WO2016199741A1 - 高密度微小チャンバーアレイおよびこれを用いた測定方法 - Google Patents

高密度微小チャンバーアレイおよびこれを用いた測定方法 Download PDF

Info

Publication number
WO2016199741A1
WO2016199741A1 PCT/JP2016/066834 JP2016066834W WO2016199741A1 WO 2016199741 A1 WO2016199741 A1 WO 2016199741A1 JP 2016066834 W JP2016066834 W JP 2016066834W WO 2016199741 A1 WO2016199741 A1 WO 2016199741A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
micro
density
lipid bilayer
Prior art date
Application number
PCT/JP2016/066834
Other languages
English (en)
French (fr)
Inventor
力也 渡邉
博行 野地
直樹 曽我
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to EP16807448.2A priority Critical patent/EP3305721B1/en
Priority to US15/567,431 priority patent/US10974246B2/en
Priority to JP2017523637A priority patent/JP6607936B2/ja
Priority to CN201680033367.0A priority patent/CN107709223B/zh
Publication of WO2016199741A1 publication Critical patent/WO2016199741A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00331Details of the reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00617Delimitation of the attachment areas by chemical means
    • B01J2219/00619Delimitation of the attachment areas by chemical means using hydrophilic or hydrophobic regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00653Making arrays on substantially continuous surfaces the compounds being bound to electrodes embedded in or on the solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00734Lipids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0642Filling fluids into wells by specific techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/142Preventing evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces

Definitions

  • the present invention relates to a high-density micro chamber array and a measurement method using the same.
  • Patent Document 1 discloses a flat substrate, a plurality of micro chambers having a capacity of 4000 ⁇ 10 ⁇ 18 m 3 or less formed so as to be regularly arranged in a high density by a hydrophobic substance on the surface of the substrate, and for testing Disclosed is a high-density microchamber array comprising a plurality of microchambers filled with an aqueous solution and lipid bilayer membranes formed so as to seal the aqueous test solution.
  • the high-density micro-chamber array includes a flat substrate having translucency and a layer made of a hydrophobic material provided on the substrate, and openings of a plurality of micro-chambers are formed on the layer.
  • a lipid bilayer membrane formed so as to seal the test liquid in an opening of the chamber, electrodes are provided in the respective microchambers, and the hydrophobic layer is provided in the substrate.
  • the light incident on the substrate from below the substrate is transmitted through the substrate and the microchamber is Enters into parts, and light incident to the substrate from the interior of the micro chamber is configured to escape downwardly of the substrate passes through the substrate.
  • the electrode is provided on the inner surface of each of the microchambers.
  • the electrodes are provided as transparent electrodes on the bottom surfaces of the respective microchambers.
  • the method for analyzing a membrane protein according to the second aspect includes a flat substrate having translucency and a layer made of a hydrophobic substance provided on the substrate, wherein openings of a plurality of microchambers are the layers. And a hydrophobic layer provided so as to be regularly and densely arranged on the main surface of the substrate and having a capacity of the micro chamber of 4000 ⁇ 10 ⁇ 18 m 3 or less, and an electrode is provided in each of the micro chambers
  • the substrate is incident on the substrate from below the substrate by satisfying at least one of the following A) and B) Light passes through the substrate and enters the inside of the micro chamber, and light incident on the substrate from the inside of the micro chamber passes through the substrate and escapes below the substrate.
  • a high-density microchamber array configured as described above, and forming a lipid bilayer membrane at the openings of the plurality of microchambers, wherein the lipid bilayer membrane holds a membrane protein, The property of the membrane protein is changed by applying a voltage between the electrode and the opposite electrode provided above the lipid bilayer membrane.
  • the electrode is provided on the inner surface of each of the microchambers.
  • the electrodes are provided as transparent electrodes on the bottom surfaces of the respective microchambers.
  • the method according to the third aspect includes a flat substrate having translucency and a layer made of a hydrophobic material provided on the substrate, wherein openings of a plurality of micro chambers are formed on the main surface of the layer.
  • Each of the microchambers has a capacity of 4000 ⁇ 10 ⁇ 18 m 3 or less, and electrodes are provided in the microchambers.
  • the substrate when the side on which the hydrophobic layer is provided is the upper side, the light incident on the substrate from below the substrate is satisfied by satisfying at least one of the following A) and B) And enters the inside of the microchamber, and light incident on the substrate from the inside of the microchamber passes through the substrate and escapes below the substrate.
  • a lipid bilayer is formed so as to seal.
  • the electrode is provided on the inner surface of each of the microchambers.
  • the electrodes are provided as transparent electrodes on the bottom surfaces of the respective microchambers.
  • FIG. 1 is a plan view showing an example of a schematic configuration of a high-density micro chamber array according to the first embodiment.
  • FIG. 2 is an enlarged view of the AA cross section in FIG. 1 and a part of the cross section of the high-density microchamber array according to the first embodiment.
  • FIG. 3 is a conceptual diagram showing an example of a high-density micro-chamber array system according to the first embodiment.
  • FIG. 4 is a plan view showing a schematic configuration of a high-density micro chamber array according to a modification of the first embodiment.
  • FIG. 5 is a process diagram showing an example of a method for manufacturing a high-density micro-chamber array according to the first embodiment.
  • FIG. 1 is a plan view showing an example of a schematic configuration of a high-density micro chamber array according to the first embodiment.
  • FIG. 2 is an enlarged view of the AA cross section in FIG. 1 and a part of the cross section of the high-density
  • FIG. 6 is a process diagram showing an example of formation of a microchamber device (step S100) in the first embodiment.
  • FIG. 7 is a process diagram showing an example of formation of a lipid bilayer membrane (step S120) in the first embodiment.
  • FIG. 8A is a diagram illustrating a process of preparing a substrate in the formation of the microchamber device of the first embodiment.
  • FIG. 8B is a diagram illustrating a process of forming an electrode layer on a substrate in the formation of the microchamber device of the first embodiment.
  • FIG. 8C is a diagram showing a step of forming a material film on the electrode layer in the formation of the microchamber device of the first embodiment.
  • FIG. 8D is a diagram showing a step of forming a resist on the material film in the formation of the microchamber device of the first embodiment.
  • FIG. 8E is a diagram showing a step of patterning a resist in the formation of the microchamber device of the first embodiment.
  • FIG. 8F is a diagram illustrating a process of etching a material film using a patterned resist as a mask in the formation of the microchamber device of the first embodiment.
  • FIG. 8G is a diagram showing a step of removing the resist in the formation of the microchamber device of the first embodiment.
  • FIG. 8H is a diagram illustrating a process of etching an electrode layer using a patterned material film as a mask in the formation of the microchamber device of the first embodiment.
  • FIG. 9A is a diagram showing a process of filling a liquid flow path with a test liquid in forming a lipid bilayer membrane in the high-density microchamber array according to the first embodiment.
  • FIG. 9B is a diagram showing a step of introducing an organic solvent containing lipid in the formation of a lipid bilayer membrane in the high-density microchamber array according to the first embodiment.
  • FIG. 9C is a diagram showing a step of introducing a film-forming liquid in the formation of the lipid bilayer membrane in the high-density microchamber array according to the first embodiment.
  • FIG. 10 is a diagram illustrating changes in applied voltage (broken line) and fluorescence intensity (solid line) in the first experimental example.
  • FIG. 10 is a diagram illustrating changes in applied voltage (broken line) and fluorescence intensity (solid line) in the first experimental example.
  • FIG. 11 is a diagram showing the relationship between the temporal change in fluorescence intensity and the membrane potential in the second experimental example.
  • FIG. 12 is a diagram showing the relationship between the proton transport rate (vertical axis) and the magnitude of membrane potential (horizontal axis) of F-type ATP synthase in the second experimental example.
  • FIG. 13 is a diagram illustrating an example of a schematic configuration of a high-density micro-chamber array system according to the second embodiment.
  • FIG. 14 is a diagram illustrating an example of a schematic configuration of a high-density microchamber array in which biopolymers are integrated in the third embodiment.
  • FIG. 15 is a process diagram showing an example of a method for producing a biopolymer integrated high-density microchamber array in the third embodiment.
  • FIG. 16A is a diagram showing a step of introducing cells into a liquid flow path in the method of fusing cells to the lipid bilayer membrane of the fourth embodiment.
  • FIG. 16B is a diagram illustrating a state in which cells are fused to a lipid bilayer in the method of fusing cells to the lipid bilayer according to the fourth embodiment.
  • Patent Document 1 discloses such a high-density microchamber array.
  • Patent Document 1 discloses such a high-density microchamber array.
  • the inventor has intensively studied to find out the application technology of the conventional high-density micro-chamber array. As a result, the following knowledge was obtained. Note that the following knowledge is only a trigger for the present invention, and does not limit the present invention.
  • the development of the above-described high-density micro-chamber array makes it possible to efficiently perform measurement such as transmembrane-type material transport using membrane proteins.
  • the activity of membrane protein may be influenced by membrane potential.
  • the membrane potential is actively controlled by active transport of ions, and the activity of the membrane protein may be regulated by this. If the membrane potential can be controlled in the lipid bilayer membrane formed in the high-density microchamber array, there is a possibility that the properties of the membrane protein can be elucidated in more detail. However, the membrane potential cannot be controlled with the conventional high-density microchamber array.
  • the inventor has conceived that the membrane potential of the lipid bilayer can be controlled by forming electrodes inside the chamber in a conventional high-density microchamber array. By controlling the membrane potential using an electrode, it has become possible to measure how the properties of membrane proteins change depending on the membrane potential.
  • electrodes inside the chamber also opened up further applications for conventional high-density microchamber arrays. That is, if heat is generated by applying current to the electrodes, the temperature of the chamber can be controlled. By generating an electric field using the electrodes, it is possible to attract and accumulate biopolymers and the like inside the chamber. In order to transfer the cell surface membrane protein to the lipid bilayer stretched in the chamber, a cell fusion technique can be used.
  • the substrate and the like are configured to have translucency. Light incident on the substrate from below the substrate passes through the substrate and enters the inside of the micro chamber, and light incident on the substrate from the inside of the micro chamber passes through the substrate and escapes below the substrate. By configuring so, the reaction in the micro chamber can be effectively detected.
  • the high-density micro-chamber array according to the first embodiment includes a flat substrate having translucency and a layer made of a hydrophobic material provided on the substrate, and openings of a plurality of micro-chambers are the main layers of the layer.
  • a lipid bilayer membrane formed to seal the test liquid in the part, electrodes are provided in the respective microchambers, and the side of the substrate on which the hydrophobic layer is provided is upward
  • light incident on the substrate from below the substrate passes through the substrate and enters the inside of the micro chamber, and the inside of the micro chamber.
  • Light incident to Luo substrate is configured to escape to below the substrate passes through the substrate.
  • An electrode is provided on the inner surface of each microchamber.
  • An electrode is provided as a transparent electrode on the bottom surface of each microchamber.
  • the high-density microchamber array may further include a counter electrode above the lipid bilayer membrane.
  • the high-density micro-chamber array may further include a liquid channel having a bottom surface on which the micro-chamber is formed.
  • the liquid flow path may be formed between the upper surface of the hydrophobic layer and the lower surface of the ceiling disposed above the hydrophobic layer.
  • the ceiling may be composed of a glass plate.
  • the high-density micro-chamber array system includes the high-density micro-chamber array and a voltage application device that applies a voltage between the electrode and the opposite electrode.
  • the membrane protein analysis method includes a flat substrate having translucency, and a layer made of a hydrophobic substance provided on the substrate, in which openings of a plurality of microchambers are formed on the layer.
  • the capacity of the microchamber is 4000 ⁇ 10 ⁇ 18 m 3 or less, and a hydrophobic layer, and electrodes are provided in each microchamber
  • the substrate when the side on which the hydrophobic layer is provided is the upper side, the light incident on the substrate from below the substrate is transmitted through the substrate by satisfying at least one of the following A) and B)
  • a high-density microchamber array configured to enter the inside of the microchamber and to allow light incident on the substrate from the inside of the microchamber to pass through the substrate and escape below the substrate.
  • a lipid bilayer is formed at the openings of a plurality of microchambers, where the lipid bilayer holds membrane proteins, and an electrode and a counter electrode provided above the lipid bilayer.
  • the property of the membrane protein is changed by applying a voltage between the two.
  • An electrode is provided on the inner surface of each microchamber.
  • An electrode is provided as a transparent electrode on the bottom surface of each microchamber.
  • FIG. 1 is a plan view showing an example of a schematic configuration of a high-density micro chamber array according to the first embodiment.
  • FIG. 2 is an enlarged view of the AA cross section in FIG. 1 and a part of the cross section of the high-density microchamber array according to the first embodiment.
  • the apparatus configuration of the high-density micro chamber array 20 of the first embodiment will be described with reference to FIGS. 1 and 2.
  • the high-density microchamber array 20 includes a substrate 22, a hydrophobic layer 24, a lipid bilayer membrane 30, and an electrode 23.
  • the substrate 22 has translucency and is flat.
  • the substrate 22 can be made of, for example, glass or acrylic resin.
  • the material, thickness, shape, and the like of the substrate 22 are such that light incident on the substrate 22 from below the substrate 22 passes through the substrate 22 and enters the microchamber 26, and from the microchamber 26 to the substrate. There is no particular limitation as long as the light incident on 22 can pass through the substrate 22 and escape below the substrate 22.
  • the thickness may be 0.1 mm or more and 5 mm or less, 0.3 mm or more and 3 mm or less, or 0.7 mm or more and 1.5 mm or less.
  • the size of the substrate 22 in plan view is not particularly limited.
  • the hydrophobic layer 24 is a layer provided on the substrate 22 and made of a hydrophobic substance.
  • the hydrophobic substance include a hydrophobic resin such as a fluororesin, and a substance other than a resin such as glass.
  • the thickness of the hydrophobic layer 24 can be appropriately adjusted according to the volume of the microchamber described later. Specifically, for example, it may be 10 nm or more and 100 ⁇ m or less, 100 nm or more and 5 ⁇ m or less, or 250 nm or more and 1 ⁇ m or less.
  • openings of a plurality of micro chambers 26 are provided on the main surface of the hydrophobic layer 24 so as to be regularly and densely arranged.
  • the capacity of the micro chamber 26 is 4000 ⁇ 10 ⁇ 18 m 3 or less (4000 ⁇ m 3 or less).
  • the capacity of the micro chamber 26 may be, for example, 0.1 ⁇ 10 ⁇ 18 m 3 or more and 4000 ⁇ 10 ⁇ 18 m 3 or 0.5 ⁇ 10 ⁇ 18 m 3 or more and 400 ⁇ 10 ⁇ 18 m. It may be 3 or less, or may be 1 ⁇ 10 ⁇ 18 m 3 or more and 40 ⁇ 10 ⁇ 18 m 3 or less.
  • the micro chamber 26 may have a cylindrical shape. As shown in FIGS. 1 and 2, the microchamber 26 may have a cylindrical shape in which the substrate 22 forms a bottom surface and the hydrophobic layer 24 (or the hydrophobic layer 24 and the electrode 23) forms a side surface.
  • the capacity of the microchamber 26 is 4000 ⁇ 10 ⁇ 18 m 3 or less, the number of biomolecules in the microchamber 26 can be reduced by using the high-density microchamber array 20 of the first embodiment for detection of biomolecule reactions. can do.
  • an array in which a large number of such minute chambers 26 are formed at a high density is used, even if the frequency of the reaction of biomolecules is low, the reaction occurs in any one of the chambers. Can be detected.
  • the capacity of the micro chamber 26 is determined by the magnitude of the reaction rate of the biomolecule to be tested, the content rate of the biomolecule, and the like. 10 -18 m 3 is preferred to less, when the magnitude of the reaction rate of the biomolecule is small or the like, 1000 ⁇ 10 -18 m 3 or less and 100 ⁇ 10 -18 m 3 may be less.
  • the depth of the micro chamber 26 may be, for example, 10 nm or more and 100 ⁇ m or less, 100 nm or more and 5 ⁇ m or less, or 250 nm or more and 1 ⁇ m or less.
  • the opening of the micro chamber 26 can be circular, for example.
  • the diameter of the circle in the case of a circular shape may be, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, 0.5 ⁇ m or more and 50 ⁇ m or less, or 1 ⁇ m or more and 10 ⁇ m or less.
  • Regular means, for example, that the chambers are arranged on the substrate in a lattice shape, a matrix shape, a staggered shape, or the like as viewed from the thickness direction of the substrate. “Regular” may mean, for example, that the chambers are arranged at regular intervals so as to form a plurality of rows.
  • the number of chambers per square mm (1 mm 2 ) may be 0.1 ⁇ 10 3 or more and 2000 ⁇ 10 3 or less, or 1 ⁇ 10 3 or more and 1000 ⁇ . it may be 10 3 or less, 5 ⁇ 10 3 or more 100 ⁇ 10 may be three or less.
  • the plurality of micro-chambers 26 have a depth of 100 ⁇ m or less and are formed to have a diameter of 100 ⁇ m or less when converted into a circle, or a depth of 2 ⁇ m or less.
  • the diameter shall be 10 ⁇ m or less when converted to a circle, or the depth shall be 1 ⁇ m or less and the diameter shall be 5 ⁇ m or less when converted to a circle. You can also. In this way, it is possible to form the high-density micro-chamber array 20 by using a technique in which a thin film made of a hydrophobic substance and an electrode layer is formed on the surface of the substrate 20 and a plurality of micro-chambers 26 are formed on the thin film.
  • the micro chamber array 20 can be formed relatively easily.
  • the micro chamber 26 is formed on a thin film made of a hydrophobic substance and an electrode layer each having a thickness in the range of 500 nm so as to have a diameter in a predetermined range including 1 ⁇ m when converted into a circle. You can also. Considering the magnitude of the reaction rate of the biomolecule to be tested and the content of the biomolecule as well as the ease of production, it is considered that the depth and diameter of the microchamber 26 are preferably several hundred nm to several ⁇ m.
  • the “predetermined thickness range” is, for example, a range of 50 nm that is 0.1 times 500 nm and 5 ⁇ m that is 10 times 500 nm, or 1 ⁇ m that is 250 nm that is 0.5 times 500 nm and 2 times 500 nm. Or the following range.
  • the “predetermined diameter range” is, for example, a range of 0.1 nm of 1 ⁇ m to 100 ⁇ m or more and 10 ⁇ m or less of 1 ⁇ m, or a range of 500 ⁇ m or more of 0.5 ⁇ m of 1 ⁇ m to 2 ⁇ m or less of 2 ⁇ m of 1 ⁇ m It can be done.
  • the “predetermined thickness range” is not particularly limited. For example, it may be 10 to 500 nm, 20 to 500 nm, or 30 to 500 nm.
  • the “predetermined thickness range” may be, for example, 10 nm to 100 nm, 20 nm to 100 nm, or 30 nm to 100 nm. If the depth of the micro chamber is reduced (several tens of nm) and the volume of the micro chamber is reduced (several hundreds aL), the measurement sensitivity is further improved (Soga, N. et al., 2015, Attolitre-sized lipid bilayer chamber array for rapid detection of single transporters, Scientific Reports, 5: 11025).
  • the lipid bilayer membrane 30 is formed so that the test liquid is sealed in the openings of the plurality of micro chambers 26 filled with the test liquid.
  • the test liquid is not particularly limited as long as it is a liquid capable of forming the lipid bilayer membrane 30. Specifically, for example, an aqueous solution can be used.
  • the lipid bilayer membrane 30 includes a first lipid membrane 32 in which the hydrophilic group of lipid faces the micro chamber 26 side (lower side in FIG. 2), and the hydrophobic group of lipid in the micro chamber 26 side (lower side in FIG. 2). ) And the second lipid membrane 34 facing toward () are formed so as to overlap so that the hydrophobic group is on the inside.
  • lipids constituting the first lipid membrane 32 and the second lipid membrane 34 natural lipids such as those derived from soybeans and Escherichia coli, artificial lipids such as DOPE (dioleoylphosphatidylethanolamine) and DOPG (dioleoylphosphatidylglycerol) are used. Can be used.
  • the lipid bilayer membrane 30 may be one in which membrane proteins are reconstituted. In this way, the high-density microchamber array 20 can be used for detection of biomolecular reactions and the like via various membrane proteins. A method for reconstituting the membrane protein into the lipid bilayer membrane 30 will be described later.
  • the electrode 23 is provided inside each micro chamber 26. Each electrode 23 may be electrically connected to each other. When the side on which the hydrophobic layer 24 is provided in the substrate 22 is the upper side, at least one of the following A) and B) is satisfied. Both A) and B) may be satisfied. A) An electrode 23 is provided on the inner surface of each microchamber 26. B) Electrodes 23 are provided as transparent electrodes on the bottom surfaces of the respective microchambers 26.
  • the attenuation of light passing through the bottom surface is reduced compared to the case where the transparent electrode is employed as in B above. Sensitivity is improved.
  • the hydrophilicity of the transparent electrode surface is low in B, the liquid may escape from the microchamber.
  • the electrode is provided on the inner surface of the microchamber as in A, the problem is reduced. Can be done.
  • the electrode 23 is provided on the inner surface of each microchamber 26.
  • the electrode 23 may be made of metal.
  • the metal for example, copper, silver, gold, platinum, aluminum, chromium, silver chloride, or the like can be used.
  • the electrode 23 may be made of a material other than metal. Specifically, for example, ITO (Indium-Tin-Oxide: Indium Tin Oxide), IZO (Material made of Indium Tin Oxide and Zinc Oxide), ZnO, IGZO (Material made of Indium, Gallium, Zinc, Oxygen) Or the like.
  • the thickness of the electrode 23 may be, for example, 10 nm or more and 100 ⁇ m or less, 100 nm or more and 5 ⁇ m or less, or 250 nm or more and 1 ⁇ m or less.
  • the reaction in the micro chamber 26 can be promoted. Therefore, the high-density micro chamber array 20 can be applied to an inspection apparatus, a culture apparatus, and the like.
  • FIG. 3 is a conceptual diagram showing an example of a high-density micro chamber array system according to the first embodiment.
  • the high-density microchamber array 20 ⁇ / b> A includes a counter electrode 27 above the lipid bilayer membrane 30 in addition to the configuration of the high-density microchamber array 20.
  • the high-density microchamber array system 100 according to the first embodiment will be described with reference to FIG.
  • the high-density microchamber array system 100 includes a substrate 22, a hydrophobic layer 24, a lipid bilayer membrane 30, an electrode 23, a counter electrode 27, and a voltage application device 28. ing. Since the substrate 22, the hydrophobic layer 24, the lipid bilayer membrane 30, and the electrode 23 are as described above, detailed description thereof is omitted.
  • the counter electrode 27 is an electrode provided above the lipid bilayer membrane 30.
  • the counter electrode 27 may be provided so as to straddle the plurality of micro chambers 26.
  • the counter electrode 27 may be provided so as to straddle all the micro chambers 26.
  • the size and shape of the counter electrode 27 viewed from the thickness direction of the substrate 22 may substantially coincide with the substrate 22.
  • the counter electrode 27 may be made of metal. For example, copper, silver, gold, aluminum, chromium, or the like can be used as the metal.
  • the distance from the substrate 22 to the counter electrode 27 may be, for example, 1 ⁇ m or more and 10 mm or less, 2 ⁇ m or more and 1 mm or less, or 10 ⁇ m or more and 100 ⁇ m or less.
  • the counter electrode 27 may be provided so as to correspond to each micro chamber 26. Specifically, for example, when a pair of microchamber devices according to the present embodiment (see FIGS. 1 and 2) are bonded so that the openings of the microchambers face each other, the electrode of one microchamber device is the electrode 23. Thus, the electrode of the other microchamber device may be used as the counter electrode 27.
  • the voltage application device 28 applies a voltage between the electrode 23 and the opposite electrode 27.
  • the voltage application device 28 may apply a DC voltage.
  • a function generator for example, manufactured by NF Circuit Design Block Co., Ltd.
  • NF Circuit Design Block Co., Ltd. can be used as the voltage application device 28.
  • the high-density micro chamber array system 100 can be applied to an inspection apparatus, a culture apparatus, and the like.
  • FIG. 4 is a plan view showing a schematic configuration of a high-density micro chamber array according to a modification of the first embodiment.
  • the high-density micro chamber array 20B according to the modification will be described with reference to FIG.
  • the high-density microchamber array 20B includes a substrate 22, a hydrophobic layer 24, a lipid bilayer membrane 30, and an electrode 23T. Since the substrate 22, the hydrophobic layer 24, and the lipid bilayer 30 are as described above, detailed description thereof is omitted.
  • the electrode 23T is provided as a transparent electrode on the bottom surface of each microchamber 26.
  • the electrode 23 ⁇ / b> T is configured to cover the entire surface of the substrate 22.
  • ITO Indium-Tin-Oxide: indium tin oxide
  • IZO material made of indium tin oxide and zinc oxide
  • ZnO ZnO
  • IGZO material made of indium, gallium, zinc, oxygen
  • the light incident on the substrate 22 from below the substrate 22 passes through the substrate 22 and the electrode 23T and enters the inside of the micro chamber 26, and from the inside of the micro chamber 26, the electrode 23T and the substrate 22 The light incident on the light passes through the electrode 23T and the substrate 22 and escapes below the substrate 22.
  • the thickness of the electrode 23T is such that light incident on the substrate 22 from below the substrate 22 passes through the substrate 22 and enters the micro chamber 26, and from the inside of the micro chamber 26 to the substrate. There is no particular limitation as long as the light incident on 22 can pass through the substrate 22 and escape below the substrate 22.
  • an electrode provided on the inner surface of the micro chamber 26 and an electrode provided as a transparent electrode on the bottom surface may be combined to form one electrode.
  • the electrode 23 shown in FIG. 1 and the electrode 23T shown in FIG. 4 may be combined to form one electrode.
  • FIG. 5 is a process diagram showing an example of a method for manufacturing a high-density micro-chamber array according to the first embodiment.
  • a microchamber device whose opening is not liquid-sealed by the lipid bilayer membrane 30 is formed (step S100), and a test liquid is applied to the formed microchamber device.
  • the lipid bilayer membrane 30 is formed so as to liquid-seal the opening of each microchamber 26 in a state where the test liquid is filled in each microchamber 26 (step S120), and is completed.
  • the formation of the microchamber device (step S100) is performed, for example, according to the process diagram shown in FIG. 6, and the formation of the lipid bilayer membrane 30 (step S120) is performed, for example, according to the process diagram shown in FIG.
  • the formation of the microchamber device will be described, and then the formation of the lipid bilayer membrane 30 will be described.
  • microchamber device for example, a thin film of an electrode material and a hydrophobic substance is sequentially formed on the surface of the substrate 22, and a resist is formed on a portion other than a portion where a plurality of microchambers 26 are formed on the thin film surface
  • a part of the plurality of micro chambers 26 is formed in the thin film of the hydrophobic material by dry etching, the resist is removed, and a plurality of thin films of the electrode material are formed by wet etching using the hydrophobic material layer as a mask.
  • the remainder of the microchamber 26 can be formed.
  • a part of the plurality of micro chambers 26 may be formed on a thin film of a hydrophobic material by using a technique other than dry etching, for example, a technique such as nanoimprinting.
  • FIG. 6 is a process diagram (steps S200 to S270) showing an example of formation of a microchamber device (step S100) in the first embodiment.
  • FIG. 8A to FIG. 8H show the state of each step of forming the microchamber device.
  • the glass substrate 22 is immersed in a 10M potassium hydroxide (KOH) solution for about 24 hours (step S200, FIG. 8A).
  • KOH potassium hydroxide
  • an electrode layer 23a is formed on the surface of the glass substrate 22 by vapor-depositing metal using a vacuum vapor deposition device (step S210, FIG. 8B).
  • a vacuum vapor deposition device for example, silver, gold, chrome and the like can be used.
  • the thickness can be about 500 nm.
  • a hydrophobic material for example, fluororesin (CYTOP) manufactured by Asahi Glass Co., Ltd.
  • CYTOP fluororesin
  • the material film 24a is adhered to the surface of the electrode layer 23a (step S220, FIG. 8C).
  • a condition of the spin coating for example, 4000 seconds (revolution per second) can be used for 30 seconds.
  • the material film 24a has a thickness of about 500 nm.
  • the adhesion of the material film 24a to the surface of the electrode layer 23a can be performed, for example, by baking for 1 hour on a hot plate at 180 ° C.
  • a resist 25a is formed on the surface of the material film 24a by spin coating, and the resist 25a is adhered to the surface of the material film 24a (step S230, FIG. 8D).
  • the resist 25a AZ-4903 made by AZ Electronic Materials can be used.
  • As a condition for spin coating for example, 60 seconds can be used at 4000 rps (revolution per second).
  • the adhesion of the resist 25a to the surface of the material film 24a can be performed, for example, by baking for 5 minutes on a hot plate at 110 ° C. and evaporating the organic solvent in the resist 25a.
  • the resist 25a is exposed using a mask of the pattern of the micro chamber 26, and developed by immersing in a resist-dedicated developer to form a resist 25b from which a portion for forming the micro chamber 26 is removed (step S240, step S240).
  • FIG. 8E As the exposure condition, for example, a condition of irradiating with UV-power 250 W for 7 seconds with a SAN-EI exposure machine can be used.
  • As the development condition for example, a condition of immersing in an AZ developer made by AZ Electronic Materials for 5 minutes can be used.
  • the material film 24a masked by the resist 25b is dry-etched to obtain a material film 24b obtained by removing a portion that becomes the micro chamber 26 from the material film 24a (Step S250, FIG. 8F), and the resist 25b is removed ( Step S260, FIG. 8G).
  • a reactive ion etching apparatus manufactured by Samco can be used with O 2 50 sccm, Pressure 10 Pa, Power 50 W, and Time 30 min as etching conditions.
  • the resist 25b can be removed by immersing in acetone, washing with isopropanol, and then washing with pure water.
  • the micro chamber 26 is completed by wet-etching the metal layer 23a (step S270, FIG. 8H).
  • the wet etching can be performed, for example, by immersing the microchamber device being formed in a metal etching solution and then washing with pure water.
  • a micro chamber device in which a plurality of micro chambers 26 are formed on the surface of the glass substrate 22 by the hydrophobic layer 24 and the electrodes 23 can be completed.
  • the shape and size of the micro chamber 26 may be determined as appropriate depending on the reaction rate of the biomolecule.
  • the micro chamber 26 may be formed so that the depth D is 10 ⁇ m and the diameter R is 40 ⁇ m, or the micro chamber 26 may be formed so that the depth D is 2 ⁇ m and the diameter R is 10 ⁇ m. It is considered that the minimum size of the micro chamber 26 that is practical and realizable is that the depth D and the diameter R are both about several hundred nm.
  • the depth and diameter of the microchamber 26 is practically suitable from several hundred nm to several ⁇ m. it is conceivable that. Therefore, the micro chamber 26 may be formed so as to have a predetermined diameter range including 1 ⁇ m when converted into a circle in a predetermined depth range including a depth of 500 nm.
  • the “predetermined depth range” may be considered as an order including 500 nm. For example, a range of 50 nm which is 0.1 times 500 nm and 10 ⁇ m which is 5 times less than 500 nm, or 0.5 times 500 nm is used. The range of 1 ⁇ m or less, which is 250 nm or more and twice that of 500 nm, may be used.
  • the “predetermined thickness range” is not particularly limited. For example, it may be 10 to 500 nm, 20 to 500 nm, or 30 to 500 nm.
  • the “predetermined thickness range” may be, for example, 10 nm to 100 nm, 20 nm to 100 nm, or 30 nm to 100 nm. If the depth of the micro chamber is reduced (several tens of nm) and the volume of the micro chamber is reduced (several hundreds aL), the measurement sensitivity is further improved (Soga, N. et al., 2015, Attolitre-sized lipid bilayer chamber array for rapid detection of single transporters, Scientific Reports, 5: 11025).
  • the “predetermined diameter range” may be considered as an order including 1 ⁇ m. For example, a range of 100 nm, which is 0.1 times 1 ⁇ m, and 10 ⁇ m, which is 10 times 1 ⁇ m, or 500 nm, which is 0.5 times 1 ⁇ m, is used. The range of 2 ⁇ m or less, which is twice as large as 1 ⁇ m, may be used.
  • the maximum capacity L of the microchamber 26 that is practical and feasible for detecting the biomolecule reaction with high sensitivity is 4000 ⁇ 10. It is considered that about ⁇ 18 [m 3 ] is sufficient.
  • an experiment was conducted by forming a micro chamber (capacity L is 3532.5 ⁇ 10 ⁇ 18 [m 3 ]) having a depth of 5 ⁇ m and a diameter R of 30 ⁇ m. I was able to get it.
  • the formation process of the lipid bilayer membrane 30 may be performed by, for example, flowing a test liquid through a liquid channel 48 that forms a substantially horizontal bottom surface on which a plurality of micro chambers 26 are formed.
  • the microchamber 26 is filled with a test liquid, and a lipid-containing organic solvent containing a lipid that forms the lipid bilayer membrane 30 is allowed to flow through the liquid flow path 48, whereby the lipid hydrophilic groups are used for testing the microchamber 26 having a plurality of lipids.
  • the first lipid membrane 32 facing the liquid side is formed at the opening of the micro chamber 26, and the membrane forming liquid is allowed to flow through the liquid channel 48, whereby the hydrophobic group of the lipid faces the first lipid membrane 32 side.
  • the lipid bilayer membrane 30 is formed by forming the second lipid membrane 34 in a state so as to overlap the first lipid membrane 32.
  • FIG. 7 is a process diagram (steps S300 to S310) showing an example of formation of the lipid bilayer membrane 30 (step S120) in the first embodiment.
  • 9A to 9C show the state of each step of forming the lipid bilayer membrane 30.
  • FIG. As a pre-stage of formation of the lipid bilayer membrane 30, a glass plate 44 having a liquid introduction hole 46 formed thereon is placed while a spacer 42 is interposed in the microchamber device. As a result, a liquid channel 48 is formed in which the surface on which the micro chamber 26 of the micro chamber device is formed is a substantially horizontal bottom surface. A test liquid is introduced from the liquid introduction hole 46, and the liquid flow path 48 is filled with the test liquid (FIG. 9A).
  • the composition of the test liquid can be, for example, an aqueous solution.
  • a 10 mM pH buffer solution pH 5 to 9
  • a 20 ⁇ M fluorescent indicator such as Cal520 and pHrodo
  • Various things, such as a liquid containing 10 mM sodium chloride, can be used.
  • An organic solvent containing the lipid 35 is introduced from the liquid introduction hole 46 in a state where the liquid channel 48 is filled with the test liquid (step S300 in FIG. 7, FIG. 9B).
  • the lipid 35 natural lipids such as soybean and Escherichia coli, artificial lipids such as DOPE (dioleoylphosphatidylethanolamine) and DOPG (dioleoylphosphatidylglycerol) can be used.
  • DOPE dioleoylphosphatidylethanolamine
  • DOPG dioleoylphosphatidylglycerol
  • the organic solvent hexadecane or chloroform can be used.
  • the microchamber When the organic solvent containing the lipid 35 is introduced, the microchamber is filled with the first lipid membrane 32 in a state where the hydrophilic group of the lipid 35 is directed toward the microchamber 26 in a state where the microchamber 26 is filled with the test liquid. 26 openings are liquid sealed.
  • a liquid for forming a film for forming the lipid bilayer membrane 30 is introduced from the liquid introduction hole 46 (step S310 in FIG. 7 and FIG. 9C) to form the lipid bilayer membrane 30.
  • a liquid for forming a film for forming the lipid bilayer membrane 30 is introduced from the liquid introduction hole 46 (step S310 in FIG. 7 and FIG. 9C) to form the lipid bilayer membrane 30.
  • a liquid containing 10 mM pH buffer solution (pH 5 to 9) and 10 mM sodium chloride can be used.
  • the high-density microchamber array 20 of the first embodiment is completed by removing the glass plate 44 and the spacer 42 after forming the lipid bilayer membrane 30.
  • the lipid bilayer membrane 30 may be provided with a reconstitution step of reconstituting membrane proteins.
  • a reconstitution step of reconstituting membrane proteins.
  • the high-density microchamber array 20 in which the membrane protein is reconstituted on the lipid bilayer membrane 30 can be used for detection of a biomolecular reaction or the like via the membrane protein.
  • the reconstitution step comprises cell membrane fragments containing membrane proteins, lipid bilayer membranes embedded with proteins, water-soluble proteins, liposomes incorporating proteins, or proteins solubilized with surfactants.
  • a method for incorporating a protein into the lipid bilayer membrane membrane fusion or the like can be used in the case of liposomes, and thermal oscillation or the like can be used in the case of proteins solubilized with a surfactant.
  • the manufacturing method of the high-density micro-chamber array 20 of the first embodiment described above a large number of micro-chambers 26 with a very small capacity sealed by the lipid bilayer membrane 30 are formed with high density relatively easily.
  • the high-density microchamber array 20 thus manufactured can be manufactured.
  • the capacity L of each micro-chamber 26 is as extremely small as 19.6 ⁇ 10 ⁇ 18 [m 3 ], so the high-density micro-chamber array 20 of the first embodiment.
  • the number of biomolecules in the microchamber 26 can be reduced.
  • the degree of concentration change in the micro chamber 26 due to the reaction of one biomolecule can be increased, and the detection sensitivity when detecting the concentration change can be increased. Even if the reaction of the biomolecule is extremely slow, the reaction of the biomolecule can be detected with high sensitivity.
  • the array of minute chambers 26 is formed at a high density of about 2 ⁇ 10 6 per 1 cm 2 (1 ⁇ 10 ⁇ 4 [m 2 ]), the frequency of biomolecule reactions is low. However, since the reaction occurs in any one of the micro chambers 26, the reaction of the biomolecule can be detected with high sensitivity.
  • the high-density microchamber array 20 of the first embodiment can be used for analysis of membrane proteins by further reconfiguring the membrane proteins in the lipid bilayer membrane 30. That is, the membrane protein analysis method according to the first embodiment prepares the high-density microchamber array of the first embodiment and forms a lipid bilayer membrane at the openings of a plurality of microchambers. Lipid bilayers retain membrane proteins. In addition, the property of the membrane protein is changed by applying a voltage between the electrode and the opposite electrode provided above the lipid bilayer.
  • the properties of membrane proteins can include, for example, transport properties of substances through lipid bilayer membranes, catalytic properties of membrane proteins, conformations of membrane proteins, and the like.
  • membrane fusion or the like can be used in the case of liposomes, and thermal oscillation or the like can be used in the case of proteins solubilized with a surfactant. More specific description will be given below.
  • the membrane protein is reconstructed in a state in which the glass plate 44 is placed on the microchamber device via the spacer 42 and the liquid channel 48 is formed (see FIG. 9A).
  • a membrane protein solution reconstituted in liposomes can be introduced, incubated for 1 hour, and incorporated into the lipid bilayer membrane 30 by membrane fusion.
  • the liquid flow path 48 is formed between the hydrophobic layer 24 and the ceiling disposed above the hydrophobic layer 24.
  • the liquid channel 48 may be a space having a constant thickness.
  • the ceiling is the lower surface of the glass plate 44.
  • the lipid membrane When forming a functional lipid membrane, it is necessary to make the lipid membrane thinner.
  • the shearing force by the fluid is effective for thinning.
  • the aqueous solution can flow on the lipid membrane, and the lipid membrane can be efficiently thinned by the shearing force.
  • the counter electrode 27 can be easily installed by patterning a metal on the ceiling of the channel.
  • the counter electrode 27 can be formed on the surface of the glass plate 44.
  • the counter electrode 27 can be used for controlling the membrane potential and operating other biomolecules.
  • the composition of the membrane protein solution is, for example, 10 nM FoF1 (ATP synthase which is a membrane protein), 1 mM MOPS (3-morpholinopropane-1-sulfonic acid) at pH 7, and 10 mM sodium chloride (NaCl). And a solution containing 2 mM magnesium chloride (MgCl 2 ) can be used.
  • FoF1 ATP synthase which is a membrane protein
  • MOPS 3-morpholinopropane-1-sulfonic acid
  • NaCl sodium chloride
  • MgCl 2 magnesium chloride
  • the membrane protein is reconstituted in the lipid bilayer membrane 30 of the high-density micro-chamber array 20 of the first embodiment, the high-density micro-chamber array 20 of the first example is passed through the membrane protein. It can be used for the detection of biomolecular reactions.
  • the method for reconstituting membrane proteins in the lipid bilayer membrane 30 is not limited to the method using liposomes.
  • a membrane protein or water-soluble protein solubilized with a surfactant may be introduced to reconstitute the lipid bilayer 30.
  • a membrane protein solubilized with a surfactant is reconstituted into the lipid bilayer membrane 30
  • a membrane protein solution solubilized with a surfactant of 50 ⁇ L in volume is introduced from the liquid introduction hole 46 of the glass plate 44.
  • the membrane protein may be incorporated into the lipid bilayer membrane 30 by thermal shaking for 1 hour.
  • the composition of the membrane protein solution is, for example, 10 nM FoF1 (ATP synthase that is a membrane protein), 0.01 to 0.1% decyl maltoside (n-decyl- ⁇ -maltoside: surfactant)
  • a solution containing 1 mM pH 7 MOPS (3-morpholinopropane-1-sulfonic acid), 10 mM sodium chloride (NaCl), and 2 mM magnesium chloride (MgCl 2 ) can be used.
  • the stage before forming the lipid bilayer membrane 30 in the microchamber device that is, the liquid introduction hole 46 is used.
  • a protein-containing liquid in which at least protein is solubilized or suspended in the test liquid may be used as the test liquid. . That is, a protein-containing liquid is introduced as a test liquid from the liquid introduction hole 46 and the liquid channel 48 is filled with the protein-containing liquid.
  • the protein By sequentially introducing an organic solvent containing lipid 35 and a film-forming liquid (or an aqueous solution for film formation) for forming the lipid bilayer membrane 30 from the liquid introduction hole 46, the protein is contained in the microchamber 26.
  • the opening of the micro chamber 26 is sealed with the lipid bilayer membrane 30.
  • the microchamber 26 is sealed with a lipid bilayer membrane 30, and the protein in the protein-containing liquid in the microchamber 26 is reconstituted into the lipid bilayer membrane 30 by membrane fusion or thermal oscillation.
  • the protein in the protein-containing liquid cell membrane fragments containing membrane proteins, lipid bilayer membranes embedded with proteins, water-soluble proteins, liposomes incorporating proteins, proteins solubilized with surfactants, etc. may be used. it can.
  • the properties of the membrane protein can be changed by applying a voltage between the electrode 23 and the counter electrode 27 provided above the lipid bilayer membrane 30. It can.
  • the applied voltage can be appropriately adjusted, for example, between ⁇ 300 mV and +300 mV.
  • the change in the properties of the membrane protein can be analyzed by detecting the light emitted from the fluorescent substance contained in the test liquid contained in the micro chamber 26 using a confocal laser microscope.
  • An epi-focal confocal microscope may be used as the microscope.
  • the light L ⁇ b> 1 emitted from the laser light source 12 is reflected by the dichroic mirror 14 and enters the substrate 22.
  • the light incident on the substrate 22 passes through the substrate 22 and enters the micro chamber 26.
  • the fluorescent substance in the micro chamber 26 receives the entering light and emits light of different wavelengths.
  • the emitted light L ⁇ b> 2 enters the substrate 22, passes through the substrate 22, and escapes below the substrate 22. Further, the light passes through the dichroic mirror 14 and reaches the camera 10.
  • An optical system may be appropriately inserted between the laser light source 12 and the dichroic mirror 14 and between the dichroic mirror 14 and the camera 10.
  • the membrane potential was detected using the high-density microchamber array 20A (see FIGS. 1, 2, and 3) of the first embodiment and a fluorescent membrane potential indicator.
  • the experimental conditions of this experimental example were as follows.
  • Substrate 22 material colorless glass
  • Substrate 22 thickness 0.12 mm
  • the shape of the substrate 22 24 mm ⁇ 32 mm rectangle
  • the material of the opposite electrode 27 gold
  • the shape of the opposite electrode 27 18 mm ⁇ 18 mm rectangle
  • the distance from the substrate 22 to the opposite electrode 27 0.2 mm
  • Material of the hydrophobic layer 24 Fluororesin (CYTOP) manufactured by Asahi Glass Co., Ltd.
  • Hydrophobic layer 24 thickness about 500 nm Material of electrode 23: Gold Electrode 23 thickness: about 500 nm
  • Micro chamber cylindrical shape with a diameter of about 5 ⁇ m and a height of about 1 ⁇ m
  • Lipid bilayer membrane 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-3- Formation with 1: 1 (weight ratio) chloroform solution of phosphoglycerol (DOPG) mixture
  • Test liquid 10 mM pH buffer (pH 5-9), 20 ⁇ M fluorescent membrane potential indicator (DiBac4), Aqueous solution containing 10 mM sodium chloride
  • Voltage application device Function generator (manufactured by NF Circuit Design Block Co., Ltd.) Confocal laser microscope: A1R (Nikon) Fluorescent membrane potential indicator: DiBAC4 (manufactured by Dojindo) DiBAC4 is a Bis-oxonol type ani
  • FIG. 10 is a diagram showing changes in applied voltage (broken line) and fluorescence intensity (solid line) in the first experimental example.
  • the applied voltage is indicated by the potential of the opposite electrode 27 with the electrode 23 as a reference (0 V) (the same applies to other experimental examples).
  • the fluorescence intensity of DiBAC4 changes so as to follow the applied voltage. It can be seen that the change in fluorescence intensity is slightly delayed from the change in applied voltage. From the results of this experimental example, it can be seen that the membrane potential (depolarization and hyperpolarization) can be controlled by applying a voltage to the electrodes by using the high-density microchamber array of the first embodiment.
  • the test liquid inside the microchamber 26 includes Tricine buffer (pH 8) having a composition of 10 ⁇ M, 10 mM sodium chloride (NaCl), 10 mM calcium chloride (CaCl 2 ), and 2 mM magnesium chloride (MgCl 2 ).
  • Tricine buffer pH 8 having a composition of 10 ⁇ M, 10 mM sodium chloride (NaCl), 10 mM calcium chloride (CaCl 2 ), and 2 mM magnesium chloride (MgCl 2 ).
  • An aqueous solution containing 1 ⁇ M adenosine diphosphate (ADP) and 20 ⁇ M fluorescent pH indicator (RhP-M) was used.
  • the liquid outside the microchamber 26 includes 10 ⁇ M MOPS (3-Morpholinopropanesulfonic acid) buffer (pH 8), 10 mM sodium chloride (NaCl), 10 mM calcium chloride (CaCl 2 ), 2 mM magnesium chloride ( An aqueous solution containing MgCl 2 ) and 240 ⁇ M adenosine triphosphate (ATP) was used.
  • MOPS 3-Morpholinopropanesulfonic acid
  • FIG. 11 is a diagram showing the relationship between the temporal change in fluorescence intensity and the membrane potential in the second experimental example.
  • FIG. 12 is a diagram showing the relationship between the proton transport rate (vertical axis) and the magnitude of membrane potential (horizontal axis) of F-type ATP synthase in the second experimental example.
  • the inside of the micro chamber is heated by passing a current through the electrode.
  • the high-density micro-chamber array according to the second embodiment is the high-density micro-chamber array according to the first embodiment, and the electrodes are made of metal and are provided on the inner surface of each micro-chamber.
  • the metal may be chromium.
  • the high-density micro-chamber array system includes any one of the above-described high-density micro-chamber arrays and a current application device that generates heat by flowing current in the electrodes in parallel with the substrate.
  • the high-density micro-chamber array system may further include a counter electrode provided above the lipid bilayer and a voltage application device that applies a voltage between the electrode and the counter electrode.
  • any one of the above-described high-density micro-chamber arrays is prepared, and the temperature of the test liquid sealed in the micro-chamber is controlled by causing the electrodes to generate heat by passing a current through the electrodes. Control.
  • FIG. 13 is a diagram illustrating an example of a schematic configuration of a high-density micro-chamber array system according to the second embodiment.
  • the apparatus configuration of the high-density micro-chamber array system 200 of the second embodiment will be described with reference to FIG.
  • the high-density microchamber array system 200 includes a substrate 22, an electrode 23, a hydrophobic layer 24, a microchamber 26, a lipid bilayer membrane 30, and a current application device 29. ing.
  • the substrate 22, the hydrophobic layer 24, the micro chamber 26, and the lipid bilayer membrane 30 can be configured in the same manner as in the first embodiment, detailed description thereof is omitted.
  • the electrode 23 may be made of any material that can be used as a heating element. Specifically, for example, the electrode 23 may be made of metal. More specifically, for example, the electrode 23 may be made of chromium.
  • the electrode 23 may be made of a material that can be used as a heating element and is less susceptible to alteration by the test liquid.
  • the electrode 23 may be made of chromium.
  • the electrodes 23 corresponding to the plurality of micro chambers 26 are electrically connected to each other. That is, like the hydrophobic layer 24 shown in FIG. 1, the electrode 23 may be continuously configured so as to surround the plurality of micro chambers 26. In such a configuration, the plurality of micro chambers 26 can be heated together.
  • the current application device 29 causes the electrode 23 to generate heat by flowing a current through the electrode 23 in parallel with the substrate 22.
  • a function generator manufactured by NF Circuit Design Block Co., Ltd.
  • NF Circuit Design Block Co., Ltd. can be used as the current application device 29.
  • a current is applied to the electrode 23 using the current application device 29, and the electrode 23 is caused to generate heat so that the test liquid sealed in the micro chamber 26, the lipid bilayer membrane 30, The temperature of membrane protein etc. can be controlled.
  • the high-density micro-chamber array system 200 may include the voltage application device 28 in addition to the current application device 29. Since the voltage application device 28 can be configured in the same manner as in the first embodiment, a detailed description thereof will be omitted.
  • biopolymers are accumulated in a microchamber sealed with a lipid bilayer membrane.
  • the high-density microchamber array according to the third embodiment is a high-density microchamber array according to at least one of the first embodiment and the second embodiment, and biopolymers are integrated inside the microchamber. ing.
  • a method according to the third embodiment includes a flat substrate having translucency and a layer made of a hydrophobic material provided on the substrate, and openings of a plurality of microchambers are formed on the main surface of the layer. Provided with regular and high-density arrangement, and the capacity of the micro chamber is 4000 ⁇ 10 ⁇ 18 m 3 or less, and an electrode is provided in each micro chamber.
  • the side on which the hydrophobic layer is provided is the upper side, by satisfying at least one of the following A) and B), the light incident on the substrate from the lower side of the substrate is transmitted through the substrate and the inside of the micro chamber A high-density micro-chamber array is prepared so that light entering the substrate and entering the substrate from inside the micro-chamber passes through the substrate and escapes below the substrate.
  • biopolymers integrated inside a plurality of micro-chambers after which the biopolymer to form a lipid bilayer membrane to seal the opening of the plurality of micro chambers.
  • An electrode is provided on the inner surface of each microchamber.
  • An electrode is provided as a transparent electrode on the bottom surface of each microchamber.
  • FIG. 14 is a diagram illustrating an example of a schematic configuration of a high-density microchamber array in which biopolymers are integrated in the third embodiment.
  • the apparatus configuration of the high-density microchamber array 300 of the third embodiment will be described with reference to FIG.
  • the high-density microchamber array 300 includes a substrate 22, an electrode 23, a hydrophobic layer 24, a microchamber 26, and a lipid bilayer membrane 30.
  • the substrate 22, the electrode 23, the hydrophobic layer 24, and the lipid bilayer 30 can be configured in the same manner as at least one of the first embodiment and the second embodiment, detailed description thereof is omitted. To do.
  • the biopolymer 36 is accumulated inside the micro chamber 26.
  • the biopolymer includes, for example, protein, DNA, RNA and the like.
  • FIG. 15 is a process diagram showing an example of a method for producing a biopolymer integrated high-density microchamber array in the third embodiment.
  • a microchamber device whose opening is not sealed with the lipid bilayer membrane 30 is formed (step S400), and a test liquid is applied to the microchamber device thus formed.
  • a test liquid is applied to the microchamber device thus formed.
  • biopolymers are accumulated in each microchamber (step S420), the test liquid is filled in each microchamber 26, and the biopolymer is accumulated in each microchamber 26,
  • the lipid bilayer membrane 30 is formed so as to liquid-seal the opening of each microchamber 26 (step S430), and is completed.
  • step S400 can be the same as step S100 in FIG. 5, detailed description thereof is omitted.
  • step S410 can be the same as step S110 in FIG. 5 or FIG. 9A, detailed description is omitted.
  • step S430 can be the same as step S120 of FIG. 5 or FIG. 9B to FIG. 9C, detailed description thereof will be omitted.
  • step S420 the biopolymer 36 is attracted to the inside of the micro chamber 26 by using the electrode 23, for example.
  • the biopolymer 36 may have a charge.
  • the biopolymer 36 can be attracted to the microchamber 26 by charging the electrode 23 with a polarity opposite to that of the biopolymer 36.
  • the biopolymer 36 may be attracted to the microchamber 26 by dielectrophoresis.
  • dielectrophoresis even electrically neutral particles can be polarized and moved by applying a non-uniform electric field. Dielectrophoresis is caused by the relationship between the dielectric constant of the fluid and the particles and the spatial gradient of the electric field.
  • dielectrophoresis is used, the biopolymer 36 can be attracted to the microchamber 26 even when the biopolymer 36 has no electric charge. In the present embodiment, since the electric field concentrates on the opening of the chamber, the substance can be guided into the chamber.
  • the biopolymer 36 can be accumulated inside the micro chamber 26 sealed with the lipid bilayer membrane 30. Therefore, it is advantageous in analyzing the interaction between the biopolymers 36, the interaction between the membrane protein held in the lipid bilayer membrane 30 and the biopolymer 36, and the like.
  • a membrane protein is introduced into a lipid bilayer by cell fusion.
  • a high-density microchamber array according to at least one of the first to third embodiments having a counter electrode is prepared, and a lipid is applied by applying a current between the electrode and the counter electrode.
  • a lipid is applied by applying a current between the electrode and the counter electrode.
  • the method of the fourth embodiment includes the step of providing a counter electrode above the lipid bilayer in the method of at least one of the first to third embodiments, wherein the membrane protein is formed between the electrode and the counter electrode. It may be a cell-derived membrane protein introduced into a lipid bilayer by fusing cells to the lipid bilayer by applying an electric current therebetween.
  • FIG. 16A is a diagram showing a step of introducing cells into the liquid flow path in the method of fusing cells to the lipid bilayer membrane of the fourth embodiment.
  • FIG. 16B is a diagram illustrating a state in which cells are fused to a lipid bilayer in the method of fusing cells to the lipid bilayer according to the fourth embodiment.
  • the method of the fourth embodiment will be described with reference to FIGS. 16A and 16B.
  • 16A and 16B components common to those in FIG. 3 can be configured in the same manner as in the first embodiment, and thus the same reference numerals and names are given and detailed description thereof is omitted.
  • Introduction of the membrane protein 54 into the lipid bilayer membrane 30 using the cell fusion technique can be performed, for example, as follows. That is, the liquid channel 48 is formed by placing the glass plate 44 on the micro chamber device via the spacer 42. In this state, a solution containing cells 52 having membrane protein 54 is introduced from the liquid introduction hole 46 of the glass plate 44 (FIG. 16A), and a current application device 28 (not shown) is provided between the electrode 23 and the opposite electrode 27. By applying a pulsed direct current using, the membrane protein 54 is incorporated into the lipid bilayer 30 by cell fusion (FIG. 16B).
  • composition of the solution examples include 10 nM FoF1 (ATP synthase), 1 mM pH 7 MOPS (3-morpholinopropane-1-sulfonic acid), 10 mM sodium chloride (NaCl), 2 mM magnesium chloride (MgCl). 2 ) can be used.
  • the membrane protein 54 is reconstituted in the lipid bilayer membrane 30 of any one of the first to third embodiments of the high-density micro-chamber array, the high-density micro-chamber array is passed through the membrane protein. It can be used for detection of biomolecular reactions and the like. Since the membrane protein 54 can be directly introduced from the cell 52 into the lipid bilayer membrane 30, the operation can be simplified. Since the membrane protein 54 of the cell 52 can be analyzed as it is, an unknown membrane protein expressed by the cell can also be analyzed.
  • the orientation of the membrane protein 54 introduced into the lipid bilayer 30 can be appropriately controlled by utilizing cell fusion. If cells are fused from the outside of the microchamber 26 to the lipid bilayer membrane 30, the inside of the microchamber 26 becomes the cytoplasm side. When cells are accumulated inside the micro chamber 26 and the cells are fused from the inside of the micro chamber 26 to the lipid bilayer membrane 30, the inside of the micro chamber 26 becomes the extracellular matrix side.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Clinical Laboratory Science (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Micromachines (AREA)

Abstract

透光性を有する平坦な基板と、複数の微小チャンバーが設けられた疎水層と、複数の微小チャンバーの開口部に形成された脂質二重膜とを備え、それぞれの微小チャンバー内に電極が設けられており、基板において、疎水層が設けられている側を上方とするとき、下記A)およびB)の少なくともいずれか一方を満たすことにより、基板の下方から基板へと入射した光が基板を透過して微小チャンバーの内部へと進入し、かつ、微小チャンバーの内部から基板へと入射した光が基板を透過して基板の下方へと脱出するように構成されている。A)電極が、それぞれの微小チャンバーの内側面に設けられている。B)電極が、それぞれの微小チャンバーの底面に透明電極として設けられている。

Description

高密度微小チャンバーアレイおよびこれを用いた測定方法
 本発明は、高密度微小チャンバーアレイおよびこれを用いた測定方法に関する。
 特許文献1は、平坦な基板と、基板の表面に疎水性の物質により規則的に高密度に配列するよう形成された容量が4000×10-18以下の複数の微小チャンバーと、試験用水溶液が満たされた状態の複数の微小チャンバーの開口部に試験用水溶液を液封するよう形成された脂質二重膜とを備える高密度微小チャンバーアレイを開示する。
特開第2015-040754号
 上記従来の高密度微小チャンバーアレイを基礎として、その応用技術の開発が望まれていた。
 第1の側面にかかる高密度微小チャンバーアレイは、透光性を有する平坦な基板と、前記基板上に設けられ疎水性物質からなる層であって、複数の微小チャンバーの開口部が該層の主面上に規則的かつ高密度に配列するよう設けられ、前記微小チャンバーの容量が4000×10-18以下である、疎水層と、試験用液体が満たされた状態の前記複数の微小チャンバーの開口部に前記試験用液体を封止するように形成された脂質二重膜とを備え、それぞれの前記微小チャンバー内に電極が設けられており、前記基板において、前記疎水層が設けられている側を上方とするとき、下記A)およびB)の少なくともいずれか一方を満たすことにより、前記基板の下方から前記基板へと入射した光が前記基板を透過して前記微小チャンバーの内部へと進入し、かつ、前記微小チャンバーの内部から前記基板へと入射した光が前記基板を透過して前記基板の下方へと脱出するように構成されている。
A)前記電極が、それぞれの前記微小チャンバーの内側面に設けられている。
B)前記電極が、それぞれの前記微小チャンバーの底面に透明電極として設けられている。
 第2の側面にかかる膜タンパク質の解析方法は、透光性を有する平坦な基板と、前記基板上に設けられた疎水性物質からなる層であって、複数の微小チャンバーの開口部が該層の主面上に規則的かつ高密度に配列するよう設けられ、前記微小チャンバーの容量が4000×10-18以下である、疎水層とを備え、それぞれの前記微小チャンバー内に電極が設けられており、前記基板において、前記疎水層が設けられている側を上方とするとき、下記A)およびB)の少なくともいずれか一方を満たすことにより、前記基板の下方から前記基板へと入射した光が前記基板を透過して前記微小チャンバーの内部へと進入し、かつ、前記微小チャンバーの内部から前記基板へと入射した光が前記基板を透過して前記基板の下方へと脱出するように構成されている、高密度微小チャンバーアレイを用意し、前記複数の微小チャンバーの開口部に脂質二重膜を形成し、ここで前記脂質二重膜は膜タンパク質を保持するものであり、前記電極と前記脂質二重膜の上方に設けられた反対電極との間に電圧を印加することで前記膜タンパク質の性質を変化させる。
A)前記電極が、それぞれの前記微小チャンバーの内側面に設けられている。
B)前記電極が、それぞれの前記微小チャンバーの底面に透明電極として設けられている。
 第3の側面にかかる方法は、透光性を有する平坦な基板と、前記基板上に設けられた疎水性物質からなる層であって、複数の微小チャンバーの開口部が該層の主面上に規則的かつ高密度に配列するよう設けられ、前記微小チャンバーの容量が4000×10-18以下である、疎水層とを備え、それぞれの前記微小チャンバー内に電極が設けられており、前記基板において、前記疎水層が設けられている側を上方とするとき、下記A)およびB)の少なくともいずれか一方を満たすことにより、前記基板の下方から前記基板へと入射した光が前記基板を透過して前記微小チャンバーの内部へと進入し、かつ、前記微小チャンバーの内部から前記基板へと入射した光が前記基板を透過して前記基板の下方へと脱出するように構成されている、高密度微小チャンバーアレイを用意し、前記電極に電圧を印加することで、前記複数の微小チャンバーの内部に生体高分子を集積し、その後、前記複数の微小チャンバーの開口部に前記生体高分子を封止するように脂質二重膜を形成する。
A)前記電極が、それぞれの前記微小チャンバーの内側面に設けられている。
B)前記電極が、それぞれの前記微小チャンバーの底面に透明電極として設けられている。 
 高密度微小チャンバーアレイの応用技術が提供される。
図1は、第1実施形態にかかる高密度微小チャンバーアレイの概略構成の一例を示す平面図である。 図2は、第1実施形態にかかる高密度微小チャンバーアレイの図1におけるA-A断面および該断面の一部を拡大して示す図である。 図3は、第1実施形態にかかる高密度微小チャンバーアレイシステムの一例を示す概念図である。 図4は、第1実施形態の変形例にかかる高密度微小チャンバーアレイの概略構成を示す平面図である。 図5は、第1実施形態にかかる高密度微小チャンバーアレイの製造方法の一例を示す工程図である。 図6は、第1実施形態における微小チャンバーデバイスの形成(工程S100)の一例を示す工程図である。 図7は、第1実施形態における脂質二重膜の形成(工程S120)の一例を示す工程図である。 図8Aは、第1実施形態の微小チャンバーデバイスの形成において、基板を用意する工程を示す図である。 図8Bは、第1実施形態の微小チャンバーデバイスの形成において、基板上に電極層を形成する工程を示す図である。 図8Cは、第1実施形態の微小チャンバーデバイスの形成において、電極層上に物質膜を形成する工程を示す図である。 図8Dは、第1実施形態の微小チャンバーデバイスの形成において、物質膜上にレジストを形成する工程を示す図である。 図8Eは、第1実施形態の微小チャンバーデバイスの形成において、レジストをパターニングする工程を示す図である。 図8Fは、第1実施形態の微小チャンバーデバイスの形成において、パターニングされたレジストをマスクとして物質膜をエッチングする工程を示す図である。 図8Gは、第1実施形態の微小チャンバーデバイスの形成において、レジストを除去する工程を示す図である。 図8Hは、第1実施形態の微小チャンバーデバイスの形成において、パターニングされた物質膜をマスクとして電極層をエッチングする工程を示す図である。 図9Aは、第1実施形態にかかる高密度微小チャンバーアレイでの脂質二重膜の形成において、試験用液体で液体流路を満たす工程を示す図である。 図9Bは、第1実施形態にかかる高密度微小チャンバーアレイでの脂質二重膜の形成において、脂質を含有する有機溶媒を導入する工程を示す図である。 図9Cは、第1実施形態にかかる高密度微小チャンバーアレイでの脂質二重膜の形成において、膜形成用液体を導入する工程を示す図である。 図10は、第1実験例における、印加電圧(破線)と蛍光強度(実線)の変化を示す図である。 図11は、第2実験例における、蛍光強度の時間変化と膜電位との関係を示す図である。 図12は、第2実験例における、F型ATP合成酵素のプロトン輸送速度(縦軸)と膜電位の大きさ(横軸)との関係を示す図である。 図13は、第2実施形態にかかる高密度微小チャンバーアレイシステムの概略構成の一例を示す図である。 図14は、第3実施形態において生体高分子が集積された高密度微小チャンバーアレイの概略構成の一例を示す図である。 図15は、第3実施形態における生体高分子集積高密度微小チャンバーアレイの製造方法の一例を示す工程図である。 図16Aは、第4実施形態の脂質二重膜へと細胞を融合させる方法において、液体流路に細胞を導入する工程を示す図である。 図16Bは、第4実施形態の脂質二重膜へと細胞を融合させる方法において、細胞が脂質二重膜へと融合された状態を示す図である。
 脂質二重膜を介して生じる種々の生体分子反応、例えば膜輸送過程や膜透過反応、膜表面での酵素反応などでは、反応生成物の拡散に長時間かかることや、酵素活性に伴った物質濃度の変化は極めて緩やかであることなどから、脂質二重膜を介して生じる種々の生体分子反応を高感度に検出することが困難となりやすい。チャンバーの容量が大きいとチャンバー内の濃度変化が小さくなり、濃度変化としての検出が困難となる。チャンバー数が少ないと、生体分子の反応が極めて遅いために、全てのチャンバーで反応が生じない場合が生じ、検出が困難となる。したがって、脂質二重膜により液封された極めて容量が小さな多数の微小チャンバーが高密度で形成された高密度微小チャンバーアレイが必要となる。特許文献1は、かかる高密度微小チャンバーアレイを開示する。しかしながら、その応用技術については未検討の部分があった。
 発明者は、従来の高密度微小チャンバーアレイの応用技術を見出すべく、鋭意検討した。その結果、以下の知見を得た。なお、以下の知見はあくまで本発明をなすきっかけとなったものであり、本発明を限定するものではない。
 すなわち、上記高密度微小チャンバーアレイが開発されたことにより、膜タンパクによる膜横断型の物質輸送等の計測が効率的に実施可能となった。ところで、膜タンパクの活性は膜電位の影響を受ける場合がある。生体内では、イオンの能動輸送により膜電位が積極的に制御され、これにより膜タンパクの活性が調節されている場合もある。高密度微小チャンバーアレイに形成した脂質二重膜において膜電位を制御することができれば、膜タンパクの性質をより詳細に解明できる可能性がある。しかしながら、従来の高密度微小チャンバーアレイでは膜電位の制御ができなかった。
 かかる洞察に基づき、発明者は、従来の高密度微小チャンバーアレイにおいて、チャンバー内部に電極を形成することで、脂質二重膜の膜電位を制御しうることに想到した。電極を用いて膜電位を制御することで、膜タンパクの性質が膜電位によってどのように変化するかを測定することが可能となった。
 電極をチャンバー内部に設けることは、従来の高密度微小チャンバーアレイについてのさらなる応用面も切り拓くことになった。すなわち、電極に電流を印加することで発熱させれば、チャンバーの温度を制御することが可能になる。電極を用いて電場を発生させることにより、生体高分子等をチャンバー内部に誘引して集積することも可能になる。細胞表面の膜タンパクをチャンバーに張られた脂質二重膜に移行させるには、細胞融合の技術を用いることが可能である。
 基板等は透光性を有するように構成する。基板の下方から基板へと入射した光が基板を透過して微小チャンバーの内部へと進入し、かつ、微小チャンバーの内部から基板へと入射した光が基板を透過して基板の下方へと脱出するように構成することで、微小チャンバー内の反応を効果的に検出することができる。
 以下、添付図面を参照しつつ、本発明の実施形態について説明する。なお、以下の実施形態はあくまで一例であり、本発明を限定するものではない。
 以下で説明する実施形態は、いずれも本発明の望ましい一具体例を示すものである。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、あくまで一例であり、本発明を限定するものではない。また、以下の実施形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より望ましい形態を構成する任意の構成要素として説明される。また、図面において、同じ符号が付いたものは、説明を省略する場合がある。また、図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状及び寸法比等については正確な表示ではない場合がある。また、製造方法においては、必要に応じて、各工程の順序等が変更されてもよいし、他の工程が追加されてもよい。
 (第1実施形態)
 第1実施形態にかかる高密度微小チャンバーアレイは、透光性を有する平坦な基板と、基板上に設けられ疎水性物質からなる層であって、複数の微小チャンバーの開口部が該層の主面上に規則的かつ高密度に配列するよう設けられ、微小チャンバーの容量が4000×10-18以下である、疎水層と、試験用液体が満たされた状態の複数の微小チャンバーの開口部に試験用液体を封止するように形成された脂質二重膜とを備え、それぞれの微小チャンバー内に電極が設けられており、基板において、疎水層が設けられている側を上方とするとき、下記A)およびB)の少なくともいずれか一方を満たすことにより、基板の下方から基板へと入射した光が基板を透過して微小チャンバーの内部へと進入し、かつ、微小チャンバーの内部から基板へと入射した光が基板を透過して基板の下方へと脱出するように構成されている。
A)電極が、それぞれの微小チャンバーの内側面に設けられている。
B)電極が、それぞれの微小チャンバーの底面に透明電極として設けられている。
 上記高密度微小チャンバーアレイは、さらに、脂質二重膜の上方に反対電極を備えてもよい。
 上記高密度微小チャンバーアレイは、さらに、微小チャンバーが形成された面が底面となる液体流路を備えてもよい。
 上記液体流路は、疎水層の上面と、疎水層の上方に配置された天井の下面との間に形成されてもよい。天井は、ガラス板で構成されていてもよい。
 第1実施形態にかかる高密度微小チャンバーアレイシステムは、上記高密度微小チャンバーアレイと、電極と反対電極との間に電圧を印加する電圧印加装置とを備える。
 第1実施形態にかかる膜タンパク質の解析方法は、透光性を有する平坦な基板と、基板上に設けられた疎水性物質からなる層であって、複数の微小チャンバーの開口部が該層の主面上に規則的かつ高密度に配列するよう設けられ、微小チャンバーの容量が4000×10-18以下である、疎水層とを備え、それぞれの微小チャンバー内に電極が設けられており、基板において、疎水層が設けられている側を上方とするとき、下記A)およびB)の少なくともいずれか一方を満たすことにより、基板の下方から基板へと入射した光が基板を透過して微小チャンバーの内部へと進入し、かつ、微小チャンバーの内部から基板へと入射した光が基板を透過して基板の下方へと脱出するように構成されている、高密度微小チャンバーアレイを用意し、複数の微小チャンバーの開口部に脂質二重膜を形成し、ここで脂質二重膜は膜タンパク質を保持するものであり、電極と脂質二重膜の上方に設けられた反対電極との間に電圧を印加することで膜タンパク質の性質を変化させる。
A)電極が、それぞれの微小チャンバーの内側面に設けられている。
B)電極が、それぞれの微小チャンバーの底面に透明電極として設けられている。
 [装置構成]
 図1は、第1実施形態にかかる高密度微小チャンバーアレイの概略構成の一例を示す平面図である。図2は、第1実施形態にかかる高密度微小チャンバーアレイの図1におけるA-A断面および該断面の一部を拡大して示す図である。以下、図1および図2を参照しつつ、第1実施形態の高密度微小チャンバーアレイ20の装置構成について説明する。
 図1および図2に例示されるように、高密度微小チャンバーアレイ20は、基板22と、疎水層24と、脂質二重膜30と、電極23とを備えている。
 基板22は、透光性を有し、かつ平坦である。基板22は、例えばガラス、アクリル樹脂等で構成されうる。基板22の材料、厚み、および形状等は、基板22の下方から基板22へと入射した光が基板22を透過して微小チャンバー26の内部へと進入し、かつ、微小チャンバー26の内部から基板22へと入射した光が基板22を透過して基板22の下方へと脱出可能であれば特に限定されない。具体的には例えば、厚みは、0.1mm以上5mm以下であってもよいし、0.3mm以上3mm以下であってもよいし、0.7mm以上1.5mm以下であってもよい。平面視における基板22の大きさは特に限定されない。
 疎水層24は、基板22上に設けられ疎水性物質からなる層である。疎水性物質としては、例えばフッ素樹脂などの疎水性の樹脂、およびガラスなどの樹脂以外の物質が含まれる。疎水層24の厚みは、後述する微小チャンバーの容積に応じて適宜に調整されうる。具体的には例えば、10nm以上100μm以下であってもよいし、100nm以上5μm以下であってもよいし、250nm以上1μm以下であってもよい。
 疎水層24には、複数の微小チャンバー26の開口部が、疎水層24の主面上に規則的かつ高密度に配列するよう設けられている。微小チャンバー26の容量は4000×10-18以下(4000μm以下)である。微小チャンバー26の容量は、例えば、0.1×10-18以上4000×10-18以下であってもよいし、0.5×10-18以上400×10-18以下であってもよいし、1×10-18以上40×10-18以下であってもよい。
 図1および図2に示すように、微小チャンバー26は、筒状の形状をなしてもよい。図1および図2に示すように、微小チャンバー26は、基板22が底面をなし、疎水層24(または、疎水層24および電極23)が側面をなす、筒状の形状をなしてもよい。
 微小チャンバー26の容量を4000×10-18以下としているから、第1実施形態の高密度微小チャンバーアレイ20を生体分子反応の検出に用いることにより、微小チャンバー26内の生体分子数を少なくすることができる。この結果、生体分子1個の反応によるチャンバー内の濃度変化を大きくし、濃度変化として検出する際の検出感度を高くすることができ、生体分子の反応が極めて遅くても、生体分子の反応を高感度で検出することができる。また、こうした微小な微小チャンバー26を高密度に多数形成したアレイとしているから、生体分子の反応が生じる頻度が低くても、いずれかのチャンバーで反応が生じるため、生体分子の反応を高感度で検出することができる。ここで、微小チャンバー26の容量は、試験対象の生体分子の反応速度の大きさや生体分子の含有率などにより定められるものであり、生体分子の反応速度の大きさが大きいものであれば4000×10-18以下とするのが好適であり、生体分子の反応速度の大きさが小さいとき等には、1000×10-18以下や100×10-18以下としてもよい。
 微小チャンバー26の深さは、例えば、10nm以上100μm以下であってもよいし、100nm以上5μm以下であってもよいし、250nm以上1μm以下であってもよい。
 微小チャンバー26の開口部は、例えば円形とすることができる。円形とする場合の円の直径は、例えば、0.1μm以上100μm以下であってもよいし、0.5μm以上50μm以下であってもよいし、1μm以上10μm以下であってもよい。
 規則的とは、例えば、基板の厚み方向から見て、各チャンバーが基板上に、格子状、マトリクス状、千鳥状等に配列することを言う。規則的とは、例えば、各チャンバーが複数の列をなすように一定間隔で配列されていることを意味しうる。
 高密度とは、例えば、1平方mm(1mm)あたりのチャンバーの数が、0.1×10個以上2000×10個以下であってもよいし、1×10個以上1000×10個以下であってもよいし、5×10個以上100×10個以下であってもよい。1cm(1×10-4[m])当たりに換算すると、10×10個以上200×10個以下であってもよいし、100×10個以上100×10個以下であってもよいし、0.5×10個以上10×10個であってもよい。
 高密度微小チャンバーアレイ20において、複数の微小チャンバー26は、深さが100μm以下で、円形に換算したときに直径が100μm以下となるよう形成されているものとしたり、深さが2μm以下で、円形に換算したときに直径が10μm以下となるよう形成されているものとしたり、深さが1μm以下で、円形に換算したときに直径が5μm以下となるよう形成されているものとしたりすることもできる。こうすれば、基板20の表面に疎水性物質および電極層による薄膜を形成し、薄膜に複数の微小チャンバー26を形成する手法を用いて高密度微小チャンバーアレイ20を形成することができ、高密度微小チャンバーアレイ20を比較的容易に形成することができる。
 微小チャンバー26は、それぞれ厚さが500nmを含む所定厚範囲の疎水性物質および電極層による薄膜に、円形に換算したときに直径が1μmを含む所定直径範囲となるよう形成されているものとすることもできる。試験対象の生体分子の反応速度の大きさや生体分子の含有率を考慮すると共に製造の容易さも考慮すると、微小チャンバー26の深さや直径は数百nmから数μmが好適であると考えられる。ここで、「所定厚範囲」は、例えば、500nmの0.1倍の50nm以上で500nmの10倍の5μm以下の範囲としたり、500nmの0.5倍の250nm以上で500nmの2倍の1μm以下の範囲としたりすることができる。「所定直径範囲」は、例えば、1μmの0.1倍の100nm以上で1μmの10倍の10μm以下の範囲としたり、1μmの0.5倍の500nm以上で1μmの2倍の2μm以下の範囲としたりすることができる。
 「所定厚範囲」は、特に限定されない。例えば、10nm以上500nm以下であってもよいし、20nm以上500nm以下であってもよいし、30nm以上500nm以下であってもよい。「所定厚範囲」は、例えば、10nm以上100nm以下であってもよいし、20nm以上100nm以下であってもよいし、30nm以上100nm以下であってもよい。微小チャンバーの深さを小さく(数十nm)し、微小チャンバーの容積を小さく(数百aL程度)すると、測定感度は更に向上する(Soga, N. et al., 2015, Attolitre-sized lipid bilayer chamber array for rapid detection of single transporters, Scientific Reports, 5:11025)。
 一例において、それぞれの微小チャンバー26は、厚さDが1μmの疎水層24と電極23に、直径Rが5μmとなるよう形成されている。したがって、それぞれの微小チャンバー26の容量Lは、L=π(2.5×10-6×1×10-6[m]≒19.6×10-18[m]となる。仮に微小チャンバー26を縦横2μmの間隔で配列したものとすると、1つの微小チャンバー26に必要な面積Sは一辺が7μmの正方形となり、S=(7×10-6[m]=49×10-12[m]と計算される。したがって、ガラス基板22には、1cm(1×10-4[m])当たり約2×10個(1平方mm当たり20×10個)の微小チャンバー26が形成されることになる。
 脂質二重膜30は、試験用液体が満たされた状態の複数の微小チャンバー26の開口部に試験用液体を封止するように形成されている。試験用液体は、脂質二重膜30を形成可能な液体であれば特に限定されないが、具体的には例えば水溶液とすることができる。
 脂質二重膜30は、脂質の親水基が微小チャンバー26側(図2中、下側)に向いた第1脂質膜32と、脂質の疎水基が微小チャンバー26側(図2中、下側)に向いた第2脂質膜34とが、疎水基が内側になるように重なるように形成されている。第1脂質膜32や第2脂質膜34を構成する脂質としては、大豆や大腸菌由来等の天然脂質、DOPE(ジオレオイルホスファチジルエタノールアミン)やDOPG(ジオレオイルホスファチジルグリセロール)等の人工脂質を用いることができる。
 脂質二重膜30は、膜タンパク質が再構成されているものとすることもできる。こうすれば、高密度微小チャンバーアレイ20を、種々の膜タンパク質を介しての生体分子反応等の検出に用いることができる。膜タンパク質を脂質二重膜30に再構成する方法については後述する。
 電極23は、それぞれの微小チャンバー26の内部に設けられている。各電極23は互いに電気的に接続されていてもよい。基板22において、疎水層24が設けられている側を上方とするとき、以下のA)およびB)の少なくともいずれか一方を満たす。A)およびB)の両方を満たしてもよい。
 A)電極23が、それぞれの微小チャンバー26の内側面に設けられている。
 B)電極23が、それぞれの微小チャンバー26の底面に透明電極として設けられている。
 上記A、すなわち電極が微小チャンバーの内側面に設けられている構成を採用した場合には、上記Bのように透明電極を採用した場合に比べ、底面を通過する光の減衰が少なくなり、測定感度が向上する。上記Bにおいて透明電極表面の親水性が低い場合には、微小チャンバーからの液体の抜け出しが問題となりうるが、上記Aのように電極を微小チャンバーの内側面に設ける場合には、かかる問題が軽減されうる。
 図2に示す例では、電極23が、それぞれの微小チャンバー26の内側面に設けられている。電極23は、金属で構成されていてもよい。金属としては、例えば、銅、銀、金、白金、アルミ、クロム、塩化銀等を用いることができる。電極23は、金属以外の材料で構成されていてもよい。具体的には例えば、ITO(Indium-Tin-Oxide:酸化インジウムスズ)、IZO(酸化インジウムスズと酸化亜鉛とからなる材料)、ZnO、IGZO(インジウム、ガリウム、亜鉛、酸素から構成される材料)等で構成されていてもよい。
 電極23の厚みは、例えば、10nm以上100μm以下であってもよいし、100nm以上5μm以下であってもよいし、250nm以上1μm以下であってもよい。
 かかる構成において、基板22の下方から基板22へと入射した光は、基板22を透過して微小チャンバー26の内部へと進入し、かつ、微小チャンバー26の内部から基板22へと入射した光は、基板22を透過して基板22の下方へと脱出する。
 電極23を用いて電圧を印加することで、微小チャンバー26内の反応を促進することが可能である。よって、高密度微小チャンバーアレイ20を、検査装置および培養装置等に応用することもできる。
 図3は、第1実施形態にかかる高密度微小チャンバーアレイシステムの一例を示す概念図である。図3に示す変形例では、高密度微小チャンバーアレイ20Aが、高密度微小チャンバーアレイ20の構成に加え、脂質二重膜30の上方に反対電極27を備えている。以下、図3を参照しつつ、第1実施形態にかかる高密度微小チャンバーアレイシステム100について説明する。
 図3に例示されるように、高密度微小チャンバーアレイシステム100は、基板22と、疎水層24と、脂質二重膜30と、電極23と、反対電極27と、電圧印加装置28とを備えている。基板22と、疎水層24と、脂質二重膜30と、電極23とについては、上述した通りであるので、詳細な説明を省略する。
 反対電極27は、脂質二重膜30の上方に設けられた電極である。反対電極27は、複数の微小チャンバー26に跨るように設けられていてもよい。反対電極27は、全ての微小チャンバー26に跨るように設けられていてもよい。反対電極27は、基板22の厚み方向から見た大きさおよび形状が、基板22と略一致していてもよい。反対電極27は、金属で構成されていてもよい。金属としては、例えば、銅、銀、金、アルミ、クロム等を用いることができる。基板22から反対電極27までの距離は、例えば、1μm以上10mm以下であってもよいし、2μm以上1mm以下であってもよいし、10μm以上100μm以下であってもよい。
 反対電極27は、それぞれの微小チャンバー26に対応するように設けられていてもよい。具体的には例えば、本実施形態にかかる微小チャンバーデバイス(図1、図2参照)を一対、微小チャンバーの開口部が互いに向き合うように張り合わせる場合において、一方の微小チャンバーデバイスの電極が電極23となり、他方の微小チャンバーデバイスの電極が反対電極27とされてもよい。
 電圧印加装置28は、電極23と反対電極27との間に電圧を印加する。電圧印加装置28は、例えば、直流電圧を印加するものであってもよい。電圧印加装置28としては、具体的には例えば、ファンクションジェネレーター(例えば、株式会社エヌエフ回路設計ブロック製)を用いることができる。
 電極23と反対電極27との間に電圧を印加することで、微小チャンバー26内の反応を促進することが可能である。よって、高密度微小チャンバーアレイシステム100を、検査装置および培養装置等に応用することもできる。
 [変形例]
 図4は、第1実施形態の変形例にかかる高密度微小チャンバーアレイの概略構成を示す平面図である。以下、図4を参照しつつ、変形例にかかる高密度微小チャンバーアレイ20Bについて説明する。
 図4に示す例において、高密度微小チャンバーアレイ20Bは、基板22と、疎水層24と、脂質二重膜30と、電極23Tとを備えている。基板22と、疎水層24と、脂質二重膜30とについては、上述した通りであるので、詳細な説明を省略する。
 電極23Tは、それぞれの微小チャンバー26の底面に透明電極として設けられている。図4に示す例では、電極23Tは、基板22の全面を覆うように構成されている。電極23Tとしては、ITO(Indium-Tin-Oxide:酸化インジウムスズ)、IZO(酸化インジウムスズと酸化亜鉛とからなる材料)、ZnO、IGZO(インジウム、ガリウム、亜鉛、酸素から構成される材料)等で構成されうる。
 かかる構成でも、基板22の下方から基板22へと入射した光は、基板22および電極23Tを透過して微小チャンバー26の内部へと進入し、かつ、微小チャンバー26の内部から電極23Tおよび基板22へと入射した光は、電極23Tおよび基板22を透過して基板22の下方へと脱出する。
 本変形例において、電極23Tの厚さは、基板22の下方から基板22へと入射した光が基板22を透過して微小チャンバー26の内部へと進入し、かつ、微小チャンバー26の内部から基板22へと入射した光が基板22を透過して基板22の下方へと脱出可能であれば特に限定されない。
 なお、微小チャンバー26の内側面に設けられた電極と、底面に透明電極として設けられた電極とを組み合わせて1の電極として構成してもよい。具体的には例えば、図1に示す電極23と、図4に示す電極23Tとを組み合わせて1の電極としてもよい。
 [製造方法]
 以下、第1実施形態の高密度微小チャンバーアレイ20の製造方法について説明する。図5は、第1実施形態にかかる高密度微小チャンバーアレイの製造方法の一例を示す工程図である。
 第1実施形態の高密度微小チャンバーアレイ20は、まず、脂質二重膜30により開口部が液封されていない微小チャンバーデバイスを形成し(工程S100)、形成した微小チャンバーデバイスに試験用液体を導入し(工程S110)、試験用液体が各微小チャンバー26に満たされた状態で各微小チャンバー26の開口部を液封するように脂質二重膜30を形成して(工程S120)、完成する。微小チャンバーデバイスの形成(工程S100)は、例えば図6に示す工程図により行なわれ、脂質二重膜30の形成(工程S120)は、例えば図7に示す工程図により行なわれる。以下、微小チャンバーデバイスの形成について説明し、その後、脂質二重膜30の形成について説明する。
 1.微小チャンバーデバイスの形成
 微小チャンバーデバイスの形成工程は、例えば、基板22の表面に電極材料と疎水性物質の薄膜を順次形成し、薄膜表面の複数の微小チャンバー26を形成する部分以外の部分にレジストを形成し、ドライエッチングにより疎水性物質の薄膜に複数の微小チャンバー26の一部を形成し、レジストを除去し、さらに疎水性物質の層をマスクとしたウエットエッチングにより電極材料の薄膜に複数の微小チャンバー26の残部を形成するものとすることができる。こうすれば、高精度で比較的容易に高密度微小チャンバーアレイ20を製造することができる。なお、ドライエッチング以外の手法、例えばナノインプリンティングなどの手法を用いて疎水性物質の薄膜に複数の微小チャンバー26の一部を形成するものとしてもよいのは勿論である。
 図6は、第1実施形態における微小チャンバーデバイスの形成(工程S100)の一例を示す工程図(工程S200~S270)である。図8A~図8Hに微小チャンバーデバイスの形成の各工程の状態を示す。微小チャンバーデバイスの形成は、まず、ガラス基板22のガラス表面を洗浄するための表面処理として、10Mの水酸化カリウム(KOH)溶液にガラス基板22を24時間程度浸す(工程S200、図8A)。
 次に、ガラス基板22の表面に、真空蒸着装置を用いて金属を蒸着することで、電極層23aを形成する(工程S210、図8B)。金属の種類としては、例えば、銀、金、クロム等を用いることができる。厚みとしては、例えば、500nm程度とすることができる。
 次に、疎水性の物質(例えば、旭硝子株式会社製のフッ素樹脂(CYTOP))をスピンコートして物質膜24aを形成し、物質膜24aを電極層23aの表面に密着させる(工程S220、図8C)。スピンコートの条件としては、例えば、4000rps(revolution per second)で30秒を用いることができ、この場合、物質膜24aは膜厚が約500nmとなる。物質膜24aの電極層23a表面への密着は、例えば、180℃のホットプレートで1時間ベークすることにより行なうことができる。
 次に、物質膜24aの表面にレジスト25aをスピンコートにより形成し、レジスト25aを物質膜24aの表面に密着させる(工程S230、図8D)。レジスト25aとしては、AZ Electronic Materials製のAZ-4903などを用いることができる。スピンコートの条件としては、例えば、4000rps(revolution per second)で60秒を用いることができる。レジスト25aの物質膜24aの表面への密着は、例えば、110℃のホットプレートで5分間ベークして、レジスト25a内の有機溶媒を蒸発させることにより行なうことができる。
 次に、微小チャンバー26のパターンのマスクを用いてレジスト25aを露光し、レジスト専用の現像液に浸して現像して微小チャンバー26を形成する部分が除かれたレジスト25bを形成する(工程S240、図8E)。露光の条件は、例えば、SAN-EI製の露光機によりUV power 250Wで7秒照射する条件を用いることができる。現像の条件としては、例えば、AZ Electronic Materials製のAZ developerに5分浸す条件を用いることができる。
 次に、レジスト25bによりマスクされた物質膜24aをドライエッチングすることにより、物質膜24aから微小チャンバー26となる部分を取り除いた物質膜24bとし(工程S250、図8F)、レジスト25bを除去する(工程S260、図8G)。ドライエッチングは、例えば、Samco製のReactive ion etching装置で、エッチング条件として、O 50sccm, Pressure 10Pa, Power 50W, Time 30minを用いることができる。レジスト25bの除去は、アセトンに浸し、イソプロパノールで洗浄した後に純水で洗浄することにより行なうことができる。
 次に、金属層23aをウェットエッチングすることにより、微小チャンバー26を完成させる(工程S270、図8H)。ウェットエッチングは、例えば、形成途中の微小チャンバーデバイスを金属エッチング液に浸漬した後で純水で洗浄することにより行なうことができる。
 かかる方法により、ガラス基板22の表面に疎水層24と電極23とにより複数の微小チャンバー26が形成された微小チャンバーデバイスが完成されうる。
 微小チャンバー26の形状や大きさは生体分子の反応速度の大きさなどにより適宜定めればよい。例えば、深さDが10μmで直径Rが40μmとなるように微小チャンバー26を形成したり、深さDが2μmで直径Rが10μmとなるように微小チャンバー26を形成したりしてもよい。実用的で実現可能な微小チャンバー26の最小のサイズとしては深さDおよび直径Rがともに数100nm程度のものと考えられる。また、試験対象の生体分子の反応速度の大きさや生体分子の含有率を考慮すると共に製造の容易さも思慮すると、微小チャンバー26の深さや直径は数百nmから数μmが実用的に好適であると考えられる。したがって、微小チャンバー26を、深さが500nmを含む所定深さ範囲で、円形に換算したときに直径が1μmを含む所定直径範囲となるよう形成すればよい。
 「所定深さ範囲」としては、500nmを含むオーダーとして考えればよく、例えば、500nmの0.1倍の50nm以上で500nmの10倍の5μm以下の範囲を用いたり、500nmの0.5倍の250nm以上で500nmの2倍の1μm以下の範囲を用いればよい。
 「所定厚範囲」は、特に限定されない。例えば、10nm以上500nm以下であってもよいし、20nm以上500nm以下であってもよいし、30nm以上500nm以下であってもよい。「所定厚範囲」は、例えば、10nm以上100nm以下であってもよいし、20nm以上100nm以下であってもよいし、30nm以上100nm以下であってもよい。微小チャンバーの深さを小さく(数十nm)し、微小チャンバーの容積を小さく(数百aL程度)すると、測定感度は更に向上する(Soga, N. et al., 2015, Attolitre-sized lipid bilayer chamber array for rapid detection of single transporters, Scientific Reports, 5:11025)。
 「所定直径範囲」としては、1μmを含むオーダーとして考えればよく、例えば、1μmの0.1倍の100nm以上で1μmの10倍の10μm以下の範囲を用いたり、1μmの0.5倍の500nm以上で1μmの2倍の2μm以下の範囲を用いればよい。
 生体分子の反応に対する検出感度は、微小チャンバー26内の分子数に反比例するため、生体分子反応を高感度で検出するための実用的で実現可能な微小チャンバー26の最大の容量Lは4000×10-18[m]程度でよいと考えられる。例えば、深さが5μmで直径Rが30μmの微小チャンバー(容量Lが3532.5×10-18[m])を形成して実験を行なったが、良好な生体分子の反応に対する検出感度を得ることができた。この場合、隣接する微小チャンバーの間隔を4μmとすると、1つの微小チャンバーに必要な面積Sは一辺が34μmの正方形となり、S=(34×10-6[m]=1156×10-12[m]と計算される。したがって、ガラス基板には、1cm(1×10-4[m])当たり約0.86×10個の微小チャンバーが形成されることになり、生体分子の反応が生じる頻度が低くても、いずれかの微小チャンバーで反応が生じるため、生体分子の反応を高感度で検出することができるものとなる。
 2.脂質二重膜30の形成
 脂質二重膜30の形成工程は、例えば、複数の微小チャンバー26が形成された面が略水平な底面を形成する液体流路48に試験用液体を流すことにより複数の微小チャンバー26に試験用液体を充填し、液体流路48に脂質二重膜30を形成する脂質を含有する脂質含有有機溶媒を流すことにより脂質の親水基が複数の微小チャンバー26の試験用液体側に向いた状態の第1脂質膜32を微小チャンバー26の開口部に形成し、液体流路48に膜形成用液体を流すことにより脂質の疎水基が第1脂質膜32側を向いた状態の第2脂質膜34を第1脂質膜32に重ねるように形成することにより脂質二重膜30を形成するものである。
 図7は、第1実施形態における脂質二重膜30の形成(工程S120)の一例を示す工程図(工程S300~S310)である。図9A~9Cに脂質二重膜30の形成の各工程の状態を示す。脂質二重膜30の形成の前段階として、微小チャンバーデバイスにスペーサ42を介在させつつ、液体導入孔46が形成されたガラス板44を載せる。これにより、微小チャンバーデバイスの微小チャンバー26が形成された面が略水平な底面となる液体流路48が形成される。液体導入孔46から試験用液体を導入して試験用液体で液体流路48を満たしておく(図9A)。ここで、試験用液体の組成としては、例えば、水溶液とすることができ、具体的には例えば、10mMのpH緩衝液(pH5~9)と、20μMの蛍光指示薬(Cal520やpHrodoなど)と、10mMの塩化ナトリウムとを含有する液体など、種々のものを用いることができる。
 試験用液体で液体流路48が満たされた状態で液体導入孔46から脂質35を含有する有機溶媒を導入する(図7の工程S300、図9B)。ここで、脂質35としては、大豆や大腸菌由来等の天然脂質、DOPE(ジオレオイルホスファチジルエタノールアミン)やDOPG(ジオレオイルホスファチジルグリセロール)等の人工脂質を用いることができる。有機溶媒としては、ヘキサデカンやクロロホルムを用いることができる。脂質35を含有する有機溶媒が導入されると、微小チャンバー26に試験用液体が満たされた状態で、脂質35の親水基が微小チャンバー26側に向いた状態の第1脂質膜32により微小チャンバー26の開口部が液封される。
 そして、液体導入孔46から脂質二重膜30を形成するための膜形成用液体を導入して(図7の工程S310、図9C)、脂質二重膜30を形成する。膜形成用液体の組成としては、例えば、10mMのpH緩衝液(pH5~9)と、10mMの塩化ナトリウムとを含む液体を用いることができる。なお、第1実施形態の高密度微小チャンバーアレイ20は、脂質二重膜30を形成した後に、ガラス板44とスペーサ42を取り除くことにより完成する。
 脂質二重膜30の形成工程の後に、脂質二重膜30に膜タンパク質を再構成する再構成工程を備えるものとすることもできる。こうすれば、脂質二重膜30に膜タンパク質が再構成された高密度微小チャンバーアレイ20を得ることができる。こうした脂質二重膜30に膜タンパク質が再構成された高密度微小チャンバーアレイ20は、膜タンパク質を介しての生体分子反応等の検出に用いることができる。この態様とした場合、再構成工程は、膜タンパク質を含む細胞膜断片,タンパク質を埋め込んだ脂質二重膜、水溶性タンパク質、タンパク質を取り込んだリポソーム、界面活性剤により可溶化させたタンパク質のいずれかを脂質二重膜30に導入し、脂質二重膜30にタンパク質を組み込んで膜タンパク質とする工程であってもよい。脂質二重膜にタンパク質を組み込む手法としては、リポソームの場合には膜融合などを用いることができ、界面活性剤により可溶化させたタンパク質の場合には熱揺動などを用いることができる。
 以上説明した第1実施形態の高密度微小チャンバーアレイ20の製造方法によれば、比較的容易に、脂質二重膜30により液封された極めて容量が小さな多数の微小チャンバー26を高密度に形成した高密度微小チャンバーアレイ20を製造することができる。
 第1実施形態の高密度微小チャンバーアレイ20によれば、各微小チャンバー26の容量Lが19.6×10-18[m]と極めて小さいから、第1実施形態の高密度微小チャンバーアレイ20を生体分子反応の検出に用いることにより、微小チャンバー26内の生体分子数を少なくすることができる。この結果、生体分子1個の反応による微小チャンバー26内の濃度変化の程度を大きくし、濃度変化として検出する際の検出感度を高くすることができる。生体分子の反応が極めて遅くても、生体分子の反応を高感度で検出することができる。また、微小な微小チャンバー26を1cm(1×10-4[m])当たり約2×10個と高密度に多数形成したアレイとしているから、生体分子の反応が生じる頻度が低くても、いずれかの微小チャンバー26で反応が生じるため、生体分子の反応を高感度で検出することができる。
 [膜タンパク質の解析方法]
 第1実施形態の高密度微小チャンバーアレイ20は、更に、脂質二重膜30に膜タンパク質を再構成することで、膜タンパク質の解析に用いることができる。すなわち、第1実施形態にかかる膜タンパク質の解析方法は、第1実施形態の高密度微小チャンバーアレイを用意し、複数の微小チャンバーの開口部に脂質二重膜を形成する。脂質二重膜には膜タンパク質を保持させる。その上で、電極と脂質二重膜の上方に設けられた反対電極との間に電圧を印加することで膜タンパク質の性質を変化させる。
 膜タンパク質の性質としては、例えば、脂質二重膜を介した物質の輸送特性、膜タンパク質の触媒特性、膜タンパク質のコンフォメーション等が含まれうる。
 まず、脂質二重膜30に膜タンパク質を再構成する手法について説明する。脂質二重膜にタンパク質を組み込む手法としては、リポソームの場合には膜融合などを用いることができ、界面活性剤により可溶化させたタンパク質の場合には熱揺動などを用いることができる。以下、より具体的に説明する。
 膜タンパク質の再構成は、微小チャンバーデバイスにスペーサ42を介してガラス板44を乗せて液体流路48が形成された状態(図9A参照)で、ガラス板44の液体導入孔46から容量50μLのリポソームに再構成させた膜タンパク質の溶液を導入し、1時間インキュベートして、膜融合により膜タンパク質を脂質二重膜30に組み込むことにより行なうことができる。
 図9Aに示されているように、液体流路48は、疎水層24と、疎水層24の上方に配置された天井との間に形成される。液体流路48は、厚みが一定の空間であってもよい。図9Aに示す例では、天井はガラス板44の下面である。
 均一な脂質膜を効率的に形成するためには、一定の流速で水溶液および脂質溶液を流す必要がある。微小チャンバーの上方に液体流路を配置することで、全ての微小チャンバーに対して同時かつ均一に流体を供給することができる。これにより、効率的に脂質膜を形成することが可能となる。
 機能的な脂質膜を形成する場合、脂質膜を薄膜化する必要がある。薄膜化には流体によるせん断力が有効である。液体流路を配置することで、脂質膜上に水溶液を流すことができ、そのせん断力により効率的に脂質膜を薄膜化することが可能となる。
 流路の天井部に金属をパターニングすることで、反対電極27も容易に設置できる。例えば、ガラス板44の表面に反対電極27が形成されうる。反対電極27は、膜電位の制御および、その他の生体分子の操作に活用できる。
 膜タンパク質の溶液の組成としては、例えば、10nMのFoF1(膜タンパク質であるATP合成酵素)と、1mMのpH7のMOPS(3-モルホリノプロパン-1-スルホン酸)と、10mMの塩化ナトリウム(NaCl)と、2mMの塩化マグネシウム(MgCl)とを含む溶液を用いることができる。
 このように第1実施形態の高密度微小チャンバーアレイ20の脂質二重膜30に膜タンパク質を再構成したものとすれば、第1実施例の高密度微小チャンバーアレイ20を、膜タンパク質を介しての生体分子反応等の検出に用いることができる。
 なお、脂質二重膜30に膜タンパク質を再構成する手法は、リポソームを用いる方法に限定されない。例えば、界面活性剤で可溶化させた膜タンパク質や水溶性タンパク質などを導入して脂質二重膜30に再構成するものとしてもよい。例えば、界面活性剤で可溶化させた膜タンパク質を脂質二重膜30に再構成する場合、ガラス板44の液体導入孔46から容量50μLの界面活性剤で可溶化された膜タンパク質溶液を導入し、1時間インキュベートして、熱揺動により膜タンパク質を脂質二重膜30に組み込むものとすればよい。膜タンパク質溶液の組成としては、例えば、10nMのFoF1(膜タンパク質であるATP合成酵素)と、0.01~0.1%のデシルマルトシド(n-decyl-β-maltoside:界面活性剤)と、1mMのpH7のMOPS(3-モルホリノプロパン-1-スルホン酸)と、10mMの塩化ナトリウム(NaCl)と、2mMの塩化マグネシウム(MgCl)とを含む溶液を用いることができる。
 第1実施形態の高密度微小チャンバーアレイ20の脂質二重膜30に膜タンパク質を再構成する手法としては、微小チャンバーデバイスに脂質二重膜30を形成する前の段階、即ち、液体導入孔46から試験用液体を導入して試験用液体で液体流路48を満たす段階において、試験用液体として、試験用液体に少なくともタンパク質を可溶化または懸濁化した状態のタンパク質含有液体を用いてもよい。即ち、液体導入孔46から試験用液体としてタンパク質含有液体を導入してこのタンパク質含有液体で液体流路48を満たしておく。液体導入孔46から、脂質35を含有する有機溶媒と脂質二重膜30を形成するための膜形成用液体(膜形成用水溶液でもよい)とを順次導入することで、微小チャンバー26にタンパク質含有液体が満たされた状態で脂質二重膜30により微小チャンバー26の開口部を液封する。微小チャンバー26は脂質二重膜30によって液封されており、微小チャンバー26内のタンパク質含有液体中のタンパク質は、膜融合や熱揺動などにより脂質二重膜30に再構成される。なお、タンパク質含有液体におけるタンパク質としては、膜タンパク質を含む細胞膜断片、タンパク質を埋め込んだ脂質二重膜、水溶性タンパク質、タンパク質を取り込んだリポソーム、界面活性剤により可溶化させたタンパク質などを用いることができる。
 第1実施形態の高密度微小チャンバーアレイによれば、電極23と脂質二重膜30の上方に設けられた反対電極27との間に電圧を印加することで膜タンパク質の性質を変化させることができる。印加電圧は、例えば、-300mV~+300mVの間で適宜に調整しうる。
 ここで、基板22の下方から基板22へと入射した光は、基板22および電極23Tを透過して微小チャンバー26の内部へと進入し、かつ、微小チャンバー26の内部から電極23Tおよび基板22へと入射した光は、電極23Tおよび基板22を透過して基板22の下方へと脱出する。膜タンパク質の性質の変化は、共焦点レーザー顕微鏡を用いて、微小チャンバー26の内部に収容されている試験用液体に含まれる蛍光物質が発する光を検出すること等により解析することができる。顕微鏡として、落射型共焦点顕微鏡が用いられてもよい。
 具体的には、図3に例示するように、レーザ光源12から射出された光L1をダイクロイックミラー14で反射させ、基板22へと入射する。基板22へ入射された光は、基板22を透過して微小チャンバー26へと進入する。微小チャンバー26内の蛍光物質は、該進入した光を受けて、異なる波長の光を放射する。該放射された光L2は、基板22へと入射し、基板22を透過して基板22の下方へと脱出する。さらに光は、ダイクロイックミラー14を透過して、カメラ10へと到達する。なお、レーザ光源12とダイクロイックミラー14との間およびダイクロイックミラー14とカメラ10との間に適宜に光学系が挿入されてもよい。
 1.第1実験例
 第1実験例では、第1実施形態の高密度微小チャンバーアレイ20A(図1、図2、図3参照)と蛍光性膜電位指示薬とを用いて膜電位の検出を行った。本実験例の実験条件は、以下の通りとした。
 基板22の材料:無色ガラス
 基板22の厚み:0.12mm
 基板22の形状:24mm×32mmの矩形
 反対電極27の材料:金
 反対電極27の形状:18mm×18mmの矩形
 基板22から反対電極27までの距離:0.2mm
 疎水層24の材料:旭硝子株式会社製のフッ素樹脂(CYTOP)
 疎水層24の厚み:約500nm
 電極23の材料:金
 電極23の厚み:約500nm
 微小チャンバ:直径約5μm、高さ約1μmの円筒形状
 脂質二重膜:1,2-ジオレオイル-sn-グリセロ-3-ホスホエタノールアミン(DOPE)と1,2-ジオレオイル-sn-グリセロ-3-ホスホグリセロール(DOPG)との1:1(重量比)混合物のクロロホルム溶液を用いて形成
 試験用液体:10mMのpH緩衝液(pH5~9)と、20μMの蛍光性膜電位指示薬(DiBac4)と、10mMの塩化ナトリウムとを含む水溶液
 電圧印加装置:ファンクションジェネレータ(株式会社エヌエフ回路設計ブロック製)
 共焦点レーザー顕微鏡:A1R(Nikon社製)
 蛍光性膜電位指示薬:DiBAC4(Dojindo社製)
 なお、DiBAC4は、Bis-oxonol型のアニオン性膜電位感受性色素であり、細胞膜の脱分極に伴って、細胞質中への分布が増し、蛍光増強する。
 図10は、第1実験例における、印加電圧(破線)と蛍光強度(実線)の変化を示す図である。印加電圧は、電極23を基準(0V)として、反対電極27の電位により示す(他の実験例でも同様)。図10に示すように、DiBAC4の蛍光強度は、印加電圧に追従するように変化している。蛍光強度の変化は、印加電圧の変化よりも若干遅れていることが分かる。本実験例の結果から、第1実施形態の高密度微小チャンバーアレイを用いれば、電極への電圧印加により膜電位(脱分極および過分極)を制御できることが分かる。
 2.第2実験例
 第2実験例では、第1実験例と同様の高密度微小チャンバーアレイ20A(図1、図2、図3参照)において、膜タンパクとして大腸菌由来のF型ATP合成酵素(FoF1)を、リポソームを用いて脂質二重膜30に導入し、プロトンの能動輸送を検出した。
 微小チャンバー26の内側の試験用液体としては、組成が10μMのTricine緩衝液(pH8)と、10mMの塩化ナトリウム(NaCl)と、10mMの塩化カルシウム(CaCl)、2mMの塩化マグネシウム(MgCl)と、1μMのアデノシン二リン酸(ADP:Adenosine diphosphate)と、20μMの蛍光pH指示薬(RhP-M)とを含む水溶液を用いた。
 微小チャンバー26の外側の液体としては、10μMのMOPS(3-Morpholinopropanesulfonic acid)緩衝液(pH8)と、10mMの塩化ナトリウム(NaCl)と、10mMの塩化カルシウム(CaCl)と、2mMの塩化マグネシウム(MgCl)と、240μMのアデノシン三リン酸(ATP:Adenosine Triphosphate)とを含む水溶液を用いた。
 その他の装置構成については、第1実験例と同様としたので、詳細な説明を省略する。
 図11は、第2実験例における、蛍光強度の時間変化と膜電位との関係を示す図である。図12は、第2実験例における、F型ATP合成酵素のプロトン輸送速度(縦軸)と膜電位の大きさ(横軸)との関係を示す図である。
 図11に示すように、膜電位が高い程、蛍光強度の変化は速くなり、プロトン輸送速度が高くなっていることが分かる。
 (第2実施形態)
 第2実施形態では、電極に電流を通流することで微小チャンバーの内部を加熱する。
 第2実施形態にかかる高密度微小チャンバーアレイは、第1実施形態にかかる高密度微小チャンバーアレイであって、さらに、電極が金属であって、それぞれの微小チャンバーの内側面に設けられている。
 上記高密度微小チャンバーアレイにおいて、金属がクロムであってもよい。
 第2実施形態にかかる高密度微小チャンバーアレイシステムは、上記いずれかの高密度微小チャンバーアレイと、電極内を基板と平行に電流を流すことで電極を発熱させる電流印加装置とを備える。
 上記高密度微小チャンバーアレイシステムは、さらに、脂質二重膜の上方に設けられた反対電極と、電極と反対電極との間に電圧を印加する電圧印加装置とを備えてもよい。
 第2実施形態にかかる方法は、上記いずれかの高密度微小チャンバーアレイを用意し、電極に電流を流すことで電極を発熱させることで、微小チャンバー内に封止された試験用液体の温度を制御する。
 [装置構成]
 図13は、第2実施形態にかかる高密度微小チャンバーアレイシステムの概略構成の一例を示す図である。以下、図13を参照しつつ、第2実施形態の高密度微小チャンバーアレイシステム200の装置構成について説明する。
 図13に例示されるように、高密度微小チャンバーアレイシステム200は、基板22と、電極23と、疎水層24と、微小チャンバー26と、脂質二重膜30と、電流印加装置29とを備えている。
 基板22と、疎水層24と、微小チャンバー26と、脂質二重膜30とは、第1実施形態と同様に構成することができるので、詳細な説明を省略する。
 電極23は、発熱体として使用しうるものであればどのような材料で構成されていてもよい。具体的には例えば、電極23は、金属で構成されていてもよい。さらに具体的には例えば、電極23は、クロムで構成されていてもよい。
 あるいは電極23は、発熱体として使用でき、かつ、試験用液体による変質を受けにくい材料で構成されていてもよい。具体的には例えば、電極23は、クロムで構成されていてもよい。
 図13示す例では、複数の微小チャンバー26に対応する電極23は互いに電気的に接続されている。すなわち、図1に示す疎水層24と同様、電極23が複数の微小チャンバー26を取り囲むように連続的に構成されてもよい。かかる構成では、複数の微小チャンバー26をまとめて加熱できる。
 電流印加装置29は、電極23内を基板22と平行に電流を流すことで電極23を発熱させる。電流印加装置29としては、具体的には例えば、ファンクションジェネレータ(株式会社エヌエフ回路設計ブロック製)を用いることができる。
 [方法]
 第2実施形態の方法では、電流印加装置29を用いて電極23に電流を流し、もって電極23を発熱させることで、微小チャンバー26内に封止された試験用液体、脂質二重膜30、膜タンパク等の温度を制御することができる。
 電極23を用いて試験用液体、脂質二重膜30、膜タンパク等の温度を制御することで、より多様な条件での膜タンパク質の挙動を解析できる。
 第2実施形態においても、第1実施形態と同様の変形が可能である。例えば、高密度微小チャンバーアレイシステム200が、電流印加装置29に加え、電圧印加装置28を備えてもよい。電圧印加装置28については、第1実施形態と同様に構成することができるので、詳細な説明を省略する。
 (第3実施形態)
 第3実施形態では、脂質二重膜で封止された微小チャンバーの内部に生体高分子を集積する。
 第3実施形態にかかる高密度微小チャンバーアレイは、第1実施形態および第2実施形態の少なくともいずれか一方にかかる高密度微小チャンバーアレイであって、微小チャンバーの内部に、生体高分子が集積されている。
 第3実施形態にかかる方法は、透光性を有する平坦な基板と、基板上に設けられた疎水性物質からなる層であって、複数の微小チャンバーの開口部が該層の主面上に規則的かつ高密度に配列するよう設けられ、微小チャンバーの容量が4000×10-18以下である、疎水層とを備え、それぞれの微小チャンバー内に電極が設けられており、基板において、疎水層が設けられている側を上方とするとき、下記A)およびB)の少なくともいずれか一方を満たすことにより、基板の下方から基板へと入射した光が基板を透過して微小チャンバーの内部へと進入し、かつ、微小チャンバーの内部から基板へと入射した光が基板を透過して基板の下方へと脱出するように構成されている、高密度微小チャンバーアレイを用意し、電極に電圧を印加することで、複数の微小チャンバーの内部に生体高分子を集積し、その後、複数の微小チャンバーの開口部に生体高分子を封止するように脂質二重膜を形成する。
A)電極が、それぞれの微小チャンバーの内側面に設けられている。
B)電極が、それぞれの微小チャンバーの底面に透明電極として設けられている。
 [装置構成]
 図14は、第3実施形態において生体高分子が集積された高密度微小チャンバーアレイの概略構成の一例を示す図である。以下、図14を参照しつつ、第3実施形態の高密度微小チャンバーアレイ300の装置構成について説明する。
 図14に例示されるように、高密度微小チャンバーアレイ300は、基板22と、電極23と、疎水層24と、微小チャンバー26と、脂質二重膜30とを備えている。
 基板22と、電極23と、疎水層24と、脂質二重膜30とは、第1実施形態および第2実施形態の少なくともいずれか一方と同様に構成することができるので、詳細な説明を省略する。
 微小チャンバー26の内部には、生体高分子36が集積されている。生体高分子とは、例えば、タンパク質、DNA、RNA等が含まれる。
 [製造方法]
 以下、第3実施形態の高密度微小チャンバーアレイ300の製造方法について説明する。図15は、第3実施形態における生体高分子集積高密度微小チャンバーアレイの製造方法の一例を示す工程図である。
 第3実施形態の高密度微小チャンバーアレイ300は、まず、脂質二重膜30により開口部が液封されていない微小チャンバーデバイスを形成し(工程S400)、形成した微小チャンバーデバイスに試験用液体を導入し(工程S410)、各微小チャンバーに生体高分子を集積させ(工程S420)、試験用液体が各微小チャンバー26に満たされ、かつ、生体高分子が各微小チャンバー26に集積した状態で、各微小チャンバー26の開口部を液封するように脂質二重膜30を形成して(工程S430)、完成する。
 工程S400は、図5の工程S100と同様とすることができるので、詳細な説明を省略する。
 工程S410は、図5の工程S110あるいは図9Aと同様とすることができるので、詳細な説明を省略する。
 工程S430は、図5の工程S120あるいは図9B~図9Cと同様とすることができるので、詳細な説明を省略する。
 工程S420において、生体高分子36は、例えば、電極23を用いて微小チャンバー26の内部に誘引される。生体高分子36は電荷を有していてもよい。この場合、電極23を生体高分子36と反対極性に帯電させることで、生体高分子36を微小チャンバー26へと誘引できる。
 生体高分子36は、誘電泳動により微小チャンバー26に誘引されてもよい。誘電泳動では、電気的に中性な粒子であっても、不均一な電界を印加することで粒子を分極させ、移動させることができる。誘電泳動は流体と粒子の誘電率の関係、および電界の空間勾配によって生じる。誘電泳動を用いる場合には、生体高分子36が電荷を有しない場合でも、生体高分子36を微小チャンバー26へと誘引できる。本実施形態では、チャンバーの開口部に電界が集中することから、チャンバー内部へと物質を誘導できる。
 第3実施形態では、脂質二重膜30で封止された微小チャンバー26の内部に生体高分子36を集積できる。よって、生体高分子36同士の相互作用や、脂質二重膜30に保持された膜タンパクと生体高分子36との相互作用などを解析する上で有利となる。
 (第4実施形態)
 第4実施形態では、細胞融合により膜タンパク質を脂質二重膜へと導入する。
 第4実施形態の方法は、反対電極を有する第1実施形態から第3実施形態の少なくともいずれかの高密度微小チャンバーアレイを用意し、電極と反対電極との間に電流を印加することにより脂質二重膜に細胞を融合させることで、細胞由来の膜タンパク質を脂質二重膜へと移行させる。
 第4実施形態の方法は、第1実施形態から第3実施形態の少なくともいずれかの方法において、脂質二重膜の上方に反対電極を設けるステップを含み、膜タンパク質が、電極と反対電極との間に電流を印加することにより脂質二重膜に細胞を融合させることで脂質二重膜へと導入された、細胞由来の膜タンパク質であってもよい。
 図16Aは、第4実施形態の脂質二重膜へと細胞を融合させる方法において、液体流路に細胞を導入する工程を示す図である。図16Bは、第4実施形態の脂質二重膜へと細胞を融合させる方法において、細胞が脂質二重膜へと融合された状態を示す図である。以下、図16Aおよび図16Bを参照しつつ、第4実施形態の方法について説明する。なお、図16Aおよび図16Bにおいて、図3と共通する構成要素については、第1実施形態と同様の構成としうることから、同一の符号および名称を付して詳細な説明を省略する。
 細胞融合技術を用いた脂質二重膜30への膜タンパク質54の導入は、例えば以下のように実行されうる。すなわち、微小チャンバーデバイスにスペーサ42を介してガラス板44を乗せて液体流路48を形成する。この状態で、ガラス板44の液体導入孔46から膜タンパク質54を有する細胞52を含む溶液を導入し(図16A)、電極23と反対電極27との間に、電流印加装置28(図示省略)を用いてパルス状の直流電流を印加することで、細胞融合により膜タンパク質54を脂質二重膜30に組み込む(図16B)。溶液の組成としては、例えば、10nMのFoF1(ATP合成酵素)と、1mMのpH7のMOPS(3-モルホリノプロパン-1-スルホン酸)と、10mMの塩化ナトリウム(NaCl)、2mMの塩化マグネシウム(MgCl)とを含む溶液を用いることができる。
 第1実施形態から第3実施形態のいずれかの高密度微小チャンバーアレイの脂質二重膜30に膜タンパク質54を再構成したものとすれば、高密度微小チャンバーアレイを、膜タンパク質を介しての生体分子反応等の検出に用いることができる。膜タンパク質54は、細胞52から脂質二重膜30へと直接導入できるため、操作を簡潔化できる。細胞52が有する膜タンパク質54をそのまま解析できることから、細胞が発現している未知の膜タンパク質を解析することも可能となる。
 細胞融合では、脂質二重膜における内(細胞質側)と外(細胞外マトリクス側)とが保存される。よって、細胞融合を利用することで、脂質二重膜30へ導入された膜タンパク質54の配向を適切に制御できる。微小チャンバー26の外部から脂質二重膜30へ細胞を融合すれば、微小チャンバー26の内部が細胞質側となる。微小チャンバー26の内部に細胞を集積し、微小チャンバー26の内部から脂質二重膜30へ細胞を融合すれば、微小チャンバー26の内部が細胞外マトリクス側となる。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/又は機能の詳細を実質的に変更できる。
 10 カメラ
 12 レーザ光源
 14 ダイクロイックミラー
 20 高密度微小チャンバーアレイ
 22 基板
 23 電極
 23a 電極層
 24 疎水層
 24a 物質膜
 24b 物質膜
 25a レジスト
 25b レジスト
 26 微小チャンバー
 27 反対電極
 28 電圧印加装置
 29 電流印加装置
 30 脂質二重膜
 32 第1脂質膜
 34 第2脂質膜
 35 脂質
 36 生体高分子
 42 スペーサ
 44 ガラス板
 46 液体導入孔
 48 液体流路
 52 細胞
 54 膜タンパク質
100 高密度微小チャンバーアレイシステム
200 高密度微小チャンバーアレイシステム
300 高密度微小チャンバーアレイ

 

Claims (14)

  1.  透光性を有する平坦な基板と、
     前記基板上に設けられ疎水性物質からなる層であって、複数の微小チャンバーの開口部が該層の主面上に規則的かつ高密度に配列するよう設けられ、前記微小チャンバーの容量が4000×10-18以下である、疎水層と、
     試験用液体が満たされた状態の前記複数の微小チャンバーの開口部に前記試験用液体を封止するように形成された脂質二重膜とを備え、
     それぞれの前記微小チャンバー内に電極が設けられており、
     前記基板において、前記疎水層が設けられている側を上方とするとき、
     下記A)およびB)の少なくともいずれか一方を満たすことにより、前記基板の下方から前記基板へと入射した光が前記基板を透過して前記微小チャンバーの内部へと進入し、かつ、前記微小チャンバーの内部から前記基板へと入射した光が前記基板を透過して前記基板の下方へと脱出するように構成されている、
     高密度微小チャンバーアレイ。
    A)前記電極が、それぞれの前記微小チャンバーの内側面に設けられている。
    B)前記電極が、それぞれの前記微小チャンバーの底面に透明電極として設けられている。
  2.  前記電極が金属であって、それぞれの前記微小チャンバーの内側面に設けられている、請求項1に記載の高密度微小チャンバーアレイ。
  3.  前記金属がクロムである、請求項2に記載の高密度微小チャンバーアレイ。
  4.  前記微小チャンバーの内部に、生体高分子が集積されている、請求項1ないし3のいずれかに記載の高密度微小チャンバーアレイ。
  5.  さらに、前記脂質二重膜の上方に反対電極を備える、請求項1ないし4のいずれかに記載の高密度微小チャンバーアレイ。
  6.  前記微小チャンバーが形成された面が底面となる液体流路を備える、
     請求項1ないし5のいずれかに記載の高密度微小チャンバーアレイ。
  7.  請求項5に記載の高密度微小チャンバーアレイと、
     前記電極と前記反対電極との間に電圧を印加する電圧印加装置とを備える、
     高密度微小チャンバーアレイシステム。
  8.  請求項2または3に記載の高密度微小チャンバーアレイと、
     前記電極内を前記基板と平行に電流を流すことで前記電極を発熱させる電流印加装置とを備える、
     高密度微小チャンバーアレイシステム。
  9.  さらに、前記脂質二重膜の上方に設けられた反対電極と、
     前記電極と前記反対電極との間に電圧を印加する電圧印加装置とを備える、
     請求項8に記載の高密度微小チャンバーアレイシステム。
  10.  透光性を有する平坦な基板と、前記基板上に設けられた疎水性物質からなる層であって、複数の微小チャンバーの開口部が該層の主面上に規則的かつ高密度に配列するよう設けられ、前記微小チャンバーの容量が4000×10-18以下である、疎水層とを備え、それぞれの前記微小チャンバー内に電極が設けられており、前記基板において、前記疎水層が設けられている側を上方とするとき、下記A)およびB)の少なくともいずれか一方を満たすことにより、前記基板の下方から前記基板へと入射した光が前記基板を透過して前記微小チャンバーの内部へと進入し、かつ、前記微小チャンバーの内部から前記基板へと入射した光が前記基板を透過して前記基板の下方へと脱出するように構成されている、高密度微小チャンバーアレイを用意し、
     前記複数の微小チャンバーの開口部に脂質二重膜を形成し、ここで前記脂質二重膜は膜タンパク質を保持するものであり、 
     前記電極と前記脂質二重膜の上方に設けられた反対電極との間に電圧を印加することで前記膜タンパク質の性質を変化させる、
     膜タンパク質の解析方法。
    A)前記電極が、それぞれの前記微小チャンバーの内側面に設けられている。
    B)前記電極が、それぞれの前記微小チャンバーの底面に透明電極として設けられている。
  11.  透光性を有する平坦な基板と、前記基板上に設けられた疎水性物質からなる層であって、複数の微小チャンバーの開口部が該層の主面上に規則的かつ高密度に配列するよう設けられ、前記微小チャンバーの容量が4000×10-18以下である、疎水層とを備え、それぞれの前記微小チャンバー内に電極が設けられており、前記基板において、前記疎水層が設けられている側を上方とするとき、下記A)およびB)の少なくともいずれか一方を満たすことにより、前記基板の下方から前記基板へと入射した光が前記基板を透過して前記微小チャンバーの内部へと進入し、かつ、前記微小チャンバーの内部から前記基板へと入射した光が前記基板を透過して前記基板の下方へと脱出するように構成されている、高密度微小チャンバーアレイを用意し、
     前記電極に電圧を印加することで、前記複数の微小チャンバーの内部に生体高分子を集積し、その後、
     前記複数の微小チャンバーの開口部に前記生体高分子を封止するように脂質二重膜を形成する、方法。
    A)前記電極が、それぞれの前記微小チャンバーの内側面に設けられている。
    B)前記電極が、それぞれの前記微小チャンバーの底面に透明電極として設けられている。 
  12.  請求項2または3に記載の高密度微小チャンバーアレイを用意し、
     前記電極に電流を流すことで前記電極を発熱させることで、前記微小チャンバー内に封止された前記試験用液体の温度を制御する、方法。
  13.  請求項5に記載の高密度微小チャンバーアレイを用意し、
     前記電極と前記反対電極との間に電流を印加することにより前記脂質二重膜に細胞を融合させることで、前記細胞由来の膜タンパク質を前記脂質二重膜へと移行させる、方法。
  14.  前記高密度微小チャンバーアレイを用意するステップは、前記脂質二重膜の上方に反対電極を設けるステップを含み、
     前記膜タンパク質は、前記電極と前記反対電極との間に電流を印加することにより前記脂質二重膜に細胞を融合させることで前記脂質二重膜へと導入された、前記細胞由来の膜タンパク質である、請求項10に記載の膜タンパク質の解析方法。

     
PCT/JP2016/066834 2015-06-08 2016-06-07 高密度微小チャンバーアレイおよびこれを用いた測定方法 WO2016199741A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16807448.2A EP3305721B1 (en) 2015-06-08 2016-06-07 High-density micro-chamber array and measurement method using same
US15/567,431 US10974246B2 (en) 2015-06-08 2016-06-07 High-density micro-chamber array and measurement method using same
JP2017523637A JP6607936B2 (ja) 2015-06-08 2016-06-07 高密度微小チャンバーアレイおよびこれを用いた測定方法
CN201680033367.0A CN107709223B (zh) 2015-06-08 2016-06-07 高密度微腔阵列以及使用了该高密度微腔阵列的测定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015116045 2015-06-08
JP2015-116045 2015-06-08

Publications (1)

Publication Number Publication Date
WO2016199741A1 true WO2016199741A1 (ja) 2016-12-15

Family

ID=57504775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066834 WO2016199741A1 (ja) 2015-06-08 2016-06-07 高密度微小チャンバーアレイおよびこれを用いた測定方法

Country Status (5)

Country Link
US (1) US10974246B2 (ja)
EP (1) EP3305721B1 (ja)
JP (1) JP6607936B2 (ja)
CN (1) CN107709223B (ja)
WO (1) WO2016199741A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008868A1 (ja) * 2017-07-05 2019-01-10 国立大学法人東京大学 脂質膜小胞の形成方法およびマイクロリアクタチップ
CN112689668A (zh) * 2019-01-29 2021-04-20 伊鲁米那股份有限公司 流动池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11418168B2 (en) * 2017-05-30 2022-08-16 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method for manufacturing the same
JP7229110B2 (ja) * 2019-06-25 2023-02-27 株式会社Screenホールディングス 細胞電位測定装置
CN113061531B (zh) * 2021-06-03 2021-08-20 成都齐碳科技有限公司 芯片结构、芯片组件、成膜方法、纳米孔测序装置及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506994A (ja) * 2007-12-19 2011-03-03 オックスフォード ナノポア テクノロジーズ リミテッド 両親媒性分子層の形成法
JP2014021025A (ja) * 2012-07-20 2014-02-03 Hiroshi Sotooka 人工脂質膜形成装置および人工脂質膜形成方法
JP2014178121A (ja) * 2013-03-13 2014-09-25 Nippon Telegr & Teleph Corp <Ntt> ハイドロゲルアレイ基板及び前記基板の製造方法、並びに脂質二分子膜アレイ基板及び前記基板の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4912517B2 (ja) 1996-04-03 2012-04-11 アプライド バイオシステムズ リミテッド ライアビリティー カンパニー 複数の分析物の検出のためのデバイスおよび方法
BR0114618B1 (pt) 2000-10-12 2014-06-10 Univ New Jersey Med Método para facilitar a coalescência de dois membros selecionados do grupo que consiste de células, vesículas de bicamada de lipídeo e lipossomas
US20060029955A1 (en) * 2001-03-24 2006-02-09 Antonio Guia High-density ion transport measurement biochip devices and methods
JP5021183B2 (ja) * 2005-05-20 2012-09-05 アークレイ株式会社 タンパク質固定化膜および固定化方法、ならびにバイオセンサ
EP1999272B1 (en) * 2006-03-21 2017-11-01 Koninklijke Philips N.V. Microelectronic sensor device with sensor array
DE102007016699A1 (de) * 2007-04-04 2008-10-09 Synentec Gmbh Biochip für die Fluoreszenzanalyse von einzelnen Transportern
JP2011147409A (ja) 2010-01-22 2011-08-04 Kanagawa Acad Of Sci & Technol 脂質二重膜にリポソームを融合させる方法
WO2011149032A1 (ja) * 2010-05-26 2011-12-01 東ソー株式会社 生体試料固定装置
EP2593772A1 (de) * 2010-07-12 2013-05-22 Nanospot GmbH Mikrostrukturierter messchip zur optischen messung von eigenschaften künstlicher oder biologischer membranen und verfahren zu dessen herstellung
JP5656192B2 (ja) * 2011-03-28 2015-01-21 株式会社Nttドコモ ソフトマテリアルのマイクロアレイ作製方法
US20140054170A1 (en) 2011-04-28 2014-02-27 Norihito Tsukahara Biosensor device
JP2013126381A (ja) 2011-12-16 2013-06-27 Tosoh Corp 細胞融合方法
JP6281834B2 (ja) 2013-08-21 2018-02-21 国立大学法人 東京大学 高密度微小チャンバーアレイおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506994A (ja) * 2007-12-19 2011-03-03 オックスフォード ナノポア テクノロジーズ リミテッド 両親媒性分子層の形成法
JP2014021025A (ja) * 2012-07-20 2014-02-03 Hiroshi Sotooka 人工脂質膜形成装置および人工脂質膜形成方法
JP2014178121A (ja) * 2013-03-13 2014-09-25 Nippon Telegr & Teleph Corp <Ntt> ハイドロゲルアレイ基板及び前記基板の製造方法、並びに脂質二分子膜アレイ基板及び前記基板の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008868A1 (ja) * 2017-07-05 2019-01-10 国立大学法人東京大学 脂質膜小胞の形成方法およびマイクロリアクタチップ
JP2019013870A (ja) * 2017-07-05 2019-01-31 国立大学法人 東京大学 脂質膜小胞の形成方法およびマイクロリアクタチップ
CN112689668A (zh) * 2019-01-29 2021-04-20 伊鲁米那股份有限公司 流动池

Also Published As

Publication number Publication date
US20180104686A1 (en) 2018-04-19
JP6607936B2 (ja) 2019-11-20
EP3305721A1 (en) 2018-04-11
CN107709223B (zh) 2020-11-03
US10974246B2 (en) 2021-04-13
EP3305721A4 (en) 2019-07-17
JPWO2016199741A1 (ja) 2018-03-22
EP3305721B1 (en) 2023-10-18
CN107709223A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6607936B2 (ja) 高密度微小チャンバーアレイおよびこれを用いた測定方法
Bi et al. Electroformation of giant unilamellar vesicles using interdigitated ITO electrodes
Parthasarathy et al. Curvature-modulated phase separation in lipid bilayer membranes
White et al. Single ion-channel recordings using glass nanopore membranes
JP6281834B2 (ja) 高密度微小チャンバーアレイおよびその製造方法
US20070209935A1 (en) Multiaperture Sample Positioning and Analysis System
JP2012034641A (ja) 電気的機能を持つマイクロチャンバーアレイ装置およびそれを用いた検査対象物解析方法
JP5057348B2 (ja) 二分子膜の製造方法および二分子平面膜
US8198606B2 (en) Concurrent monitoring of a plurality of samples by an array of biosensing elements
JP6124205B2 (ja) 人工脂質膜形成装置および人工脂質膜形成方法
Kang et al. Tightly sealed 3D lipid structure monolithically generated on transparent SU-8 microwell arrays for biosensor applications
WO2019008868A1 (ja) 脂質膜小胞の形成方法およびマイクロリアクタチップ
Mahdavifar et al. A nitrocellulose-based microfluidic device for generation of concentration gradients and study of bacterial chemotaxis
Al-Aribe et al. Fabrication of an optically driven pH gradient generator based on self-assembled proton pumps
Watanabe Microsystem for the single molecule analysis of membrane transport proteins
EP3164712A1 (en) Microfluidic array supporting a lipid bilayer assembly
Ahmed et al. Silicon nitride-based micro-apertures coated with parylene for the investigation of pore proteins fused in free-standing lipid bilayers
Sapkota et al. Highly-stable bio-inspired peptide/MoS2 membranes for efficient water desalination
JP6844873B2 (ja) マイクロリアクタチップおよびその製造方法
Uno et al. Improvements in the performance of an incubation-type planar patch clamp biosensor using a salt bridge electrode and a plastic (PMMA) substrate
JP2840282B2 (ja) イオン透過膜と該膜を利用したイオン輸送方法
WO2019208795A1 (ja) マイクロリアクタチップ上での濃度勾配形成方法およびマイクロリアクタチップ
JP2011147409A (ja) 脂質二重膜にリポソームを融合させる方法
Das et al. Characterizing Oscillatory and Excitability Regimes in a Protein-Free Lipid Membrane
Lada Lipid vesicle fusion as a vehicle to study transmembrane protein interactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523637

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15567431

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016807448

Country of ref document: EP