WO2016199803A1 - 塗装又は印刷のための前処理方法 - Google Patents

塗装又は印刷のための前処理方法 Download PDF

Info

Publication number
WO2016199803A1
WO2016199803A1 PCT/JP2016/067031 JP2016067031W WO2016199803A1 WO 2016199803 A1 WO2016199803 A1 WO 2016199803A1 JP 2016067031 W JP2016067031 W JP 2016067031W WO 2016199803 A1 WO2016199803 A1 WO 2016199803A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
flame
flame treatment
gas burner
substrate
Prior art date
Application number
PCT/JP2016/067031
Other languages
English (en)
French (fr)
Inventor
佐藤 正樹
成寿 鈴木
大 平工
杉田 修一
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to KR1020187000375A priority Critical patent/KR20180033500A/ko
Priority to RU2017141568A priority patent/RU2726636C2/ru
Priority to CN201680033374.0A priority patent/CN107683181B/zh
Priority to JP2016559369A priority patent/JP6088716B1/ja
Priority to EP16807509.1A priority patent/EP3305421A4/en
Priority to US15/577,395 priority patent/US10751751B2/en
Publication of WO2016199803A1 publication Critical patent/WO2016199803A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0011Pre-treatment or treatment during printing of the recording material, e.g. heating, irradiating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/08Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/142Auto-deposited coatings, i.e. autophoretic coatings
    • B05D7/144After-treatment of auto-deposited coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0047Digital printing on surfaces other than ordinary paper by ink-jet printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0058Digital printing on surfaces other than ordinary paper on metals and oxidised metal surfaces
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • B05D2202/15Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5263Macromolecular coatings characterised by the use of polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B41M5/5272Polyesters; Polycarbonates

Definitions

  • the present invention relates to a pretreatment method for coating or printing on a surface of a metal base material (having a thermal conductivity of 10 W / mK or more) having specific characteristics with a paint or ink containing a resin.
  • Patent Document 1 an outer surface including applying a coating agent to a steel pipe when the temperature of the steel pipe reaches 50 to 70 ° C. after removing moisture, dust, oil, etc. adhering to the surface of the steel pipe with a flame of a burner.
  • a method for accelerating the curing of a coating agent is disclosed.
  • the surface of a steel pipe is sufficiently coated with rust preventive oil.
  • rust preventive oil In order to burn away the rust-preventing oil, it is necessary to heat it to at least 400 ° C. for a certain period of time, which may cause problems in quality as a product such as oxidation of the metal surface. Therefore, means such as alkaline degreasing are usually used to remove oils attached to the metal surface such as rust preventive oil, and it is generally practiced to remove the oil on the metal surface by burning. I have not been told.
  • Patent Document 2 the surface of a metal strip such as a stainless steel strip or an alloy strip is cleaned with a cleaning solution such as an organic solvent or an alkali solution after the oil or solid deposit adhered in the manufacturing process is cleaned with a flame treatment. Is disclosed.
  • the inventors of the present invention have devised and studied to remove the foreign matter adhering to the surface of the metal base material by flame treatment before painting or printing the paint or ink on the metal base material, When performing a flame treatment, it turned out that the adhesiveness and wettability of a subsequent coating film and printing ink are not enough.
  • the present inventors have found that the cause of the decrease in the adhesion and wettability of the coating film and printing ink is condensation that occurs during the flame treatment, and this is a metal with high thermal conductivity. It was found to be a phenomenon peculiar to the system base material.
  • the present inventors have suppressed the condensation by preheating the temperature of the metal base material to 40 ° C. or more before the flame treatment. It has been found that the adhesion or wettability of the coating film or printing ink is improved. Furthermore, the present inventor has devised continuous preheating and flame treatment in a series of steps in order to efficiently perform the treatment before painting or printing.
  • the present invention provides a paint or ink on the surface of a metal base material having a thermal conductivity of 10 W / mK or more, which is selected from a plated steel plate, a degreased plain steel plate, a stainless steel plate, a coated steel plate, an aluminum plate and a copper plate.
  • a method of pre-coating or printing a metal-based substrate surface which comprises preheating the substrate to 40 ° C. or higher before coating or printing with a coating, and then continuously flame-treating the surface of the substrate. I will provide a.
  • preheating means include installing a preheating gas burner in the pretreatment line and installing a conveyor type near-infrared furnace or mid-infrared furnace in the pretreatment line.
  • a burner using liquefied petroleum gas (LPG) or liquefied natural gas (LNG) as a fuel is widely used.
  • LPG liquefied petroleum gas
  • LNG liquefied natural gas
  • the metal base material having high thermal conductivity used in the present invention when flame treatment is performed by a burner without preheating, heat is quickly diffused at the moment when the flame contacts the metal base material, and the temperature of the spot Will go down. Therefore, water that has become water vapor in the flame is cooled on the surface of the base material, and condensation occurs on the surface of the metal base material. This condensed water stays on the surface of the metal base material during the flame treatment and interferes with the flame treatment.
  • the metal base material having a specific thermal conductivity to 40 ° C or higher when flame-treating, the occurrence of condensation is suppressed and the foreign matter adhering to the surface of the metal base material is removed.
  • the adhesion and wettability of the coating film or printing ink can be improved. Furthermore, in the pretreatment method of the present invention, it is possible to perform preheating and flame treatment continuously, so that the productivity is high and the treatment can be performed efficiently.
  • (A) is a photograph showing an example of a ribbon type
  • (b) is a photograph showing an example of a round hole type. It is the figure which showed an example of the flame outlet of the ribbon burner which can be used by this invention. In an Example, it is the figure which showed the temperature decay curve when each metal type base material was pre-heated to 100 degreeC with the gas burner.
  • Curve i represents an acrylic plate
  • curve ii represents an austenitic stainless steel plate
  • curve iii represents a coated steel plate
  • curve iv represents an aluminum alloy plate.
  • the temperature decay curve iii in the coated steel sheet is almost the same as the temperature decay curve of the ferritic stainless steel sheet and the hot-dip Zn-55% Al alloy-plated steel sheet, so that the description of these curves is omitted.
  • the vertical axis of this table represents the substrate surface temperature (° C.), and the horizontal axis represents the elapsed time (seconds).
  • the present invention uses a metal-based substrate having a thermal conductivity of 10 W / mK or more for coating or printing with paint or ink.
  • a metal base material having a thermal conductivity of 15 W / mK or more, more preferably 30 W / mK or more, and most preferably 40 W / mK or more is used.
  • the thermal conductivity is less than 10 W / mK, since the thermal diffusion of the base material is low, there is no need for preheating because no condensation occurs even if the water vapor contained in the flame comes into contact with the base material.
  • the metal base material of the present invention has a thermal conductivity of 10 W / mK or more.
  • a plated steel plate such as a molten Zn-55% Al alloy-plated steel plate, a stainless steel plate, an aluminum plate, a copper plate, and a plain steel plate that has been degreased are used.
  • the aluminum plate includes an aluminum alloy mainly composed of aluminum.
  • oils such as rust preventive oil are not applied.
  • a stainless steel plate may be coated with oil such as lubricating oil or rolling oil in a production line, but the surface is finally cleaned in a cleaning process.
  • oil such as lubricating oil or rolling oil in a production line
  • the surface is finally processed and it becomes difficult to generate
  • the surface of the aluminum plate is immediately covered with aluminum oxide to prevent further oxidation, it does not rust and deteriorate its quality.
  • copper plates copper is not as easily rusted as iron, and this also does not require application of oil such as anti-rust oil.
  • a normal steel plate for the treatment method of the present invention a normal steel plate that has been degreased is used.
  • a known degreasing treatment such as an alkali treatment or a solvent treatment can be used.
  • the metal-type base material used by this invention is an elongate rectangular shape when a coating apparatus and a printing apparatus are considered.
  • These metal base materials may be embossed, drawn or the like, and subjected to irregularities such as tile, brick, and wood grain.
  • the metal-based substrate may have a chemical conversion treatment film formed on the surface thereof.
  • the chemical conversion film is formed on the entire surface of the base material, and improves the corrosion resistance of the base material.
  • the kind of chemical conversion treatment which forms a chemical conversion treatment film is not specifically limited. Examples of the chemical conversion treatment include chromate treatment, chromium-free treatment, and phosphate treatment.
  • the adhesion amount of the chemical conversion coating is not particularly limited as long as it is within a range effective for improving the corrosion resistance.
  • the coated steel sheet in which the coating film by the coating material was provided in the one surface or both surfaces of the said steel plate is also contained in the metal-type base material used by this invention.
  • the coated steel sheet as the metal-based substrate of the present invention is obtained by forming an ink-receiving layer after arbitrarily forming a chemical conversion treatment film and / or an undercoat film on the steel sheet.
  • the chemical conversion coating is formed on the entire surface of the steel sheet, and improves coating film adhesion and corrosion resistance.
  • An example of the chemical conversion treatment is as described above.
  • the undercoat coating film is formed on the surface of the steel plate or the chemical conversion coating film, and improves the adhesion and corrosion resistance of the coating film.
  • the undercoat coating film is formed, for example, by applying an undercoat paint containing a resin to the surface of a steel sheet or a chemical conversion treatment film and drying (or curing).
  • the kind of resin contained in the undercoat paint is not particularly limited. Examples of the type of resin include polyester, epoxy resin, acrylic resin, and the like. Epoxy resins are particularly preferred because of their high polarity and good adhesion.
  • the film thickness of an undercoat coating film will not be specifically limited if said function can be exhibited.
  • the film thickness of the undercoat coating film is, for example, about 5 ⁇ m.
  • the ink receiving layer of the coated steel sheet used in the present invention is formed using a resin composition containing a resin and a pigment for forming a matrix as a paint.
  • the kind of resin used as the matrix is not particularly limited.
  • the resin serving as the matrix include polyester, acrylic resin, polyvinylidene fluoride, polyurethane, epoxy resin, polyvinyl alcohol, and phenol resin.
  • the resin serving as the matrix is preferably polyester, acrylic resin, or polyvinylidene fluoride.
  • the resin composition at that time has polyester, a melamine resin, a catalyst, and an amine, for example.
  • the kind of polyester is not particularly limited as long as it can cause a crosslinking reaction with the melamine resin.
  • the number average molecular weight of the polyester is not particularly limited, but is preferably 5000 or more from the viewpoint of processability.
  • the hydroxyl value of the polyester is not particularly limited, but is preferably 40 mgKOH / g or less.
  • the glass transition point of the polyester is not particularly limited, but is preferably in the range of 0 to 70 ° C. When the glass transition point is less than 0 ° C., the hardness of the ink receiving layer may be insufficient. On the other hand, when the glass transition point is higher than 70 ° C., the workability may be reduced.
  • Melamine resin is a polyester cross-linking agent.
  • the melamine resin is not particularly limited, but is preferably a methylated melamine resin.
  • the methylated melamine resin preferably has a methoxy group content in the functional groups in the molecule of 80 mol% or more.
  • a methylated melamine resin may be used alone or in combination with other melamine resins.
  • the catalyst promotes the reaction of the melamine resin.
  • the catalyst include dodecylbenzenesulfonic acid, paratoluenesulfonic acid, and benzenesulfonic acid.
  • the blending amount of the catalyst is preferably about 0.1 to 8% with respect to the resin solid content.
  • the amine neutralizes the catalytic reaction. Examples of the amine include triethylamine, dimethylethanolamine, dimethylaminoethanol, monoethanolamine, and isopropanolamine.
  • the compounding quantity of an amine is not specifically limited, It is preferable that it is the quantity of 50% or more of an equivalent with respect to an acid (catalyst).
  • the resin for forming the matrix is an acrylic resin
  • an acrylic resin emulsion is used.
  • the molecular weight of the acrylic resin in the emulsion is preferably in the range of 200,000 to 2,000,000.
  • the molecular weight of the acrylic resin in the emulsion can be measured by gel permeation chromatography (GPC).
  • the resin for forming the matrix is polyvinylidene fluoride
  • a resin composition in which a thermoplastic acrylic resin is mixed with polyvinylidene fluoride in a weight ratio of 20/80 to 50/50 can be used as a coating material.
  • Examples of the pigment used in the ink receiving layer include extender pigments (including beads) and colored pigments.
  • the kind of extender pigment is not particularly limited.
  • Examples of extender pigments include silica, calcium carbonate, barium sulfate, aluminum hydroxide, talc, mica, resin beads, glass beads and the like.
  • the type of resin beads is not particularly limited.
  • the resin beads include acrylic resin beads, polyacrylonitrile beads, polyethylene beads, polypropylene beads, polyester beads, urethane resin beads, and epoxy resin beads. These resin beads may be produced using a known method, or commercially available products may be used. Examples of commercially available acrylic resin beads include “Tough Tick AR650S (average particle size 18 ⁇ m)”, “Tough Tick AR650M (average particle size 30 ⁇ m)”, “Tough Tick AR650MX (average particle size 40 ⁇ m)”, “Tough Tick AR650MZ”.
  • Tough Tick AR650ML Average particle diameter 80 ⁇ m
  • Tough Tick AR650L average particle diameter 100 ⁇ m
  • Tough Tick AR650LL average particle diameter 150 ⁇ m
  • Examples of commercially available polyacrylonitrile beads include “Toughtic A-20 (average particle size: 24 ⁇ m)”, “Toughtic YK-30 (average particle size: 33 ⁇ m)”, “Toughtic YK-50 (average particle size) manufactured by Toyobo Co., Ltd. And “Toughtic YK-80 (average particle size 80 ⁇ m)”.
  • the kind of coloring pigment is not particularly limited.
  • the color pigment include carbon black, titanium oxide, iron oxide, yellow iron oxide, phthalocyanine blue, and cobalt blue.
  • the type of pigment, the particle size, and the content in the resin composition (paint) can be appropriately adjusted by those skilled in the art depending on the type of printing and the type of ink to be printed.
  • the thickness of the ink receiving layer is not particularly limited, but is usually in the range of 3 to 30 ⁇ m.
  • a coating film is too thin, there exists a possibility that durability and concealment property of a coating film may become inadequate.
  • the coating film is too thick, the manufacturing cost increases, and there is a possibility that a crack is likely to occur during baking.
  • the thermal conductivity in the present invention can be measured by a method based on JIS R1611-2010 (corresponding international standard: ISO 18755: 2005). Specifically, a 10 mm square sample can be prepared and measured using a laser flash method thermophysical property measuring apparatus LFA-502 manufactured by Kyoto Electronics Industry Co., Ltd.
  • coated steel sheets such as hot-dip Zn-55% Al alloy-plated steel sheets, stainless steel sheets, aluminum sheets, copper sheets, and degreased plain steel sheets, which are not coated with resin on the surface
  • preheating and flame treatment are preferably performed several hours before printing. Specifically, it is preferably within 4 hours for coating or printing on the metal-based substrate, more preferably within 2 hours, still more preferably within 30 minutes, and most preferably within 10 minutes.
  • time until painting or printing exceeds 4 hours after the flame treatment, foreign matters such as dust and dirt again adhere to the surface of the base material again, and the effect of the pretreatment method of the present invention is fully exhibited. I can't.
  • a metal base material with a resin coating such as a coated steel plate is less susceptible to dirt as compared to the metal base material without the resin coating, and therefore flame treatment for several months (for example, about 6 months). The effect can be maintained. Therefore, the coated steel sheet may be processed several months after the flame treatment, or may be treated within the same time as the above steel sheet after the flame treatment.
  • the metal-based substrate is preheated to 40 ° C. or higher.
  • the means for preheating the base material is not particularly limited as long as it can be flame-treated continuously after preheating. Specifically, preheating using a gas burner, or a conveyor type (line type) heating furnace is used. Can be used. As the heating furnace, a near-infrared furnace or a mid-infrared furnace is preferable.
  • the temperature of the preheating of this invention points out the temperature just before a flame process, and is not necessarily the same as the temperature immediately after preheating.
  • the present invention includes a step of preheating and flame-treating a metal base material having a temperature of 40 ° C. or higher. Specifically, it refers to a temperature measured within 3 seconds, preferably within 1 second, more preferably within 0.5 seconds until flame treatment.
  • preheating it is preferable to perform preheating at a higher temperature, because unevenness in flame treatment can be reduced. Specifically, it is preferable to preheat to 45 ° C. or higher, more preferably to preheat to 50 ° C. or higher, 55 More preferably, it is 60 ° C. or higher. In addition, it is preferable to preheat the metal base material having a higher thermal conductivity at a higher temperature. For example, in the case of a substrate having a thermal conductivity of 100 W / mK or higher, preheating is preferably performed at 60 ° C. or higher, and more preferably preheated at 65 ° C. or higher.
  • the upper limit of the preheating temperature is not particularly limited, but it is preferable to preheat the metal base so that the temperature of the metal base does not exceed 300 ° C. in consideration of deterioration due to oxidation of the surface of the metal base. Therefore, the upper limit of the preheating temperature is preferably less than 300 ° C.
  • a gas burner is used.
  • the gas burner used here can be a gas burner that is generally used for surface treatment of steel plates or coated steel plates.
  • LPG liquefied petroleum gas
  • LNG liquefied natural gas
  • acetylene gas propane gas, or butane
  • air or oxygen is used as the auxiliary gas.
  • LPG or LNG In consideration of combustion energy, it is preferable to use LPG or LNG.
  • the mode of the flame outlet is not particularly limited, but a ribbon type or round hole type gas burner can be usually used.
  • An example of the Ripon type is shown in FIG. 5 (a), and an example of the round hole type is shown in FIG. 5 (b).
  • a ribbon burner as a gas burner for flame treatment.
  • Burners having a burner head having such a structure are commercially available.
  • product name F-3000 ribbon burner: see FIG. 6) of Flynn Burner (USA), product name FFP250 of Finecom I & T (Korea), etc.
  • the width of the burner flame opening (the width parallel to the width direction of the metal base material) must be the width that the flame is irradiated to the entire surface of the base material. Select the appropriate burner. For example, when the width in the width direction of the metal base is 40 cm, a burner having a flame opening width of 45 to 50 cm is selected. (For example, in FIG. 2, when W1 is 40 cm, a gas burner having W2 of 45 to 50 cm is selected.)
  • the burner output of the burner is 250 kJ / hour to 12000 kJ / hour, preferably 400 kJ / hour to 7500 kJ / hour, more preferably 600 kJ / hour to 5000 kJ / hour, and even more preferably 1200 kJ / hour per 10 mm of the width of the burner flame. Adjust the output to 5,000kJ / hour.
  • the gas burner for flame treatment one or more gas burners can be used.
  • the conveyance speed of the metal base material at the time of the flame treatment increases, an air flow accompanying the conveyance of the metal base material is generated, and the flame is affected by the air flow, and the efficiency of the flame treatment may be deteriorated. Therefore, it is preferable to use two or more gas burners for flame treatment when the conveying speed of the metal-based substrate is high. It is also possible to perform flame treatment using three or more flame treatment gas burners. However, considering the capital investment, production efficiency, and the effects of flame treatment, if the conveyance speed is large, 2 It is preferable to use a flame burner gas burner.
  • the same paint (which may or may not contain a pigment) as the resin composition used in the ink receiving layer is applied.
  • a coating method a known method such as a roll coater method or a bar coater method can be used.
  • a known printing method can be used.
  • the printing method include gravure printing, offset printing, screen printing, and ink jet printing.
  • inkjet printing is a preferable printing method because it can easily form a complicated multicolor pattern in a short time.
  • the ink used for inkjet printing can be a known ink, and specific examples include water-based ink, oil-based ink, and actinic ray curable ink. Since the effect of the present invention is remarkably recognized, it is preferable to use an actinic ray curable ink.
  • the actinic ray curable ink includes a radical polymerization type ink and a cationic polymerization type ink, and any of them can be used.
  • the actinic ray curable ink usually contains a monomer or oligomer, a photopolymerization initiator, a coloring material, a dispersant, a surfactant, and other additives.
  • the material generally used in the said technical field is used.
  • the cationic polymerization type ink is particularly preferable because it has a smaller volume shrinkage than the radical polymerization type ink and can provide high adhesion to an impermeable ink-receiving layer having an increased crosslinking density.
  • the “active ray” in the present invention includes electron beam, ultraviolet ray, ⁇ ray, ⁇ ray, X ray and the like.
  • actinic ray curable ink is cured with actinic rays from an actinic ray irradiator after landing on the printed surface of the substrate.
  • actinic rays are irradiated after 1.0 second or more, preferably 2.0 seconds or more, and more preferably 2.2 seconds or more after the ink droplet has landed.
  • water in the air may inhibit the polymerization of the ink, the actinic ray is irradiated within 30 seconds after the ink has landed.
  • FIG. 1 is a metal-based substrate (also referred to as “substrate 1”)
  • 2 is a preheating gas burner
  • 3 is a first flame treatment gas burner
  • 4 is a second flame treatment gas burner
  • 5 represents an ink jet printer
  • 6 represents an actinic ray irradiator
  • 7 represents a transport device.
  • the base material 1 is placed on the transport machine 7 and transported in the direction of the broken line arrow in FIG.
  • the base material 1 is preheated with a preheating gas burner and subjected to a flame treatment at a temperature of 40 ° C. or higher with the first and second gas burners.
  • the substrate surface is printed by the inkjet printer 5 after the flame treatment.
  • the actinic ray irradiator 6 irradiates actinic rays to cure the ink.
  • the conveyance speed of the substrate 1 by the conveyance machine 7 varies depending on printing conditions and the like, but is generally 10 m / min to 50 m / min, preferably 20 m / min to 40 m / min.
  • reference numeral 1 denotes a preheating gas burner.
  • this preheating gas burner a commercially available gas burner similar to the flame treatment gas burner can be used.
  • the output of the preheating gas burner may be any output as long as the temperature of the metal substrate 1 is 40 ° C. or higher, and may be the same as the output of the gas burner for the flame treatment.
  • it is 250 kJ / hr to 12000 kJ / hr, preferably 400 kJ / hr to 7500 kJ / hr, more preferably 600 kJ / hr to 5000 kJ / hr, and even more preferably 1200 kJ / hr per 10 mm of the width of the flame outlet of the burner. Adjust the output to ⁇ 5000kJ / hour. Moreover, since the metal-type base material 1 should just be 40 degreeC or more at the time of preheating, it is preferable that an output is lower than a flame treatment.
  • the output of the gas burner for preheating is preferably 25% to 95% of the output for flame treatment, more preferably 30% to 90%, and more preferably 30% to 80%. More preferably.
  • the temperature of the metal base material can be adjusted so as not to be heated excessively.
  • each gas burner is installed so that there is at least 1 second, more preferably 2 seconds or more until it is treated by the first flame treatment gas burner 3 after being treated by the preheating gas burner 2. Adjust.
  • a time decay curve of the surface temperature of the base material 1 is created in advance, and the desired temperature of the base material surface during the first flame treatment is defined from the graph, and the time from the pre-heat treatment to the first flame treatment is defined.
  • Set Considering both the time until evaporation of the above condensation and the time for setting the surface temperature of the base material 1 to the desired temperature (at least 40 ° C. or higher) when receiving the first flame treatment, for preheating.
  • set the time from the first flame treatment to the first flame treatment Accordingly, the distance D1 between the preheating gas burner 2 and the first flame treatment gas burner 3 is determined by the set time and the conveying speed (FIG. 2).
  • the time until the substrate 1 is treated with the second flame treatment gas burner after the treatment with the first flame treatment gas burner is such that the temperature of the substrate after the first flame treatment does not become less than 40 ° C. Set to.
  • a time decay curve of the surface temperature of the base material 1 is created in advance, and a desired temperature of the base material surface at the time of the second flame processing is defined from the graph, and from the first flame processing.
  • the time until the second flame treatment is set. Therefore, the distance D2 between the first flame treatment gas burner 3 and the second flame treatment gas burner 4 is determined by the set time and the conveying speed (FIG. 2).
  • the conveying speed when the conveying speed is high, it is preferable to install two or more flame treatment gas burners.
  • the conveyance speed in this case is 20 m / min or more, an air flow accompanying the conveyance of the substrate 1 is generated, and the efficiency of the flame treatment may be reduced.
  • two flame treatment gas burners as shown in FIG.
  • the arrangement of the preheating gas burner 2 and the first flame treatment gas burner 3 is preferably arranged apart from each other in a parallel direction so that the substrate can be treated uniformly.
  • the flame treatment gas burners are arranged apart from each other in parallel directions.
  • the preheating gas burner 2 and the first flame treatment gas burner 3 are arranged in a direction perpendicular to the conveying direction. It is preferable that it is installed.
  • the respective flame treatment gas burners are arranged apart from each other in a direction perpendicular to the conveyance direction of the substrate 1.
  • the base material 1 subjected to the flame treatment as described above is printed with the actinic ray curable ink by the ink jet printer 5 and irradiated with the actinic ray irradiator 6 to cure the ink and complete the printing.
  • FIG. 3 1 is a base material
  • 8 is a conveyor-type near-infrared furnace or mid-infrared furnace (hereinafter referred to as “preheating furnace”)
  • 3 is a first flame treatment gas burner
  • 4 is a second flame treatment.
  • Gas burner for use 5 is an ink jet printer
  • 6 is an actinic ray irradiator
  • 7 is a conveyor.
  • the substrate 1 is placed on the transporter 7 and transported in the direction of the broken line arrow in FIG.
  • the substrate 1 is preheated in the preheating furnace 8 and subjected to flame treatment with the first and second gas burners at a temperature of 40 ° C. or higher.
  • the substrate surface is printed by the inkjet printer 5 after the flame treatment.
  • the actinic ray irradiator 6 irradiates actinic rays to cure the ink.
  • the substrate conveying speed by the conveying machine 7 varies depending on the printing conditions and the like, but is generally 10 m / min to 50 m / min, preferably 20 m / min to 40 m / min.
  • the near infrared ray is an electromagnetic wave having a maximum energy wavelength of 0.8 ⁇ m or more and less than 1.8 ⁇ m
  • the middle infrared ray is an electromagnetic wave having a maximum energy wavelength of 1.8 to 3.0 ⁇ m.
  • the maximum energy wavelength of near-infrared is more preferably 0.8 to 1.5 ⁇ m
  • the maximum energy wavelength of mid-infrared is more preferably 2.0 to 2.7 ⁇ m.
  • the base material 1 is preheated to 40 ° C to 300 ° C, preferably 50 to 200 ° C, more preferably 60 to 150 ° C, and still more preferably 70 to 120 ° C.
  • the time until the preheated substrate 1 is subjected to the first flame treatment is set so that the temperature of the substrate 1 does not fall below 40 ° C. before the flame treatment is performed.
  • the setting of the time from the flame treatment by the first flame treatment gas burner to the flame treatment by the second flame treatment gas burner is as described above. Further, the arrangement of the first flame treatment gas burner and the second flame treatment gas burner is, as shown in FIG. 4, spaced apart in a direction perpendicular to the conveying direction of the substrate 1. Preferably it is.
  • This plated steel sheet is degreased with alkali, followed by coating type chromate (NRC300NS: Nippon Paint Co., Ltd., Cr, 50 mg / m 2 adhesion amount), and a commercially available epoxy resin primer coating primer layer (Nihon Fine Coatings Co., Ltd. 700P) ) was coated with a roll coater so that the dry film thickness was 5 ⁇ m, and then baked to a maximum plate temperature of 215 ° C.
  • the contents of the paint which is a resin composition for forming the ink receiving layer, are as follows.
  • a resin a high molecular polyester resin (manufactured by DIC) having a number average molecular weight of 5,000, a glass transition temperature of 30 ° C., and a hydroxyl value of 28 mgKOH / g was used.
  • a melamine resin which is a cross-linking agent a methylated melamine resin having 90 mol% of methoxy groups (Cymel 303 manufactured by Mitsui Cytec) was used.
  • the blending ratio of the polyester resin and the melamine resin is 70/30.
  • titanium oxide having an average particle diameter of 0.28 ⁇ m JR-603 manufactured by Teika
  • mica having an average particle diameter of 10 ⁇ m
  • Hydrophobic silica (Silicia 456) 13 mass%, average particle size 5.5 ⁇ m hydrophobic silica (Silicia 456; Fuji Silysia Co., Ltd.) 6 mass%, average particle size 12 ⁇ m 2% by weight was added.
  • As the catalyst 1% by mass of dodecylbenzenesulfonic acid was added to the resin solid content.
  • dimethylaminoethanol as an amine was added in an amount of 1.25 times as an amine equivalent with respect to an acid equivalent of dodecylbenzenesulfonic acid. After coating with a roll coater so that the dry film thickness of the paint was 18 ⁇ m, it was baked to a maximum plate temperature of 225 ° C.
  • thermal conductivity of various base materials was measured by a method based on JIS R1611-2010 (corresponding international standard: ISO 18755: 2005). Specifically, a 10 mm square sample was prepared and measured using a laser flash method thermophysical property measuring apparatus LFA-502 manufactured by Kyoto Electronics Industry Co., Ltd.
  • Preheating method of base material (i) Preheating method using preheating gas burner Preheating of various base materials is performed using product name F-3000 manufactured by Flynn Burner (USA). Ribbon type. LP gas is used as the combustion gas, and LP gas 0.4L / min and clean dry air 10L / min are mixed with a gas mixer for every 10mm width of the burner flame mouth, and then burned with a burner for preheating flame Processed. Preheating was performed at a distance between the flame outlet of the burner and the base material of 30 mm and a processing (conveyance) speed of 20 m / min.
  • Flame treatment method for various substrates Flame treatment was performed on various substrates preheated under the above conditions using one or two product names F-3000 manufactured by Flynn Burner (USA). All aspects of the burner head are of the ribbon type.
  • the treatment conditions were as follows: LP gas 1.2 L / min and clean dry air 30 L / min were mixed with a gas mixer with respect to a width of 10 mm of the flame outlet of the burner, and then burned with a burner to perform flame treatment. Preheating was performed at a distance between the flame outlet of the burner and the base material of 30 mm and a processing (conveyance) speed of 20 m / min. The distance between the first burner head and the second burner head was 30 cm.
  • the temperature of the base-material surface at the time of a flame processing is a temperature of the base material just before a flame processing (0.2 second before) using a thermocouple thermometer (K type).
  • Inkjet printing with actinic ray curable ink Ink jet printing was performed using an actinic ray curable inkjet ink about 2 minutes after the flame treatment.
  • As the active curable ink radical polymerization type ultraviolet curable black ink and cationic polymerization type ultraviolet curable black ink were used.
  • the specific composition of each ink is as follows.
  • (I) Radical polymerization type ultraviolet curable black ink A radical polymerization type ultraviolet curable black ink was prepared by mixing the following components. The specific composition is as follows. Pigment dispersion 1) (Pigment content: 10% by weight) 10 parts by weight Reactive oligomer 2) 25 parts by weight Reactive oligomer 3) 57 parts by weight Photopolymerization initiator 4) 5 parts by weight Photopolymerization initiator 5) 3 parts by weight
  • Pigment NIPex 35, manufactured by Carbon Degussa Japan Co., Ltd., dispersion medium: SR9003, PO-modified neopentyl glycol diacrylate manufactured by Sartomer Japan Co., Ltd. 2) CN985B88, bifunctional aliphatic urethane acrylate 88% by mass, 1, Mixture of 12% by mass of 6-hexanediol diacrylate 3) 1,6-hexanediol diacrylate 4) Irgacure 184, hydroxyketones 5) Irgacure 819, acylphos Fin oxides Ciba Japan Co., Ltd.
  • ultraviolet rays were used as the actinic rays.
  • the ink was subjected to ultraviolet curing under the following conditions after inkjet printing. The ultraviolet irradiation was performed 5 seconds after the ink droplet landed.
  • Lamp type High-pressure mercury lamp (H bulb manufactured by Fusion UV Systems Japan Co., Ltd.)
  • Lamp output 200 W / cm
  • Integrated light quantity 600 mJ / cm 2 (measured using an UV light quantity meter UV-351-25 manufactured by Oak Manufacturing)
  • a film with a peeled area of 0% was evaluated as “ ⁇ ”, a film with a peeled area exceeding 0% and within 20% was evaluated as “ ⁇ ”, and a film with a peeled area exceeding 20%.
  • X was evaluated more than (triangle
  • the substrate having a high thermal conductivity when the temperature immediately before the flame treatment of the substrate is less than 40 ° C., the substrate having a high thermal conductivity, the wettability and adhesion of the printing ink after the flame treatment may be deteriorated. I understand.
  • the acrylic plate does not affect the wettability and adhesion of the printing ink even if the temperature immediately before the flame treatment is less than 40 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本発明は、熱伝導率が10W/mK以上である特定の金属系基材の表面を火炎処理する際の結露の発生を抑える処理を見出し、その処理と火炎処理を連続的に行うことを課題とする。 上記課題を解決するため、本発明は、熱伝導率が10W/mK以上である特定の金属系基材の表面に塗料又はインキで塗装又は印刷する前に、該基材を40℃以上に予熱した後、連続して、該基材表面を火炎処理することを含む、金属系基材表面を塗装又は印刷する前の処理方法を提供する。

Description

塗装又は印刷のための前処理方法
 本発明は、特定の特性を有する金属系基材(熱伝導率が10W/mK以上)の表面に、樹脂を含む塗料又はインキで、塗装又は印刷する際の前処理方法に関する。
 従来、金属系基材に樹脂を含む塗料やインキを用いて、その機能性や意匠性を向上させて付加価値を上げることが行われている。近年の技術の発達に伴い、より高い機能性又は意匠の多様性が求められ、高い精度の塗装や印刷技術が求められている。
 基材表面に塗装や印刷を行う前に、基材表面にゴミ、塵や埃などの異物が存在すると、塗料やインキに関し、基材との密着性や濡れ性が低下してしまい、満足のいく塗装や印刷を行うことができなかった。
 特許文献1では、鋼管の表面に付着した水分、埃、油脂等をバーナーの火炎で除去した後、鋼管の温度が50~70℃になったところで、鋼管にコーティング剤を塗布することを含む外面コーティング剤の硬化促進方法を開示する。
 一般に、鋼管の表面は防錆油が十分に塗布されている。防錆油を燃焼させて除去するためには、一定時間、少なくとも400℃以上に加熱する必要があるため、金属表面が酸化するなどの、製品として品質に問題をきたすことがある。そのため、防錆油などの金属表面に付着した油類を除去するためには、通常、アルカリ脱脂などの手段が用いられており、金属表面上の油類を燃焼させて除去することは一般に行われていない。
 特許文献2では、ステンレス鋼帯、合金帯などの金属帯の表面に、製造工程で付着した油や固形付着物を、有機溶媒やアルカリ溶液などの洗浄液で洗浄後、火炎処理して表面を清浄化する方法が開示されている。
 しかしながら、このように脱脂洗浄した直後は金属帯の表面に異物は存在しないが、数時間から数日間保管しておくと、保管場所に浮遊する塵や埃などの異物が付着し、ごく薄い汚れの層を形成してしまう。高精度の塗装や印刷を行う場合に、係る異物は除去する必要がある。
 また、溶融Zn-55%Al合金めっき鋼板などのめっき鋼板はめっき直後のめっき表面は清浄であるため、塗料や印刷インキが十分に密着するものの、めっき後に数時間から数日経過すると金属表面に空気中の極微細な有機ゴミが付着して塗料や印刷インキが十分に密着しないという問題があった。
 また塗装鋼板では、その製造工程において、塗装鋼板を製造する装置に塗装鋼板が接触すると、塗膜が一部装置に付着する場合がある。そして、その付着物が後続ロッドの塗装鋼板に付着すると、これが後続ロッドの塗装鋼板の異物となる。
 この他、製造コストを考慮した生産性は常に考慮される重要な課題である。建築材料に使用されるような金属系基材は、バッチ式で製造若しくは処理されると、生産性がよくない。そのため、一連の工程を連続的に行うことは、生産性から非常に有益である。
特開平11-90313号公報 特開平7-243070号公報
 本発明者らは、金属系基材に塗料又はインキを塗装又は印刷する前に、金属系基材表面に付着した異物を火炎処理により燃焼除去することを考案し検討を行っていたが、単に火炎処理を行う場合、その後の塗膜や印刷インキの密着性や濡れ性が十分でないことが分かった。
 そこで、本発明者らは更なる検討を重ねた結果、塗膜や印刷インキの密着性や濡れ性を低下させている原因が火炎処理時に発生する結露であり、これが、熱伝導率が高い金属系基材特有の現象であることが分かった。
 そして、本発明者らは、この火炎処理時に発生する結露を防止する方法を検討した結果、火炎処理する前に金属系基材の温度を40℃以上に予熱することで、この結露が抑えられ、塗膜又は印刷インキの密着性又は濡れ性が向上することを見出した。
 さらに、本発明者は、塗装又は印刷前の処理を効率よく行うため、予熱及び火炎処理を一連の工程で、連続して行うことを考案した。
 従って、本発明は、めっき鋼板、脱脂処理された普通鋼板、ステンレス鋼板、塗装鋼板、アルミニウム板および銅板から選択される、熱伝導率が10W/mK以上の金属系基材の表面に塗料又はインキで塗装又は印刷する前に、該基材を40℃以上に予熱した後、連続して、該基材表面を火炎処理することを含む、金属系基材表面を塗装又は印刷する前の処理方法を提供する。
 予熱の手段の具体例としては、予熱用ガスバーナーを前処理のラインに設置すること、コンベヤ式の近赤外線炉又は中赤外線炉を前処理のラインに設置することなどが挙げられる。
 火炎処理では、液化石油ガス(LPG)や液化天然ガス(LNG)を燃料とするバーナーが汎用されているが、例えば、液化石油ガスが燃焼するときは、以下のような化学式であらわされる化学反応が起こっている。
38(LPG)+5O2 → 3CO2+4H2O+熱
 本発明で使用する熱伝導率が高い金属系基材では、予熱なしにバーナーによる火炎処理を行うと、火炎が金属系基材に接触する瞬間に熱が迅速に拡散されて、その場の温度が下がってしまう。そのため、火炎中の水蒸気となっていた水が基材表面で冷やされて金属系基材表面に結露を生じる。この結露水は火炎処理中に金属系基材表面に留まって火炎処理を妨害する。
 従って、特定の熱伝導率を有する金属系基材を、火炎処理する際に、40℃以上に予熱しておくことで、結露の発生が抑えられ、金属系基材表面に付着した異物を除去することができ、塗膜又は印刷インキの密着性及び濡れ性を向上させることができる。
 さらに、本発明の前処理方法では、予熱及び火炎処理を連続的に行うことが可能であり、生産性が高く効率よく処理できる。
予熱手段としてガスバーナーを用いた、本発明の一実施態様の構成を横側から見た図である。 予熱手段としてガスバーナーを用いた、本発明の一実施態様の構成を上側から見た図である。 予熱手段としてコンベア式の近赤外線炉又は中赤外線炉を用いた、本発明の一実施態様の構成を横側から見た図である。 予熱手段としてコンベア式の近赤外線炉又は中赤外線炉を用いた、本発明の一実施態様の構成を上側から見た図である。 本発明で使用するバーナーの炎口の形態の具体例を示した図である。(a)はリボン式の一例を示した写真であり、(b)は丸穴式の一例を示した写真である。 本発明で用いることができるリボンバーナーの炎口の一例を示した図である。 実施例において、各金属系基材をガスバーナーで100℃に予熱したときの温度減衰曲線を示した図である。曲線iはアクリル板、曲線iiはオーステナイト系ステンレス板、曲線iiiは塗装鋼板、曲線ivはアルミニウム合金版を表す。塗装鋼板における温度減衰曲線iiiは、フェライト系ステンレス板及び溶融Zn-55%Al合金めっき鋼板の温度減衰曲線とほぼ同一であったため、これらの曲線の記載を省略している。この表の縦軸は基材表面温度(℃)、横軸は経過時間(秒)を表す。
 本発明は、塗料又はインキによる塗装又は印刷が施されるための、熱伝導率が10W/mK以上の金属系基材を用いる。好ましくは、熱伝導率が15W/mK以上、更に好ましくは、30W/mK以上、最も好ましくは、40W/mK以上である金属系基材を用いる。
 熱伝導率が10W/mK未満の場合は、基材の熱拡散が低いため、火炎に含まれる水蒸気が基材と接触しても結露とはならないため、予熱の必要がない。
 本発明の金属系基材は、上述の通り、熱伝導率が10W/mK以上である。本発明で使用する金属系基材としては、溶融Zn-55%Al合金めっき鋼板などのめっき鋼板、ステンレス鋼板、アルミニウム板、銅板及び脱脂処理されている普通鋼板を用いる。なお、アルミニウム板はアルミニウムを主体とするアルミニウム合金も包含する。
 めっき鋼板、ステンレス鋼板、アルミニウム板及び銅板は常温で酸化して品質が劣化することを考慮する必要がないため、防錆油などの油類は塗布されていない。例えば、ステンレス鋼板は、生産ラインにおいて潤滑油や圧延油等の油が塗布されることがあるが、最終的に洗浄工程で表面は清浄化される。めっき鋼板については、最終的に表面が処理されて錆が発生しにくくなっている。アルミニウム板では表面が酸化アルミニウムですぐ覆われさらに酸化することを防ぐため、錆びてその品質が劣化することはない。銅板について、銅は鉄ほど錆びやすくはなく、これも防錆油などの油を塗布する必要がない。
 一方、普通鋼板は保管時に錆びやすいため、防錆油が塗布されている。本発明の処理方法に普通鋼板を用いる場合は、脱脂処理されている普通鋼板を用いる。脱脂処理として、アルカリ処理や溶剤処理など公知の脱脂処理を用いることができる。
 また、本発明で使用する金属系基材は、塗装装置や印刷装置を考慮すると細長の矩形状であることが好ましい。
 これらの金属系基材には、エンボス加工や絞り成型加工などを行って、タイル調、レンガ調、木目調などの凹凸加工を施してもよい。
 前記金属系基材は、その表面に化成処理皮膜が形成されていてもよい。化成処理皮膜は、基材の表面全体に形成されており、基材の耐食性を向上させる。化成処理皮膜を形成する化成処理の種類は、特に限定されない。化成処理の例には、クロメート処理、クロムフリー処理、リン酸塩処理が含まれる。化成処理皮膜の付着量は、耐食性の向上に有効な範囲内であれば特に限定されない。
 さらには、前記鋼板の片面若しくは両面に塗料による塗膜が設けられた塗装鋼板も本発明で使用する金属系基材に含まれる。
 本発明の金属系基材としての塗装鋼板は、上記の鋼板に任意に化成処理皮膜及び/又は下塗り塗膜を形成した後、インキ受理層を形成させて得られる。
 化成処理皮膜は、鋼板の表面全体に形成されており、塗膜密着性および耐食性を向上させる。化成処理の例は上述の通りである。
 下塗り塗膜は、鋼板または化成処理皮膜の表面に形成されており、塗膜密着性および耐食性を向上させる。下塗り塗膜は、例えば樹脂を含む下塗り塗料を鋼板または化成処理皮膜の表面に塗布し、乾燥(または硬化)させることで形成される。下塗り塗料に含まれる樹脂の種類は、特に限定されない。樹脂の種類の例には、ポリエステル、エポキシ樹脂、アクリル樹脂などが含まれる。エポキシ樹脂は、極性が高く、かつ密着性が良好なため特に好ましい。また、下塗り塗膜の膜厚は、上記の機能を発揮することができれば、特に限定されない。下塗り塗膜の膜厚は、例えば5μm程度である。
 本発明で使用する塗装鋼板のインキ受理層は、マトリックスを形成するための樹脂と顔料を含む樹脂組成物を塗料として用いて形成される。
 マトリックスとなる樹脂の種類は、特に限定されない。マトリックスとなる樹脂の例には、ポリエステル、アクリル樹脂、ポリフッ化ビニリデン、ポリウレタン、エポキシ樹脂、ポリビニルアルコール、フェノール樹脂が含まれる。インキとの密着性の観点からは、マトリックスとなる樹脂は、ポリエステル、アクリル樹脂またはポリフッ化ビニリデンが好ましい。
 マトリックスを形成するためのポリエステル樹脂を用いる場合、その時の樹脂組成物は、例えばポリエステル、メラミン樹脂、触媒およびアミンを有する。
 ポリエステルの種類は、メラミン樹脂と架橋反応を起こすことができれば、特に限定されない。ポリエステルの数平均分子量は、特に限定されないが、加工性の観点からは5000以上であることが好ましい。また、ポリエステルの水酸基価も、特に限定されないが、40mgKOH/g以下であることが好ましい。ポリエステルのガラス転移点は、特に限定されないが、0~70℃の範囲内であることが好ましい。ガラス転移点が0℃未満の場合、インキ受理層の硬度が不足するおそれがある。一方、ガラス転移点が70℃超の場合、加工性が低下するおそれがある。
 メラミン樹脂は、ポリエステルの架橋剤である。メラミン樹脂は、特に限定されないが、メチル化メラミン樹脂であることが好ましい。また、メチル化メラミン樹脂は、分子中の官能基に占めるメトキシ基の量が80mol%以上であることが好ましい。メラミン樹脂は、メチル化メラミン樹脂を単独で使用してもよいし、他のメラミン樹脂と併用してもよい。メラミン樹脂の配合量は、ポリエステル:メラミン樹脂=70:30(質量比)程度であることが好ましい。
 触媒は、メラミン樹脂の反応を促進させる。触媒の例には、ドデシルベンゼンスルフォン酸、パラトルエンスルフォン酸、ベンゼンスルフォン酸が含まれる。触媒の配合量は、樹脂固形分に対して0.1~8%程度であることが好ましい。
 アミンは、触媒反応を中和する。アミンの例には、トリエチルアミン、ジメチルエタノールアミン、ジメチルアミノエタノール、モノエタノールアミン、イソプロパノールアミンが含まれる。アミンの配合量は、特に限定されないが、酸(触媒)に対して当量の50%以上の量であることが好ましい。
 マトリックスを形成するための樹脂がアクリル樹脂の場合、例えばアクリル樹脂エマルションを用いる。当該エマルションにおけるアクリル樹脂の分子量は、20万~200万の範囲内であることが好ましい。エマルションにおけるアクリル樹脂の分子量は、ゲル浸透クロマトグラフィー(GPC)により測定することができる。
 マトリックスを形成するための樹脂がポリフッ化ビニリデンの場合、例えば、ポリフッ化ビニリデンに対して熱可塑性アクリル樹脂を、重量比で20/80~50/50混合した樹脂組成物を塗料として用いることができる。
 インキ受理層で使用する顔料としては、体質顔料(ビーズを含む)や着色顔料が挙げられる。
 体質顔料の種類は、特に限定されない。体質顔料の例には、シリカ、炭酸カルシウム、硫酸バリウム、水酸化アルミニウム、タルク、マイカ、樹脂ビーズ、ガラスビーズなどが含まれる。
 樹脂ビーズの種類は、特に限定されない。樹脂ビーズの例には、アクリル樹脂ビーズ、ポリアクリロニトリルビーズ、ポリエチレンビーズ、ポリプロピレンビーズ、ポリエステルビーズ、ウレタン樹脂ビーズ、エポキシ樹脂ビーズなどが含まれる。これらの樹脂ビーズは、公知の方法を用いて製造したものでもよいし、市販品を利用してもよい。市販のアクリル樹脂ビーズの例には、東洋紡株式会社の「タフチック AR650S(平均粒径18μm)」、「タフチック AR650M(平均粒径30μm)」、「タフチック AR650MX(平均粒径40μm)」、「タフチック AR650MZ(平均粒径60μm)」、「タフチック AR650ML(平均粒径80μm)」、「タフチック AR650L(平均粒径100μm)」および「タフチック AR650LL(平均粒径150μm)」が含まれる。また、市販のポリアクリロニトリルビーズの例には、東洋紡株式会社の「タフチック A-20(平均粒径24μm)」、「タフチック YK-30(平均粒径33μm)」、「タフチック YK-50(平均粒径50μm)」および「タフチック YK-80(平均粒径80μm)」が含まれる。
 着色顔料の種類は、特に限定されない。着色顔料の例には、カーボンブラック、酸化チタン、酸化鉄、黄色酸化鉄、フタロシアニンブルー、コバルトブルーが含まれる。
 以上の顔料について、顔料の種類、粒径や樹脂組成物(塗料)中の含量は、印刷の種類や印刷されるインクの種類によって当業者が適宜調整することができる。
 インキ受理層の膜厚は、特に限定されないが、通常3~30μmの範囲内である。塗膜が薄すぎる場合、塗膜の耐久性および隠蔽性が不十分となるおそれがある。一方、塗膜が厚すぎる場合、製造コストが増大するとともに、焼付け時にワキが発生しやすくなるおそれがある。
 本発明における熱伝導率はJIS R1611-2010に準拠する方法で測定することができる(対応国際規格:ISO 18755:2005)。具体的には10mm角のサンプルを準備して京都電子工業株式会社製レーザーフラッシュ法熱物性測定装置LFA-502を用いて測定することができる。
 本発明の金属系基材の中で、表面に樹脂を被覆していない、溶融Zn-55%Al合金めっき鋼板などのめっき鋼板、ステンレス鋼板、アルミニウム板、銅板及び脱脂処理された普通鋼板は塗装又は印刷される数時間前に予熱及び火炎処理が行われることが好ましい。具体的には、金属系基材に塗装又は印刷が行われる4時間以内が好ましく、2時間以内がより好ましく、30分以内がなお更に好ましく、10分以内が最も好ましい。
 塗装又は印刷までの時間が、火炎処理して4時間を超えて経過すると、再び、基材表面に塵や埃などの異物が再び付着し、本発明の前処理方法の効果を十分に発揮することができない。なお、塗装鋼板等の樹脂被覆を施した金属系基材は、上記樹脂被覆のない金属系基材と比較して汚れが付着しにくいため、数ヶ月間(例えば、6カ月程度)、火炎処理効果を維持することができる。従って、塗装鋼板は火炎処理後数か月後に処理されてもよく、また、火炎処理後、上記の鋼板と同様の時間内に処理されてもよい。
 本発明の金属系基材表面の塗装又は印刷する前の処理方法は、金属系基材を40℃以上に予熱する。基材を予熱する手段は、予熱後連続して火炎処理できる手段であれば、特に限定されないが、具体的には、ガスバーナーを用いて予熱すること、コンベア式(ライン式)の加熱炉を用いることができる。加熱炉として、近赤外線炉又は中赤外線炉が好ましい。
 なお、本発明の予熱の温度は、火炎処理直前の温度を指し、予熱直後の温度とは必ずしも同じではない。換言すれば、本発明は予熱して40℃以上の温度を有する金属系基材を火炎処理する工程を含む。具体的には、火炎処理まで3秒以内、好ましくは1秒以内、更に好ましくは0.5秒以内に測定した温度を指す。
 また、予熱はより高い温度で行うことが、火炎処理のムラを低減することができるため好ましく、具体的に45℃以上に予熱することが好ましく、50℃以上に予熱することがより好ましく、55℃以上が更に好ましく、60℃以上がなお更に好ましい。また、熱伝導率が高い金属系基材ほどより高い温度で予熱することが好ましい。例えば、熱伝導率が100W/mK以上の基材の場合は60℃以上で予熱することが好ましく、65℃以上で予熱することがより好ましい。
 また、予熱温度の上限は特に限定されないが、金属系基材表面の酸化による劣化を考慮して、金属系基材の温度が300℃を超えないように金属系基材を予熱するのが好ましいため、予熱温度の上限は300℃未満とすることが好ましい。
 本発明の火炎処理では、ガスバーナーを用いる。ここで用いるガスバーナーは、一般に鋼板や塗装鋼板の表面処理に使用されるガスバーナーを用いることができる。
 燃料ガスとしては、通常、水素、液化石油ガス(LPG)、液化天然ガス(LNG)、アセチレンガス、プロパンガス、又はブタン等が使用され、またその助燃ガスとしては、空気、又は酸素が使用される。燃焼エネルギーを考慮するとLPGやLNGを使用することが好ましい。
 また、炎口の態様について特に限定されないが、通常、リボン式や丸穴式のガスバーナーを用いることができる。リポン式の一例を図5(a)、丸穴式の一例を図5(b)に示した。本発明では、ガスバーナーからの火炎が金属系基材表面の幅方向に一様に照射され処理できることから、火炎処理用のガスバーナーとしてリボンバーナーを使用することが好ましい。
 このような構造のバーナーヘッドを有するバーナーは市販されており、例えば、Flynn Burner社(米国)の製品名F-3000(リボンバーナー:図6参照)、Finecom I&T社(韓国)の製品名FFP250などが存在する。
 バーナーの炎口の幅(金属系基材の幅方向に平行な広さ)は、基材表面全体に火炎が照射される広さである必要があり、基材の幅方向の広さに合わせて適切なバーナーを選択する。例えば、金属系基材の幅方向の広さが40cmの場合は、炎口の幅が45~50cmであるバーナーを選択する。(例えば、図2において、W1が40cmの場合は、W2が45~50cmであるガスバーナーを選択する。)
 バーナーの出力は、火炎が金属系基材表面の塵や埃(異物)を焼却できる程度に調整する。例えば、バーナーの出力をバーナーの炎口の幅10mmあたり250kJ/時~12000kJ/時、好ましくは、400kJ/時~7500kJ/時、さらに好ましくは600kJ/時~5000kJ/時、なお更に好ましくは1200kJ/時~5000kJ/時の出力に調整する。
 火炎処理用のガスバーナーとして、1又は2以上のガスバーナーを用いることができる。火炎処理時の金属系基材の搬送速度が速くなると、金属系基材の搬送に伴う気流が発生し、火炎がその気流の影響を受け火炎処理の効率が悪くなる場合がある。従って、金属系基材の搬送速度が大きい時は、2以上の火炎処理用のガスバーナーを用いることが好ましい。また、3以上の火炎処理用のガスバーナーを用いて火炎処理を行うことも可能であるが、設備投資、生産効率、火炎処理の効果を総合的に勘案すると、搬送速度が大きい場合、2の火炎処理用ガスバーナーを用いることが好ましい。
 本発明で使用する金属系基材に塗装を行う場合は、上記のインキ受理層で用いる樹脂組成物と同様な塗料(顔料は含んでも含まなくてもよい)が塗布される。塗布の方法はロールコーター法やバーコーター法など公知の方法が使用できる。
 本発明で使用する金属系基材に印刷を行う場合は、公知の印刷方法を用いることができる。印刷方法の例には、グラビア印刷、オフセット印刷、スクリーン印刷、およびインクジェット印刷などが挙げられる。中でも、インクジェット印刷は、複雑な多色の模様を短時間で容易に形成することが可能であり、好ましい印刷方法である。
 インクジェット印刷用いるインキは、公知のインキを使用することが可能であり、具体的には、水性インキ、油性インキ、活性光線硬化型インキが挙げられる。本発明の効果が顕著に認められることから、活性光線硬化型インキを使用することが好ましい。活性光線硬化型インキには、ラジカル重合型インキとカチオン重合型インキが存在し、いずれも使用することができる。
 活性光線硬化型インキは、通常、モノマーもしくはオリゴマー、光重合開始剤、色材、分散剤、界面活性剤、その他の添加剤を含む。本発明では、当該技術分野で一般的に使用されている材料を用いる。カチオン重合型インキはラジカル重合型インキと比較して体積収縮率が少なく、架橋密度を高めた非浸透性のインキ受理層に対しても高い密着性が得られることから特に好ましい。
 ここで、本発明における「活性光線」とは、電子線、紫外線、α線、γ線、エックス線等が挙げられる。本発明において、安全性やハンドリング性を考慮すると電子線、紫外線を用いることが好ましく、紫外線を用いることが最も好ましい。
 活性光線硬化型インキは基材の印刷面に着弾後、活性光線照射機からの活性光線で硬化させる。通常、インク滴が着弾してから1.0秒以上、好ましくは2.0秒以上、さらに好ましくは2.2秒以上経過した後に活性光線を照射する。また、空気中の水分がインキの重合を阻害することがあるため、インキが着弾後30秒以内に活性光線を照射する。
 以下に、本発明の処理方法の一実施態様を示す。図1において、1は金属系基材(「基材1」とも称する。)、2は予熱用ガスバーナー、3は第1の火炎処理用ガスバーナー、4は第2の火炎処理用ガスバーナー、5はインクジェット印刷機、6は活性光線照射機、7は搬送機を表す。
 具体的には、まず、基材1を搬送機7に載せ、図1の破線矢印の方向に搬送される。基材1は予熱用ガスバーナーで予熱され、40℃以上の温度で第1及び第2のガスバーナーで火炎処理を施される。火炎処理後インクジェット印刷機5により基材表面を印刷する。活性硬化型インキを用いたインクジェット印刷であれば、活性光線照射機6により、活性光線を照射して、インキを硬化させる。
 搬送機7による基材1の搬送速度は、印刷条件等により異なるが、一般に10m/分~50m/分、好ましくは、20m/分~40m/分である。
 上述の通り、1は予熱用ガスバーナーである。この予熱用ガスバーナーは、火炎処理用ガスバーナーと同様な市販のガスバーナーを用いることができる。
 予熱用ガスバーナーの出力は、金属系基材1の温度が40℃以上の温度となるような出力であればよく、上記の火炎処理のためのガスバーナーの出力と同じであってもよい。具体的には、バーナーの炎口の幅10mmあたり250kJ/時~12000kJ/時、好ましくは、400kJ/時~7500kJ/時、さらに好ましくは600kJ/時~5000kJ/時、なお更に好ましくは1200kJ/時~5000kJ/時の出力に調整する。また、金属系基材1が予熱時に40℃以上になればよいため、火炎処理よりも出力が低いことが好ましい。具体的に、予熱のためのガスバーナーの出力は火炎処理のための出力の25%~95%であることが好ましく、30%~90%であることがより好ましく、30%~80%であることが更に好ましい。このように、予熱用ガスバーナーの出力を制御することで、金属系基材の温度が過度に加熱されないように調整できる。
 予熱用ガスバーナー2で処理されてから第1の火炎処理用ガスバーナー3で処理されるまで、少なくとも0.5秒以上の時間をあける必要がある。予熱用ガスバーナー2で処理された直後に基材1上では結露が生じている。この結露は、基材の予熱で直ぐに蒸発するが、蒸発する前に第1の火炎処理用ガスバーナー3で火炎処理されると、残存している結露が火炎処理を妨げるためである。好ましくは、予熱用ガスバーナー2で処理した後第1の火炎処理用ガスバーナー3により処理されるまで、少なくとも1秒以上、より好ましくは2秒以上の時間があくように各ガスバーナーの設置位置を調整する。
 また、基材1を予熱した後、最初の火炎処理までに時間がかかり過ぎると基材の温度が40℃を下回ってしまう。そのため、予め、基材1の表面温度の時間減衰曲線を作成し、そのグラフから、最初の火炎処理時の基材表面の所望の温度を規定し、予熱処理から最初の火炎処理までの時間を設定する。
 以上の結露の蒸発までの時間と、最初の火炎処理を受ける時の基材1の表面温度を所望の温度(少なくとも40℃以上)とするための時間との双方を考慮して、予熱のための火炎処理から最初の火炎処理までの時間を最終的に設定する。
 従って、予熱用ガスバーナー2と第1の火炎処理用ガスバーナー3との距離D1は、上記の設定した時間と搬送速度により定められる(図2)。
 基材1が第1の火炎処理用ガスバーナーの処理後、第2の火炎処理用ガスバーナーで処理されるまでの時間は、第1の火炎処理後基材の温度が40℃未満とならないように設定する。これも上記と同様に、予め、基材1の表面温度の時間減衰曲線を作成し、そのグラフから、第2の火炎処理時の基材表面の所望の温度を規定し、最初の火炎処理から第2の火炎処理までの時間を設定する。
 従って、第1の火炎処理用ガスバーナー3と第2の火炎処理用ガスバーナー4との距離D2は、上記の設定した時間と搬送速度により定められる(図2)。
 上述の通り、搬送速度が大きい場合は、2以上の火炎処理用ガスバーナーを設置することが好ましい。この場合の搬送速度が20m/分以上となると、基材1の搬送に伴う気流が発生し、火炎処理の効率が下がる場合がある。火炎処理の効果、設備投資などを総合的に勘案すると、図1に記載のような、2つの火炎処理用ガスバーナーを設置することが好ましい。
 予熱用ガスバーナー2と第1の火炎処理用ガスバーナー3の配置は、基材を均一に処理できるため、互いに平行した向きで離間して設置されていることが好ましい。同様な理由により、2以上の火炎処理用ガスバーナーが設置されている場合、各火炎処理用ガスバーナーの配置は互いに平行した向きで離間して設置されていることが好ましい。さらに、より均一に基材に火炎を当てることができるため、図2に示すように、予熱用ガスバーナー2と第1の火炎処理用ガスバーナー3の配置は搬送方向に対して垂直な向きに設置されていることが好ましい。同様に、2以上の火炎処理用ガスバーナーが設置されている場合は、各火炎処理用ガスバーナーが基材1の搬送方向に対し、垂直な向きで離間して配置されていることが好ましい。
 上記のように火炎処理された基材1は、インクジェット印刷機5で活性光線硬化型インクにより印刷が行われ、活性光線照射機6により照射され、インキを硬化させ、印刷を完了する。
 次に、本発明の処理方法の別の実施態様を示す。図3において、1は基材、8はコンベア式の近赤外線炉又は中赤外線炉(以下、「予熱炉」と称する)、3は第1の火炎処理用ガスバーナー、4は第2の火炎処理用ガスバーナー、5はインクジェット印刷機、6は活性光線照射機、7は搬送機を表す。
 具体的には、まず、基材1を搬送機7に載せ、図3の破線矢印の方向に搬送される。基材1は予熱炉8で予熱され、40℃以上の温度で第1及び第2のガスバーナーで火炎処理を施される。火炎処理後インクジェット印刷機5により基材表面を印刷する。活性硬化型インキを用いたインクジェット印刷であれば、活性光線照射機6により、活性光線を照射して、インキを硬化させる。
 搬送機7による基材の搬送速度は、印刷条件等により異なるが、一般に10m/分~50m/分、好ましくは、20m/分~40m/分である。
 予熱炉8として、近赤外線炉又は中赤外線炉を使用することが好ましい。本発明において、近赤外線とは、最大エネルギー波長が0.8μm以上1.8μm未満にある電磁波であり、中赤外線とは、最大エネルギー波長が1.8~3.0μmにある電磁波である。近赤外線の最大エネルギー波長は、0.8~1.5μmであることがより好ましく、中赤外線の最大エネルギー波長は、2.0~2.7μmであることがより好ましい。
 予熱炉8では、基材1を40℃~300℃、好ましくは50~200℃、更に好ましくは60~150℃、なお更に好ましくは70~120℃に予熱する。
 予熱された基材1が最初の火炎処理を受けるまでの時間は、基材1の温度が火炎処理を受けるまでに40℃を下回らない時間を設定する。これは、基材1の表面温度の時間減衰曲線を作成し、そのグラフから、最初の火炎処理を受ける時の基材表面の所望の温度を規定し、予熱処理から最初の火炎処理までの時間を設定する。
 従って、予熱炉8から第1の火炎処理用ガスバーナー3までの距離は、上記の手段で定めた時間と搬送速度により定められる。
 なお、予熱炉8の予熱では、ガスバーナーによる予熱とは異なり、結露が発生することはない。
 第1の火炎処理用ガスバーナーによる火炎処理後、第2の火炎処理用ガスバーナーによる火炎処理までの時間の設定は、上記の通りである。
 また、第1の火炎処理用ガスバーナーと第2の火炎処理用ガスバーナーの配置は、図4に記載のように、基材1の搬送方向に対し、垂直な向きで離間して配置されていることが好ましい。
 以下に実施例および試験例を挙げて、本発明を更に具体的に説明するが、これによって本発明が限定されるものではない。
 金属系基材として、オーステナイト系ステンレス板、塗装鋼板、フェライト系ステンレス板、溶融Zn-55%Al合金めっき鋼板、アルミニウム合金板を用い、参考基材としてアクリル板を用いた。
1.各種基材の調製
(1)オーステナイト系ステンレス板
 日新製鋼株式会社製の板厚0.5mm、SUS304 BAをA4サイズにカットして使用した。
(2)塗装鋼板
 板厚0.5mm、A4サイズの片面当りめっき付着量90g/m2の溶融Zn-55%Al合金めっき鋼板を使用した。このめっき鋼板をアルカリ脱脂した後、塗布型クロメート(NRC300NS:日本ペイント株式会社製 Crとして50mg/m2の付着量)、プライマー層として市販のエポキシ樹脂系プライマー塗料(日本ファインコーティングス株式会社製700P)を乾燥膜厚が5μmとなるようにロールコーターで塗装した後、最高到達板温215℃となるように焼き付けた。
 インキ受理層を形成するための樹脂組成物である塗料の内容は以下の通りである。樹脂としては数平均分子量5,000、ガラス転移温度30℃、水酸基価28mgKOH/gの高分子ポリエステル樹脂(DIC製)を用いた。架橋剤であるメラミン樹脂としては、メトキシ基90モル%のメチル化メラミン樹脂(三井サイテック製サイメル303)を用いた。ポリエステル樹脂とメラミン樹脂の配合比は70/30であり、着色顔料としては平均粒径0.28μmの酸化チタン(テイカ製 JR-603) 49質量%、平均粒径10μmのマイカ(株式会社ヤマグチマイカ製 SJ-010)13質量%、平均粒径5.5μmの疎水性シリカ(サイリシア456;富士シリシア株式会社)6質量%、平均粒径12μmの疎水性シリカ(富士シリシア化学株式会社製 サイリシア476)2質量%を添加した。触媒はドデシルベンゼンスルフォン酸を、樹脂固形分に対して1質量%加えた。またアミンとしてジメチルアミノエタノールをドデシルベンゼンスルフォン酸の酸当量に対してアミン当量として1.25倍の量を加えた。塗料の乾燥膜厚が18μmとなるようにロールコーターで塗装した後、最高到達板温225℃となるように焼き付けた。
(3)フェライト系ステンレス板
 日新製鋼株式会社製の板厚0.5mm、SUS430 BAをA4サイズにカットして使用した。
(4)溶融Zn-55%Al合金めっき鋼板
 日新製鋼株式会社製の板厚0.5mmの片面当りめっき付着量90g/m2の溶融Zn-55%Al合金めっき鋼板をA4サイズにカットして使用した。
(5)アルミニウム合金板
 三菱アルミニウム株式会社製の板厚0.5mm、JIS 5052のアルミニウム合金板をA4サイズにカットして使用した。
(6)アクリル板(参考例)
 三菱レイヨン株式会社製の板厚2.0mmのアクリル板(商品名 アクリライトS)をA4サイズにカットして使用した。
2.熱伝導率の測定
 各種基材の熱伝導率はJIS R1611-2010(対応国際規格:ISO 18755:2005)に準拠する方法で測定した。具体的には10mm角のサンプルを準備して京都電子工業株式会社製レーザーフラッシュ法熱物性測定装置LFA-502を用いて測定した。
3.各種基材の温度の測定
 熱電対温度計(Kタイプ)(日置電機株式会社・温度ロガーLR5021)とセンサー(安立計器株式会社・テープ型多目的温度センサー)を上記各種の基材表面の中央に溶接して取り付け測定した。
4.各種基材の表面温度の減衰曲線の作成
 ガスバーナーを用いて各基材を100℃に加熱し、各基材について気温10℃における表面温度の減衰曲線を求めた(図7)。このグラフに基づき、予熱用ガスバーナー又は中赤外線炉と第1の火炎処理用ガスバーナーとの距離を求めた。
5.基材の予熱方法
(i)予熱用ガスバーナーを用いた予熱方法
 各種基材の予熱をFlynn Burner社(米国)製の製品名F-3000を用いて行い、このバーナーヘッドの炎口の態様はリボン式である。燃焼ガスとしてLPガスを用い、バーナーの炎口の幅10mm毎に、LPガス0.4L/分、クリーンドライエアー10L/分をガスミキサーで混合した後に、バーナーで燃焼させて予熱のための火炎処理を行った。バーナーの炎口と基材の距離は30mm、処理(搬送)速度は20m/分で予熱を行った。
(ii)中赤外線炉を用いた予熱方法
 本実施例では、中赤外線炉として株式会社グローバル製のFHD-601を用いた。板面風速を0.5m/秒とし、処理(搬送)速度20m/分で、赤外線ヒーターの出力を調整することにより、基材の表面温度を100℃として、昇温時間を3秒間とした。
6.各種基材への火炎処理方法
 上記の条件で予熱した各種基材をFlynn Burner社(米国)製の製品名F-3000を1又は2台用いて火炎処理を行った。バーナーヘッドの態様は全てリボン式である。処理条件はバーナーの炎口の幅10mmに対し、LPガス1.2L/分、クリーンドライエアー30L/分をガスミキサーで混合した後に、バーナーで燃焼させて火炎処理を行った。バーナーの炎口と基材の距離は30mm、処理(搬送)速度は20m/分で予熱を行った。1台目バーナーヘッドと2台目のバーナーヘッドの間隔は30cmとした。
 なお、火炎処理時の基材表面の温度は熱電対温度計(Kタイプ)を用いた火炎処理直前(0.2秒前)の基材の温度である。
6.活性光線硬化型インキによるインクジェット印刷
 火炎処理を行って約2分後に活性光線硬化性インクジェットインキを用いてインクジェット印刷を行った。
 活性硬化型インキとして、ラジカル重合型紫外線硬化性黒色インキ及びカチオン重合型紫外線硬化性黒色インキを用いた。各インキの具体的な組成は以下の通りである。
(i)ラジカル重合型紫外線硬化性黒色インキ
 ラジカル重合型紫外線硬化性黒色インキを、以下の成分を混合することにより調製した。具体的なの組成は以下の通りである。
   顔料分散液1)(顔料分:10質量%)    10質量部
   反応性オリゴマー2)            25質量部
   反応性オリゴマー3)            57質量部
   光重合開始剤4)               5質量部
   光重合開始剤5)               3質量部
1)顔料:NIPex 35、カーボン デグサジャパン(株)製、分散媒:SR9003、PO変性ネオペンチルグリコールジアクリレート サートマージャパン(株)製
2)CN985B88、2官能脂肪族ウレタンアクリレート88質量%、1,6-ヘキサンジオールジアクリレート12質量%の混合物 サートマージャパン(株)製
3)1,6-ヘキサンジオールジアクリレート
4)イルガキュア184、ヒドロキシケトン類 チバ・ジャパン(株)製
5)イルガキュア819、アシルフォスフィンオキサイド類 チバ・ジャパン(株)製
(ii)カチオン重合型紫外線硬化性インキ
 高分子分散剤(味の素ファインテクノ社製 PB821) 9質量部とオキセタン化合物(東亜合成社製 OXT211) 71質量部にブラック:Pigment Black 7を20質量部加えて、直径1mmのジルコニアビーズ200gと共にガラス瓶に入れて密栓し、ペイントシェーカーにて4時間分散処理した後、ジルコニアビーズを除去して、ブラックの顔料分散体を調整した。
 上記分散体14質量部に、以下の光重合性化合物、塩基性化合物、界面活性剤、相溶化剤、光酸発生剤を混合して、カチオン重合型紫外線硬化性インクジェットインキを作製した。
Figure JPOXMLDOC01-appb-T000001
ラジカル重合型紫外線硬化インキのインクジェット印刷条件
(a)ノズル径       :35μm
(b)印加電圧       :11.5V
(c)パルス幅       :10.0μs
(d)駆動周波数      :3,483Hz
(e)解像度        :360dpi
(f)インキ液滴の体積   :42pl
(g)ヘッド加熱温度    :45℃
(h)インキ塗布量     :8.4g/m2
(i)ヘッドと記録面の距離 :5.0mm
(j)インキ滴の初速    :5.9m/sec
カチオン重合型紫外線硬化インキのインクジェット印刷条件
(a)ノズル径       :35μm
(b)印加電圧       :13.2V
(c)パルス幅       :10.0μs
(d)駆動周波数      :3,483Hz
(e)解像度        :360dpi
(f)インキ液滴の体積   :42pl
(g)ヘッド加熱温度    :45℃
(h)インキ塗布量     :8.4g/m2
(i)ヘッドと記録面の距離 :5.0mm
(j)インキ滴の初速    :6.1m/sec
 本実施例では、活性光線として紫外線を用いた。インクジェット印刷後の以下の条件でインキの紫外線硬化を行った。紫外線照射はインク滴が着弾した5秒後に行った。
(1)ランプの種類:高圧水銀ランプ(フュージョンUVシステムズ・ジャパン株式会社製 Hバルブ)
(2)ランプの出力:200W/cm
(3)積算光量:600mJ/cm2(オーク製作所製紫外線光量計UV-351-25を使用して測定)
7.基材に対する紫外線硬化性インキの密着性の評価
 各種基材の表面に紫外線硬化性インキで、解像度360dpiとなるように、100%(インキ塗布量:8.4g/m2)で印刷した。そして、印刷材に対して、JIS K5600-5-6 G 330(ISO 2409に対応)に準拠した碁盤目試験を実施した。具体的には、印刷材の表面に、1mm間隔で100個のマス目ができるように基盤目状の切り込みを入れ、当該部分にテープを貼り付けた。テープ剥離後、塗膜の残存率を観察した。塗膜の剥離面積が0%のものを「○」と評価し、剥離面積が0%超かつ20%以内であったものを「△」と評価し、剥離面積が20%を超えたものを「X」として評価した。また、△以上の評価を合格とした。
8.水濡れ性の評価
 協和界面科学株式会社製ポータブル接触角計PCA-1を用いて、下記の条件で火炎処理後の基材の水接触角を測定した。
水接触角の測定条件
・液滴体積 : 1.0μl
・液滴着弾後から測定までの待ち時間 : 3秒
・水接触角の解析方法 : θ/2法
 水接触角10度未満を「◎」、10~19度を「○」、20~29度を「△」、30度以上を「X」と評価した。また、△以上の評価を合格とした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記の表の通り、基材の火炎処理直前の温度が40℃未満の場合は、熱伝導率が高い基材で、火炎処理後の印刷インキの濡れ性や密着性が悪くなっていることが分かる。なお、アクリル板は火炎処理前の直前の温度が40℃未満であっても印刷インキの濡れ性や密着性に影響はない。
1:基材、2:予熱用ガスバーナー、3:第1の火炎処理用ガスバーナー、4:第2の火炎処理用ガスバーナー、5:インクジェット印刷機、6:活性光線照射機、7:搬送機、8:予熱炉

Claims (17)

  1.  めっき鋼板、ステンレス鋼板、塗装鋼板、アルミニウム板、銅板および脱脂処理された普通鋼板から選択される、熱伝導率が10W/mK以上の金属系基材の表面に塗料又はインキで塗装又は印刷する前に、該基材を40℃以上に予熱した後、連続して、該基材表面を火炎処理することを含む、金属系基材表面を塗装又は印刷する前の処理方法。
  2.  前記基材が、めっき鋼板、ステンレス鋼板、塗装鋼板、アルミニウム板および銅板から選択される、請求項1に記載の処理方法。
  3.  前記火炎処理を1又は2以上のガスバーナーで行う、請求項1又は2に記載の処理方法。
  4.  前記火炎処理を2のガスバーナーで行う、請求項3に記載の処理方法。
  5.  前記火炎処理のガスバーナーがリボンバーナーである、請求項3又は4に記載の処理方法。
  6.  前記予熱を1のガスバーナーで行う、請求項1~5のいずれか1項に記載の処理方法。
  7.  予熱に用いるガスバーナーの出力が、火炎処理のガスバーナーの出力よりも低い、請求項6に記載の処理方法。
  8.  予熱に用いるガスバーナーの出力が、火炎処理のガスバーナーの出力の25~95%である、請求項7に記載の処理方法。
  9.  前記予熱をコンベア式の近赤外線炉又は中赤外線炉で行う、請求項1~5の何れか1項に記載の処理方法。
  10.  前記基材を50℃以上に予熱する、請求項1~9の何れか1項に記載の処理方法。
  11.  前記基材を60℃以上に予熱する、請求項1~9の何れか1項に記載の処理方法。
  12.  前記基材の温度が300℃を超えないように予熱する、請求項1~11の何れか1項に記載の処理方法。
  13.  前記基材が塗装鋼板である、請求項1~12の何れか1項に記載の処理方法。
  14.  前記塗装鋼板の表面に行う印刷が、インクジェット印刷である、請求項13に記載の処理方法。
  15.  前記インクジェット印刷を活性光線硬化型インキで行う、請求項14に記載の処理方法。
  16.  前記塗装鋼板は建築板の材料である、請求項13~15の何れか1項に記載の処理方法。
  17.  火炎処理で使用するガスバーナーの炎に由来する結露の発生が抑えられている、請求項1~16のいずれか1項に記載の処理方法。
PCT/JP2016/067031 2015-06-08 2016-06-08 塗装又は印刷のための前処理方法 WO2016199803A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187000375A KR20180033500A (ko) 2015-06-08 2016-06-08 도장 또는 인쇄를 위한 전처리 방법
RU2017141568A RU2726636C2 (ru) 2015-06-08 2016-06-08 Способ предварительной обработки для нанесения покрытия или печати
CN201680033374.0A CN107683181B (zh) 2015-06-08 2016-06-08 用于涂装或印刷的预处理方法
JP2016559369A JP6088716B1 (ja) 2015-06-08 2016-06-08 塗装又は印刷のための前処理方法
EP16807509.1A EP3305421A4 (en) 2015-06-08 2016-06-08 PRETREATING METHOD FOR COATING OR PRINTING
US15/577,395 US10751751B2 (en) 2015-06-08 2016-06-08 Pretreatment method for coating or printing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015116015 2015-06-08
JP2015-116015 2015-06-08
JP2015086522 2015-12-28
JPPCT/JP2015/086522 2015-12-28

Publications (1)

Publication Number Publication Date
WO2016199803A1 true WO2016199803A1 (ja) 2016-12-15

Family

ID=57503804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067031 WO2016199803A1 (ja) 2015-06-08 2016-06-08 塗装又は印刷のための前処理方法

Country Status (7)

Country Link
US (1) US10751751B2 (ja)
EP (1) EP3305421A4 (ja)
JP (1) JP6088716B1 (ja)
KR (1) KR20180033500A (ja)
CN (1) CN107683181B (ja)
RU (1) RU2726636C2 (ja)
WO (1) WO2016199803A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138347A (ja) * 2017-02-24 2018-09-06 株式会社リコー 画像形成方法及び画像形成装置
WO2019146473A1 (ja) * 2018-01-26 2019-08-01 日新製鋼株式会社 フレーム処理装置、塗装金属板の製造装置、および塗装金属板の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700119131A1 (it) * 2017-10-20 2019-04-20 Nuova Ompi Srl Sistema per la realizzazione di contenitori marchiati e relativo metodo
CN115052752B (zh) * 2020-02-26 2023-06-27 京瓷株式会社 光照射装置以及印刷装置
IT202100009581A1 (it) * 2021-04-16 2022-10-16 Cefla Soc Cooperativa Apparato per la stampa digitale su un nastro continuo

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243070A (ja) * 1994-03-07 1995-09-19 Nisshin Steel Co Ltd 金属帯の脱脂洗浄方法および装置
JPH1190313A (ja) * 1997-09-18 1999-04-06 Sumitomo Metal Ind Ltd 外面コーティング剤の硬化促進方法
JP2007191745A (ja) * 2006-01-18 2007-08-02 Nippon Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造装置ならびに高強度合金化溶融亜鉛めっき鋼板の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671836B2 (ja) * 1986-11-28 1994-09-14 三菱製紙株式会社 溶融転写型熱転写用受像シ−ト
US5919517A (en) * 1993-05-05 1999-07-06 Aluminum Company Of America Method for coating a metal strip
RU2086698C1 (ru) * 1994-08-03 1997-08-10 Вудфорд Трейдинг Лимитед Способ поверхностной обработки металлической подложки
DE19544179A1 (de) * 1995-11-27 1997-05-28 Arcotec Oberflaechentech Gmbh Steuereinrichtung einer Gas-/Luftgemischregelung für eine Gasflammbehandlung
US20030031859A1 (en) * 2000-01-24 2003-02-13 Sinsel John A. Processing and apparatus for production of engineered composite combining continuous-strip sheet metal and thermoplastic polymers
US6780519B1 (en) * 2000-11-28 2004-08-24 3M Innovative Properties Company Flame-treating process
JP2006102671A (ja) * 2004-10-06 2006-04-20 Nittetsu Steel Sheet Corp 塗装基材の製造方法
ES2601398T3 (es) * 2006-03-08 2017-02-15 Homag Holzbearbeitungssysteme Ag Procedimiento y dispositivo para imprimir piezas de trabajo en forma de placa
JP2008207528A (ja) * 2007-02-28 2008-09-11 Seiren Co Ltd 着色物の製造方法およびインクジェット記録装置
EP2268486A2 (en) * 2008-03-25 2011-01-05 3M Innovative Properties Company Multilayer articles and methods of making and using the same
US8253174B2 (en) * 2008-11-26 2012-08-28 Palo Alto Research Center Incorporated Electronic circuit structure and method for forming same
CN102086511B (zh) * 2011-01-06 2013-01-09 嘉兴敏惠汽车零部件有限公司 汽车外饰件表面仿电镀加工方法
EP2933031B1 (en) * 2012-12-06 2018-11-14 Nippon Steel & Sumitomo Metal Corporation Method for producing steel sheet
DE102014110252A1 (de) * 2014-07-21 2016-01-21 Thyssenkrupp Ag Vorrichtung und Verfahren zur Herstellung von Verbundblechen durch Mehrfachkaschierung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243070A (ja) * 1994-03-07 1995-09-19 Nisshin Steel Co Ltd 金属帯の脱脂洗浄方法および装置
JPH1190313A (ja) * 1997-09-18 1999-04-06 Sumitomo Metal Ind Ltd 外面コーティング剤の硬化促進方法
JP2007191745A (ja) * 2006-01-18 2007-08-02 Nippon Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造装置ならびに高強度合金化溶融亜鉛めっき鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305421A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138347A (ja) * 2017-02-24 2018-09-06 株式会社リコー 画像形成方法及び画像形成装置
WO2019146473A1 (ja) * 2018-01-26 2019-08-01 日新製鋼株式会社 フレーム処理装置、塗装金属板の製造装置、および塗装金属板の製造方法
JP2019126837A (ja) * 2018-01-26 2019-08-01 日鉄日新製鋼株式会社 フレーム処理装置、塗装金属板の製造装置、および塗装金属板の製造方法
CN111868306A (zh) * 2018-01-26 2020-10-30 日本制铁株式会社 火焰处理装置、涂装金属板的制造装置及制造方法
US11241714B2 (en) 2018-01-26 2022-02-08 Nippon Steel Corporation Flame treatment device, apparatus for producing coated metal plate, and method for producing coated metal plate
JP7035562B2 (ja) 2018-01-26 2022-03-15 日本製鉄株式会社 フレーム処理装置、塗装金属板の製造装置、および塗装金属板の製造方法
TWI781282B (zh) * 2018-01-26 2022-10-21 日商日新製鋼股份有限公司 火焰處理裝置、塗裝金屬板的製造裝置及塗裝金屬板的製造方法

Also Published As

Publication number Publication date
RU2017141568A3 (ja) 2019-07-17
EP3305421A4 (en) 2019-01-16
US20180161809A1 (en) 2018-06-14
KR20180033500A (ko) 2018-04-03
RU2726636C2 (ru) 2020-07-15
CN107683181B (zh) 2021-04-06
CN107683181A (zh) 2018-02-09
RU2017141568A (ru) 2019-07-10
EP3305421A1 (en) 2018-04-11
JP6088716B1 (ja) 2017-03-01
JPWO2016199803A1 (ja) 2017-06-22
US10751751B2 (en) 2020-08-25

Similar Documents

Publication Publication Date Title
JP6088716B1 (ja) 塗装又は印刷のための前処理方法
JP6088717B1 (ja) 塗装又は印刷のための前処理方法
WO2015079596A1 (ja) 化粧建築板の製造方法
JP6088712B1 (ja) 化粧建築板の製造方法
RU2621811C2 (ru) Материал для окрашивания, материал для печати и материал для покрытия
WO2019146473A1 (ja) フレーム処理装置、塗装金属板の製造装置、および塗装金属板の製造方法
JP6378709B2 (ja) 化粧建築板の製造方法
TWI694870B (zh) 對金屬系基材表面進行塗裝或印刷之前的處理方法以及抑制由氣體燃燒器的火焰產生結露之方法
JP6230568B2 (ja) 化粧建築板の製造方法
TW201821645A (zh) 對金屬系基材表面進行塗裝或印刷之前的處理方法
JP2023039619A (ja) 印刷物の製造方法
JP7417800B2 (ja) 金属用塗料、これから得られる被印刷用金属基材およびその製造方法、ならびに塗装金属材
JP7402397B2 (ja) 塗装金属板の製造方法
JP2015123588A (ja) 塗装金属板、塗装金属板成形物およびその製造方法
JP2014166606A (ja) 金属サイディングの製造方法および製造装置
JP2023031676A (ja) 印刷物の製造方法
TWI694869B (zh) 裝飾建築板的製造方法
JP2022127243A (ja) 被印刷用金属基材およびその製造方法、ならびに塗装金属材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016559369

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15577395

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187000375

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016807509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2017141568

Country of ref document: RU