiment.
  • It is the directivity simulation result of the LED light source device which concerns on a form (micro reflector 91a)
  • (b2) is the directivity simulation result of the LED light source device which concerns on the comparative example 1.
  • FIG. In the micro-reflector 91a having a large number of inner peripheral surfaces with linear cross sections at different angles, as shown in (a2), the tip of the directivity data is crushed, so that a certain area can be secured for a portion with a high light density. I understand.
  • FIG. 14 is a plan view of the LED light source device 100 according to the fifth embodiment.
  • the LED light source device 100 of this embodiment includes a reflector block 101, a reflector 102, and an LED chip 103.
  • the basic structure of the rectangular reflector block 101 is the same as that of the first to third embodiments, except that one reflector 102 is provided at the center.
  • the LED chip 103 has a size of 3.0 ⁇ 3.0 ⁇ 0.45 mm, an output of 20 lm, and an orientation angle of 150 degrees.
  • the output is set to 20 lm for convenience, but the total luminous flux value from the three light sources is set to 2000 lm or 3000 lm or more by changing the LED chip to a high output one. It is possible.
  • FIG. 15 is a schematic side view showing the shape of the reflector 102.
  • Each dimension of the reflector 102 is three times the corresponding dimension of the micro reflector 91b according to the fourth embodiment.
  • the inner peripheral surface of the reflector 102 is subjected to the same reflective material treatment as in the first to third embodiments.
  • the LED light source device 100 In order to verify the performance of the LED light source device 100 according to the fifth embodiment, light rays and light fluxes were analyzed by simulation. In this simulation, the 25 mm square detector 80 was implemented on the condition that it is arranged at a distance of 30 mm. When simulating the performance of the fifth embodiment, the simulation for the following comparative example was also performed at the same time.
  • Comparative Example 2 is a known LED light source device 110 including two condenser lenses 111 and 112 as shown in FIG.
  • the LED light source device 110 includes condensing lenses 111 and 112 and a mounting substrate 114 on which an LED chip 113 is mounted.
  • the condensing lens 111 is a biconvex lens, a convex lens 111a on the opposite side (liquid crystal light valve side) to the LED chip 113, 111c on the LED chip 113 side, and a disk-shaped body 111b sandwiched between 111a and 111c. It consists of.
  • the convex lens 111a has a diameter of 27 mm, a thickness of 7.5 mm, and a curvature of 0.0555.
  • the trunk 111b has a diameter of 27 mm and a height of 2.5 mm.
  • the convex lens 111c has a diameter of 27 mm, a thickness of 0.5 mm, and a curvature of 0.188.
  • the transmittance of the condenser lens 111 is 90%.
  • the condensing lens 112 is a plano-convex lens, and includes a convex lens 112a on the opposite side (liquid crystal light valve side) to the LED chip 113 and a body portion 112b on the LED chip 113 side.
  • the convex lens 112a has a diameter of 16 mm, a thickness of 5 mm, and a curvature of 0.1.
  • the cylindrical portion 112b has a diameter of 16 mm and a height of 4.2 mm.
  • the transmittance of the condenser lens 112 is 90%.
  • An LED chip 113 of 3.5 mm ⁇ 2.8 m square is disposed below the center of the condenser lens 112.
  • the LED chip 113 is electrically connected to a wiring pattern provided on the mounting substrate 114.
  • the comparative example 3 is the light source device which removed the reflector block 101 from the LED light source device 100 of 5th embodiment (refer FIG.17 (c)).
  • the LED chip of Comparative Example 3 is the same as that of the fifth embodiment, the output is the same (20 lm).
  • the reflector block 101 is not provided, the LED chip is different in terms of the spread angle and restraint.
  • FIG. 17 the result of the simulation of the orientation angle performed about each LED light source device of 5th embodiment, the comparative example 2, and the comparative example 3 is shown.
  • (a) shows the LED light source device 100 according to the fifth embodiment
  • (b) shows the LED light source device 110 according to Comparative Example 2
  • (c) shows the result of the LED light source device according to Comparative Example 3. Yes.
  • the number of light rays is reduced to 100 in order to make the light rays easier to see.
  • FIG. 17A it can be seen that the orientation angle of the irradiation light of the LED light source device 100 according to the fifth embodiment is small, and the light density at the center is the highest in the figure. From FIG.
  • the amount of light beam reaching the 25 mm square detector 80 is (a) 19.17 lm in the fifth embodiment, (b) 7.76 lm in the comparative example 2, and (c) 15 in the fourth embodiment (micro reflector 91b). .26 lm.
  • FIG. 18 the result of the simulation of the light beam quantity and light beam distribution which were performed about each LED light source device of 5th embodiment, the comparative example 2, and 4th embodiment (micro reflector 91b) is shown. 18, (a) is the LED light source device 100 according to the fifth embodiment, (b) is the LED light source device 110 according to the comparative example 2, and (c) is the LED light source according to the fourth embodiment (micro reflector 91b). The result of the apparatus is shown.
  • the LED light source device 100 according to the fifth embodiment has the highest light density at the center (brightest), but from another point of view, the luminous flux is at the center of the 25 mm square detector 80. Collectively, it can be seen that the periphery of the 25 mm square detector 80 becomes dark and uneven brightness occurs.
  • the LED light source device 110 according to the comparative example 2 has a wide orientation angle of the irradiated light, and the light beam density is distributed over a wide area compared to FIGS. 18A and 18C. I understand.
  • the LED light source device which concerns on 4th embodiment is inferior in the point of the light density of center part compared with Fig.18 (a), it is excellent in the point of the uniform distribution of a light ray.
  • it is superior to the fifth embodiment and the comparative example 2 in that a constant area is ensured in the central portion having the highest light density.
  • FIG. 19 the result of the directivity simulation performed about each LED light source device of 5th embodiment, the comparative example 2, and 4th embodiment (micro reflector 91b) is shown. 19 (a) and 19 (c), it can be seen that the tip is flat and the uniformity is good.
  • the LED light source device 100 according to the fifth embodiment has a feature that the orientation angle is small and the light density is high.
  • the LED light source device according to the fourth embodiment microwavereflector 91b has the highest evaluation as the light source for the projector.
  • the LED light source device 121 of the sixth embodiment is different from the LED light source device 21 of the first embodiment in that the wiring layer 143 is mainly composed of two layers and the inorganic white insulating layer 144 is provided. Below, it demonstrates centering around difference and omits description about a common structure. The configuration of the LED light source device 121 will be described in detail with reference to FIG. FIG. 21 is a schematic diagram for explaining the structure, and does not accurately show the arrangement of the LED chips 146 in the present embodiment.
  • the LED light source device 121 includes a mounting substrate 141, an inorganic white insulating layer 142 applied to the upper surface of the mounting substrate 141, a wiring layer 143 applied and formed on the upper surface of the inorganic white insulating layer 142, and an inorganic white insulating material.
  • the layer 144, the wiring exposed part 145, the LED chip 146, the translucent resin layer 147, and the reflector block 150 are provided.
  • the mounting substrate 141 is the same as the mounting substrate 41 of the first embodiment.
  • the inorganic white insulating layer 142 has the same composition as that of the first embodiment except for the white inorganic pigment, but titanium oxide (TiO 2 ) is used for the white inorganic pigment in order to improve the reflection efficiency.
  • the wiring layer 143 includes a first wiring layer 1431 formed on the mounting substrate side and a second wiring layer 1432 formed on the first wiring layer 1431.
  • the first wiring layer 1431 is a wiring layer made of a material having good adhesion to the inorganic white insulating layer 142 (for example, a conductive resin composition). More specifically, the first wiring layer 1431 is formed with a wiring pattern on the inorganic white insulating layer 142 by, for example, printing a gold paste or a metal paste containing metal particles that function as a conductive filler and a binder resin. And is formed by heating.
  • the metal particles contained in the metal paste materials used in ordinary printed circuits and conductive films are used, but the most common is silver (Ag) particles.
  • the metal particles may be mixed with nano-sized metal particles and micron-sized metal particles, and the resistance value may be lowered by filling the spaces between the micron-sized metal particles with the nano-sized particles.
  • a dicyclopentadiene type epoxy resin is disclosed as the binder resin contained in this metal paste.
  • the binder resin constituting the first wiring layer 1431 is immersed in the porous inorganic white insulating layer 142 and hardened, thereby providing an anchor effect.
  • the second wiring layer 1432 is a wiring layer made of a material having a resistance lower than that of the first wiring layer 1431.
  • a silver paste containing nano-sized silver particles is printed on the first wiring layer 1431 by printing or the like. It is formed by providing a wiring pattern and heating.
  • the second wiring layer 1432 may be formed of a plurality of layers.
  • the inorganic white insulating layer 144 is formed on the wiring layer 143 and functions as a reflective layer that reflects light emitted from the LED chip 146.
  • the inorganic white insulating layer 144 is formed by applying and baking a white inorganic ink using titanium oxide (TiO 2 ) as a white inorganic pigment on the second wiring layer 1432, similarly to the inorganic white insulating layer 142.
  • TiO 2 titanium oxide
  • the inorganic white insulating layer 144 that also functions as a solder resist layer is applied so as to expose the wiring exposed portion 145.
  • the wiring exposed portion 145 is a mount portion of the LED chip 146 and a wire bond region.
  • the LED chip 146 is the same LED bare chip as in the first embodiment, but is different in that it has a structure in which one electrode is provided on the back surface. As in the first embodiment, each LED chip 146 is arranged so as to be within the range of each micro reflector 151. However, since there is only one wire bonding area, the first embodiment has two wire bonding areas. As compared with the above, the bottom opening (and the top opening) of the micro reflector 151 can be made smaller in diameter. That is, in the sixth embodiment, it is possible to increase the degree of integration of the LED chips 146 compared to the first embodiment. In addition, the aspect which raises the integration degree of an LED chip more by flip-chip joining both electrodes is later mentioned by 8th embodiment.
  • the translucent resin layer 147 is the same as in the first embodiment, and is a resin layer that is transparent or mixed with a phosphor.
  • the LED light source device 121 of the sixth embodiment described above it is possible to increase the degree of integration of the LED chips 146 compared to the first embodiment and to make the bottom opening and the top opening of the micro reflector 151 smaller. It is.
  • the degree of integration of the LED chip 146 is increased, the heat dissipation of the insulating layer becomes a problem.
  • the inorganic white insulating layer 142 can be formed thin, so that it becomes a donut shape. The problem of the phenomenon does not occur.
  • the above-described liquid material (white inorganic ink) is coated with a high thermal conductive filler made of an inorganic material (for example, silicon carbide (SiC) with an nm-size alumina film. May be mixed.
  • a high thermal conductive filler made of an inorganic material (for example, silicon carbide (SiC) with an nm-size alumina film. May be mixed.
  • the two-layer wiring structure of the wiring layer 143 improves the adhesion with the porous inorganic white insulating layer 144, and the high temperature due to the heat generation of the LED chip 146. It is possible to ensure durability over a long period even in an environment. Furthermore, since the inorganic white insulating layer 144 is also provided on the wiring layer 143, the reflectance of light emitted from the LED chip 146 is increased, and the amount of light can be increased.
  • the LED light source device 221 of the seventh embodiment is different from the LED light source device 121 of the sixth embodiment in that the reflector block 250 is disposed on the translucent resin layer 247. Below, it demonstrates centering around difference and omits description about a common structure. The configuration of the LED light source device 221 will be described in detail with reference to FIG. FIG. 23 is a schematic diagram for explaining the structure, and does not accurately show the arrangement of the LED chips 246 in the present embodiment.
  • the LED light source device 221 includes a mounting substrate 241, an inorganic white insulating layer 242 applied on the upper surface of the mounting substrate 241, a wiring layer 243 applied and formed on the upper surface of the inorganic white insulating layer 242, and an inorganic white insulating material.
  • a layer 244, an LED chip 246, a translucent resin layer 247, a dam material 248, and a reflector block 250 are provided.
  • the mounting substrate 241 is the same as the mounting substrate 141 of the sixth embodiment.
  • the inorganic white insulating layer 242 is the same as the inorganic white insulating layer 142 of the sixth embodiment, and the inorganic white insulating layer 244 is the same as the inorganic white insulating layer 144 of the sixth embodiment.
  • the wiring layer 243 includes a first wiring layer formed on the mounting substrate side and a second wiring layer formed on the first wiring layer, as in the sixth embodiment.
  • the LED chip 246 is an LED bare chip similar to that of the sixth embodiment, but has a structure in which one electrode is provided on the back surface. Since there is one wire bonding region, the bottom opening (and top opening) of the micro reflector 151 can be made smaller in diameter than in the first embodiment where there are two wire bonding regions.
  • the dam material 248 is formed so as to surround the outer periphery of the mounting region of the LED chip 246 and is made of, for example, a white filler-containing resin.
  • the surface of the dam material 248 is given light reflectivity and reflects light emitted from the LED chip 246.
  • the reflector block 250 is arranged so that the center of the bottom opening of the micro reflector 251 is directly above the center of the LED chip 246. In FIG. 23, the reflector block 250 is disposed so as to cover the dam material 248 and the translucent resin layer 247, but the reflector block 250 may be disposed on the translucent resin layer 247. Good.
  • the micro reflector 251 is disposed above the translucent resin layer 247, the degree of freedom of wiring of the LED chip 246 is high, and the degree of integration of the LED chip 246 can be increased.
  • the wire bonding area can be set within the range of a circle having the pitch diameter of the micro reflector 251 (hereinafter sometimes referred to as “routable area”), the degree of integration of the LED chips 246 can be increased.
  • the routable area is a range of two vertical lines A-A ′ passing through the center of the micro reflector wall 251a.
  • FIG. 24A and 25A are configuration examples of the micro block 250.
  • 25 micro reflectors 251 are provided in a staggered pattern with a pitch of 3.5 mm in the vertical direction and 3.05 mm in the horizontal direction. ⁇ 26 ⁇ t4.8 mm.
  • 42 micro reflectors 251 are provided in a staggered pattern of 7 ⁇ 6 at a pitch of 3.5 mm in the vertical direction and 3.05 mm in the horizontal direction.
  • ⁇ 26 ⁇ t4.8 mm Each micro-reflector 251 is the same in both FIG. 24A and FIG. 25A and has a bottom opening of a circle having a diameter of 1.48 mm and a top opening of a circle having a diameter of 3.1 mm.
  • each routable area is a hatched area in FIG. 24B, which is wider than the sum of the upper opening of the micro reflector 251.
  • each routable area is a circle of the same size that circumscribes each other.
  • the electrical connection between the LED chip 246 and the wiring layer 243 can be performed by a wire bond connection within the routable area.
  • the wire exceeds the range of the upper opening of the micro-reflector and is electrically connected below the micro-reflector wall, the wire may block light from the adjacent LED chip 246. It is preferable to carry out within the range of the upper opening of the micro reflector.
  • the LED chip 246 and the wiring layer 243 are preferably connected within the range of the upper opening of the micro reflector 251 in which the LED chip 246 is disposed, and the bottom of the micro reflector 251 in which the LED chip 246 is disposed. It is more preferable that the connection is made within the range of the opening. In the example of FIG. 23, the range of the two vertical lines B-B ′ is within the range of the bottom opening of the micro reflector 251.
  • the reflector block 250 is attached after forming the translucent resin layer 247, the manufacture becomes easy. Further, since the routable area is wide, the micro reflector 251 can be miniaturized and densified, and the reflector block 250 can be miniaturized.
  • the LED light source device 321 of the eighth embodiment is different from the LED light source device 121 of the sixth embodiment in that the LED chip 346 is flip-chip bonded to the wiring layer 343. Below, it demonstrates centering around difference and omits description about a common structure. The configuration of the LED light source device 321 will be described in detail with reference to FIG. FIG. 26 is a schematic diagram for explaining the structure, and does not accurately show the arrangement of the LED chips 346 in the present embodiment.
  • the LED chip 346 and the wiring layer 343 are flip-chip bonded, for example, with bumps 349 mainly composed of gold or silver, or are connected using an anisotropic conductive film (common name: ACF). Thereby, since an area for wire bonding is not required, the LED chips 346 can be mounted with high density.
  • the flip chip bonding is performed by, for example, forming bumps 349 on the LED chip 346 by plating or the like, mounting the wiring layer 343, and then thermocompression bonding the LED chip 346 from the back surface 346B side.
  • an underfill material such as an epoxy material may be used around the bump 349 in order to reinforce the bump 349 used for flip chip bonding.
  • the ACF itself plays the role of an underfill material, so that underfill is unnecessary.
  • the micro reflector 351 can be downsized and densified, and the reflector block 350 can be downsized. It becomes possible.
  • the LED light source device of the ninth embodiment relates to an LED light source device that emits ultraviolet light for UV curing type ink curing and UV sterilization.
  • the LED light source device of the ninth embodiment is configured by arranging a plurality of COBs in a row.
  • an LED chip, a reflector block, or the like is mounted on the mounting substrate 441 shown in FIG. 27 to form one unit light source 421, and 10 unit light sources are mounted on the module substrate 460 as shown in FIG. 421a to j are arranged side by side.
  • the LED chips and reflector blocks mounted on the ten unit light sources 421a to 421j are omitted, and only the mounting substrate and the module substrate 460 are shown.
  • the unit light source 421 used in the LED light source device of the ninth embodiment has the same configuration as the LED light source device 121 of the sixth embodiment except for the white inorganic pigment and the transparent resin layer used for the LED chip and the inorganic white insulating layer. I am doing. Below, it demonstrates centering around difference and omits description about a common structure.
  • the configuration of the unit light source 421 of the ninth embodiment will be described in detail.
  • the configuration of the unit light source 421 is the same as that shown in FIG. 26, and includes a mounting substrate 441, an inorganic white insulating layer applied to the upper surface of the mounting substrate 441, a wiring layer applied and formed on the upper surface of the inorganic white insulating layer, An inorganic white insulating layer formed on the wiring layer, an LED chip, and a reflector block are provided.
  • an adhesive frame for sealing a dam material or quartz glass is not shown, a white inorganic pigment of alumina used as a reflective material may be used as these materials.
  • the transparent resin layer may not be provided.
  • the entire module is collectively covered with quartz glass or the like.
  • the size of the unit light source is 50 ⁇ 30 mm, and the size when ten long sides of the unit light sources 421a to 421j are arranged adjacent to each other on the module substrate 460 is 50 ⁇ 300 mm.
  • the mounting substrate 441 is the same as the mounting substrate 141 of the sixth embodiment.
  • the composition of the inorganic white insulating layer is the same as that of the first embodiment except for the white inorganic pigment, but alumina is used as the white inorganic pigment because of its high reflectance with respect to ultraviolet rays.
  • the wiring layer includes a first wiring layer formed on the mounting substrate side and a second wiring layer formed on the first wiring layer.
  • the inorganic white insulating layer on the wiring layer is applied to a region excluding the power supply electrode 4431 and the wiring exposed portions 4432 and 4433 shown in FIG. 27.
  • the wiring layer insulation and the LED chip It functions as a reflective layer that reflects light emission.
  • the power electrode 4431 is connected to an external power supply device and supplies power to the unit light source.
  • An LED chip is mounted on the wiring exposed portion 4432.
  • the LED chip and the wiring layer can be electrically connected by providing an electrode on the back surface (wiring layer side) of the LED chip and performing flip chip bonding.
  • the wiring opening 4433 is a portion where the wiring layer is wire-bonded to the LED chip.
  • the LED chip is a type of LED bare chip that uses wire bonding and backside wiring, as in the sixth embodiment, and is, for example, a gallium nitride-based LED chip that has a light emission wavelength in the UV region.
  • a UV-A region is disclosed for UV-curable ink curing
  • a UV-C region is disclosed for UV sterilization.
  • specific wavelengths for example, a wavelength of 365 nm for UV curable ink curing and a wavelength of 260 nm for UV sterilization are disclosed.
  • the output angle of the LED chip is, for example, an orientation of 150 ° Lambertian.
  • 100 LED chips are mounted on one unit light source 421. 100 LED chips are mounted in a 10 ⁇ 10 staggered arrangement at a pitch of 3.8 mm in length and 3 mm in width at the position of the wiring opening 4432 shown in FIG.
  • the size of the LED chip is 1.05 ⁇ 1.05 ⁇ 0.11 mm.
  • the pitch is preferably 5 mm in length and 5 mm in width or less, more preferably 4.25 mm in length and 3.7 mm in width or less in order to achieve a desired ultraviolet intensity. From the viewpoint of ultraviolet intensity, the narrower the pitch, the better.
  • the optimum pitch is finally determined in a range satisfying the vertical and horizontal pitches of 5 mm or less in terms of the trade-off with the ease of manufacturing the reflector block. Since the LED light source device of the ninth embodiment is composed of 10 unit light sources 421a to 421j, the total number of LED chips used is 1000.
  • the reflector block has the same configuration as the reflector block 150 of the sixth embodiment, and the arrangement of the micro reflectors is an extension of the 5 ⁇ 5 zigzag arrangement in FIG. 24A to a 10 ⁇ 10 zigzag arrangement. It has become.
  • the size of the micro reflector the top opening is ⁇ 3.9 mm, the bottom opening is ⁇ 1.5 mm, and the height is 3.7 mm.
  • the translucent resin layer is not normally provided on the reflector block, but when encapsulating with the translucent resin layer, a phosphor suitable for the wavelength in the UV region is appropriately selected.
  • a simulation was performed to determine the ultraviolet light distribution on the light receiving surface in the presence or absence of the reflector block.
  • the number of rays to be analyzed was 100,000 per LED chip (100 million in total), and the size of the light receiving surface was 250 ⁇ 500 mm.
  • the LED light source device as ultraviolet irradiation to maintain the ultraviolet intensity even when the distance from the light receiving surface is long, for the following reasons.
  • (1) When a printing paper that is a target for curing UV curable ink is large, it is likely to bend, and it is necessary to irradiate the light receiving surface apart.
  • (2) As a UV sterilization application, it is necessary to irradiate the light receiving surface away from the object in order to provide versatility. Therefore, a simulation was carried out under the condition that the distance of the light receiving surface was changed between 40 mm and 85 mm, and the ultraviolet intensity was verified.
  • FIG. 29 shows the result of the simulation of the ultraviolet intensity distribution when the distance of the light receiving surface is (a) 40 mm, (b) 60 mm, and (c) 85 mm.
  • the middle row shows the result of the model (in the table, described as “no reflector”) obtained by removing the reflector block from the LED light source device of the ninth embodiment.
  • Column shows the result of the model of the LED light source device of the ninth embodiment (described as “with reflector” in the table).
  • the items of the results are the UV intensity distribution on the light receiving surface (in the table, described as “surface distribution”), the UV intensity plot along the center line of the light receiving surface (in the table, indicated as “cross section”), the entire light receiving surface Illuminance (denoted as “illuminance” in the table).
  • the ultraviolet light is concentrated at the center of the light receiving surface and the ultraviolet light distribution is narrower and the peak than when there is no reflector block. It can be seen that is doubled.
  • the tendency that the ultraviolet rays are concentrated at the center of the light receiving surface and the distribution of the ultraviolet rays is narrower in the cases (b) and (c) than in the case without the reflector block.
  • the ratio of the peak when there is a reflector block to when there is no reflector block was about 2.2 times for (b) and about 2.5 times for (c).
  • the ultraviolet intensity can be maintained even if the distance between the light source and the light receiving surface is large, and UV curing or UV used away from the light source is used. It can be said that it is suitable for sterilization applications.
  • the LED light source device of the present invention is suitable for infrared illumination (for example, for infrared cameras), UV printing / UV curing / UV exposure light sources, and headlamps that want to use output effectively far. Especially effective in applications such as infrared illumination and UV curing (effect work such as ultraviolet curable sheets) that want to give more output to a distant object (see the ninth embodiment for these module configurations) ). Furthermore, when this module is applied with infrared illumination, it is possible to achieve high output and miniaturization (handy), which could not be realized until now. Can also be used for in-vehicle mounting.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Computer Hardware Design (AREA)
  • Epidemiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Veterinary Medicine (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Projection Apparatus (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

[Problem] To provide an LED light source device having a flux distribution angle of 30° or less and having exceptional luminous flux distribution and directionality, and to provide a desktop projector provided with said LED light source device. [Solution] Provided is an LED light source device provided with: a mounting substrate of which at least the surface is metal; a first insulation layer formed on the surface of the mounting substrate; a wiring layer formed as the upper layer of the first insulation layer; and a plurality of LED chips having identical specifications, the LED chips being surface-mounted in a matrix on the mounting substrate, wherein the LED light source is characterized in: being provided with a reflector block that has microreflectors in a quantity identical to that of the LED chips; the microreflectors having bottom openings and upper openings that are larger in diameter than the bottom openings; and the wiring layer being configured from a first electroconductive layer formed by applying a metal paste that contains a penetration-curing resin and a metal powder to the insulation layer and heating the paste, and a second electroconductive layer formed on the upper surface of the first electroconductive layer and endowed with a lower resistance than that of the first electroconductive layer. Also provided is a projector provided with said LED light source device.

Description

LED光源装置およびプロジェクターLED light source device and projector
 本発明は、LED光源装置およびプロジェクターに関し、例えば、光束分布および指向性に優れ、3個の光源からの全光束値が2000ルーメン(lm)以上(好ましくは3000lm以上)であるプロジェクター用LED光源装置および同光源装置を備えるプロジェクターに関する。 The present invention relates to an LED light source device and a projector, and for example, has excellent luminous flux distribution and directivity, and the total luminous flux value from three light sources is 2000 lumens (lm) or more (preferably 3000 lm or more). And a projector including the light source device.
 近年、発光部をLED(Light Emitting Diode:発光ダイオード)に代替した照明器具が多数提案されており、プロジェクターにおいても超高圧水銀ランプに代わるLED光源が提案されている。
 例えば、特許文献1では、図20に示す光学構成のプロジェクターが提案されている。符号10Rは赤色光用のLEDであり、符号10Gは緑色光用のLEDであり、符号10Bは青色光用のLEDであり、各LEDからの光はコリメーターレンズ12により平行化された後、各液晶ライトバルブ100に入射し、変調され、ダイクロイックプリズム14に入射する。ダイクロイックプリズム14で合成された光は、ズームリング17を有する投射レンズ16からスクリーンに投射される。
In recent years, many lighting fixtures have been proposed in which the light emitting part is replaced with an LED (Light Emitting Diode), and an LED light source that replaces an ultra-high pressure mercury lamp has also been proposed in a projector.
For example, Patent Document 1 proposes a projector having an optical configuration shown in FIG. Reference numeral 10R is an LED for red light, reference numeral 10G is an LED for green light, reference numeral 10B is an LED for blue light, and the light from each LED is collimated by the collimator lens 12, The light enters each liquid crystal light valve 100, is modulated, and enters the dichroic prism 14. The light synthesized by the dichroic prism 14 is projected onto a screen from a projection lens 16 having a zoom ring 17.
 しかしながら、単一のLEDからの発光によっては、水銀ランプ同等の明るいプロジェクターを提供することはできない。そこで、特許文献2では、対向する入光端面と出光端面との面積が被照射体における表示領域の面積よりも相対的に大きい面積を有する導光体と、前記導光体の前記入光端面側に配置され該入光端面の面積と略等しい発光面積を有する光源と、を備え、前記導光体の前記出光端面には、前記被照射体の前記表示領域の面積と略等しい面積の第1の開口が形成されているとともに、前記第1の開口以外の領域に出光側反射部材が設けられ、前記導光体の入光側には、前記光源からの光軸方向において前記出光側反射部材と対向する入光側反射部材が設けられている照明装置が提案されている。 However, a bright projector equivalent to a mercury lamp cannot be provided by light emission from a single LED. Therefore, in Patent Document 2, a light guide body in which the areas of the light incident end face and the light exit end face facing each other are relatively larger than the area of the display region in the irradiated body, and the light incident end face of the light guide body. And a light source having a light emitting area substantially equal to the area of the light incident end face, and the light exit end face of the light guide has a first area having an area substantially equal to the area of the display region of the irradiated object. 1 is formed, and a light output side reflecting member is provided in a region other than the first opening, and the light output side reflection is provided on the light incident side of the light guide in the optical axis direction from the light source. There has been proposed an illuminating device in which a light incident side reflecting member facing the member is provided.
 しかしながら、特許文献2の光学構造では、プロジェクター本体の大きさが巨大にならざるを得ない。他方でLED素子の集積度を高めると、放熱性の悪くなる発光中心部の光量が特に低下するドーナツ化現象が生じるという課題がある。そこで、出願人等は、特許文献3において、少なくとも表面が金属である基板の表面に平均粒径が数nm~数百nmであるSiO粒子及び白色無機顔料を含む液材を塗布し、焼成することにより、白色絶縁層と金属層の積層構造を形成することにより、ドーナツ化現象を解決することができる半導体装置を提案した。 However, in the optical structure of Patent Document 2, the size of the projector body must be huge. On the other hand, when the degree of integration of the LED elements is increased, there is a problem that a doughening phenomenon occurs in which the amount of light at the light emission center portion, in which heat dissipation becomes worse, is particularly reduced. Therefore, the applicants in Patent Document 3 apply a liquid material containing SiO 2 particles having an average particle diameter of several nanometers to several hundred nanometers and a white inorganic pigment at least on the surface of a substrate whose surface is a metal, and firing. Thus, a semiconductor device that can solve the doughening phenomenon by forming a laminated structure of a white insulating layer and a metal layer has been proposed.
特開2012-155049号公報JP 2012-155049 A 特開2014-187026号公報JP 2014-187026 A 特許第5456209号公報Japanese Patent No. 5456209
 本発明は、配光角が30度以下(好ましくは26度以下、より好ましくは20度以下)であり、光束分布および指向性に優れたLED光源装置および同光源装置を備える卓上型のプロジェクターを提供することを目的とする。また、本発明は、全光束値が2000ルーメン(lm)以上のLED光源装置および同光源装置を備える卓上型のプロジェクターを提供することを目的とする。 The present invention provides an LED light source device having a light distribution angle of 30 degrees or less (preferably 26 degrees or less, more preferably 20 degrees or less) and excellent in luminous flux distribution and directivity, and a desktop projector including the light source device. The purpose is to provide. Another object of the present invention is to provide an LED light source device having a total luminous flux value of 2000 lumens (lm) or more and a desktop projector including the light source device.
 第1の発明は、少なくとも表面が金属である実装基板と、前記実装基板の表面に形成された第一の絶縁層と、前記第一の絶縁層の上層として形成された配線層と、実装基板上にマトリックス状に表面実装された、同一仕様である多数個のLEDチップと、を備えたLED光源装置において、前記LEDチップと同数のマイクロリフレクターを有するリフレクターブロックを備え、前記マイクロリフレクターが、底部開口と底部開口よりも大径の上部開口とを有し、前記配線層が、前記絶縁層に染み込み硬化する樹脂および金属粉末を含有する金属ペーストを塗布し、加熱して形成される第一の導電層と、第一の導電層の上面に形成される第一の導電層よりも低抵抗の第二の導電層とを備えて構成されることを特徴とするLED光源装置である。
 第2の発明は、第1の発明において、前記配線層の上層として反射層として機能する第二の絶縁層が、前記配線層を露出させる露出部を残すように形成されていることを特徴とする。
 第3の発明は、第2の発明において、前記第一の絶縁層が、ナノ粒子化されたSiO及び白色無機顔料を含む液材を塗布し、160~250℃で加熱してなる多孔質の無機系白色絶縁層により構成されることを特徴とする。
 第4の発明は、第3の発明において、前記第二の絶縁層が、ナノ粒子化されたSiO及び白色無機顔料を含む液材を塗布し、160~250℃で加熱してなる多孔質の無機系白色絶縁層により構成されることを特徴とする。
 第5の発明は、第2ないし4のいずれかの発明において、前記マイクロリフレクターの上部開口が、底部開口に対し70~85°で拡径されており、底部開口と上部開口との距離が4~8mmであることを特徴とする。
 第6の発明は、第5の発明において、前記マイクロリフレクターが千鳥配置されており、各マイクロリフレクターの中心間の間隔が前記上部開口の直径よりも小さいこと、かつ、前記上部開口が相互に重なり合わないことを特徴とする。
 第7の発明は、第6の発明において、前記LEDチップが、当該LEDチップが配置される前記マイクロリフレクターのピッチ上部開口の範囲内で前記開口部を介して前記配線層と結線されることを特徴とする。
 第8の発明は、第2ないし7のいずれかの発明において、配光角度が30度以下であり、全光束値が500ルーメン以上であり、かつ、プロジェクター用であることを特徴とする。
According to a first aspect of the present invention, there is provided a mounting substrate having at least a metal surface, a first insulating layer formed on the surface of the mounting substrate, a wiring layer formed as an upper layer of the first insulating layer, and a mounting substrate An LED light source device comprising a plurality of LED chips of the same specification, which are surface-mounted on a matrix, and having a reflector block having the same number of micro-reflectors as the LED chips, the micro-reflector having a bottom portion A first opening formed by applying and heating a metal paste containing a resin and metal powder that penetrates and hardens into the insulating layer, and has an opening and an upper opening having a diameter larger than that of the bottom opening; An LED light source device comprising: a conductive layer; and a second conductive layer having a lower resistance than the first conductive layer formed on the upper surface of the first conductive layer.
A second invention is characterized in that, in the first invention, the second insulating layer functioning as a reflective layer as an upper layer of the wiring layer is formed so as to leave an exposed portion exposing the wiring layer. To do.
According to a third invention, in the second invention, the first insulating layer is a porous material obtained by applying a liquid material containing nanoparticulated SiO 2 and a white inorganic pigment and heating at 160 to 250 ° C. It is characterized by comprising an inorganic white insulating layer.
According to a fourth invention, in the third invention, the second insulating layer is a porous material obtained by applying a liquid material containing nanoparticulated SiO 2 and a white inorganic pigment and heating at 160 to 250 ° C. It is characterized by comprising an inorganic white insulating layer.
According to a fifth invention, in any one of the second to fourth inventions, the upper opening of the micro-reflector is enlarged in diameter by 70 to 85 ° with respect to the bottom opening, and the distance between the bottom opening and the upper opening is 4 It is ˜8 mm.
According to a sixth invention, in the fifth invention, the micro reflectors are arranged in a staggered manner, the distance between the centers of the micro reflectors is smaller than the diameter of the upper opening, and the upper openings overlap each other. It does not fit.
According to a seventh aspect, in the sixth aspect, the LED chip is connected to the wiring layer through the opening within the range of the pitch upper opening of the micro reflector where the LED chip is disposed. Features.
An eighth invention is characterized in that, in any one of the second to seventh inventions, the light distribution angle is 30 degrees or less, the total luminous flux value is 500 lumens or more, and the projector is used.
 第9の発明は、第8の発明において、前記LEDチップの上面視形状が実質正方形であり、最大定格電流300mA以上であることを特徴とする。
 第10の発明は、第9の発明において、前記リフレクターブロックが一体成形された樹脂材料により構成され、前記マイクロリフレクターの内周面に、金属材料からなる反射層が形成されていることを特徴とする。
 第11の発明は、第9の発明において、前記リフレクターブロックの心材に金属、外周部に樹脂が一体成形され、前記マイクロリフレクターの内周面に、金属材料からなる反射層が形成されていることを特徴とする。
 第12の発明は、第8ないし11のいずれかの発明において、前記マイクロリフレクターが、上部開口と、前記LEDチップが近傍に配置される底部開口と、反射面とを備え、前記反射面が、底部開口側に位置し、前記LEDチップからの照射光を中心軸側に集光するよう作用する第一の内周面と、第一の内周面よりも上部開口側に位置し且つ中心軸に対する角度が狭い第二の内周面と、第二の内周面よりも上部開口側に位置し且つ中心軸に対する角度が狭い第三の内周面とを備えて構成されることを特徴とする。
 第13の発明は、第12の発明において、前記各内周面の断面形状が、直線状であることを特徴とする。
 第14の発明は、赤色光用LED光源装置と、前記赤色光用LED光源装置から射出される光を変調する赤色光用透過型液晶パネルと、緑色光用LED光源装置と、前記緑色光用LED光源装置から射出される光を変調する緑色光用透過型液晶パネルと、青色光用LED光源装置と、前記赤色光用LED光源装置から射出される光を変調する赤色光用透過型液晶パネルと、赤色光、緑色光および青色光を合成するダイクロイックプリズムと、ダイクロイックプリズムからの合成光を投写する投写光学系と、を備えたプロジェクターにおいて、前記赤色光用LED光源装置、前記緑色光用LED光源装置および前記青色光用LED光源装置が、第2ないし13のいずれかの発明のLED光源装置により構成されることを特徴とするプロジェクターである。
 第15の発明は、第12の発明において、前記赤色光用LED光源装置、前記緑色光用LED光源装置および前記青色光用LED光源装置の全光束値が、2000ルーメン以上であることを特徴とする。
 第16の発明は、第14または15の発明において、前記マイクロリフレクターが構成する照射面が、前記各液晶パネルと比べ一回り大きく構成されていることを特徴とする。
 第17の発明は、第1ないし7発明において、前記多数個のLEDチップが、紫外光を発光することを特徴とする。
 第18の発明は、第17の発明にかかるLED光源装置を複数個連設してなる光源を有するUVインク硬化用装置。
 第19の発明は、第17の発明にかかるLED光源装置を複数個連設してなる光源を有するUV殺菌用装置。
 第20の発明は、第1ないし7の発明において、前記多数個のLEDチップが、赤外光を発光することを特徴とする。
 第21の発明は、第1ないし13の発明のLED光源装置に用いられるリフレクターブロックである。
A ninth invention is characterized in that, in the eighth invention, the LED chip has a substantially square shape in a top view and a maximum rated current of 300 mA or more.
A tenth aspect of the invention is characterized in that, in the ninth aspect of the invention, the reflector block is made of an integrally molded resin material, and a reflective layer made of a metal material is formed on the inner peripheral surface of the micro reflector. To do.
According to an eleventh aspect, in the ninth aspect, a metal is integrally formed on a core material of the reflector block, a resin is integrally formed on an outer peripheral portion, and a reflective layer made of a metal material is formed on an inner peripheral surface of the micro reflector. It is characterized by.
In a twelfth aspect of the invention according to any one of the eighth to eleventh aspects, the micro-reflector includes an upper opening, a bottom opening in which the LED chip is disposed in the vicinity, and a reflecting surface, and the reflecting surface includes: A first inner peripheral surface that is located on the bottom opening side and acts to collect the irradiation light from the LED chip toward the central axis, and a central axis that is located on the upper opening side than the first inner peripheral surface A second inner peripheral surface having a narrow angle with respect to the second inner peripheral surface, and a third inner peripheral surface located on the upper opening side of the second inner peripheral surface and having a narrow angle with respect to the central axis, To do.
In a thirteenth aspect based on the twelfth aspect, the cross-sectional shape of each inner peripheral surface is linear.
A fourteenth aspect of the invention is a red light LED light source device, a red light transmissive liquid crystal panel that modulates light emitted from the red light LED light source device, a green light LED light source device, and the green light light source device. A transmissive liquid crystal panel for green light that modulates light emitted from the LED light source device, an LED light source device for blue light, and a transmissive liquid crystal panel for red light that modulates light emitted from the LED light source device for red light A dichroic prism that combines red light, green light, and blue light, and a projection optical system that projects combined light from the dichroic prism, the red light LED light source device and the green light LED A light source device and the LED light source device for blue light are constituted by the LED light source device according to any one of the second to thirteenth inventions. It is.
According to a fifteenth aspect, in the twelfth aspect, the total light flux value of the red light LED light source device, the green light LED light source device, and the blue light LED light source device is 2000 lumens or more. To do.
A sixteenth aspect of the invention is characterized in that, in the fourteenth or fifteenth aspect of the invention, an irradiation surface formed by the micro reflector is configured to be slightly larger than each of the liquid crystal panels.
A seventeenth invention is characterized in that, in the first to seventh inventions, the plurality of LED chips emit ultraviolet light.
An eighteenth aspect of the invention is a UV ink curing device having a light source formed by connecting a plurality of LED light source devices according to the seventeenth aspect of the invention.
A nineteenth aspect of the invention is a UV sterilization apparatus having a light source formed by connecting a plurality of LED light source devices according to the seventeenth aspect of the invention.
A twentieth invention is characterized in that, in the first to seventh inventions, the plurality of LED chips emit infrared light.
A twenty-first invention is a reflector block used in the LED light source device of the first to thirteenth inventions.
 本発明によれば、配光角が30度以下であり、光束分布および指向性に優れた、全光束値が2000ルーメン(lm)以上のLED光源装置および同光源装置を備える卓上型のプロジェクターを提供することが可能となる。 According to the present invention, an LED light source device having a light distribution angle of 30 degrees or less, excellent light flux distribution and directivity, and having a total light flux value of 2000 lumens (lm) or more, and a desktop projector including the light source device. It becomes possible to provide.
第一実施形態に係るプロジェクターの構成図である。It is a block diagram of the projector which concerns on 1st embodiment. 第一実施形態に係るLED光源装置の構成側面図である。It is a composition side view of the LED light source device concerning a first embodiment. (a)第一実施形態に係るリフレクターブロックの平面図と、(b)マイクロリフレクターの模式図である。(A) The top view of the reflector block which concerns on 1st embodiment, (b) The schematic diagram of a micro reflector. マイクロリフレクターと液晶ライトバルブの大小関係を示す模式図である。It is a schematic diagram which shows the magnitude relationship of a micro reflector and a liquid crystal light valve. リフレクターブロックの変形例の平面図と側面図である。It is the top view and side view of a modification of a reflector block. 図5のリフレクターブロックを備えるLED光源装置の斜視図である。It is a perspective view of an LED light source device provided with the reflector block of FIG. 第一実施形態に係るリフレクターブロックの配光角のシミュレーション結果である。(a)はリフレクター無し、(b)はリフレクター有り(レンズ無し)、(b)はリフレクター有り(レンズ有り)の場合を示している。(a1)は(a)の要部拡大図、(b1)は(b)の要部拡大図である。It is a simulation result of the light distribution angle of the reflector block which concerns on 1st embodiment. (A) shows a case without a reflector, (b) shows a case with a reflector (without a lens), and (b) shows a case with a reflector (with a lens). (A1) is the principal part enlarged view of (a), (b1) is the principal part enlarged view of (b). 第二実施形態に係るマイクロリフレクターの形状を示す側面模式図である。It is a side surface schematic diagram which shows the shape of the micro reflector which concerns on 2nd embodiment. 第二実施形態に係るマイクロリフレクターの光学特性を説明するための側面模式図である。It is a side surface schematic diagram for demonstrating the optical characteristic of the micro reflector which concerns on 2nd embodiment. (a)第二実施形態に係るリフレクターブロックの平面図と、(b)第三実施形態に係るLED光源装置の平面図である。(A) The top view of the reflector block which concerns on 2nd embodiment, (b) The top view of the LED light source device which concerns on 3rd embodiment. 第四実施形態に係るマイクロリフレクターの形状を示す側面模式図であり、(a)はマイクロリフレクター91a、(b)はマイクロリフレクター91b、(c)はマイクロリフレクター91cである。It is a side surface schematic diagram which shows the shape of the micro reflector which concerns on 4th embodiment, (a) is the micro reflector 91a, (b) is the micro reflector 91b, (c) is the micro reflector 91c. 第四実施形態に係るマイクロリフレクター91aの内周面形状を説明するための側面図である。It is a side view for demonstrating the internal peripheral surface shape of the micro reflector 91a which concerns on 4th embodiment. (a1)は第四実施形態に係るマイクロリフレクター91aの形状を示す側面模式図、(b1)は比較例1に係るマイクロリフレクター92の形状を示す側面模式図、(a2)は第四実施形態(マイクロリフレクター91a)に係るLED光源装置の指向性のシミュレーション結果であり、(b2)は比較例1に係るLED光源装置の指向性のシミュレーション結果である。(A1) is a schematic side view showing the shape of the microreflector 91a according to the fourth embodiment, (b1) is a schematic side view showing the shape of the microreflector 92 according to Comparative Example 1, and (a2) is the fourth embodiment ( It is the directivity simulation result of the LED light source device which concerns on the micro reflector 91a), (b2) is the directivity simulation result of the LED light source device which concerns on the comparative example 1. FIG. 第五実施形態に係るLED光源装置の平面図である。It is a top view of the LED light source device which concerns on 5th embodiment. 第五実施形態に係るマイクロリフレクターの形状を示す側面模式図である。It is a side surface schematic diagram which shows the shape of the micro reflector which concerns on 5th embodiment. 公知のLED光源装置である比較例2の構成側面図である。It is a structure side view of the comparative example 2 which is a well-known LED light source device. LED光源装置の配光角のシミュレーション結果であり、(a)は第五実施形態に係るLED光源装置、(b)は比較例2に係るLED光源装置、(c)は比較例3に係るLED光源装置の結果を示している。It is a simulation result of the light distribution angle of a LED light source device, (a) is the LED light source device which concerns on 5th embodiment, (b) is the LED light source device which concerns on the comparative example 2, (c) is LED which concerns on the comparative example 3. The result of a light source device is shown. LED光源装置の光束量および光束分布のシミュレーション結果であり、(a)は第五実施形態に係るLED光源装置、(b)は比較例2に係るLED光源装置、(c)は第四実施形態(マイクロリフレクター91b)に係るLED光源装置の結果を示している。It is a simulation result of the luminous flux amount and luminous flux distribution of an LED light source device, (a) is the LED light source device which concerns on 5th embodiment, (b) is the LED light source device which concerns on the comparative example 2, (c) is 4th embodiment. The result of the LED light source device which concerns on (micro reflector 91b) is shown. LED光源装置の指向性のシミュレーション結果であり、(a)は第五実施形態に係るLED光源装置、(b)は比較例2に係るLED光源装置、(c)は第四実施形態(マイクロリフレクター91b)に係るLED光源装置の結果を示している。It is a simulation result of the directivity of the LED light source device, (a) is the LED light source device according to the fifth embodiment, (b) is the LED light source device according to comparative example 2, and (c) is the fourth embodiment (micro reflector). The result of the LED light source device concerning 91b) is shown. 従来のプロジェクターの構成図である。It is a block diagram of the conventional projector. 第六実施形態に係るLED光源装置の構成側面図である。It is a structure side view of the LED light source device which concerns on 6th embodiment. 配線層の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of a wiring layer. 第七実施形態に係るLED光源装置の構成側面図である。It is a structure side view of the LED light source device which concerns on 7th embodiment. マイクロリフレクターが5×5個の千鳥状に配置されたリフレクターブロックにおける、(a)平面図、(b)マイクロリフレクターの範囲を示している。(A) Top view and (b) Range of micro reflector in reflector block in which micro reflectors are arranged in a 5 × 5 staggered pattern. マイクロリフレクターが7×6個の千鳥状に配置されたリフレクターブロックにおける、(a)平面図、(b)マイクロリフレクターの範囲を示している。(A) Top view and (b) Range of micro reflector in reflector block in which micro reflectors are arranged in a 7 × 6 zigzag pattern. 第八実施形態に係るLED光源装置の構成側面図である。It is a structure side view of the LED light source device which concerns on 8th embodiment. 第九実施形態に係る実装基板の平面図である。It is a top view of the mounting board concerning a 9th embodiment. 第九実施形態に係るモジュール基板の平面図である。It is a top view of the module board concerning a ninth embodiment. 第七実施形態に係るLED光源装置の紫外線分布のシミュレーション結果であり、(a)は受光面の距離が40mm、(b)は受光面の距離が60mm、(c)は受光面の距離が85mmにおける結果を示している。It is a simulation result of the ultraviolet light distribution of the LED light source device which concerns on 7th embodiment, (a) is the distance of a light-receiving surface 40mm, (b) is the distance of a light-receiving surface 60mm, (c) is the distance of a light-receiving surface 85mm. Results are shown.
 以下、例示に基づき本発明を説明する。
《第一実施形態》
<構成>
 図1は、第一実施形態に係るプロジェクター1の構成図である。
 本実施形態のLED光源装置は、3つのLED光源装置21と、3つのコリメーターレンズ22と、3つの液晶ライトバルブ23と、ダイクロイックプリズム31と、投写光学系32とを備えて構成される。
Hereinafter, the present invention will be described based on examples.
<< first embodiment >>
<Configuration>
FIG. 1 is a configuration diagram of a projector 1 according to the first embodiment.
The LED light source device of the present embodiment includes three LED light source devices 21, three collimator lenses 22, three liquid crystal light valves 23, a dichroic prism 31, and a projection optical system 32.
 LED光源装置21、コリメーターレンズ22および液晶ライトバルブ23は、R(赤色)、G(緑色)、B(青色)の光をダイクロイックプリズム31へ出射するためのものである。
 LED光源装置21Rからの赤色光(R光)は、コリメーターレンズ22Rで平行化され、液晶ライトバルブ23Rで光変調される。液晶ライトバルブ23Rは、マトリクス状に配置された透過型の液晶パネル(HTPS液晶パネル)であって、R光を映像信号に応じて画素毎に変調する公知の光変調器である。LED光源装置21Gからの緑色光(G光)およびLED光源装置21Bからの青色光(B光)も同様であり、コリメーターレンズ22G,22Bで平行化され、公知の液晶ライトバルブ23G,23Bで光変調される。
The LED light source device 21, the collimator lens 22, and the liquid crystal light valve 23 are for emitting R (red), G (green), and B (blue) light to the dichroic prism 31.
Red light (R light) from the LED light source device 21R is collimated by the collimator lens 22R and light-modulated by the liquid crystal light valve 23R. The liquid crystal light valve 23R is a transmissive liquid crystal panel (HTPS liquid crystal panel) arranged in a matrix, and is a known light modulator that modulates R light for each pixel in accordance with a video signal. The same applies to the green light (G light) from the LED light source device 21G and the blue light (B light) from the LED light source device 21B, which are collimated by the collimator lenses 22G and 22B, and are made known by the known liquid crystal light valves 23G and 23B. Light modulated.
 ダイクロイックプリズム31は、互いに直交するように配置された2つのダイクロイック膜を有して、一方のダイクロイック膜14はR光を反射するが、R光以外のG光およびB光を透過し、他方のダイクロイック膜14はB光を反射するが、B光以外のR光およびG光を透過させる。投射光学系32は、ダイクロイックプリズム31で合成された光が入射する複数の投写レンズと、複数の投写レンズを収容する投写レンズ筐体とを備え、投射光Lを出射してカラー画像をスクリーンに拡大投写する。 The dichroic prism 31 has two dichroic films arranged so as to be orthogonal to each other, and one dichroic film 14 reflects R light, but transmits G light and B light other than R light, The dichroic film 14 reflects B light, but transmits R light and G light other than B light. The projection optical system 32 includes a plurality of projection lenses on which the light synthesized by the dichroic prism 31 is incident and a projection lens housing that accommodates the plurality of projection lenses. The projection optical system 32 emits the projection light L and displays a color image on the screen. Enlarge and project.
 図2を参照しながら、LED光源装置21の構成を詳細に説明する。なお、図2は構造を説明するための模式図であり、本実施形態におけるLEDチップ46の配置を正確に示したものではない。
 LED光源装置21は、実装基板41と、実装基板41の上面に塗布された無機系白色絶縁層42と、無機系白色絶縁層42の上面に塗布形成された配線層43と、絶縁層44と、載置部45と、LEDチップ46と、透光性樹脂層47と、リフレクターブロック50とを備えている。
The configuration of the LED light source device 21 will be described in detail with reference to FIG. FIG. 2 is a schematic diagram for explaining the structure, and does not accurately show the arrangement of the LED chips 46 in the present embodiment.
The LED light source device 21 includes a mounting substrate 41, an inorganic white insulating layer 42 applied on the upper surface of the mounting substrate 41, a wiring layer 43 applied and formed on the upper surface of the inorganic white insulating layer 42, an insulating layer 44, The mounting part 45, the LED chip 46, the translucent resin layer 47, and the reflector block 50 are provided.
 実装基板41は、熱伝導性および電気特性に優れる表面が金属からなる板材であり、例えば表面が銅からなる水冷構造のヒートスプレッダ(上板、中板、下板の3種類の銅板からなる積層構造体)や銅板(例えば、0.5~1.00mm厚)により構成される。ガラスエポキシ樹脂のような熱伝導性が低い材料は、特に放熱性の悪くなる発光中心部の光量が特に低下するドーナツ化現象が生じることとなるので採用できない。 The mounting substrate 41 is a plate material made of a metal having a surface excellent in thermal conductivity and electrical characteristics. For example, a heat-spreader having a water-cooled structure having a surface made of copper (a laminated structure made of three types of copper plates, an upper plate, a middle plate, and a lower plate) Body) and a copper plate (for example, 0.5 to 1.00 mm thick). A material having a low thermal conductivity such as a glass epoxy resin cannot be employed because a doughening phenomenon in which the amount of light at the light emission center portion, in particular, the heat dissipation becomes poor, occurs.
 実装基板41の表面には、反射材としての役割をも奏する無機系白色絶縁層42が設けられている。無機系白色絶縁層42は、可視光の波長域で平均反射率が70%以上であることが好ましく、80%以上であることがより好ましい。無機系白色絶縁層42は、白色無機粉末(白色無機顔料)と二酸化珪素(SiO)を主要な成分とし、有機リン酸を含むジエチレングリコールモノブチルエーテルの溶剤でこれらを混ぜたインク(以下、「白色無機インク」という場合がある)を塗布、焼成(例えば、160~250℃で加熱)して形成される。 On the surface of the mounting substrate 41, an inorganic white insulating layer 42 that also serves as a reflective material is provided. The inorganic white insulating layer 42 preferably has an average reflectance of 70% or more and more preferably 80% or more in the visible light wavelength region. The inorganic white insulating layer 42 is an ink in which white inorganic powder (white inorganic pigment) and silicon dioxide (SiO 2 ) are main components and these are mixed with a solvent of diethylene glycol monobutyl ether containing organic phosphoric acid (hereinafter referred to as “white”). It may be formed by applying and firing (for example, heating at 160 to 250 ° C.).
 無機系白色絶縁層42の厚さは、放熱特性の観点からは、薄いほうが望ましいが、耐電圧と引き裂き強度の観点からは、ある程度の厚さが要求される。白色無機粉末と二酸化珪素の配合割合にもよるが、LED搭載に要求される絶縁膜の耐電圧は一般的には1.5~5kVであり、白色無機絶縁体は1KV/10μm程度であるところ、15μm以上の厚さとすることが好ましい。他方で、無機系白色絶縁層42により放熱性能が低下するのを防ぐためには、無機系白色絶縁層42を一定の厚さ以下とすることが好ましい。すなわち、無機系白色絶縁層42の厚さは、例えば10~80μmの範囲で設定され、好ましく25~50μmの範囲で設定する。 The thickness of the inorganic white insulating layer 42 is preferably thin from the viewpoint of heat dissipation characteristics, but a certain thickness is required from the viewpoint of withstand voltage and tear strength. Depending on the blending ratio of white inorganic powder and silicon dioxide, the withstand voltage of the insulating film required for LED mounting is generally 1.5 to 5 kV, and the white inorganic insulator is about 1 KV / 10 μm. The thickness is preferably 15 μm or more. On the other hand, in order to prevent the heat dissipation performance from being deteriorated by the inorganic white insulating layer 42, it is preferable that the inorganic white insulating layer 42 has a certain thickness or less. That is, the thickness of the inorganic white insulating layer 42 is set in the range of 10 to 80 μm, for example, and preferably in the range of 25 to 50 μm.
 白色無機顔料は、例えば、酸化チタン(TiO)、酸化亜鉛、アルミナのいずれか、或いはこれらを組み合わせたものが用いられる。成膜された白色絶縁層中の白色無機顔料の含有率は、要求される反射率等により適宜調整されるが、好ましくは40~70重量%、より好ましくは、50~65重量%とする。40重量%以上とすることで十分な反射効果が得られ、70重量%以下ならば均一な膜を形成するために必要なインクの流動性を確保できるからである。 As the white inorganic pigment, for example, titanium oxide (TiO 2 ), zinc oxide, alumina, or a combination thereof is used. The content of the white inorganic pigment in the formed white insulating layer is appropriately adjusted depending on the required reflectance, but is preferably 40 to 70% by weight, more preferably 50 to 65% by weight. This is because if it is 40% by weight or more, a sufficient reflection effect can be obtained, and if it is 70% by weight or less, the fluidity of the ink necessary for forming a uniform film can be secured.
 白色無機粉末は、平均粒径が100μm以下のものを用いることが好ましく、平均粒径が50μm以下のものを用いることがより好ましい。かかる粒径の白色無機粉末は、スクリーン印刷、インクジェット法、ディスペンサー法またはスプレーコート法による塗布に好適である。
 この際、白色絶縁層の放熱性能を向上させるために、上述した液材(白色無機インク)に無機材料からなる高熱伝導フィラー(例えば炭化ケイ素(SiC)にnmサイズのアルミナ膜をコートしたもの)を混入させても良い。
The white inorganic powder preferably has an average particle size of 100 μm or less, and more preferably has an average particle size of 50 μm or less. The white inorganic powder having such a particle size is suitable for application by screen printing, ink jet method, dispenser method or spray coating method.
At this time, in order to improve the heat dissipation performance of the white insulating layer, the above-described liquid material (white inorganic ink) is a highly thermally conductive filler made of an inorganic material (for example, silicon carbide (SiC) coated with an nm-size alumina film). May be mixed.
 このような絶縁材料からなる白色無機インクを金属板上に塗布し、例えば、160~250℃で加熱することで、溶剤中に分散したナノサイズ絶縁粒子が基材表面の凹凸に倣って配列すると共に、溶剤が蒸発して緻密な白色絶縁層(膜)が形成される。すなわち、ナノサイズセラミックスの混合粉末を金属表面に直接接触させたまま大気圧下で加熱し、その場で焼結させ、ナノサイズ効果による拡散状態を利用して接合界面で金属表面接合し、無機系白色絶縁層の少なくとも一部が金属層との積層構造を形成する。 A white inorganic ink made of such an insulating material is applied onto a metal plate and heated at, for example, 160 to 250 ° C., so that nano-sized insulating particles dispersed in the solvent are arranged following the unevenness of the substrate surface. At the same time, the solvent evaporates to form a dense white insulating layer (film). In other words, the nano-sized ceramic mixed powder is heated under atmospheric pressure while in direct contact with the metal surface, sintered in situ, and the metal surface is bonded at the bonding interface using the diffusion state due to the nano-size effect. At least a part of the system white insulating layer forms a laminated structure with the metal layer.
 無機系白色絶縁層42は、例えば、ガラスエポキシと比べて一桁程度熱伝導性に優れるため放熱性能は高く、同様の構成のPLCC(Plastic leaded chip carrier)と比べると2~5倍の放熱性能を有すると試算される。さらには、無機系白色絶縁層42により基板上の金属面を覆うことにより硫化現象を抑制することができる。 For example, the inorganic white insulating layer 42 is superior in thermal conductivity by about an order of magnitude compared to glass epoxy, and therefore has a high heat dissipation performance. Compared to a PLCC (Plastic-leaded-chip-carrier) having the same configuration, the heat dissipation performance is 2 to 5 times higher. Is estimated to have Furthermore, the sulfidation phenomenon can be suppressed by covering the metal surface on the substrate with the inorganic white insulating layer 42.
 無機系白色絶縁層42上の必要位置に、配線層43を描画形成する。配線層43は、導電性金属インク(例えば、銀インクや銀と銅を混合したハイブリッドインク)をスクリーン印刷やインクジェット法やディスペンサー法などで描画塗布した後、焼成して金属化させることにより形成する。なお、プライマー処理を施してから配線層43を描画形成してもよい。 A wiring layer 43 is drawn and formed at a necessary position on the inorganic white insulating layer 42. The wiring layer 43 is formed by drawing and applying a conductive metal ink (for example, silver ink or a hybrid ink in which silver and copper are mixed) by screen printing, an ink jet method, a dispenser method, or the like, and then baking and metallizing. . The wiring layer 43 may be drawn after the primer treatment.
 絶縁層44は、無機系白色絶縁層42と同じ組成で構成してもよいし、有機系樹脂(例えば、ポリイミド系樹脂、オレフィン系樹脂、ポリエステル系樹脂、およびこれらの混合物もしくは変性物から選択される1種以上の樹脂)を用いて構成してもよい。絶縁層44の厚さは、絶縁性と熱伝導性の調和から決せられ、例えば、10~60μm、好ましくは10~30μmとする。 The insulating layer 44 may have the same composition as that of the inorganic white insulating layer 42, or may be selected from organic resins (for example, polyimide resins, olefin resins, polyester resins, and mixtures or modified products thereof). 1 or more types of resins). The thickness of the insulating layer 44 is determined from the balance between insulating properties and thermal conductivity, and is, for example, 10 to 60 μm, preferably 10 to 30 μm.
 前記ポリイミド系樹脂としては、例えば、イミド環構造を有するポリイミド、ポリアミドイミド、ポリエステルイミド等を挙げることができる。前記オレフィン系樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン、ポリイソプレン、シクロオレフィン系樹脂、これらの樹脂の共重合体等が挙げられる。前記ポリエステル系樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、液晶ポリエステル等を挙げることができる。 Examples of the polyimide resin include polyimide having an imide ring structure, polyamideimide, and polyesterimide. Examples of the olefin resin include polyethylene, polypropylene, polyisobutylene, polybutadiene, polyisoprene, cycloolefin resin, and copolymers of these resins. Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and liquid crystal polyester.
 載置部45は、配線材料と同じ材料、あるいは熱伝導性に優れた部材により構成され、例えば、銅ペースト、銀ペースト、半田ペースト等の金属ペースト材料を塗布、焼成することにより形成しても良い。載置部45を設けず、無機系白色絶縁層42または実装基板41の上面を露出させるようにしてもよい。 The mounting portion 45 is made of the same material as the wiring material or a member having excellent thermal conductivity. For example, the mounting portion 45 may be formed by applying and baking a metal paste material such as a copper paste, a silver paste, or a solder paste. good. The mounting portion 45 may not be provided, and the upper surface of the inorganic white insulating layer 42 or the mounting substrate 41 may be exposed.
 LEDチップ46は、例えば窒化ガリウム系(GaN、AlGaN、InGaN)、リン化ガリウム系(GaP、GaAsP)、ヒ素化ガリウム系(GaAs、AlGaAs、AlGaInP)、酸化亜鉛系(ZnO)の中から発光色に応じて選択される表面実装型LEDベアチップである。多数個のLEDチップ3がリフレクターブロック内でn行×m列(例えば、6直列×7並列、4直列×4並列)にマトリックス状に配置され、所謂COB(Chip On Board)実装される。高輝度を実現するために、LEDチップ46は、例えば最大定格電流300mA以上、好ましくは最大定格電流400mA以上、さらに好ましくは最大定格電流500mA以上のLEDチップを使用する。LEDチップ46の大きさは、3~4mm四方以下(好ましくは1.5mm四方以下)であり、発光色単位で全て同一の仕様である。第一実施形態では1.0×1.0×0.15mm、配光角度150度のLEDチップを使用した。 The LED chip 46 emits light from, for example, gallium nitride (GaN, AlGaN, InGaN), gallium phosphide (GaP, GaAsP), gallium arsenide (GaAs, AlGaAs, AlGaInP), or zinc oxide (ZnO). It is a surface mount type LED bare chip selected according to the above. A large number of LED chips 3 are arranged in a matrix in n rows × m columns (for example, 6 series × 7 parallels, 4 series × 4 parallels) in the reflector block, and so-called COB (Chip On Board) mounting. In order to achieve high brightness, the LED chip 46 uses, for example, an LED chip having a maximum rated current of 300 mA or more, preferably a maximum rated current of 400 mA or more, and more preferably a maximum rated current of 500 mA or more. The size of the LED chip 46 is 3 to 4 mm square or less (preferably 1.5 mm square or less), and all have the same specifications in units of emission colors. In the first embodiment, an LED chip having 1.0 × 1.0 × 0.15 mm and a light distribution angle of 150 degrees was used.
 下記表1に、3000lm、4000lmおよび5000lmを実現するためのLEDチップの配置例を示す。表1における外形サイズとは、LEDチップが実装される実装基板の大きさ(またはLEDチップが搭載される実装領域)のことを指すものとする。
[表1]
Figure JPOXMLDOC01-appb-I000001
Table 1 below shows an arrangement example of LED chips for realizing 3000 lm, 4000 lm, and 5000 lm. The external size in Table 1 refers to the size of the mounting substrate on which the LED chip is mounted (or the mounting area on which the LED chip is mounted).
[Table 1]
Figure JPOXMLDOC01-appb-I000001
 透光性樹脂層47は、例えば、エポキシ系やシリコーン系樹脂からなる透明の樹脂層であるが、所望のR光、G光、B光を射出するために、赤色、緑色および/または青色の蛍光体が混入される場合がある。
 透光性樹脂層47の上面に、透明の樹脂(例えばエポキシ系やシリコーン系樹脂)により形成され、LEDチップ46からの発光を集束させる表面が球形(側面視弓形)の凸レンズ(マイクロレンズ)を設けてもよい。この凸レンズを設けることにより、配光角を目標値以内(例えば10~30度)とすることが容易に実現できる。
The translucent resin layer 47 is a transparent resin layer made of, for example, an epoxy resin or a silicone resin. In order to emit desired R light, G light, and B light, red, green, and / or blue light is used. A phosphor may be mixed.
A convex lens (microlens) formed of a transparent resin (for example, an epoxy resin or a silicone resin) on the upper surface of the translucent resin layer 47 and having a spherical surface (side-view arcuate shape) for focusing light emitted from the LED chip 46. It may be provided. By providing this convex lens, it is possible to easily realize the light distribution angle within a target value (for example, 10 to 30 degrees).
 図3を参照しながら、リフレクターブロック50の構成を詳細に説明する。
 リフレクターブロック50は、20個のマイクロリフレクター51と、マイクロリフレクター51の内周面に形成された反射層(反射面)52とを備えて構成される。板状のリフレクターブロック50は一体成形されており、第一実施形態では有機系樹脂を射出成形することにより作製した。高精度な表面を形成することができれば、リフレクターブロック50の製造は射出成形に限定されず、樹脂や金属を切削することにより作製してもよい。出願時の技術水準では難しいが、将来的には3Dプリンタにより作製することも可能になると考えられる。
 またリフレクターブロック50は、心材に金属(例えば42アロイや銅)を用いて外周部を有機系樹脂で覆い、表面に反射材処理を施こした構造としても良い。
The configuration of the reflector block 50 will be described in detail with reference to FIG.
The reflector block 50 includes 20 micro reflectors 51 and a reflective layer (reflective surface) 52 formed on the inner peripheral surface of the micro reflector 51. The plate-like reflector block 50 is integrally formed. In the first embodiment, the plate-like reflector block 50 is manufactured by injection molding an organic resin. As long as a highly accurate surface can be formed, the manufacture of the reflector block 50 is not limited to injection molding, and the reflector block 50 may be manufactured by cutting resin or metal. Although it is difficult at the technical level at the time of filing, it will be possible to produce it with a 3D printer in the future.
The reflector block 50 may have a structure in which a metal (for example, 42 alloy or copper) is used as a core material, an outer peripheral portion is covered with an organic resin, and a surface is subjected to a reflective material treatment.
 20個のマイクロリフレクター51は、図3(a)に示すごとく、縦方向3mmピッチ、横方向3mmピッチで5行×4列に配置されている。マイクロリフレクター51は底部から上端部(出射側)に向けて拡径された円錐台状の空間であって(図3(b)参照)、底部の直径2mm、上端部の直径3.05mm、高さ4mm、拡径角度7.5°であり、直線傾斜の反射層(内周面)52を有する。マイクロリフレクター51の内周面には、アルミの電解研磨あるいはアルミ蒸着による反射層52が形成されている。
 プロジェクター用のマイクロリフレクター51の底部はLEDチップ辺比で1.5~3倍(好ましくは1.5~2倍)かつ3mm以下の直径を有し、高さはLEDチップ辺比で2~10倍(好ましくは2~5倍)の高さを有し、上端部はLEDチップ辺比で3~6倍(好ましくは4~5倍)の直径を有するようにする。マイクロリフレクター51の配置ピッチは、縦横共に6mm以下とすることが好ましく、5mm以下とすることがより好ましい。別の観点からは、LEDチップが、12.25mmあたり1個以上の密度(好ましくは9mmあたり1個以上の密度)でLEDチップを配置できるように、マイクロリフレクター51の配置ピッチを決定する。ただし、所望の光束分布を得るためには、各マイクロリフレクター51は、相互に重なり合うことが無いように(独立した上部開口を有するように)設けることが好ましい。
As shown in FIG. 3A, the 20 micro reflectors 51 are arranged in 5 rows × 4 columns at a pitch of 3 mm in the vertical direction and a pitch of 3 mm in the horizontal direction. The micro-reflector 51 is a frustoconical space expanded from the bottom toward the upper end (outgoing side) (see FIG. 3B), and has a bottom diameter of 2 mm, an upper end diameter of 3.05 mm, and a high height. It has a thickness of 4 mm and an expansion angle of 7.5 °, and has a linearly inclined reflective layer (inner peripheral surface) 52. A reflective layer 52 is formed on the inner peripheral surface of the micro reflector 51 by electrolytic polishing of aluminum or aluminum vapor deposition.
The bottom of the micro-reflector 51 for the projector has a LED chip side ratio of 1.5 to 3 times (preferably 1.5 to 2 times) and a diameter of 3 mm or less, and the height is 2 to 10 LED chip side ratio. The upper end portion has a diameter of 3 to 6 times (preferably 4 to 5 times) in terms of the LED chip side ratio. The arrangement pitch of the micro reflectors 51 is preferably 6 mm or less in both vertical and horizontal directions, and more preferably 5 mm or less. From another aspect, LED chip, so that it can position the LED chips with one or more density per 12.25mm 2 (preferably one or more density per 9 mm 2), determines the arrangement pitch of the micro reflectors 51 . However, in order to obtain a desired light flux distribution, it is preferable that the micro reflectors 51 are provided so as not to overlap each other (have an independent upper opening).
 各マイクロリフレクター51の底部中央には、LEDチップ46が配置されている。図3の上下に延びる4本の直線上に並ぶ5個のマイクロリフレクター51に配置されるLEDチップ46が直列に接続されており、直列に接続された5個のLEDチップ群は並列に接続されている(5直列×4並列)。マトリックス状に配置された20個のLEDチップ46がなす配光角度は30度以下であることが好ましく、更に好ましくは5~20度または10~15度とする。
 なお、図3では、マイクロリフレクター51を20個設ける態様を例示しているが、マイクロリフレクター51の個数はこれに限定されず、例えば、8個~100個(好ましくは12個~100個、より好ましくは16個~50個でもよい。
 リフレクターブロック50は、図4に示すように、液晶ライトバルブ23よりも一回り大きい(例えば、面積比で1.21倍以上、好ましくは1.44倍以上、より好ましくは1.69倍以上)照射面を構成する大きさとすることが好ましい。別の観点からは、照射面の外縁を構成する各マイクロリフレクター51に液晶ライトバルブ23が完全に囲繞される(最も外側に位置する各マイクロリフレクター51に液晶ライトバルブ23が重ならない)ように照射面を構成することが好ましい。このような構成とすることにより、高出力且つ均一性に優れた照射光をダイクロックプリズム31に入射することができるからである。このような照射面をコンパクトに構成するためには、後述する変形例のように、マイクロリフレクター51を千鳥配置ないしハニカム配置することが好ましい。
In the center of the bottom of each micro reflector 51, an LED chip 46 is arranged. LED chips 46 arranged on five micro reflectors 51 arranged on four straight lines extending vertically in FIG. 3 are connected in series, and the five LED chip groups connected in series are connected in parallel. (5 series x 4 parallel). The light distribution angle formed by the 20 LED chips 46 arranged in a matrix is preferably 30 degrees or less, more preferably 5 to 20 degrees or 10 to 15 degrees.
FIG. 3 illustrates an example in which 20 micro reflectors 51 are provided. However, the number of micro reflectors 51 is not limited to this, and for example, 8 to 100 (preferably 12 to 100, more). Preferably, it may be 16-50.
As shown in FIG. 4, the reflector block 50 is slightly larger than the liquid crystal light valve 23 (for example, the area ratio is 1.21 times or more, preferably 1.44 times or more, more preferably 1.69 times or more). It is preferable to make it the magnitude | size which comprises an irradiation surface. From another viewpoint, the liquid crystal light valve 23 is completely surrounded by each micro reflector 51 constituting the outer edge of the irradiation surface (the liquid crystal light valve 23 does not overlap each micro reflector 51 located on the outermost side). It is preferable to constitute the surface. This is because, with such a configuration, irradiation light with high output and excellent uniformity can be incident on the dichroic prism 31. In order to configure such an irradiation surface in a compact manner, it is preferable to arrange the micro reflectors 51 in a staggered manner or in a honeycomb manner as in a modification described later.
<変形例>
 図5は、42個のマイクロリフレクター51を備えるリフクレター50の変形例の平面図と側面図である。このリフレクターブロック50は、左右一対の外枠部53と、図示上方に3本および図示下方に2本設けられた仕切枠54とを備えている。マイクロリフレクター51の内周面にアルミの電解研磨あるいはアルミ蒸着による反射層52が設けられている点は、図3と同様である。
 図5のリフレクターブロック50の外形寸法は24mm×24mmであり、LEDチップ46は左右方向に2.6mmピッチ、上下方向に3.0mmピッチで配置されており、各列は上下方向に半ピッチ分、交互にずらして配置されている。図5のリフレクターブロック50は、マイクロリフレクター51が千鳥配置ないしハニカム配置することにより、マイクロリフレクター中心間のピッチを狭め集積度を高めている。すなわち、互いに接する3個のマイクロリフレクター51の上部開口の中心が、正三角形の頂点をなすように配置されている。マイクロリフレクター51の上面視形状は図示の円形に限定されず、例えば六角形以上の正多角形としてもよい。この場合、底部開口と上部開口は相似形かつ同心とすることが好ましい。
 図6に、図5のリフレクターブロック50を備えるLED光源装置21の斜視図を示す。リフクレター50のマイクロリフレクター51、仕切枠に囲まれた切り欠き部および外枠部53の外側部分には、無機系白色層42が露出している。
<Modification>
FIGS. 5A and 5B are a plan view and a side view of a modified example of the reflector 25 having 42 micro reflectors 51. FIG. The reflector block 50 includes a pair of left and right outer frame portions 53, and three partition frames 54 provided in the upper part of the figure and two in the lower part of the figure. The reflective layer 52 by electrolytic polishing of aluminum or aluminum deposition is provided on the inner peripheral surface of the micro reflector 51 as in FIG.
The outer dimensions of the reflector block 50 of FIG. 5 are 24 mm × 24 mm, and the LED chips 46 are arranged with a pitch of 2.6 mm in the left-right direction and a pitch of 3.0 mm in the up-down direction. , Are arranged alternately. In the reflector block 50 of FIG. 5, the micro reflectors 51 are arranged in a staggered manner or a honeycomb so that the pitch between the centers of the micro reflectors is narrowed to increase the degree of integration. That is, the centers of the upper openings of the three micro reflectors 51 that are in contact with each other are arranged so as to form the apex of an equilateral triangle. The top view shape of the micro-reflector 51 is not limited to the illustrated circular shape, and may be, for example, a regular polygon of a hexagon or more. In this case, the bottom opening and the top opening are preferably similar and concentric.
FIG. 6 shows a perspective view of the LED light source device 21 including the reflector block 50 of FIG. The inorganic white layer 42 is exposed at the micro reflector 51 of the reflex letter 50, the cutout portion surrounded by the partition frame, and the outer portion of the outer frame portion 53.
 以上に説明したLED光源装置21は、同一仕様のものが三つ設けられ、赤色光(R光)、緑色光(G光)および青色光(B光)を発光するための光源として利用される。 Three LED light source devices 21 having the same specifications are provided as described above, and are used as light sources for emitting red light (R light), green light (G light), and blue light (B light). .
<シミュレーション>
<A.最大照度および受光束>
 第一実施形態のリフレクターブロック50の性能を検証すべく、下記の条件でシミュレーションを実施した。ここで用いたリフレクターブロック50Aは、図3(b)と同じ形状のマイクロリフレクター51(すなわち、底部の直径2mm、上端部の直径3.05mm、高さ4mm、拡径角度7.5°)を有しており、レンズ無しのモデルである。
(1)20個のLEDチップを図3(a)に示すごとく、縦方向3mmピッチ、横方向3mmピッチで5行×4列に配置した。なお、マイクロレンズは置かないものとする。
(2)LEDチップ1個あたり10000本の光線と仮定し、20個のLEDチップで20万本の光線とする。
(3)LEDチップ1個あたり光束1ルーメンと仮定し、20個のLEDチップの全光束を20ルーメンとする。
(4)下記の検知器を受光面として設定する。
   100mm先  25mm角検知器(200×200分割)
<Simulation>
<A. Maximum illuminance and received light bundle>
In order to verify the performance of the reflector block 50 of the first embodiment, a simulation was performed under the following conditions. The reflector block 50A used here is a micro reflector 51 having the same shape as that shown in FIG. 3B (that is, a bottom diameter of 2 mm, an upper end diameter of 3.05 mm, a height of 4 mm, and an expansion angle of 7.5 °). It has a model without lens.
(1) As shown in FIG. 3A, 20 LED chips were arranged in 5 rows × 4 columns at a pitch of 3 mm in the vertical direction and a pitch of 3 mm in the horizontal direction. Note that no microlens is placed.
(2) Assuming 10,000 light beams per LED chip, 20 LED chips result in 200,000 light beams.
(3) Assuming a luminous flux of 1 lumen per LED chip, the total luminous flux of 20 LED chips is 20 lumens.
(4) The following detector is set as the light receiving surface.
100mm ahead 25mm square detector (200 x 200 divisions)
 リフレクターブロック50を配置した場合と配置しない場合とで、最大照度および受光束の違いを検証したところ、下記表2の結果のとおりとなった。
[表2]
Figure JPOXMLDOC01-appb-I000002
When the difference between the maximum illuminance and the received light bundle was verified between the case where the reflector block 50 was arranged and the case where it was not arranged, the results shown in Table 2 below were obtained.
[Table 2]
Figure JPOXMLDOC01-appb-I000002
 シミュレーション結果(表2)から、図6に示す直線傾斜の反射層52を有するリフレクターブロック50を配置した場合は、リフレクター無の場合に比べ光束が4.82倍も向上しているのが分かる。 From the simulation results (Table 2), it can be seen that when the reflector block 50 having the linearly inclined reflecting layer 52 shown in FIG. 6 is arranged, the luminous flux is improved by 4.82 times compared to the case without the reflector.
<B.配光角>
 図7は、表2とは異なる配光角シミュレーション解析結果例を示す図である。
 図7中、(a)はリフレクター無しの場合、(b)はリフレクターブロック50A(レンズ無し)を使用した場合、(c)はリフレクターブロック50B(レンズ有り)を使用した場合を示している。(a1)は(a)の要部拡大図、(b1)は(b)の要部拡大図である。解析ソフトは、FRED(Photon Engineering LLC)を使用した。
 解析の結果、受光面積25mm角、距離100mmで(a)では照度が524,922(lx)、広がり角が75°となり、(b)では照度が1,552,104(lx)、広がり角が30°(集光部(線の濃い部分)では10°)以下となり、(c)では照度が2,734,062(lx)、広がり角が30°(集光部は(b)に比べてさらに濃い)以下となった。
<B. Light distribution angle>
FIG. 7 is a diagram illustrating an example of a light distribution angle simulation analysis result different from Table 2.
7A shows a case where there is no reflector, FIG. 7B shows a case where a reflector block 50A (without a lens) is used, and FIG. 7C shows a case where a reflector block 50B (with a lens) is used. (A1) is the principal part enlarged view of (a), (b1) is the principal part enlarged view of (b). FRED (Photo Engineering LLC) was used as the analysis software.
As a result of the analysis, when the light receiving area is 25 mm square and the distance is 100 mm, the illuminance is 524,922 (lx) and the spread angle is 75 ° at (a), and the illuminance is 1,552,104 (lx) and the spread angle is (b). 30 ° (10 ° for the condensing part (the dark part of the line)), and in (c) the illuminance is 2,734,062 (lx) and the divergence angle is 30 ° (the condensing part is compared to (b)) It was even darker).
《第二・第三実施形態》
 図8は第二実施形態のマイクロリフレクター61の形状示す側面模式図である。マイクロリフレクター61は、LEDチップ46が中心に配置される底部開口62と、小径胴63と、反射面(64,65,66,67)と、上部開口68とを備えて構成される。底部開口62の直径は1.8mmであり、上部開口68の直径は4.0mmであり、底部開口62から上部開口68までの距離(高さ)は5.0mmである。円筒状の小径胴63は、下端が底部開口62を構成し、上端が反射面(第一内周面64)に連続する。
<< Second and Third Embodiment >>
FIG. 8 is a schematic side view showing the shape of the micro reflector 61 of the second embodiment. The micro reflector 61 includes a bottom opening 62 in which the LED chip 46 is disposed at the center, a small diameter body 63, a reflecting surface (64, 65, 66, 67), and an upper opening 68. The diameter of the bottom opening 62 is 1.8 mm, the diameter of the top opening 68 is 4.0 mm, and the distance (height) from the bottom opening 62 to the top opening 68 is 5.0 mm. The cylindrical small-diameter cylinder 63 has a bottom end 62 that constitutes a bottom opening 62 and an upper end that is continuous with a reflective surface (first inner peripheral surface 64).
 反射面は、第一ないし第四内周面(64,65,66,67)から構成され、中心軸に対する角度を段階的に狭くしながら上方へ向けて拡径された構造を有している。すなわち、第一内周面64は60°、第二内周面65は65°、第三内周面66は70°、第四内周面67は85°で拡径しており、底部開口62から上部開口68に向けて中心軸に対する角度が段階的に狭くなっている。第一ないし第四内周面(64,65,66,67)は、いずれもLEDチップ46からの照射光をマイクロリフレクター61の中心軸側に集光するよう作用する。本実施形態とは異なり、反射面を角度の異なる三つまたは五つの内周面により構成してもよく、この場合も、例えば60°~85°の範囲で中心軸に対する角度を段階的に狭くしながら上方へ向けて拡径された構造とする。 The reflecting surface is composed of first to fourth inner peripheral surfaces (64, 65, 66, 67) and has a structure in which the diameter is increased upward while the angle with respect to the central axis is gradually reduced. . That is, the first inner peripheral surface 64 has an enlarged diameter of 60 °, the second inner peripheral surface 65 has a 65 °, the third inner peripheral surface 66 has a 70 °, and the fourth inner peripheral surface 67 has a 85 ° diameter. The angle with respect to the central axis is gradually reduced from 62 toward the upper opening 68. The first to fourth inner peripheral surfaces (64, 65, 66, 67) all act so as to collect the irradiation light from the LED chip 46 toward the central axis side of the micro reflector 61. Unlike the present embodiment, the reflecting surface may be constituted by three or five inner peripheral surfaces having different angles, and in this case as well, the angle with respect to the central axis is narrowed stepwise in a range of 60 ° to 85 °, for example. However, the diameter is increased upward.
 図9はマイクロリフレクター61で、光がLEDチップの左端部(a)、中央(b)、右端部(c)から放射された場合のリフレクター効果を図示したものである。図9(b)から分かるように、LEDチップの中央からの放出光線は、リフレクター61の内周面に反射し、光線の大部分が平行光線となる。 FIG. 9 shows the reflector effect when the light is emitted from the left end (a), the center (b), and the right end (c) of the LED chip. As can be seen from FIG. 9B, the emitted light from the center of the LED chip is reflected by the inner peripheral surface of the reflector 61, and most of the light becomes parallel light.
 図10(a)は、第二実施形態に係るリフレクターブロック60の平面図である。
 矩形のリフレクターブロック60は、4直列、5並列に縦横それぞれ4mmピッチで配置された20個のリフレクター61を備えている。リフレクターブロック60の構造は、第一実施形態と同様である。
FIG. 10A is a plan view of the reflector block 60 according to the second embodiment.
The rectangular reflector block 60 includes 20 reflectors 61 arranged in 4 series and 5 parallel in 4 mm pitches in the vertical and horizontal directions. The structure of the reflector block 60 is the same as that of the first embodiment.
 図10(b)は、第三実施形態に係るLED光源装置70の平面図である。
 円形のリフレクターブロック71は、4直列、4並列に縦横それぞれ4mmピッチで配置された16個のリフレクター72を備えている。リフレクターブロック71の構造は、第一および第二実施形態と同様である。このLED光源装置70は、高さ30mmの外部リフレクター73を備えている。外部リフレクター73はリフレクターブロック71を囲む内周面に反射構造を有し、上方向かって拡径された形状である。
FIG. 10B is a plan view of the LED light source device 70 according to the third embodiment.
The circular reflector block 71 includes 16 reflectors 72 arranged in 4 series and 4 parallel at 4 mm pitches in the vertical and horizontal directions. The structure of the reflector block 71 is the same as in the first and second embodiments. The LED light source device 70 includes an external reflector 73 having a height of 30 mm. The external reflector 73 has a reflecting structure on the inner peripheral surface surrounding the reflector block 71 and has a shape that is expanded in diameter upward.
 第二実施形態に係るリフレクターブロック60の性能を検証すべく、リフレクターブロック60の各開口に20個のLEDチップを配置した光源部と、当該光源部からリフレクターブロック60を取り外した光源部について、シミュレーションを実施した。また、外部リフレクター73を備える第三実施形態に係るLED光源装置70についてもシミュレーションを実施した。これらのシミュレーションは、25mm角検知器80を、30mmの距離に配置するとの条件で実施した。シミュレーション結果を表3に示す。 In order to verify the performance of the reflector block 60 according to the second embodiment, a light source unit in which 20 LED chips are arranged in each opening of the reflector block 60 and a light source unit in which the reflector block 60 is removed from the light source unit are simulated. Carried out. In addition, a simulation was performed for the LED light source device 70 according to the third embodiment including the external reflector 73. These simulations were performed under the condition that the 25 mm square detector 80 is disposed at a distance of 30 mm. The simulation results are shown in Table 3.
[表3]
Figure JPOXMLDOC01-appb-I000003
[Table 3]
Figure JPOXMLDOC01-appb-I000003
 表3の結果から、リフレクター無の場合は受光面での光束が13.4%しかないのに比べて、リフレクター有(内部)では70.5%(5.26倍)まで向上しているのが分かる。
 このように第二実施形態のリフレクターブロックであれば、レンズを用いなくても集光効果が5倍以上得られることが確認できた。また、外部リフレクター73を備える第三実施形態に係るLED光源装置70によれば、さらに集光効果が得られることが確認できた。
From the results in Table 3, when the reflector is not present, the luminous flux on the light receiving surface is only 13.4%, but when the reflector is present (inside), it is improved to 70.5% (5.26 times). I understand.
Thus, with the reflector block of the second embodiment, it was confirmed that the light collecting effect was obtained 5 times or more without using a lens. Moreover, according to LED light source device 70 which concerns on 3rd embodiment provided with the external reflector 73, it has confirmed that the condensing effect was acquired further.
《第四実施形態》
 図11は第四実施形態のマイクロリフレクター91a~91cの形状を示す側面模式図である。第四実施形態のマイクロリフレクター91a~91cは、第一ないし第三実施形態と同様であり、リフレクターブロックにアレイ状に20個配置されている(図10(a)参照)。
<< 4th embodiment >>
FIG. 11 is a schematic side view showing the shapes of the micro reflectors 91a to 91c of the fourth embodiment. The micro reflectors 91a to 91c of the fourth embodiment are the same as those of the first to third embodiments, and 20 reflectors are arranged in an array on the reflector block (see FIG. 10A).
 マイクロリフレクター91a~91cの性能を検証すべく、マイクロリフレクター91a~91cを配置した光源部と、当該光源部からマイクロリフレクター91a~91cを取り外した光源部について、シミュレーションを実施した。これらのシミュレーションは、25mm角検知器を、30mmの距離に配置するとの条件で実施した。表4にシミュレーションの前提となる光源部の仕様を、表5にシミュレーションの結果を示す。 In order to verify the performance of the micro reflectors 91a to 91c, a simulation was performed on the light source unit in which the micro reflectors 91a to 91c are arranged and the light source unit in which the micro reflectors 91a to 91c are removed from the light source unit. These simulations were performed under the condition that a 25 mm square detector was placed at a distance of 30 mm. Table 4 shows the specifications of the light source unit that is a premise of the simulation, and Table 5 shows the results of the simulation.
 なお、第四実施形態では、LEDチップの出力を便宜上1lmとしているが、同等サイズで250~2600lmの出力を有するLEDチップが市販されており、このLEDチップを実装することにより、3個の光源からの全光束値を2000lmまたは3000lm以上とすることが可能である。 In the fourth embodiment, the output of the LED chip is set to 1 lm for convenience, but an LED chip having an equivalent size of 250 to 2600 lm is commercially available. By mounting this LED chip, three light sources are provided. Can be set to 2000 lm or 3000 lm or more.
[表4]
Figure JPOXMLDOC01-appb-I000004
[Table 4]
Figure JPOXMLDOC01-appb-I000004
[表5]
Figure JPOXMLDOC01-appb-I000005
[Table 5]
Figure JPOXMLDOC01-appb-I000005
 表5の結果から、リフレクターありの場合はなしの場合と比べ5倍以上の光束(lm)を得られることが確認された。
 図12は、第四実施形態に係るマイクロリフレクター91aの内周面形状を説明するための側面図である。同図中の点で示す箇所は屈曲点であり、二つの点で挟まれた箇所(内周面)は直線状となっている。すなわち、マイクロリフレクター91aは角度の異なる七つの内周面により反射面が構成される。
 このように、反射層を断面が直線状の多数の内周面から構成することにより、中心部分に光線密度が最も高い部分を一定面積確保することを可能としている。換言すれば、プロジェクター用光源においては、中心部分のみの光線密度を高めること(すなわち、光線密度の高い部分の面積が小さくなりすぎること)は好ましくない。この点、リフレクターの反射層を滑らかな周面(スムーズな曲面)により構成すると、光線密度の高い部分の面積が小さくなりすぎる傾向がある。
From the results in Table 5, it was confirmed that a luminous flux (lm) of 5 times or more can be obtained with and without the reflector.
FIG. 12 is a side view for explaining the inner peripheral surface shape of the micro reflector 91a according to the fourth embodiment. A portion indicated by a point in the figure is a bending point, and a portion (inner peripheral surface) sandwiched between two points is linear. In other words, the micro reflector 91a has a reflective surface composed of seven inner peripheral surfaces having different angles.
As described above, the reflection layer is constituted by a large number of inner peripheral surfaces having a linear cross section, so that it is possible to secure a constant area at the central portion where the light density is highest. In other words, in the light source for projectors, it is not preferable to increase the light density only in the central part (that is, the area of the part having a high light density becomes too small). In this regard, when the reflector reflection layer is formed of a smooth peripheral surface (smooth curved surface), the area of the portion having a high light density tends to be too small.
 図13(a1)は第四実施形態に係るマイクロリフレクター91aの形状を示す側面模式図、(b1)は比較例1に係るマイクロリフレクター92の形状を示す側面模式図、(a2)は第四実施形態(マイクロリフレクター91a)に係るLED光源装置の指向性のシミュレーション結果であり、(b2)は比較例1に係るLED光源装置の指向性のシミュレーション結果である。
 角度の異なる断面が直線状の多数の内周面を有するマイクロリフレクター91aでは、(a2)に示すように、指向性データの先端部が潰れており、光線密度が高い部分を一定面積確保できることが分かる。
 スムーズな曲面からなる反射面を有する比較例1では、(b2)に示すように、指向性データの先端が尖っており、光を中心に集中させやすい反面、光線密度が高い部分を一定面積確保することが難しいことが分かる。
 以上より、角度の異なる断面が直線状の多数の内周面を有するマイクロリフレクターの方が、スムーズな曲面からなる反射面を有するリフレクターと比べ光線の均一分布の点では優れているといえる。
 なお、マイクロリフレクター91bについては、光束量、光束分布および指向性のシミュレーションを実施しており、この結果は第五実施形態の箇所で後述する。
FIG. 13 (a1) is a schematic side view showing the shape of the micro reflector 91a according to the fourth embodiment, (b1) is a schematic side view showing the shape of the micro reflector 92 according to Comparative Example 1, and (a2) is the fourth embodiment. It is the directivity simulation result of the LED light source device which concerns on a form (micro reflector 91a), (b2) is the directivity simulation result of the LED light source device which concerns on the comparative example 1. FIG.
In the micro-reflector 91a having a large number of inner peripheral surfaces with linear cross sections at different angles, as shown in (a2), the tip of the directivity data is crushed, so that a certain area can be secured for a portion with a high light density. I understand.
In Comparative Example 1 having a smooth curved reflecting surface, the tip of the directivity data is pointed as shown in (b2), and it is easy to concentrate on the center of light. I find it difficult to do.
From the above, it can be said that the micro-reflector having a large number of inner peripheral surfaces with straight sections having different angles is superior in terms of the uniform distribution of light rays as compared with the reflector having a reflecting surface having a smooth curved surface.
In addition, about the micro reflector 91b, the light quantity, light beam distribution, and directivity simulation are implemented, and this result is mentioned later by the location of 5th embodiment.
《第五実施形態》
 第五実施形態では、1つのLEDチップと1つのリフレクターを備えるLED光源装置100を開示する。
 図14は、第五実施形態に係るLED光源装置100の平面図である。本実施形態のLED光源装置100は、リフレクターブロック101と、リフレクター102と、LEDチップ103とを備えている。
 矩形のリフレクターブロック101は、中心部に1個のリフレクター102を備えている点を除くと、基本構造は第一ないし第三実施形態と同様である。LEDチップ103は、大きさが3.0×3.0×0.45mm、出力が20lm、配向角が150度である。
 なお、第五実施形態では、第四実施形態と同様、便宜上出力を20lmとしているが、LEDチップを高出力のものに変えることにより3個の光源からの全光束値を2000lmまたは3000lm以上とすることが可能である。
<< 5th embodiment >>
In the fifth embodiment, an LED light source device 100 including one LED chip and one reflector is disclosed.
FIG. 14 is a plan view of the LED light source device 100 according to the fifth embodiment. The LED light source device 100 of this embodiment includes a reflector block 101, a reflector 102, and an LED chip 103.
The basic structure of the rectangular reflector block 101 is the same as that of the first to third embodiments, except that one reflector 102 is provided at the center. The LED chip 103 has a size of 3.0 × 3.0 × 0.45 mm, an output of 20 lm, and an orientation angle of 150 degrees.
In the fifth embodiment, as in the fourth embodiment, the output is set to 20 lm for convenience, but the total luminous flux value from the three light sources is set to 2000 lm or 3000 lm or more by changing the LED chip to a high output one. It is possible.
 図15は、リフレクター102の形状を示す側面模式図である。リフレクター102の各寸法は、第四実施形態に係るマイクロリフレクター91bの対応する各寸法の3倍である。リフレクター102の内周面には、第一ないし第三実施形態と同様の反射材処理が施こされている。 FIG. 15 is a schematic side view showing the shape of the reflector 102. Each dimension of the reflector 102 is three times the corresponding dimension of the micro reflector 91b according to the fourth embodiment. The inner peripheral surface of the reflector 102 is subjected to the same reflective material treatment as in the first to third embodiments.
 第五実施形態に係るLED光源装置100の性能を検証すべく、シミュレーションで光線および光束を解析した。このシミュレーションでは、25mm角検知器80を、30mmの距離に配置するとの条件で実施した。
 第五実施形態の性能のシミュレーションに際しては、次の比較例についてのシミュレーションも同時に実施した。
In order to verify the performance of the LED light source device 100 according to the fifth embodiment, light rays and light fluxes were analyzed by simulation. In this simulation, the 25 mm square detector 80 was implemented on the condition that it is arranged at a distance of 30 mm.
When simulating the performance of the fifth embodiment, the simulation for the following comparative example was also performed at the same time.
[比較例2]
 比較例2は、図16に示すように、二枚の集光レンズ111、112を備える公知のLED光源装置110である。このLED光源装置110は、集光レンズ111、112と、LEDチップ113が実装された実装基板114とを備えている。
 集光レンズ111は、両凸レンズであり、LEDチップ113と反対側(液晶ライトバルブ側)にある凸レンズ111aと、LEDチップ113側にある111cと、111aと111cに挟まれる円盤状の胴部111bとで構成される。凸レンズ111aは、直径27mm、厚み7.5mm、曲率は0.0555である。胴部111bは、直径27mm、高さ2.5mmである。凸レンズ111cは、直径27mm、厚み0.5mm、曲率は0.188である。集光レンズ111の透過率は90%である。
[Comparative Example 2]
Comparative Example 2 is a known LED light source device 110 including two condenser lenses 111 and 112 as shown in FIG. The LED light source device 110 includes condensing lenses 111 and 112 and a mounting substrate 114 on which an LED chip 113 is mounted.
The condensing lens 111 is a biconvex lens, a convex lens 111a on the opposite side (liquid crystal light valve side) to the LED chip 113, 111c on the LED chip 113 side, and a disk-shaped body 111b sandwiched between 111a and 111c. It consists of. The convex lens 111a has a diameter of 27 mm, a thickness of 7.5 mm, and a curvature of 0.0555. The trunk 111b has a diameter of 27 mm and a height of 2.5 mm. The convex lens 111c has a diameter of 27 mm, a thickness of 0.5 mm, and a curvature of 0.188. The transmittance of the condenser lens 111 is 90%.
 集光レンズ112は、平凸レンズであり、LEDチップ113と反対側(液晶ライトバルブ側)にある凸レンズ112aとLEDチップ113側にある胴部112bとで構成される。凸レンズ112aは、直径16mm、厚み5mm、曲率は0.1である。円筒部112bは、直径16mm、高さ4.2mmである。集光レンズ112の透過率は90%である。
 集光レンズ112の中心下方に、3.5mm×2.8m角のLEDチップ113が配置される。LEDチップ113は、実装基板114に設けられた配線パターンと電気的に接続されている。
The condensing lens 112 is a plano-convex lens, and includes a convex lens 112a on the opposite side (liquid crystal light valve side) to the LED chip 113 and a body portion 112b on the LED chip 113 side. The convex lens 112a has a diameter of 16 mm, a thickness of 5 mm, and a curvature of 0.1. The cylindrical portion 112b has a diameter of 16 mm and a height of 4.2 mm. The transmittance of the condenser lens 112 is 90%.
An LED chip 113 of 3.5 mm × 2.8 m square is disposed below the center of the condenser lens 112. The LED chip 113 is electrically connected to a wiring pattern provided on the mounting substrate 114.
[比較例3]
 比較例3は、第五実施形態のLED光源装置100から、リフレクターブロック101を取り外した光源装置である(図17(c)参照)。換言すると、比較例3のLEDチップは、第五実施形態と同じものであることから出力は同じ(20lm)であるが、リフレクターブロック101を備えないことから広がり角および拘束の点で相違する。
[Comparative Example 3]
The comparative example 3 is the light source device which removed the reflector block 101 from the LED light source device 100 of 5th embodiment (refer FIG.17 (c)). In other words, since the LED chip of Comparative Example 3 is the same as that of the fifth embodiment, the output is the same (20 lm). However, since the reflector block 101 is not provided, the LED chip is different in terms of the spread angle and restraint.
[シミュレーション結果]
 以下、各LED光源装置についてのシミュレーションの結果を示す。図17では、第五実施形態、比較例2および比較例3を比較し、図18では、第五実施形態、比較例2および第四実施形態(マイクロリフレクター91b)を比較している。なお、シミュレーションによる比較のため、各LED光源装置の全光束は、いずれも20lmに設定した。
[simulation result]
Hereinafter, the result of the simulation about each LED light source device is shown. In FIG. 17, the fifth embodiment, comparative example 2, and comparative example 3 are compared, and in FIG. 18, the fifth embodiment, comparative example 2 and fourth embodiment (micro reflector 91b) are compared. For comparison by simulation, the total luminous flux of each LED light source device was set to 20 lm.
<光配向>
 図17に、第五実施形態、比較例2および比較例3の各LED光源装置について行った配向角のシミュレーションの結果を示す。図17中、(a)は第五実施形態に係るLED光源装置100、(b)は比較例2に係るLED光源装置110、(c)は比較例3に係るLED光源装置の結果を示している。なお、同図では、光線を見やすくするために光線数を100本に削減した上で図示している。
 図17(a)から、第五実施形態に係るLED光源装置100の照射光の配向角が小さく、中心部の光線密度が同図中で最も高いことが分かる。
 図17(b)から、比較例2に係るLED光源装置110の照射光の配向角は図17(c)と比べると小さく、光線密度は図17(a)と比べると均一に分布していることが分かる。
 図17(c)から、リフレクターを備えない比較例3では光線がランダムに広がっていることが分かる。
<Photo alignment>
In FIG. 17, the result of the simulation of the orientation angle performed about each LED light source device of 5th embodiment, the comparative example 2, and the comparative example 3 is shown. 17, (a) shows the LED light source device 100 according to the fifth embodiment, (b) shows the LED light source device 110 according to Comparative Example 2, and (c) shows the result of the LED light source device according to Comparative Example 3. Yes. In the figure, the number of light rays is reduced to 100 in order to make the light rays easier to see.
From FIG. 17A, it can be seen that the orientation angle of the irradiation light of the LED light source device 100 according to the fifth embodiment is small, and the light density at the center is the highest in the figure.
From FIG. 17B, the orientation angle of the irradiation light of the LED light source device 110 according to Comparative Example 2 is smaller than that in FIG. 17C, and the light density is uniformly distributed as compared with FIG. I understand that.
From FIG. 17 (c), it can be seen that in Comparative Example 3 that does not include a reflector, light rays are randomly spread.
<光束量および光束分布>
 25mm角検知器80に到達した光束量はそれぞれ、(a)第五実施形態が19.17lm、(b)比較例2が7.76lm、(c)第四実施形態(マイクロリフレクター91b)が15.26lmであった。
 図18に、第五実施形態、比較例2および第四実施形態(マイクロリフレクター91b)の各LED光源装置について行った光束量および光束分布のシミュレーションの結果を示す。図18中、(a)は第五実施形態に係るLED光源装置100、(b)は比較例2に係るLED光源装置110、(c)は第四実施形態(マイクロリフレクター91b)に係るLED光源装置の結果を示している。
 図18(a)から、第五実施形態に係るLED光源装置100は、中心部の光線密度が最も高い(最も明るい)が、別の観点からは、光束が25mm角検知器80の中心部に集まり、25mm角検知器80の周辺部が暗くなって明るさにムラが生じてしまうことが分かる。
 図18(b)から、比較例2に係るLED光源装置110は、照射光の配向角は広く、光線密度は図18(a)および(c)と比べ広い面積に光束が分布していることが分かる。
 図18(c)から、第四実施形態(マイクロリフレクター91b)に係るLED光源装置は、図18(a)に比べ中心部の光線密度の点では劣るが、光線の均一分布の点では優れていることが分かる。特に、中心部分に光線密度が最も高い部分を一定面積確保する点において、第五実施形態および比較例2と比べて優れている。
 図19に、第五実施形態、比較例2および第四実施形態(マイクロリフレクター91b)の各LED光源装置について行った指向性のシミュレーションの結果を示す。図19(a)および(c)では、先端がフラットになっており、均一性が良好であることが分かる。
<Light flux amount and light flux distribution>
The amount of light beam reaching the 25 mm square detector 80 is (a) 19.17 lm in the fifth embodiment, (b) 7.76 lm in the comparative example 2, and (c) 15 in the fourth embodiment (micro reflector 91b). .26 lm.
In FIG. 18, the result of the simulation of the light beam quantity and light beam distribution which were performed about each LED light source device of 5th embodiment, the comparative example 2, and 4th embodiment (micro reflector 91b) is shown. 18, (a) is the LED light source device 100 according to the fifth embodiment, (b) is the LED light source device 110 according to the comparative example 2, and (c) is the LED light source according to the fourth embodiment (micro reflector 91b). The result of the apparatus is shown.
From FIG. 18A, the LED light source device 100 according to the fifth embodiment has the highest light density at the center (brightest), but from another point of view, the luminous flux is at the center of the 25 mm square detector 80. Collectively, it can be seen that the periphery of the 25 mm square detector 80 becomes dark and uneven brightness occurs.
From FIG. 18B, the LED light source device 110 according to the comparative example 2 has a wide orientation angle of the irradiated light, and the light beam density is distributed over a wide area compared to FIGS. 18A and 18C. I understand.
From FIG.18 (c), although the LED light source device which concerns on 4th embodiment (micro reflector 91b) is inferior in the point of the light density of center part compared with Fig.18 (a), it is excellent in the point of the uniform distribution of a light ray. I understand that. In particular, it is superior to the fifth embodiment and the comparative example 2 in that a constant area is ensured in the central portion having the highest light density.
In FIG. 19, the result of the directivity simulation performed about each LED light source device of 5th embodiment, the comparative example 2, and 4th embodiment (micro reflector 91b) is shown. 19 (a) and 19 (c), it can be seen that the tip is flat and the uniformity is good.
 以上、シミュレーションの結果より、第五実施形態に係るLED光源装置100は、配向角が小さく光線密度が高いという特徴を持つことが分かった。第五実施形態との比較の結果、プロジェクター用光源としては第四実施形態(マイクロリフレクター91b)に係るLED光源装置が最も評価が高いことが確認された。 As described above, it was found from the simulation results that the LED light source device 100 according to the fifth embodiment has a feature that the orientation angle is small and the light density is high. As a result of comparison with the fifth embodiment, it was confirmed that the LED light source device according to the fourth embodiment (microreflector 91b) has the highest evaluation as the light source for the projector.
《第六実施形態》
 第六実施形態のLED光源装置121は、主として配線層143が二層から構成される点と無機系白色絶縁層144を備える点とで第一実施形態のLED光源装置21と相違する。以下では、相違点を中心に説明し、共通する構成については説明を割愛する。
 図21を参照しながら、LED光源装置121の構成を詳細に説明する。なお、図21は構造を説明するための模式図であり、本実施形態におけるLEDチップ146の配置を正確に示したものではない。
 LED光源装置121は、実装基板141と、実装基板141の上面に塗布された無機系白色絶縁層142と、無機系白色絶縁層142の上面に塗布形成された配線層143と、無機系白色絶縁層144と、配線露出部145と、LEDチップ146と、透光性樹脂層147と、リフレクターブロック150とを備えている。
<< 6th embodiment >>
The LED light source device 121 of the sixth embodiment is different from the LED light source device 21 of the first embodiment in that the wiring layer 143 is mainly composed of two layers and the inorganic white insulating layer 144 is provided. Below, it demonstrates centering around difference and omits description about a common structure.
The configuration of the LED light source device 121 will be described in detail with reference to FIG. FIG. 21 is a schematic diagram for explaining the structure, and does not accurately show the arrangement of the LED chips 146 in the present embodiment.
The LED light source device 121 includes a mounting substrate 141, an inorganic white insulating layer 142 applied to the upper surface of the mounting substrate 141, a wiring layer 143 applied and formed on the upper surface of the inorganic white insulating layer 142, and an inorganic white insulating material. The layer 144, the wiring exposed part 145, the LED chip 146, the translucent resin layer 147, and the reflector block 150 are provided.
 実装基板141は、第一実施形態の実装基板41と同じものである。
 無機系白色絶縁層142は、白色無機顔料を除く組成は第一実施形態と同様であるが、反射効率向上のため、白色無機顔料に酸化チタン(TiO)を用いている。
The mounting substrate 141 is the same as the mounting substrate 41 of the first embodiment.
The inorganic white insulating layer 142 has the same composition as that of the first embodiment except for the white inorganic pigment, but titanium oxide (TiO 2 ) is used for the white inorganic pigment in order to improve the reflection efficiency.
 配線層143は、図22に示すように、実装基板側に形成された第一の配線層1431と、第一の配線層1431の上に形成された第二の配線層1432とからなる。
 第一の配線層1431は、無機系白色絶縁層142との密着性が良好な材料(例えば、導電性樹脂組成物)からなる配線層である。より詳細には、第一の配線層1431は、例えば、金ペーストや、導電性フィラーとして機能する金属粒子およびバインダー樹脂を含む金属ペーストを印刷等により無機系白色絶縁層142上に配線パターンをなして設け、加熱することで形成される。この金属ペーストに含まれる金属粒子は、通常の印刷回路、導電膜に使用されている材料が使用されるが、最も一般的なものは銀(Ag)の粒子である。金属粒子は、ナノサイズ金属粒子とミクロンサイズ金属粒子とを混合し、ミクロンサイズ金属粒子間の隅間をナノサイズ粒子が埋めることで抵抗値を下げるようにしてもよい。この金属ペーストに含まれるバインダー樹脂としては、例えば、ジシクロペンタジエン型エポキシ樹脂が開示される。第一の配線層1431を構成するバインダー樹脂は、多孔質の無機系白色絶縁層142に浸み込み、硬化することによりアンカー効果が奏される。
As illustrated in FIG. 22, the wiring layer 143 includes a first wiring layer 1431 formed on the mounting substrate side and a second wiring layer 1432 formed on the first wiring layer 1431.
The first wiring layer 1431 is a wiring layer made of a material having good adhesion to the inorganic white insulating layer 142 (for example, a conductive resin composition). More specifically, the first wiring layer 1431 is formed with a wiring pattern on the inorganic white insulating layer 142 by, for example, printing a gold paste or a metal paste containing metal particles that function as a conductive filler and a binder resin. And is formed by heating. As the metal particles contained in the metal paste, materials used in ordinary printed circuits and conductive films are used, but the most common is silver (Ag) particles. The metal particles may be mixed with nano-sized metal particles and micron-sized metal particles, and the resistance value may be lowered by filling the spaces between the micron-sized metal particles with the nano-sized particles. As the binder resin contained in this metal paste, for example, a dicyclopentadiene type epoxy resin is disclosed. The binder resin constituting the first wiring layer 1431 is immersed in the porous inorganic white insulating layer 142 and hardened, thereby providing an anchor effect.
第二の配線層1432は、第一の配線層1431よりも低抵抗の材料からなる配線層であり、例えば、ナノサイズ銀粒子を含む銀ペーストを印刷等により第一の配線層1431上に同じ配線パターンをなして設け、加熱することで形成される。第二の配線層1432を複数層により形成してもよい。 The second wiring layer 1432 is a wiring layer made of a material having a resistance lower than that of the first wiring layer 1431. For example, a silver paste containing nano-sized silver particles is printed on the first wiring layer 1431 by printing or the like. It is formed by providing a wiring pattern and heating. The second wiring layer 1432 may be formed of a plurality of layers.
 無機系白色絶縁層144は、配線層143の上に形成され、LEDチップ146からの発光を反射する反射層として機能する。無機系白色絶縁層144は、無機系白色絶縁層142と同様、白色無機顔料に酸化チタン(TiO)を用いた白色無機インクを第二の配線層1432の上に塗布、焼成して形成される。ソルダーレジスト層としても機能する無機系白色絶縁層144は、配線露出部145を露出するように塗布される。配線露出部145は、LEDチップ146のマウント部分およびワイヤボンド領域である。 The inorganic white insulating layer 144 is formed on the wiring layer 143 and functions as a reflective layer that reflects light emitted from the LED chip 146. The inorganic white insulating layer 144 is formed by applying and baking a white inorganic ink using titanium oxide (TiO 2 ) as a white inorganic pigment on the second wiring layer 1432, similarly to the inorganic white insulating layer 142. The The inorganic white insulating layer 144 that also functions as a solder resist layer is applied so as to expose the wiring exposed portion 145. The wiring exposed portion 145 is a mount portion of the LED chip 146 and a wire bond region.
 LEDチップ146は、第一実施形態と同様のLEDベアチップであるが、一方の電極が裏面に設けられる構造を有する点で相違する。第一実施形態と同様、各LEDチップ146は各マイクロリフレクター151の範囲内に収まるように配置されるが、ワイヤボンディング領域が1箇所であるため、ワイヤボンディング領域が2箇所である第一実施形態と比べ、マイクロリフレクター151の底部開口(および上部開口)をより小径とすることが可能である。すなわち、第六実施形態では、第一実施形態と比べLEDチップ146の集積度を高めることが可能である。なお、両方の電極をフリップチップ接合することで、よりLEDチップの集積度を高める態様については、第八実施形態で後述する。 The LED chip 146 is the same LED bare chip as in the first embodiment, but is different in that it has a structure in which one electrode is provided on the back surface. As in the first embodiment, each LED chip 146 is arranged so as to be within the range of each micro reflector 151. However, since there is only one wire bonding area, the first embodiment has two wire bonding areas. As compared with the above, the bottom opening (and the top opening) of the micro reflector 151 can be made smaller in diameter. That is, in the sixth embodiment, it is possible to increase the degree of integration of the LED chips 146 compared to the first embodiment. In addition, the aspect which raises the integration degree of an LED chip more by flip-chip joining both electrodes is later mentioned by 8th embodiment.
 透光性樹脂層147は、第一実施形態と同様であり、透明または蛍光体が混入された樹脂層である。 The translucent resin layer 147 is the same as in the first embodiment, and is a resin layer that is transparent or mixed with a phosphor.
 以上に説明した第六実施形態のLED光源装置121によれば、第一実施形態と比べLEDチップ146の集積度を高めること、マイクロリフレクター151の底部開口および上部開口をより小径とすることが可能である。LEDチップ146の集積度を高めた場合には絶縁層の放熱性が問題となるが、第一実施形態で述べたとおり、無機系白色絶縁層142は肉薄に構成することができるので、ドーナツ化現象の問題は生じない。なお、無機系白色絶縁層142の放熱性能を向上させるために、上述した液材(白色無機インク)に無機材料からなる高熱伝導フィラー(例えば炭化ケイ素(SiC)にnmサイズのアルミナ膜をコートしたもの)を混入させてもよい。 According to the LED light source device 121 of the sixth embodiment described above, it is possible to increase the degree of integration of the LED chips 146 compared to the first embodiment and to make the bottom opening and the top opening of the micro reflector 151 smaller. It is. When the degree of integration of the LED chip 146 is increased, the heat dissipation of the insulating layer becomes a problem. However, as described in the first embodiment, the inorganic white insulating layer 142 can be formed thin, so that it becomes a donut shape. The problem of the phenomenon does not occur. In order to improve the heat dissipation performance of the inorganic white insulating layer 142, the above-described liquid material (white inorganic ink) is coated with a high thermal conductive filler made of an inorganic material (for example, silicon carbide (SiC) with an nm-size alumina film. May be mixed.
 また、第六実施形態のLED光源装置121によれば、配線層143の二層配線構造により、多孔質である無機系白色絶縁層144との密着性を向上させ、LEDチップ146の発熱による高温環境下においても長期にわたり耐久性を確保することが可能である。さらに、配線層143の上にも無機系白色絶縁層144を設けているため、LEDチップ146から発せられた光の反射率が高まり、光量を高めることが可能である。 Further, according to the LED light source device 121 of the sixth embodiment, the two-layer wiring structure of the wiring layer 143 improves the adhesion with the porous inorganic white insulating layer 144, and the high temperature due to the heat generation of the LED chip 146. It is possible to ensure durability over a long period even in an environment. Furthermore, since the inorganic white insulating layer 144 is also provided on the wiring layer 143, the reflectance of light emitted from the LED chip 146 is increased, and the amount of light can be increased.
《第七実施形態》
 第七実施形態のLED光源装置221は、リフレクターブロック250が、透光性樹脂層247の上に配置される点で第六実施形態のLED光源装置121と相違する。以下では、相違点を中心に説明し、共通する構成については説明を割愛する。
 図23を参照しながら、LED光源装置221の構成を詳細に説明する。なお、図23は構造を説明するための模式図であり、本実施形態におけるLEDチップ246の配置を正確に示したものではない。
 LED光源装置221は、実装基板241と、実装基板241の上面に塗布された無機系白色絶縁層242と、無機系白色絶縁層242の上面に塗布形成された配線層243と、無機系白色絶縁層244と、LEDチップ246と、透光性樹脂層247と、ダム材248と、リフレクターブロック250とを備えている。
<< Seventh Embodiment >>
The LED light source device 221 of the seventh embodiment is different from the LED light source device 121 of the sixth embodiment in that the reflector block 250 is disposed on the translucent resin layer 247. Below, it demonstrates centering around difference and omits description about a common structure.
The configuration of the LED light source device 221 will be described in detail with reference to FIG. FIG. 23 is a schematic diagram for explaining the structure, and does not accurately show the arrangement of the LED chips 246 in the present embodiment.
The LED light source device 221 includes a mounting substrate 241, an inorganic white insulating layer 242 applied on the upper surface of the mounting substrate 241, a wiring layer 243 applied and formed on the upper surface of the inorganic white insulating layer 242, and an inorganic white insulating material. A layer 244, an LED chip 246, a translucent resin layer 247, a dam material 248, and a reflector block 250 are provided.
 実装基板241は、第六実施形態の実装基板141と同じものである。
 無機系白色絶縁層242は、第六実施形態の無機系白色絶縁層142と同じものであり、無機系白色絶縁層244は、第六実施形態の無機系白色絶縁層144と同じものである。
The mounting substrate 241 is the same as the mounting substrate 141 of the sixth embodiment.
The inorganic white insulating layer 242 is the same as the inorganic white insulating layer 142 of the sixth embodiment, and the inorganic white insulating layer 244 is the same as the inorganic white insulating layer 144 of the sixth embodiment.
 配線層243は、第六実施形態と同様、実装基板側に形成された第一の配線層と、第一の配線層の上に形成された第二の配線層とからなる。 The wiring layer 243 includes a first wiring layer formed on the mounting substrate side and a second wiring layer formed on the first wiring layer, as in the sixth embodiment.
 LEDチップ246は、第六実施形態と同様のLEDベアチップであるが、一方の電極が裏面に設けられる構造を有している。ワイヤボンディング領域が1箇所であるため、ワイヤボンディング領域が2箇所である第一実施形態と比べ、マイクロリフレクター151の底部開口(および上部開口)をより小径とすることが可能である。 The LED chip 246 is an LED bare chip similar to that of the sixth embodiment, but has a structure in which one electrode is provided on the back surface. Since there is one wire bonding region, the bottom opening (and top opening) of the micro reflector 151 can be made smaller in diameter than in the first embodiment where there are two wire bonding regions.
 ダム材248は、LEDチップ246の実装領域の外周を囲んで形成され、例えば、白色フィラー含有樹脂により構成される。ダム材248の表面には光反射性が付与され、LEDチップ246より発された光を反射する。 The dam material 248 is formed so as to surround the outer periphery of the mounting region of the LED chip 246 and is made of, for example, a white filler-containing resin. The surface of the dam material 248 is given light reflectivity and reflects light emitted from the LED chip 246.
 リフレクターブロック250は、マイクロリフレクター251の底部開口の中心がLEDチップ246の中心の真上にくるように配置される。なお、図23では、リフレクターブロック250が、ダム材248および透光性樹脂層247を覆うように配置されているが、透光性樹脂層247の上部にリフレクターブロック250を配置するようにしてもよい。 The reflector block 250 is arranged so that the center of the bottom opening of the micro reflector 251 is directly above the center of the LED chip 246. In FIG. 23, the reflector block 250 is disposed so as to cover the dam material 248 and the translucent resin layer 247, but the reflector block 250 may be disposed on the translucent resin layer 247. Good.
 第七実施形態では、マイクロリフレクター251が透光性樹脂層247の上方に配置されるため、LEDチップ246の配線の自由度が高く、LEDチップ246の集積度を高めることが可能である。すなわち、マイクロリフレクター251のピッチ直径とする円の範囲内(以下、「配線可能領域」という場合がある)でワイヤボンディング領域を設定できるので、LEDチップ246の集積度を高めることが可能である。 In the seventh embodiment, since the micro reflector 251 is disposed above the translucent resin layer 247, the degree of freedom of wiring of the LED chip 246 is high, and the degree of integration of the LED chip 246 can be increased. In other words, since the wire bonding area can be set within the range of a circle having the pitch diameter of the micro reflector 251 (hereinafter sometimes referred to as “routable area”), the degree of integration of the LED chips 246 can be increased.
 マイクロリフレクター251の上部開口の間隔が大きくなるほど配線可能領域の直径は大きくなる。図23の例では、配線可能領域は、マイクロリフレクター壁251aの中心を通る二本の鉛直線A―A’の範囲となる。 ¡The larger the gap between the upper openings of the micro-reflector 251, the larger the diameter of the wireable area. In the example of FIG. 23, the routable area is a range of two vertical lines A-A ′ passing through the center of the micro reflector wall 251a.
 図24(a)、図25(a)はマイクロブロック250の構成例である。
 図24(a)のマイクロブロック250は、25個のマイクロリフレクター251が、縦方向に3.5mm、横方向に3.05mmのピッチで千鳥状に5×5個設けられており、外形サイズは22×26×t4.8mmである。
 図25(a)のマイクロブロック250は、42個のマイクロリフレクター251が、縦方向に3.5mm、横方向に3.05mmのピッチで千鳥状に7×6個設けられており、外形サイズは22×26×t4.8mmである。
 各マイクロリフレクター251は、図24(a)および図25(a)のいずれも同一であり、それぞれ直径1.48mmの円の底部開口および直径3.1mmの円の上部開口を有している。
24A and 25A are configuration examples of the micro block 250. FIG.
In the micro block 250 of FIG. 24A, 25 micro reflectors 251 are provided in a staggered pattern with a pitch of 3.5 mm in the vertical direction and 3.05 mm in the horizontal direction. × 26 × t4.8 mm.
In the micro block 250 of FIG. 25A, 42 micro reflectors 251 are provided in a staggered pattern of 7 × 6 at a pitch of 3.5 mm in the vertical direction and 3.05 mm in the horizontal direction. × 26 × t4.8 mm.
Each micro-reflector 251 is the same in both FIG. 24A and FIG. 25A and has a bottom opening of a circle having a diameter of 1.48 mm and a top opening of a circle having a diameter of 3.1 mm.
 図24(a)のマイクロブロックの250場合、各配線可能領域の和は、図24(b)の斜線でハッチングした領域であり、マイクロリフレクター251の上部開口の和よりも広い。図25(a)のマイクロブロック250も同様である。このように、同一形状のマイクロリフレクターが等ピッチで配置されている場合、各配線可能領域は互いに外接する同一サイズの円となる。 In the case of 250 of the micro block in FIG. 24A, the sum of each routable area is a hatched area in FIG. 24B, which is wider than the sum of the upper opening of the micro reflector 251. The same applies to the micro block 250 in FIG. Thus, when the micro reflectors of the same shape are arranged at an equal pitch, each routable area is a circle of the same size that circumscribes each other.
 LEDチップ246と配線層243の電気接続は、配線可能領域内でワイヤボンド接続によって行うことができる。ここで、ワイヤが、マイクロリフレクターの上部開口の範囲を越え、マイクロリフレクター壁の下方で電気接続されると、ワイヤが隣接するLEDチップ246の光を遮光したりする恐れがあるため、ワイヤボンドはマイクロリフレクターの上部開口の範囲内で行うことが好ましい。言い換えれば、LEDチップ246と配線層243は、当該LEDチップ246が配置されるマイクロリフレクター251の上部開口の範囲内で結線されることが好ましく、当該LEDチップ246が配置されるマイクロリフレクター251の底部開口の範囲内で結線されることが更に好ましい。図23の例では、二本の鉛直線B-B’の範囲がマイクロリフレクター251の底部開口の範囲内となる。 The electrical connection between the LED chip 246 and the wiring layer 243 can be performed by a wire bond connection within the routable area. Here, if the wire exceeds the range of the upper opening of the micro-reflector and is electrically connected below the micro-reflector wall, the wire may block light from the adjacent LED chip 246. It is preferable to carry out within the range of the upper opening of the micro reflector. In other words, the LED chip 246 and the wiring layer 243 are preferably connected within the range of the upper opening of the micro reflector 251 in which the LED chip 246 is disposed, and the bottom of the micro reflector 251 in which the LED chip 246 is disposed. It is more preferable that the connection is made within the range of the opening. In the example of FIG. 23, the range of the two vertical lines B-B ′ is within the range of the bottom opening of the micro reflector 251.
 第七実施形態のLED光源装置221によれば、リフレクターブロック250が、透光性樹脂層247を形成した後に取り付けられるため、製造が容易となる。また、配線可能領域が広いので、マイクロリフレクター251を小型化・高密度化することができ、ひいてはリフレクターブロック250を小型化することが可能となる。 According to the LED light source device 221 of the seventh embodiment, since the reflector block 250 is attached after forming the translucent resin layer 247, the manufacture becomes easy. Further, since the routable area is wide, the micro reflector 251 can be miniaturized and densified, and the reflector block 250 can be miniaturized.
《第八実施形態》
 第八実施形態のLED光源装置321は、LEDチップ346が、配線層343にフリップチップ接合される点で第六実施形態のLED光源装置121と相違する。以下では、相違点を中心に説明し、共通する構成については説明を割愛する。
 図26を参照しながら、LED光源装置321の構成を詳細に説明する。なお、図26は構造を説明するための模式図であり、本実施形態におけるLEDチップ346の配置を正確に示したものではない。
<< Eighth Embodiment >>
The LED light source device 321 of the eighth embodiment is different from the LED light source device 121 of the sixth embodiment in that the LED chip 346 is flip-chip bonded to the wiring layer 343. Below, it demonstrates centering around difference and omits description about a common structure.
The configuration of the LED light source device 321 will be described in detail with reference to FIG. FIG. 26 is a schematic diagram for explaining the structure, and does not accurately show the arrangement of the LED chips 346 in the present embodiment.
 LEDチップ346と配線層343は、例えば金や銀を主成分とするバンプ349でフリップチップ接合され、あるいは異方性導電フィルム(通称:ACF)を用いて接続される。これにより、ワイヤボンドのための領域を必要としないため、LEDチップ346を高密度に実装することができる。フリップチップ接合は、例えば、メッキ等によりLEDチップ346上にバンプ349を形成し、配線層343にマウントした後、裏面346B側からLEDチップ346を熱圧着することにより行われる。 The LED chip 346 and the wiring layer 343 are flip-chip bonded, for example, with bumps 349 mainly composed of gold or silver, or are connected using an anisotropic conductive film (common name: ACF). Thereby, since an area for wire bonding is not required, the LED chips 346 can be mounted with high density. The flip chip bonding is performed by, for example, forming bumps 349 on the LED chip 346 by plating or the like, mounting the wiring layer 343, and then thermocompression bonding the LED chip 346 from the back surface 346B side.
 LEDチップ346は上面が発光面となっているため、フリップチップ接合に用いられるバンプ349を補強するため、バンプ349の周囲にはエポキシ材料等のアンダーフィル材を用いてもよい。なお、上述のACFを用いる場合は、ACF自体がアンダーフィル材の役割を奏するので、アンダーフィルは不要である。 Since the upper surface of the LED chip 346 is a light emitting surface, an underfill material such as an epoxy material may be used around the bump 349 in order to reinforce the bump 349 used for flip chip bonding. In the case of using the above-described ACF, the ACF itself plays the role of an underfill material, so that underfill is unnecessary.
 第八実施形態のLED光源装置321によれば、ワイヤボンドのための領域が不要となるので、マイクロリフレクター351を小型化・高密度化することができ、ひいてはリフレクターブロック350を小型化することが可能となる。 According to the LED light source device 321 of the eighth embodiment, since the area for wire bonding is not required, the micro reflector 351 can be downsized and densified, and the reflector block 350 can be downsized. It becomes possible.
《第九実施形態》
 第九実施形態のLED光源装置は、UV硬化型インク硬化用やUV殺菌用の紫外光を発するLED光源装置に関する。第九実施形態のLED光源装置は、複数のCOBを複数個一列に並べて構成される。
 第九実施形態のLED光源装置は、図27に示す実装基板441にLEDチップやリフレクターブロック等を実装して1つの単位光源421とし、図28のようにモジュール基板460上に10個の単位光源421a~jを並べて構成される。なお、図28において、10個の単位光源421a~jに実装したLEDチップやリフレクターブロック等は省略されており、実装基板およびモジュール基板460のみが図示されている。
<< Ninth Embodiment >>
The LED light source device of the ninth embodiment relates to an LED light source device that emits ultraviolet light for UV curing type ink curing and UV sterilization. The LED light source device of the ninth embodiment is configured by arranging a plurality of COBs in a row.
In the LED light source device of the ninth embodiment, an LED chip, a reflector block, or the like is mounted on the mounting substrate 441 shown in FIG. 27 to form one unit light source 421, and 10 unit light sources are mounted on the module substrate 460 as shown in FIG. 421a to j are arranged side by side. In FIG. 28, the LED chips and reflector blocks mounted on the ten unit light sources 421a to 421j are omitted, and only the mounting substrate and the module substrate 460 are shown.
 第九実施形態のLED光源装置に用いられる単位光源421は、LEDチップおよび無機系白色絶縁層に用いられる白色無機顔料と透明樹脂層を除き、第六実施形態のLED光源装置121と同様の構成をなしている。以下では、相違点を中心に説明し、共通する構成については説明を割愛する。 The unit light source 421 used in the LED light source device of the ninth embodiment has the same configuration as the LED light source device 121 of the sixth embodiment except for the white inorganic pigment and the transparent resin layer used for the LED chip and the inorganic white insulating layer. I am doing. Below, it demonstrates centering around difference and omits description about a common structure.
 第九実施形態の単位光源421の構成を詳細に説明する。単位光源421の構成は図26と同様であり、実装基板441と、実装基板441の上面に塗布された無機系白色絶縁層と、無機系白色絶縁層の上面に塗布形成された配線層と、配線層上に形成された無機系白色絶縁層と、LEDチップと、リフレクターブロックとを備えている。ダム材あるいは石英ガラス封止のための接着枠は図示していないが、これらの材料として反射材として用いているアルミナの白色無機顔料を用いても良い。また第九実施形態では第六実施形態と異なり、透明樹脂層は設け無くても良いが、チップを保護するためにモジュール全体を一括して、石英ガラス等でカバーすることが好ましい。単位光源のサイズは50×30mmであり、モジュール基板460上に単位光源421a~jの長辺を隣り合うように10個並べたときのサイズは50×300mmである。 The configuration of the unit light source 421 of the ninth embodiment will be described in detail. The configuration of the unit light source 421 is the same as that shown in FIG. 26, and includes a mounting substrate 441, an inorganic white insulating layer applied to the upper surface of the mounting substrate 441, a wiring layer applied and formed on the upper surface of the inorganic white insulating layer, An inorganic white insulating layer formed on the wiring layer, an LED chip, and a reflector block are provided. Although an adhesive frame for sealing a dam material or quartz glass is not shown, a white inorganic pigment of alumina used as a reflective material may be used as these materials. In the ninth embodiment, unlike the sixth embodiment, the transparent resin layer may not be provided. However, in order to protect the chip, it is preferable that the entire module is collectively covered with quartz glass or the like. The size of the unit light source is 50 × 30 mm, and the size when ten long sides of the unit light sources 421a to 421j are arranged adjacent to each other on the module substrate 460 is 50 × 300 mm.
 実装基板441は、第六実施形態の実装基板141と同じものである。
 無機系白色絶縁層は、白色無機顔料を除く組成は第一実施形態と同様であるが、紫外線に対する反射率の高さから、白色無機顔料にアルミナを用いている。
 配線層は、第六実施形態の配線層143と同様、実装基板側に形成された第一の配線層と、第一の配線層の上に形成された第二の配線層とからなる。
 配線層上にある無機系白色絶縁層は、図27に示す電源電極4431、配線露出部4432、4433を除いた領域に塗布され、第六実施形態と同様、配線層の絶縁およびLEDチップからの発光を反射する反射層として機能する。
 電源電極4431は、外部の電源装置に接続され単位光源に電源を供給する。
 配線露出部4432には、LEDチップがマウントされる。第六実施形態と同様にLEDチップの裏面(配線層側)に電極を設け、フリップチップ接合することによって、LEDチップと配線層を電気接続することもできる。
 配線開口部4433は、配線層がLEDチップとワイヤボンド接続される箇所である。
The mounting substrate 441 is the same as the mounting substrate 141 of the sixth embodiment.
The composition of the inorganic white insulating layer is the same as that of the first embodiment except for the white inorganic pigment, but alumina is used as the white inorganic pigment because of its high reflectance with respect to ultraviolet rays.
Similar to the wiring layer 143 of the sixth embodiment, the wiring layer includes a first wiring layer formed on the mounting substrate side and a second wiring layer formed on the first wiring layer.
The inorganic white insulating layer on the wiring layer is applied to a region excluding the power supply electrode 4431 and the wiring exposed portions 4432 and 4433 shown in FIG. 27. As in the sixth embodiment, the wiring layer insulation and the LED chip It functions as a reflective layer that reflects light emission.
The power electrode 4431 is connected to an external power supply device and supplies power to the unit light source.
An LED chip is mounted on the wiring exposed portion 4432. Similarly to the sixth embodiment, the LED chip and the wiring layer can be electrically connected by providing an electrode on the back surface (wiring layer side) of the LED chip and performing flip chip bonding.
The wiring opening 4433 is a portion where the wiring layer is wire-bonded to the LED chip.
 LEDチップは、第六実施形態と同様、ワイヤボンディングと裏面配線を使用するタイプのLEDベアチップであり、例えば、窒化ガリウム系のLEDチップであり、UV領域に発光波長を有する。詳細な発光波長の領域としては、UV硬化型インク硬化用にはUV-A領域、UV殺菌用にはUV-C領域が開示される。具体的な波長は、例えば、UV硬化型インク硬化用として365nm、UV殺菌用として260nmの波長が開示される。LEDチップの出力角度は、例えば、配向150°Lambertianである。 The LED chip is a type of LED bare chip that uses wire bonding and backside wiring, as in the sixth embodiment, and is, for example, a gallium nitride-based LED chip that has a light emission wavelength in the UV region. As the detailed emission wavelength region, a UV-A region is disclosed for UV-curable ink curing, and a UV-C region is disclosed for UV sterilization. As specific wavelengths, for example, a wavelength of 365 nm for UV curable ink curing and a wavelength of 260 nm for UV sterilization are disclosed. The output angle of the LED chip is, for example, an orientation of 150 ° Lambertian.
 LEDチップは、1つの単位光源421に対し、100個実装される。100個のLEDチップは、図27に示す配線開口部4432の位置に、縦3.8mm、横3mmのピッチで10×10個の千鳥配置状に実装される。LEDチップのサイズは、1.05×1.05×0.11mmである。UV光源の場合は、所望の紫外線強度を実現するべく、縦5mm、横5mmピッチ以下とすることが好ましく、更に好ましくは、縦4.25mm、横3.7mmピッチ以下とする。紫外線強度の観点からはピッチは狭いほど好ましいが、最終的には、縦横5mmピッチ以下を満たす範囲で、リフレクターブロックの製造容易性とのトレードオフで最適なピッチを決定する。
 第九実施形態のLED光源装置は、10個の単位光源421a~jで構成されるため、用いられるLEDチップの総数は1000個である。
100 LED chips are mounted on one unit light source 421. 100 LED chips are mounted in a 10 × 10 staggered arrangement at a pitch of 3.8 mm in length and 3 mm in width at the position of the wiring opening 4432 shown in FIG. The size of the LED chip is 1.05 × 1.05 × 0.11 mm. In the case of a UV light source, the pitch is preferably 5 mm in length and 5 mm in width or less, more preferably 4.25 mm in length and 3.7 mm in width or less in order to achieve a desired ultraviolet intensity. From the viewpoint of ultraviolet intensity, the narrower the pitch, the better. However, the optimum pitch is finally determined in a range satisfying the vertical and horizontal pitches of 5 mm or less in terms of the trade-off with the ease of manufacturing the reflector block.
Since the LED light source device of the ninth embodiment is composed of 10 unit light sources 421a to 421j, the total number of LED chips used is 1000.
 リフレクターブロックは、第六実施形態のリフレクターブロック150と同様の構成であり、マイクロリフレクターの配列は、図24(a)の5×5の千鳥状配列を10×10の千鳥状配列に拡張したものとなっている。マイクロリフレクターの大きさは、上部開口がφ3.9mm、底部開口がφ1.5mm、高さが3.7mmである。 The reflector block has the same configuration as the reflector block 150 of the sixth embodiment, and the arrangement of the micro reflectors is an extension of the 5 × 5 zigzag arrangement in FIG. 24A to a 10 × 10 zigzag arrangement. It has become. As for the size of the micro reflector, the top opening is φ3.9 mm, the bottom opening is φ1.5 mm, and the height is 3.7 mm.
 リフレクターブロックに透光性樹脂層は通常は設けないが、透光性樹脂層で封入する場合は、UV領域の波長に適した蛍光体を適宜選択する。 The translucent resin layer is not normally provided on the reflector block, but when encapsulating with the translucent resin layer, a phosphor suitable for the wavelength in the UV region is appropriately selected.
 第九実施形態のLED光源装置の性能を検証すべく、リフレクターブロックの有無における、受光面の紫外光の分布を求めるシミュレーションを実施した。
 解析する光線数は1つのLEDチップあたり10万本(合計で1億本)とし、受光面のサイズは250×500mmとした。
In order to verify the performance of the LED light source device of the ninth embodiment, a simulation was performed to determine the ultraviolet light distribution on the light receiving surface in the presence or absence of the reflector block.
The number of rays to be analyzed was 100,000 per LED chip (100 million in total), and the size of the light receiving surface was 250 × 500 mm.
 ところで、紫外線照射としてのLED光源装置に対し、下記の理由等から、受光面との距離が離れていても紫外線強度を維持したいというニーズが存在する。
(1)UV硬化型インクの硬化用途の対象である印刷紙は、大型の場合、たわみが生じやすく、受光面を離して照射する必要がある。
(2)UV殺菌用途としては、対象物に汎用性を持たせるために受光面を離して照射する必要がある。
 このため、受光面の距離を40~85mmの間で変えた条件にてシミュレーションを実施し、紫外線強度を検証した。
Incidentally, there is a need for the LED light source device as ultraviolet irradiation to maintain the ultraviolet intensity even when the distance from the light receiving surface is long, for the following reasons.
(1) When a printing paper that is a target for curing UV curable ink is large, it is likely to bend, and it is necessary to irradiate the light receiving surface apart.
(2) As a UV sterilization application, it is necessary to irradiate the light receiving surface away from the object in order to provide versatility.
Therefore, a simulation was carried out under the condition that the distance of the light receiving surface was changed between 40 mm and 85 mm, and the ultraviolet intensity was verified.
 図29は、受光面の距離が(a)40mm、(b)60mm、(c)85mmにおける紫外線強度分布のシミュレーションの結果である。(a)、(b)、(c)それぞれの表において真ん中の列は第九実施形態のLED光源装置からリフレクターブロックを除いたモデル(表中、「リフレクタなし」と記載)の結果を、右側の列は第九実施形態のLED光源装置のモデル(表中、「リフレクタあり」と記載)の結果を示す。結果の項目は、受光面における紫外線強度分布(表中、「面分布」と記載)、受光面の中心線に沿った紫外線強度のプロット(表中、「断面」と記載)、受光面全体の照度(表中、「照度」と記載)である。 FIG. 29 shows the result of the simulation of the ultraviolet intensity distribution when the distance of the light receiving surface is (a) 40 mm, (b) 60 mm, and (c) 85 mm. In each of the tables (a), (b), and (c), the middle row shows the result of the model (in the table, described as “no reflector”) obtained by removing the reflector block from the LED light source device of the ninth embodiment. Column shows the result of the model of the LED light source device of the ninth embodiment (described as “with reflector” in the table). The items of the results are the UV intensity distribution on the light receiving surface (in the table, described as “surface distribution”), the UV intensity plot along the center line of the light receiving surface (in the table, indicated as “cross section”), the entire light receiving surface Illuminance (denoted as “illuminance” in the table).
 (a)の「面分布」と「断面」の行を見ると分かるように、リフレクターブロックがある場合は、ない場合に比べて紫外線が受光面中心に集中し、紫外線の分布が狭くなり、ピークが2倍程度になっていることが分かる。
 リフレクターブロックがある場合、ない場合に比べて紫外線が受光面中心に集中し、紫外線の分布が狭くなる傾向は(b)、(c)においても同様であった。
 リフレクターブロックがない場合に対するリフレクターブロックがある場合のピークの比率は、(b)が2.2倍程度、(c)が2.5倍程度であった。
As can be seen from the “surface distribution” and “cross section” rows in (a), when the reflector block is present, the ultraviolet light is concentrated at the center of the light receiving surface and the ultraviolet light distribution is narrower and the peak than when there is no reflector block. It can be seen that is doubled.
The tendency that the ultraviolet rays are concentrated at the center of the light receiving surface and the distribution of the ultraviolet rays is narrower in the cases (b) and (c) than in the case without the reflector block.
The ratio of the peak when there is a reflector block to when there is no reflector block was about 2.2 times for (b) and about 2.5 times for (c).
 (a)~(c)のシミュレーション結果から、リフレクターブロックがある場合では、リフレクターブロックがない場合に対して、紫外線の分布が狭くなり、2~2.5倍のピーク強度が得られることが確認された。また、受光面の距離が長くなるほど、リフレクターブロックがない場合に対するリフレクターブロックがある場合のピーク強度の比率は大きくなることが確認された。 From the simulation results of (a) to (c), it is confirmed that when there is a reflector block, the UV distribution is narrower and the peak intensity is 2 to 2.5 times higher than when there is no reflector block. It was done. In addition, it was confirmed that as the distance of the light receiving surface becomes longer, the ratio of the peak intensity when there is a reflector block to when there is no reflector block increases.
 第九実施形態のLED光源装置によれば、リフレクターブロックを用いているため、光源と受光面の距離が離れていても紫外線強度を維持することができ、光源から離して使用するUV硬化やUV殺菌の用途に適しているといえる。 According to the LED light source device of the ninth embodiment, since the reflector block is used, the ultraviolet intensity can be maintained even if the distance between the light source and the light receiving surface is large, and UV curing or UV used away from the light source is used. It can be said that it is suitable for sterilization applications.
 以上、本開示にて幾つかの実施形態を単に例示として詳細に説明したが、本発明の新規な教示及び有利な効果から実質的に逸脱せずに、その実施の形態には多くの改変例が可能である。 Although some embodiments have been described in detail in the present disclosure by way of example only, many modifications may be made to the embodiments without substantially departing from the novel teachings and advantages of the present invention. Is possible.
 本発明のLED光源装置は、遠くまで出力を有効に使いたい赤外線照明(例えば、赤外線カメラ用)、UV印刷/UV硬化/UV露光用光源、ヘッドランプに好適である。特に離れた対象物に、より多くの出力を与えたい赤外線照明やUV硬化(紫外線硬化型シート等の効果作業等)の用途において効果が大きい(これらのモジュール構成については、第九実施形態を参照)。
 更に、赤外線照明で本モジュールを適用した場合は、今まで実現できなかった高出力で小型化(ハンディ)も可能となり、個人ユースのセキュリティ装置(例えば、携帯電話に簡単に取り付け、暗闇での周囲の観察チェックが可能となる)や、車載取付用としての利用も可能になる。
The LED light source device of the present invention is suitable for infrared illumination (for example, for infrared cameras), UV printing / UV curing / UV exposure light sources, and headlamps that want to use output effectively far. Especially effective in applications such as infrared illumination and UV curing (effect work such as ultraviolet curable sheets) that want to give more output to a distant object (see the ninth embodiment for these module configurations) ).
Furthermore, when this module is applied with infrared illumination, it is possible to achieve high output and miniaturization (handy), which could not be realized until now. Can also be used for in-vehicle mounting.
21:LED光源装置、22:コリメーターレンズ、23:液晶ライトバルブ、31:ダイクロイックプリズム、32:投射光学系、41:実装基板、42:無機系白色絶縁層(基板反射層)
43:配線層、44:絶縁層、45:載置部、46:LEDチップ、47:透光性樹脂層、48:マイクロレンズ、50:リフレクターブロック、51:マイクロリフレクター、52:反射層(反射面)、53:外枠部、54:仕切枠、60:リフレクターブロック、61:マイクロリフレクター、62:底部開口、63:小径胴部、64:第一内周面、65:第二内周面、66:第三内周面、67:第四内周面、68:上部開口、71:LED光源装置、72:リフレクターブロック、73:マイクロリフレクター、74:外部リフレクター、80:25mm角検知器、91:マイクロリフレクター(第四実施形態)、92:マイクロリフレクター(比較例1)、100:リフレクター、110:公知のLED光源装置、111:集光レンズ、111a:凸レンズ、111b:胴部、111c:凸レンズ、112:集光レンズ、112a:凸レンズ、112b:胴部、113:LEDチップ、114:実装基板、121:LED光源装置、141:実装基板、142:無機系白色絶縁層(基板反射層)、143:配線層、1431:第一の配線層、1432:第二の配線層、144:絶縁層、146:LEDチップ、147:透光性樹脂層、150:リフレクターブロック、151:マイクロリフレクター、221:LED光源装置、241:実装基板、242:無機系白色絶縁層(基板反射層)、243:配線層、244:絶縁層、246:LEDチップ、247:透光性樹脂層、248:ダム材、250:リフレクターブロック、251:マイクロリフレクター、251a:マイクロリフレクター壁、321:LED光源装置、341:実装基板、342:無機系白色絶縁層(基板反射層)、343:配線層、344:絶縁層、346:LEDチップ、346A:表面、346B:裏面、347:透光性樹脂層、349:バンプ、350:リフレクターブロック、351:マイクロリフレクター、441:実装基板、421:単位光源、421a~j:単位光源、460:モジュール基板、L:投射光


 
21: LED light source device, 22: collimator lens, 23: liquid crystal light valve, 31: dichroic prism, 32: projection optical system, 41: mounting substrate, 42: inorganic white insulating layer (substrate reflection layer)
43: wiring layer, 44: insulating layer, 45: mounting portion, 46: LED chip, 47: translucent resin layer, 48: microlens, 50: reflector block, 51: microreflector, 52: reflection layer (reflection) Surface), 53: outer frame portion, 54: partition frame, 60: reflector block, 61: micro reflector, 62: bottom opening, 63: small diameter body portion, 64: first inner peripheral surface, 65: second inner peripheral surface , 66: third inner peripheral surface, 67: fourth inner peripheral surface, 68: upper opening, 71: LED light source device, 72: reflector block, 73: micro reflector, 74: external reflector, 80: 25 mm square detector, 91: Micro reflector (fourth embodiment), 92: Micro reflector (Comparative example 1), 100: Reflector, 110: Known LED light source device, 111: Light condensing lens 111a: convex lens, 111b: barrel, 111c: convex lens, 112: condenser lens, 112a: convex lens, 112b: barrel, 113: LED chip, 114: mounting board, 121: LED light source device, 141: mounting board, 142: Inorganic white insulating layer (substrate reflection layer), 143: wiring layer, 1431: first wiring layer, 1432: second wiring layer, 144: insulating layer, 146: LED chip, 147: translucent resin 150, reflector block, 151: micro reflector, 221: LED light source device, 241: mounting substrate, 242: inorganic white insulating layer (substrate reflecting layer), 243: wiring layer, 244: insulating layer, 246: LED chip 247: Translucent resin layer, 248: Dam material, 250: Reflector block, 251: Micro reflector, 251a: Ichroreflector wall, 321: LED light source device, 341: mounting substrate, 342: inorganic white insulating layer (substrate reflecting layer), 343: wiring layer, 344: insulating layer, 346: LED chip, 346A: front surface, 346B: back surface 347: Translucent resin layer, 349: Bump, 350: Reflector block, 351: Micro reflector, 441: Mounting substrate, 421: Unit light source, 421a to j: Unit light source, 460: Module substrate, L: Projection light


Claims (21)

  1.  少なくとも表面が金属である実装基板と、
     前記実装基板の表面に形成された第一の絶縁層と、
     前記第一の絶縁層の上層として形成された配線層と、
     実装基板上にマトリックス状に表面実装された、同一仕様である多数個のLEDチップと、を備えたLED光源装置において、
     前記LEDチップと同数のマイクロリフレクターを有するリフレクターブロックを備え、
     前記マイクロリフレクターが、底部開口と底部開口よりも大径の上部開口とを有し、
     前記配線層が、前記絶縁層に染み込み硬化する樹脂および金属粉末を含有する金属ペーストを塗布し、加熱して形成される第一の導電層と、第一の導電層の上面に形成される第一の導電層よりも低抵抗の第二の導電層とを備えて構成されることを特徴とするLED光源装置。
    A mounting board having a metal surface at least,
    A first insulating layer formed on the surface of the mounting substrate;
    A wiring layer formed as an upper layer of the first insulating layer;
    In an LED light source device comprising a large number of LED chips having the same specifications and surface-mounted in a matrix on a mounting substrate,
    Comprising a reflector block having the same number of micro-reflectors as the LED chip;
    The micro-reflector has a bottom opening and a top opening having a larger diameter than the bottom opening;
    The wiring layer is formed by applying a metal paste containing a resin and a metal powder that penetrates and hardens into the insulating layer and is heated, and a first conductive layer formed on an upper surface of the first conductive layer. An LED light source device comprising: a second conductive layer having a resistance lower than that of one conductive layer.
  2.  前記配線層の上層として反射層として機能する第二の絶縁層が、前記配線層を露出させる露出部を残すように形成されていることを特徴とする請求項1に記載のLED光源装置。 The LED light source device according to claim 1, wherein a second insulating layer functioning as a reflective layer as an upper layer of the wiring layer is formed so as to leave an exposed portion exposing the wiring layer.
  3.  前記第一の絶縁層が、ナノ粒子化されたSiO及び白色無機顔料を含む液材を塗布し、160~250℃で加熱してなる多孔質の無機系白色絶縁層により構成されることを特徴とする請求項2に記載のLED光源装置。 The first insulating layer is composed of a porous inorganic white insulating layer formed by applying a liquid material containing nanoparticulated SiO 2 and a white inorganic pigment and heating at 160 to 250 ° C. The LED light source device according to claim 2.
  4.  前記第二の絶縁層が、ナノ粒子化されたSiO及び白色無機顔料を含む液材を塗布し、160~250℃で加熱してなる多孔質の無機系白色絶縁層により構成されることを特徴とする請求項3に記載のLED光源装置。 The second insulating layer is composed of a porous inorganic white insulating layer formed by applying a liquid material containing nanoparticulated SiO 2 and a white inorganic pigment and heating at 160 to 250 ° C. The LED light source device according to claim 3.
  5.  前記マイクロリフレクターの上部開口が、底部開口に対し70~85°で拡径されており、底部開口と上部開口との距離が4~8mmであることを特徴とする請求項2ないし4のいずれかに記載のLED光源装置。 5. The microreflector according to claim 2, wherein the top opening of the micro reflector is enlarged in diameter by 70 to 85 ° with respect to the bottom opening, and the distance between the bottom opening and the top opening is 4 to 8 mm. LED light source device according to the above.
  6.  前記マイクロリフレクターが千鳥配置されており、各マイクロリフレクターの中心間の間隔が前記上部開口の直径よりも小さいこと、かつ、前記上部開口が相互に重なり合わないことを特徴とする請求項5に記載のLED光源装置。 The micro-reflectors are arranged in a staggered manner, the distance between the centers of the micro-reflectors is smaller than the diameter of the upper openings, and the upper openings do not overlap each other. LED light source device.
  7.  前記LEDチップが、当該LEDチップが配置される前記マイクロリフレクターのピッチ上部開口の範囲内で前記開口部を介して前記配線層と結線されることを特徴とする請求項6に記載のLED光源装置。 The LED light source device according to claim 6, wherein the LED chip is connected to the wiring layer through the opening within a pitch upper opening of the micro reflector on which the LED chip is disposed. .
  8.  配光角度が30度以下であり、全光束値が500ルーメン以上であり、かつ、プロジェクター用であることを特徴とする請求項2ないし7のいずれかに記載のLED光源装置。 The LED light source device according to any one of claims 2 to 7, wherein the LED light source device has a light distribution angle of 30 degrees or less, a total luminous flux value of 500 lumens or more, and a projector.
  9.  前記LEDチップの上面視形状が実質正方形であり、最大定格電流300mA以上であることを特徴とする請求項8に記載のLED光源装置。 The LED light source device according to claim 8, wherein the shape of the LED chip viewed from above is substantially square and has a maximum rated current of 300 mA or more.
  10.  前記リフレクターブロックが一体成形された樹脂材料により構成され、
     前記マイクロリフレクターの内周面に、金属材料からなる反射層が形成されていることを特徴とする請求項9に記載のLED光源装置。
    The reflector block is made of an integrally molded resin material,
    The LED light source device according to claim 9, wherein a reflective layer made of a metal material is formed on an inner peripheral surface of the micro reflector.
  11.  前記リフレクターブロックの心材に金属、外周部に樹脂が一体成形され、前記マイクロリフレクターの内周面に、金属材料からなる反射層が形成されていることを特徴とする請求項9に記載のLED光源装置。 The LED light source according to claim 9, wherein a metal is integrally formed on the core of the reflector block, a resin is integrally formed on an outer peripheral portion, and a reflective layer made of a metal material is formed on an inner peripheral surface of the micro reflector. apparatus.
  12.  前記マイクロリフレクターが、上部開口と、前記LEDチップが近傍に配置される底部開口と、反射面とを備え、
     前記反射面が、底部開口側に位置し、前記LEDチップからの照射光を中心軸側に集光するよう作用する第一の内周面と、第一の内周面よりも上部開口側に位置し且つ中心軸に対する角度が狭い第二の内周面と、第二の内周面よりも上部開口側に位置し且つ中心軸に対する角度が狭い第三の内周面とを備えて構成されることを特徴とする請求項8ないし11のいずれかに記載のLED光源装置。
    The micro reflector includes a top opening, a bottom opening in which the LED chip is disposed in the vicinity, and a reflective surface,
    The reflective surface is located on the bottom opening side, and operates on the upper opening side of the first inner peripheral surface and the first inner peripheral surface acting to collect the irradiation light from the LED chip on the central axis side. And a second inner peripheral surface having a narrow angle with respect to the central axis, and a third inner peripheral surface positioned closer to the upper opening than the second inner peripheral surface and having a narrow angle with respect to the central axis. The LED light source device according to claim 8, wherein the LED light source device is an LED light source device.
  13.  前記各内周面の断面形状が、直線状であることを特徴とする請求項12に記載のLED光源装置。 13. The LED light source device according to claim 12, wherein a cross-sectional shape of each inner peripheral surface is a linear shape.
  14.  赤色光用LED光源装置と、前記赤色光用LED光源装置から射出される光を変調する赤色光用透過型液晶パネルと、
     緑色光用LED光源装置と、前記緑色光用LED光源装置から射出される光を変調する緑色光用透過型液晶パネルと、
     青色光用LED光源装置と、前記赤色光用LED光源装置から射出される光を変調する赤色光用透過型液晶パネルと、
     赤色光、緑色光および青色光を合成するダイクロイックプリズムと、
     ダイクロイックプリズムからの合成光を投写する投写光学系と、を備えたプロジェクターにおいて、
     前記赤色光用LED光源装置、前記緑色光用LED光源装置および前記青色光用LED光源装置が、請求項2ないし13のいずれかに記載のLED光源装置により構成されることを特徴とするプロジェクター。
    A red light LED light source device, a red light transmissive liquid crystal panel that modulates light emitted from the red light LED light source device, and
    An LED light source device for green light, a transmissive liquid crystal panel for green light that modulates light emitted from the LED light source device for green light,
    A blue light LED light source device, a red light transmissive liquid crystal panel that modulates light emitted from the red light LED light source device, and
    A dichroic prism that combines red, green and blue light;
    In a projector comprising a projection optical system that projects combined light from a dichroic prism,
    The projector according to claim 2, wherein the LED light source device for red light, the LED light source device for green light, and the LED light source device for blue light are constituted by the LED light source device according to claim 2.
  15.  前記赤色光用LED光源装置、前記緑色光用LED光源装置および前記青色光用LED光源装置の全光束値が、2000ルーメン以上であることを特徴とする請求項12に記載のプロジェクター。 13. The projector according to claim 12, wherein a total light flux value of the LED light source device for red light, the LED light source device for green light, and the LED light source device for blue light is 2000 lumens or more.
  16.  前記マイクロリフレクターが構成する照射面が、前記各液晶パネルと比べ一回り大きく構成されていることを特徴とする請求項14または15に記載のプロジェクター。 The projector according to claim 14 or 15, wherein an irradiation surface formed by the micro reflector is configured to be slightly larger than each of the liquid crystal panels.
  17.  前記多数個のLEDチップが、紫外光を発光することを特徴とする請求項1ないし7のいずれかに記載のLED光源装置。 The LED light source device according to claim 1, wherein the plurality of LED chips emit ultraviolet light.
  18.  請求項17に記載のLED光源装置を複数個連設してなる光源を有するUVインク硬化用装置。 A UV ink curing device having a light source comprising a plurality of LED light source devices according to claim 17 connected in series.
  19.  請求項17に記載のLED光源装置を複数個連設してなる光源を有するUV殺菌用装置。 An apparatus for UV sterilization having a light source comprising a plurality of LED light source devices according to claim 17 connected in series.
  20.  前記多数個のLEDチップが、赤外光を発光することを特徴とする請求項1ないし7のいずれかに記載のLED光源装置。 The LED light source device according to any one of claims 1 to 7, wherein the plurality of LED chips emit infrared light.
  21.  請求項1ないし13のいずれかに記載のLED光源装置に用いられるリフレクターブロック。


     
    The reflector block used for the LED light source device in any one of Claims 1 thru | or 13.


PCT/JP2016/067034 2015-06-08 2016-06-08 Led light source device and projector WO2016199804A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-115786 2015-06-08
JP2015115786A JP6735072B2 (en) 2014-11-21 2015-06-08 LED light source device and projector

Publications (1)

Publication Number Publication Date
WO2016199804A1 true WO2016199804A1 (en) 2016-12-15

Family

ID=57530454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067034 WO2016199804A1 (en) 2015-06-08 2016-06-08 Led light source device and projector

Country Status (2)

Country Link
JP (1) JP6735072B2 (en)
WO (1) WO2016199804A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018139206A (en) * 2017-02-24 2018-09-06 パナソニックIpマネジメント株式会社 Light source unit and luminaire comprising the same
JP2019050326A (en) * 2017-09-12 2019-03-28 株式会社フーマイスターエレクトロニクス Led light source device having directivity for projector
JP2019125683A (en) * 2018-01-16 2019-07-25 東芝マテリアル株式会社 LED module
WO2020054246A1 (en) * 2018-09-13 2020-03-19 スタンレー電気株式会社 Fluid sterilization device
WO2020075828A1 (en) * 2018-10-12 2020-04-16 株式会社エンプラス Ultraviolet irradiation unit and ultraviolet sterilizer
WO2021249668A1 (en) * 2020-06-11 2021-12-16 Smart United Holding Gmbh Lamp and system with wall-type radiation fields for preventing or minimising the spread of pathogens in indoor air
EP3944346A1 (en) * 2020-07-22 2022-01-26 InnoLux Corporation Method of manufacturing a light emitting device
WO2022054298A1 (en) * 2020-09-09 2022-03-17 ineova株式会社 Virus and bacteria sterilization device
JP2022045862A (en) * 2020-09-09 2022-03-22 ineova株式会社 Sterilizer of viruses and bacteria
CN115291462A (en) * 2019-01-25 2022-11-04 深圳光峰科技股份有限公司 Display device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6900603B2 (en) 2018-10-12 2021-07-07 株式会社Uskテクノロジー Light source device
JP6931167B2 (en) * 2019-04-25 2021-09-01 日亜化学工業株式会社 Luminous module
JP7282620B2 (en) * 2019-07-04 2023-05-29 シャープ福山レーザー株式会社 image display element
CN114072729A (en) * 2019-07-12 2022-02-18 夏普Nec显示器解决方案株式会社 Light source device, projector, and light intensity distribution uniformizing method
JP7392426B2 (en) * 2019-11-28 2023-12-06 セイコーエプソン株式会社 Light emitting devices and projectors
WO2022231030A1 (en) * 2021-04-29 2022-11-03 엘지전자 주식회사 Image projection device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104027A (en) * 1978-01-31 1979-08-15 Matsushita Electric Works Ltd Manufacturing of rain trough
JPS5759726A (en) * 1980-09-27 1982-04-10 Ishida Sangyo Kk Strip plate for forming pipe, method and apparatus for preparing the same
JPS62263037A (en) * 1986-05-12 1987-11-16 Toyota Motor Corp Manufacture of long fiber reinforced resin steering wheel core
JPH0685331A (en) * 1992-09-02 1994-03-25 Akio Hoga Projector
JPH0736459U (en) * 1993-12-20 1995-07-04 株式会社小糸製作所 Light emitting diode
JP2000269551A (en) * 1999-03-18 2000-09-29 Rohm Co Ltd Chip-type light emitting device
JP2005166941A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Light emitting device, its manufacturing method, lighting module using the same, and lighting equipment
JP2006074007A (en) * 2004-08-06 2006-03-16 Matsushita Electric Ind Co Ltd Light emitting source, manufacturing method of light emitting source, lighting apparatus, and display apparatus
JP2006295079A (en) * 2005-04-14 2006-10-26 Tdk Corp Light emitting device
JP2009177098A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Ultraviolet light emitting device
JP2012155049A (en) * 2011-01-25 2012-08-16 Seiko Epson Corp Projector and light source control method of the same
WO2013018783A1 (en) * 2011-08-01 2013-02-07 株式会社Steq Semiconductor device and fabrication method for same
JP2014216527A (en) * 2013-04-26 2014-11-17 京セラ株式会社 Light irradiation module and printer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048404B2 (en) * 2009-07-06 2015-06-02 Zhuo Sun Thin flat solid state light source module

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104027A (en) * 1978-01-31 1979-08-15 Matsushita Electric Works Ltd Manufacturing of rain trough
JPS5759726A (en) * 1980-09-27 1982-04-10 Ishida Sangyo Kk Strip plate for forming pipe, method and apparatus for preparing the same
JPS62263037A (en) * 1986-05-12 1987-11-16 Toyota Motor Corp Manufacture of long fiber reinforced resin steering wheel core
JPH0685331A (en) * 1992-09-02 1994-03-25 Akio Hoga Projector
JPH0736459U (en) * 1993-12-20 1995-07-04 株式会社小糸製作所 Light emitting diode
JP2000269551A (en) * 1999-03-18 2000-09-29 Rohm Co Ltd Chip-type light emitting device
JP2005166941A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Light emitting device, its manufacturing method, lighting module using the same, and lighting equipment
JP2006074007A (en) * 2004-08-06 2006-03-16 Matsushita Electric Ind Co Ltd Light emitting source, manufacturing method of light emitting source, lighting apparatus, and display apparatus
JP2006295079A (en) * 2005-04-14 2006-10-26 Tdk Corp Light emitting device
JP2009177098A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Ultraviolet light emitting device
JP2012155049A (en) * 2011-01-25 2012-08-16 Seiko Epson Corp Projector and light source control method of the same
WO2013018783A1 (en) * 2011-08-01 2013-02-07 株式会社Steq Semiconductor device and fabrication method for same
JP2014216527A (en) * 2013-04-26 2014-11-17 京セラ株式会社 Light irradiation module and printer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018139206A (en) * 2017-02-24 2018-09-06 パナソニックIpマネジメント株式会社 Light source unit and luminaire comprising the same
JP2019050326A (en) * 2017-09-12 2019-03-28 株式会社フーマイスターエレクトロニクス Led light source device having directivity for projector
JP2019125683A (en) * 2018-01-16 2019-07-25 東芝マテリアル株式会社 LED module
WO2020054246A1 (en) * 2018-09-13 2020-03-19 スタンレー電気株式会社 Fluid sterilization device
WO2020075828A1 (en) * 2018-10-12 2020-04-16 株式会社エンプラス Ultraviolet irradiation unit and ultraviolet sterilizer
CN115291462A (en) * 2019-01-25 2022-11-04 深圳光峰科技股份有限公司 Display device
CN115291462B (en) * 2019-01-25 2023-07-07 深圳光峰科技股份有限公司 Display apparatus
WO2021249668A1 (en) * 2020-06-11 2021-12-16 Smart United Holding Gmbh Lamp and system with wall-type radiation fields for preventing or minimising the spread of pathogens in indoor air
EP3944346A1 (en) * 2020-07-22 2022-01-26 InnoLux Corporation Method of manufacturing a light emitting device
WO2022054298A1 (en) * 2020-09-09 2022-03-17 ineova株式会社 Virus and bacteria sterilization device
JP2022045862A (en) * 2020-09-09 2022-03-22 ineova株式会社 Sterilizer of viruses and bacteria
JP7150285B2 (en) 2020-09-09 2022-10-11 ineova株式会社 Virus and Bacteria Sterilizer

Also Published As

Publication number Publication date
JP6735072B2 (en) 2020-08-05
JP2016105450A (en) 2016-06-09

Similar Documents

Publication Publication Date Title
WO2016199804A1 (en) Led light source device and projector
JP7125636B2 (en) light emitting device
US9576941B2 (en) Light-emitting device and method of manufacturing the same
JP6493345B2 (en) Light emitting device
JP5572038B2 (en) Semiconductor light emitting device and vehicular lamp using the same
US9583682B2 (en) Light-emitting device and method of manufacturing the same
US10871268B2 (en) LED lighting unit
US9429830B2 (en) Fluorescent light emitting element and projector
US8342720B2 (en) Vehicle light and road illumination device
TWI322322B (en) Projection device
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
US10591141B2 (en) Light-emitting apparatus with inclined light-emitting units
JP7231832B2 (en) Light-emitting device, liquid crystal display device
JP6448365B2 (en) Light emitting device and projection device
WO2019064980A1 (en) Light source device and light projection device
JP2011114096A (en) Illumination device
JP5553722B2 (en) Light emitting device
JP5582380B2 (en) Vehicle lighting
JP5227135B2 (en) Semiconductor light emitting device and manufacturing method thereof
WO2020021851A1 (en) Led light source device having directivity, method for manufacturing led light source device, and projector
JP6776855B2 (en) Light emitting device
JP2007207939A (en) Light emitting device
JP2019106474A (en) Light emitting device
JP7021447B2 (en) Luminescent device
JP2019050326A (en) Led light source device having directivity for projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807510

Country of ref document: EP

Kind code of ref document: A1