WO2016199468A1 - 撮像装置、撮像方法及び液晶レンズの使用方法 - Google Patents

撮像装置、撮像方法及び液晶レンズの使用方法 Download PDF

Info

Publication number
WO2016199468A1
WO2016199468A1 PCT/JP2016/058361 JP2016058361W WO2016199468A1 WO 2016199468 A1 WO2016199468 A1 WO 2016199468A1 JP 2016058361 W JP2016058361 W JP 2016058361W WO 2016199468 A1 WO2016199468 A1 WO 2016199468A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polarized light
pair
units
lens
Prior art date
Application number
PCT/JP2016/058361
Other languages
English (en)
French (fr)
Inventor
隆 秋元
船引 伸夫
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2016199468A1 publication Critical patent/WO2016199468A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • G03B19/04Roll-film cameras
    • G03B19/06Roll-film cameras adapted to be loaded with more than one film, e.g. with exposure of one or the other at will
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • G03B19/12Reflex cameras with single objective and a movable reflector or a partly-transmitting mirror
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/04Focusing arrangements of general interest for cameras, projectors or printers adjusting position of image plane without moving lens

Definitions

  • the present invention relates to an improvement technique for an imaging apparatus, an imaging method, and a method for using a liquid crystal lens.
  • liquid crystal elements that can change the refractive index of a liquid crystal layer by an applied voltage have been used in various electronic devices.
  • liquid crystal lenses those having a refractive index variable with respect to natural light are arranged perpendicular to the same optical axis, and the liquid crystal alignment directions in the plane perpendicular to the optical axis are mutually aligned.
  • a pair of orthogonal liquid crystal layers is provided (see, for example, Patent Document 1).
  • an object of the present invention is to clearly and simultaneously capture images at two positions having different optical axis directions.
  • An image pickup apparatus which has been created to solve the above-described problems, includes a liquid crystal lens having a pair of liquid crystal units each including at least one liquid crystal layer, and is independent of the pair of liquid crystal units.
  • a voltage can be applied, one of the pair of liquid crystal units can refract the first polarization, the other can refract the second polarization, and the polarization directions of the first polarization and the second polarization are orthogonal to each other
  • An imaging device that separates the first polarized light and the second polarized light that have passed through the pair of liquid crystal units, the first polarized light separated by the light separating means, and the second polarized light. It is characterized by comprising imaging means for imaging each image of polarized light.
  • a voltage can be applied independently to each of the pair of liquid crystal portions of the liquid crystal lens.
  • the focal lengths of the pair of liquid crystal units can be made different so that the focal points of the pair of liquid crystal units can be adjusted to any two positions having different optical axis directions. Therefore, any image picked up by the image pickup means can be made clear. That is, according to the imaging apparatus of the present invention, it is possible to clearly capture images at two positions having different optical axis directions simultaneously.
  • an image enlarging unit for enlarging an image of light that has passed through the pair of liquid crystal units is disposed between the pair of liquid crystal units and the light separating unit.
  • the light separation means is a polarization beam splitter that transmits one of the first polarized light and the second polarized light and reflects the other.
  • each of the pair of liquid crystal units is configured by one liquid crystal layer.
  • an imaging method created to solve the above-described problems uses a liquid crystal lens having a pair of liquid crystal portions composed of at least one liquid crystal layer, and is mutually connected to the pair of liquid crystal portions.
  • a voltage can be applied independently, one of the pair of liquid crystal units can refract the first polarized light, the other can refract the second polarized light, and the first polarized light and the second polarized light have a polarization direction.
  • a method of using the liquid crystal lens according to the present invention is a method of using a liquid crystal lens having a pair of liquid crystal portions composed of at least one liquid crystal layer, wherein A voltage can be applied to the unit independently of each other, one of the pair of liquid crystal units can refract the first polarization, the other can refract the second polarization, the first polarization and the first
  • a voltage can be applied to the unit independently of each other, one of the pair of liquid crystal units can refract the first polarization, the other can refract the second polarization, the first polarization and the first
  • the respective focal points of the pair of liquid crystal units Is adjusted to two positions different in the direction of the optical axis.
  • images at two positions having different optical axis directions can be clearly and simultaneously captured.
  • FIG. 1 is a schematic side view showing an imaging apparatus according to an embodiment of the present invention. It is an expansion schematic side view which shows a liquid crystal lens. It is an expansion schematic side view which shows the modification of a liquid crystal lens.
  • FIG. 1 is a schematic side view showing an imaging apparatus according to an embodiment of the present invention. This imaging device 1 is for clearly and simultaneously capturing images at two positions in the subject A in different directions of the optical axis B.
  • the imaging apparatus 1 includes a liquid crystal lens 2, an image enlarging unit 3, a polarization beam splitter 4, a pair of imaging units 5 and 5, a data processing unit 6, and an image display unit 7 as main components.
  • the liquid crystal lens 2 has a pair of lens portions 8 and 8. Each of the pair of lens units 8 and 8 has one liquid crystal unit 8a.
  • the liquid crystal part 8a is composed of one liquid crystal layer 8b. A voltage can be applied to each of the pair of liquid crystal units 8a and 8a independently of each other.
  • the liquid crystal portions 8a of the pair of lens portions 8 and 8 are arranged so as to be perpendicular to the optical axis B.
  • the liquid crystal alignment directions in the plane perpendicular to the optical axis B in the liquid crystal part 8a of each of the pair of lens parts 8 and 8 are in a state orthogonal to each other.
  • Light (natural light) incident on the liquid crystal units 8a and 8a of the pair of lens units 8 and 8 from the subject A side is in the liquid crystal alignment direction in the plane perpendicular to the optical axis B in the liquid crystal unit 8a of the one lens unit 8.
  • the polarized light having the same polarization direction and the polarized light having the polarization direction coinciding with the liquid crystal alignment direction in the plane perpendicular to the optical axis B in the liquid crystal part 8a of the other lens part 8 are included.
  • Each of the liquid crystal units 8a and 8a of the pair of lens units 8 and 8 can refract polarized light having a polarization direction that matches the liquid crystal direction alignment in the plane perpendicular to the optical axis B in the liquid crystal unit 8a by changing the refractive index. It is. That is, the polarization directions of polarized light (first polarized light) that can be refracted by one of the pair of liquid crystal units 8a and 8a and polarized light (second polarized light) that can be refracted by the other are orthogonal to each other.
  • each of the pair of lens units 8 and 8 seals the liquid crystal unit 8a between the pair of transparent substrates 8c and the transparent substrate 8c facing each other through one liquid crystal unit 8a.
  • the main component is the sealing portion 8d and the first electrode 8e, the second electrode 8f, and the third electrode 8g for applying a voltage to the liquid crystal portion 8a.
  • a first power supply 9a having a variable voltage is connected to the first electrode 8e and the second electrode 8f
  • a second power supply 9b having a variable voltage is connected to the first electrode 8e and the third electrode 8g.
  • the refractive index of the liquid crystal unit 8a can be changed by adjusting the voltages of the first power supply 9a and the second power supply 9b.
  • the pair of lens portions 8 and 8 have the same dimensions and materials, and the pair of lens portions 8 and 8 are symmetrically arranged with their boundaries as symmetry planes.
  • the present invention is not limited to this, and the pair of lens portions 8 and 8 may not have the same dimensions and materials, and the pair of lens portions 8 and 8 are arranged symmetrically. It does not have to be.
  • the pair of lens portions 8 and 8 are bonded to each other with an adhesive or the like, but may be separated from each other.
  • a pair of transparent substrates 8c are arranged between the liquid crystal portions 8a.
  • the transparent substrate 8c between the liquid crystal portions 8a is provided. It may be shared to be one.
  • the focal points of the pair of liquid crystal units 8a and 8a are adjusted to two positions having different optical axis B directions. This is carried out by applying a voltage to both or one of the pair of liquid crystal units 8a and 8a to make the focal lengths of the pair of liquid crystal units 8a and 8a different.
  • the image enlarging means 3 is disposed between the liquid crystal lens 2 and the polarization beam splitter 4, and enlarges the image of light that has passed through the pair of liquid crystal portions 8 a and 8 a of the liquid crystal lens 2.
  • the image magnifying means 3 is, for example, an infinity correction optical system (so-called microscope optical system), and includes an objective lens 3a, an imaging lens 3b, and an eyepiece lens 3c arranged on the optical axis B.
  • the polarization beam splitter 4 transmits the P-polarized light Lp and reflects the S-polarized light Ls. More specifically, the polarizing beam splitter 4 reflects incident S-polarized light in a direction perpendicular to the incident direction. That is, the polarization beam splitter 4 is a light separating unit that separates the pair of polarized light Lp and Ls included in the light that has passed through the pair of liquid crystal units 8a and 8a of the liquid crystal lens 2 from each other.
  • the liquid crystal alignment direction in the plane perpendicular to the optical axis B in the liquid crystal unit 8a of the lens unit 8 on the polarizing beam splitter 4 side is arranged so as to coincide with the polarization direction of the P-polarized light Lp.
  • the liquid crystal alignment direction in the plane perpendicular to the optical axis B in the liquid crystal unit 8a of the lens unit 8 on the subject A side is arranged so as to coincide with the polarization direction of the S-polarized light Ls.
  • the liquid crystal unit 8a of the lens unit 8 on the polarizing beam splitter 4 side can refract the P-polarized light Lp
  • the liquid crystal unit 8a of the lens unit 8 on the subject A side can refract the S-polarized light Ls.
  • the present invention is not limited to this, and the liquid crystal alignment direction in the plane perpendicular to the optical axis B in the liquid crystal unit 8a of the lens unit 8 on the polarizing beam splitter 4 side is matched with the polarization direction of the S-polarized light Ls.
  • the liquid crystal alignment direction in the plane perpendicular to the optical axis B of the liquid crystal unit 8a of the lens unit 8 on the subject A side may be arranged to coincide with the polarization direction of the P-polarized light Lp.
  • the pair of imaging means 5 and 5 capture images of the P-polarized light Lp and the S-polarized light Ls separated by the polarization beam splitter 4.
  • the pair of imaging units 5 and 5 are CMOS cameras, and image data of captured images is formed.
  • the present invention is not limited to this, and the pair of imaging means 5 and 5 may be, for example, a CCD camera or an electrical image as long as it can capture images of the polarized lights Lp and Ls. It may be a film camera in which data is not formed.
  • the data processing means 6 superimposes the image data formed by being picked up by the pair of image pickup means 5 and 5 into one image and displays it on the image display means 7.
  • the present invention is not limited to this, and the data processing unit 6 displays the image data formed by the pair of imaging units 5 and 5 on the image display unit 7 as separate images. May be.
  • the imaging apparatus 1 of the present embodiment configured as described above can enjoy the following effects.
  • the focal points of the pair of liquid crystal units 8a and 8a are respectively adjusted to two positions different in the direction of the optical axis B. Accordingly, the images of the polarized lights Lp and Ls picked up by the pair of image pickup means 5 and 5 are clear. That is, according to the imaging apparatus 1 of the present embodiment, images at different positions in the direction of the optical axis B can be clearly and simultaneously captured.
  • the subject depth is very shallow, and the subject at the focal position of the lens can be clearly imaged, but the subject outside the focal position is blurred and unclear. This situation is inconvenient for grasping the positional relationship with the surroundings, and it is desired that the subject depth of the imaging device is deep.
  • image data formed by imaging is superimposed and synthesized into one image.
  • This image is focused on two different positions in the direction of the optical axis B, and is a substantially deep subject depth image. That is, according to the imaging apparatus 1 of the present embodiment, imaging with a substantially deep subject depth can be performed.
  • the depths of the alignment marks of the upper and lower flat plates are different. Since an image focused on each of the alignment marks on the flat plate can be obtained, the alignment of the flat plate becomes easy.
  • the depths of the front and back of the flat plate are different, but with the imaging device 1 of the present invention, images focused on the front and back of the flat plate can be obtained. Therefore, the inspection of the front and back of the flat plate becomes easy.
  • each of the pair of liquid crystal units 8a and 8a is configured by one liquid crystal layer 8b.
  • each of the pair of liquid crystal units 8a and 8a includes a plurality of ( The illustrated example may be composed of two liquid crystal layers 8b.
  • the plurality of liquid crystal layers 8b included in each of the pair of liquid crystal units 8a and 8a have the same liquid crystal alignment direction in the plane perpendicular to the optical axis B.
  • symbol is attached
  • the purpose is to visually recognize an image acquired by performing focusing, but when focusing is performed by looking at the acquired image, the focus is achieved.
  • the distance from the liquid crystal lens to the two positions or the distance between the two positions may be obtained from the applied voltage.
  • Imaging device Liquid crystal lens 3
  • Image expansion means 4
  • Imaging means 8a Liquid crystal part 8b Liquid crystal layer B Optical axes Lp, Ls Polarized light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Studio Devices (AREA)

Abstract

撮像装置1は、液晶レンズ2を備える。液晶レンズ2は、1つの液晶層8bで構成された液晶部8aを一対有する。一対の液晶部8a,8aに対して相互に独立して電圧を印加可能である。一対の液晶部8a,8aの一方が屈折可能な偏光Lpと、他方が屈折可能な偏光Lsは偏光方向が相互に直交する。そして、撮像装置1は、一対の液晶部8a,8aを通過した偏光Lpと偏光Lsを相互に分離する偏光ビームスプリッター4と、偏光ビームスプリッター4によって分離された偏光Lpと偏光Lsのそれぞれの像を撮像する一対の撮像手段5,5とを備える。

Description

撮像装置、撮像方法及び液晶レンズの使用方法
 本発明は、撮像装置、撮像方法及び液晶レンズの使用方法の改良技術に関する。
 公知のように、近年、印加電圧により液晶層の屈折率を変更可能な液晶素子(いわゆる液晶レンズ)が様々な電子機器に使用されている。
 この液晶レンズのうち、自然光に対して屈折率が可変となるように構成されたものは、同一の光軸に対して垂直に配設され、光軸に対する垂直面内の液晶配向方向が相互に直交する一対の液晶層を備えている(例えば、特許文献1参照)。
特開2013-156423号公報
 ところで、液晶レンズを使用するか否かに関わらず、一般に、光軸の方向の異なる2つの位置の画像を撮像する場合に、一方の位置に焦点を合わせると、一方の位置の画像は明瞭となるが、他方の位置には焦点が合わないため、他方の位置の画像は、ぼやけて不明瞭となる。
 本発明は、上記事情に鑑み、光軸の方向の異なる2つの位置の画像を同時に明瞭に撮像することを技術的課題とする。
 前記課題を解決するために創案された本発明に係る撮像装置は、少なくとも1つの液晶層で構成される液晶部を一対有する液晶レンズを備え、前記一対の液晶部に対して相互に独立して電圧を印加可能であり、前記一対の液晶部の一方は第1偏光を屈折可能で、他方は第2偏光を屈折可能であり、前記第1偏光と前記第2偏光は偏光方向が相互に直交する撮像装置であって、前記一対の液晶部を通過した前記第1偏光と前記第2偏光を相互に分離する光分離手段と、前記光分離手段によって分離された前記第1偏光と前記第2偏光のそれぞれの像を撮像する撮像手段とを備えることに特徴づけられる。
 この構成では、液晶レンズの一対の液晶部のそれぞれに独立して電圧を印加することができる。これによって、一対の液晶部の焦点距離を異ならせて、一対の液晶部の焦点のそれぞれを光軸の方向の異なる任意の2つの位置に合わせることができる。従って、撮像手段によって撮像される像を、何れも明瞭なものにすることができる。すなわち、本発明の撮像装置によれば、光軸の方向の異なる2つの位置の画像を同時に明瞭に撮像することができる。
 上記の構成において、前記一対の液晶部と、前記光分離手段との間に、前記一対の液晶部を通過した光の像を拡大する像拡大手段が配設されていることが好ましい。
 この構成であれば、液晶レンズのサイズが小さい場合でも、大きな像を撮像できる。
 上記の構成において、前記光分離手段は、前記第1偏光と前記第2偏光の一方を透過させ、他方を反射する偏光ビームスプリッターであることが好ましい。
 この構成であれば、第1偏光と第2偏光を相互に分離することが容易である。
 上記の構成において、前記一対の液晶部のそれぞれが、1つの液晶層で構成されていることが好ましい。
 この構成であれば、液晶レンズの構造が簡素なものとなり、製造コストを低減できる。
 また、前記課題を解決するために創案された本発明に係る撮像方法は、少なくとも1つの液晶層で構成される液晶部を一対有する液晶レンズを使用し、前記一対の液晶部に対して相互に独立して電圧を印加可能であり、前記一対の液晶部の一方は第1偏光を屈折可能で、他方は第2偏光を屈折可能であり、前記第1偏光と前記第2偏光は偏光方向が相互に直交する撮像方法であって、前記一対の液晶部を通過した前記第1偏光と前記第2偏光を相互に分離し、分離された前記第1偏光と前記第2偏光のそれぞれの像を撮像することに特徴づけられる。
 この構成の技術的特徴は、本欄の冒頭で述べた撮像装置の技術的特徴と実質的に同様であるため、作用及び効果も同様である。
 また、前記課題を解決するために創案された本発明に係る液晶レンズの使用方法は、少なくとも1つの液晶層で構成される液晶部を一対有する液晶レンズの使用方法であって、前記一対の液晶部に対して相互に独立して電圧を印加可能であり、前記一対の液晶部の一方は第1偏光を屈折可能で、他方は第2偏光を屈折可能であり、前記第1偏光と前記第2偏光は偏光方向が相互に直交し、光軸の方向の異なる2つの位置の画像を撮像するために、前記一対の液晶部に電圧を印加することによって、前記一対の液晶部のそれぞれの焦点を前記光軸の方向の異なる2つの前記位置に合わせることに特徴づけられる。
 この構成であれば、一対の液晶部を通過した第1偏光と第2偏光を相互に分離し、分離された第1偏光と第2偏光のそれぞれの像を撮像すれば、光軸の方向の異なる2つの位置の画像を同時に明瞭に撮像することができる。
 以上のように本発明によれば、光軸の方向の異なる2つの位置の画像を同時に明瞭に撮像することができる。
本発明の実施形態に係る撮像装置を示す概略側面図である。 液晶レンズを示す拡大概略側面図である。 液晶レンズの変形例を示す拡大概略側面図である。
 以下、本発明を実施するための形態について図面に基づき説明する。
 図1は、本発明の実施形態に係る撮像装置を示す概略側面図である。この撮像装置1は、被写体Aにおける光軸Bの方向の異なる2つの位置の画像を同時に明瞭に撮像するためのものである。
 撮像装置1は、液晶レンズ2と、像拡大手段3と、偏光ビームスプリッター4と、一対の撮像手段5,5と、データ処理手段6、画像表示手段7とを主要な構成要素として備える。
 液晶レンズ2は、一対のレンズ部8,8を有する。一対のレンズ部8,8のそれぞれは、液晶部8aを1つ有する。液晶部8aは、1つの液晶層8bで構成されている。また、一対の液晶部8a,8aのそれぞれには、相互に独立して電圧を印加可能である。一対のレンズ部8,8のそれぞれの液晶部8aは、光軸Bに対して垂直になるように配設されている。そして、一対のレンズ部8,8のそれぞれの液晶部8aにおける光軸Bに対する垂直面内の液晶配向方向は、相互に直交した状態である。
 被写体Aの側から一対のレンズ部8,8の液晶部8a,8aに入射する光(自然光)には、一方のレンズ部8の液晶部8aにおける光軸Bに対する垂直面内の液晶配向方向に一致する偏光方向を有する偏光と、他方のレンズ部8の液晶部8aにおける光軸Bに対する垂直面内の液晶配向方向に一致する偏光方向を有する偏光が含まれる。一対のレンズ部8,8の液晶部8a,8aのそれぞれは、その屈折率の変更によって、液晶部8aにおける光軸Bに対する垂直面内の液晶方向配向に一致する偏光方向を有する偏光を屈折可能である。つまり、一対の液晶部8a,8aの一方が屈折可能な偏光(第1偏光)と他方が屈折可能な偏光(第2偏光)は、偏光方向が相互に直交する。
 図2に詳細に示すように、一対のレンズ部8,8のそれぞれは、1つの液晶部8aを介して対向する一対の透明基板8cと、透明基板8cの間に液晶部8aを封止する封止部8dと、液晶部8aに電圧を印加するための第1電極8e、第2電極8f、第3電極8gを主要な構成要素とする。また、第1電極8eと第2電極8fには、電圧が可変な第1電源9aが接続され、第1電極8eと第3電極8gには電圧が可変な第2電源9bが接続される。第1電源9aと第2電源9bの電圧を調節することによって、液晶部8aの屈折率を変更することができる。
 本実施形態では、一対のレンズ部8,8は、その構成要素の寸法や材質は同一であり、一対のレンズ部8,8は、それらの境界を対称面として対称配置されている。しかし、本発明は、これに限定されず、一対のレンズ部8,8は、その構成要素の寸法や材質は同一でなくてもよいし、一対のレンズ部8,8が、対称配置されていなくてもよい。
 また、本実施形態では、一対のレンズ部8,8は、接着剤等により相互に接着されているが、相互に離隔していてもよい。一方、本実施形態では、液晶部8aの間に透明基板8cが一対配置されているが、液晶部8aのそれぞれに独立して電圧印加可能であれば、液晶部8aの間の透明基板8cを共有化して1つにしてもよい。
 撮像装置1の使用時には、一対の液晶部8a,8aの焦点のそれぞれを光軸Bの方向の異なる2つの位置に合わせる。これは、一対の液晶部8a,8aの双方又は一方に電圧を印加して、一対の液晶部8a,8aの焦点距離を異ならせることによって実施される。
 図1に示すように、像拡大手段3は、液晶レンズ2と、偏光ビームスプリッター4との間に配設され、液晶レンズ2の一対の液晶部8a,8aを通過した光の像を拡大する。像拡大手段3は、例えば、無限遠補正光学系(いわゆる顕微鏡の光学系)であり、光軸B上に配置された対物レンズ3a、結像レンズ3b及び接眼レンズ3cで構成されている。
 偏光ビームスプリッター4は、P偏光Lpを透過させると共にS偏光Lsを反射する。詳述すれば、偏光ビームスプリッター4は、入射したS偏光を入射方向に対して直角の方向に反射する。つまり、偏光ビームスプリッター4は、液晶レンズ2の一対の液晶部8a,8aを通過した光に含まれる一対の偏光Lp,Lsを相互に分離する光分離手段である。
 本実施形態では、偏光ビームスプリッター4の側のレンズ部8の液晶部8aにおける光軸Bに対する垂直面内の液晶配向方向が、P偏光Lpの偏光方向に一致するように配設されており、被写体Aの側のレンズ部8の液晶部8aにおける光軸Bに対する垂直面内の液晶配向方向が、S偏光Lsの偏光方向に一致するように配設されている。つまり、偏光ビームスプリッター4の側のレンズ部8の液晶部8aが、P偏光Lpを屈折可能であり、被写体Aの側のレンズ部8の液晶部8aが、S偏光Lsを屈折可能である。しかし、本発明はこれに限定されず、偏光ビームスプリッター4の側のレンズ部8の液晶部8aにおける光軸Bに対する垂直面内の液晶配向方向が、S偏光Lsの偏光方向に一致するように配設され、被写体Aの側のレンズ部8の液晶部8aにおける光軸Bに対する垂直面内の液晶配向方向が、P偏光Lpの偏光方向に一致するように配設されていてもよい。
 一対の撮像手段5,5は、偏光ビームスプリッター4によって分離されたP偏光LpとS偏光Lsのそれぞれの像を撮像する。本実施形態では、一対の撮像手段5,5は、CMOSカメラであり、撮像された像の画像データが形成される。しかし、本発明はこれに限定されず、一対の撮像手段5,5は、各偏光Lp,Lsの像を撮像できるものであれば、例えば、CCDカメラであってもよいし、電気的な画像データが形成されないフィルム式のカメラであってもよい。
 データ処理手段6は、一対の撮像手段5,5で撮像されて形成される画像データを、重ね合わせて1つの画像に合成して、画像表示手段7に表示する。勿論、本発明はこれに限定されることは無く、データ処理手段6は、一対の撮像手段5,5で撮像されて形成される画像データを、それぞれ別の画像として画像表示手段7に表示してもよい。
 以上のように構成された本実施形態の撮像装置1では、以下の効果を享受できる。
 使用時には、一対の液晶部8a,8aの焦点のそれぞれを光軸Bの方向の異なる2つの位置に合わせる。従って、一対の撮像手段5,5によって撮像される各偏光Lp,Lsの像は、何れも明瞭なものとなる。すなわち、本実施形態の撮像装置1によれば、光軸Bの方向の異なる位置の画像を同時に明瞭に撮像することができる。
 ところで、例えばマクロ撮像の場合、被写体深度は非常に浅く、レンズの焦点位置にある被写体は明瞭に撮像できるが、焦点位置から外れた部分の被写体は、ぼやけて不明瞭となる。周囲との位置関係を把握するためには、この状況は不都合であり、撮像装置の被写体深度が深いことが要望される。
 このような要望に対して、本実施形態の撮像装置1では、撮像で形成された画像データを重ね合わせて1つの画像に合成している。この画像は、光軸Bの方向の異なる2つの位置に焦点が合っており、実質的に被写体深度が深い画像である。すなわち、本実施形態の撮像装置1によれば、実質的に被写体深度が深い撮像ができる。
 また、焦点を合わせる2つの位置を変更して複数回撮像し、得られる複数の画像データを重ね合わせて合成して1つの画像とすれば、立体的な画像を得ることができる。
 また、アライメントマークを有する2枚の透明な平板について上下に重ねた状態で位置合わせを行なう際に、上下の平板のアライメントマークの深度が異なるが、本発明の撮像装置1であれば、上下の平板のアライメントマークのそれぞれに焦点を合わせた画像を得ることができるため、平板の位置合わせが容易となる。
 また、1枚の透明な平板の表裏を検査する場合にも、平板の表裏の深度が異なるが、本発明の撮像装置1であれば、平板の表裏のそれぞれに焦点を合わせた画像を得ることができるため、平板の表裏の検査が容易となる。
 本発明は、上記実施形態に限定されず、その技術的思想の範囲で様々な変形が可能である。例えば、上記実施形態では、一対の液晶部8a,8aのそれぞれは、1つの液晶層8bで構成されていたが、図3に示すように、一対の液晶部8a,8aのそれぞれは、複数(図示例は2つ)の液晶層8bで構成されていてもよい。この場合には、一対の液晶部8a,8aのそれぞれが有する複数の液晶層8bは、光軸Bに対する垂直面内の液晶配向方向が同一である。なお、上記実施形態と同一の構成には、同一の符号を付し、説明を省略する。
 また、上記実施形態では、焦点合わせを実施して取得した画像を視認することを目的として構成した場合を説明したが、取得した画像を見ることによって焦点合わせを実施して、焦点が合った時の印加電圧から、液晶レンズから2つの位置までの距離、又は、2つの位置の間の距離を求めることができるように構成してもよい。
1   撮像装置
2   液晶レンズ
3   像拡大手段
4   偏光ビームスプリッター(光分離手段)
5   撮像手段
8a  液晶部
8b  液晶層
B   光軸
Lp,Ls 偏光

Claims (6)

  1.  少なくとも1つの液晶層で構成される液晶部を一対有する液晶レンズを備え、前記一対の液晶部に対して相互に独立して電圧を印加可能であり、前記一対の液晶部の一方は第1偏光を屈折可能で、他方は第2偏光を屈折可能であり、前記第1偏光と前記第2偏光は偏光方向が相互に直交する撮像装置であって、
     前記一対の液晶部を通過した前記第1偏光と前記第2偏光を相互に分離する光分離手段と、前記光分離手段によって分離された前記第1偏光と前記第2偏光のそれぞれの像を撮像する撮像手段とを備えることを特徴とする撮像装置。
  2.  前記一対の液晶部と、前記光分離手段との間に、前記一対の液晶部を通過した光の像を拡大する像拡大手段が配設されていることを特徴とする請求項1に記載の撮像装置。
  3.  前記光分離手段は、前記第1偏光と前記第2偏光の一方を透過させ、他方を反射する偏光ビームスプリッターであることを特徴とする請求項1又は2に記載の撮像装置。
  4.  前記一対の液晶部のそれぞれが、1つの液晶層で構成されていることを特徴とする請求項1~3の何れか1項に記載の撮像装置。
  5.  少なくとも1つの液晶層で構成される液晶部を一対有する液晶レンズを使用し、前記一対の液晶部に対して相互に独立して電圧を印加可能であり、前記一対の液晶部の一方は第1偏光を屈折可能で、他方は第2偏光を屈折可能であり、前記第1偏光と前記第2偏光は偏光方向が相互に直交する撮像方法であって、
     前記一対の液晶部を通過した前記第1偏光と前記第2偏光を相互に分離し、分離された前記第1偏光と前記第2偏光のそれぞれの像を撮像することを特徴とする撮像方法。
  6.  少なくとも1つの液晶層で構成される液晶部を一対有する液晶レンズの使用方法であって、
     前記一対の液晶部に対して相互に独立して電圧を印加可能であり、前記一対の液晶部の一方は第1偏光を屈折可能で、他方は第2偏光を屈折可能であり、前記第1偏光と前記第2偏光は偏光方向が相互に直交し、
     光軸の方向の異なる2つの位置の画像を撮像するために、前記一対の液晶部に電圧を印加することによって、前記一対の液晶部のそれぞれの焦点を前記光軸の方向の異なる2つの前記位置に合わせることを特徴とする液晶レンズの使用方法。
PCT/JP2016/058361 2015-06-09 2016-03-16 撮像装置、撮像方法及び液晶レンズの使用方法 WO2016199468A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-116575 2015-06-09
JP2015116575A JP2017003731A (ja) 2015-06-09 2015-06-09 撮像装置、撮像方法及び液晶レンズの使用方法

Publications (1)

Publication Number Publication Date
WO2016199468A1 true WO2016199468A1 (ja) 2016-12-15

Family

ID=57503213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058361 WO2016199468A1 (ja) 2015-06-09 2016-03-16 撮像装置、撮像方法及び液晶レンズの使用方法

Country Status (2)

Country Link
JP (1) JP2017003731A (ja)
WO (1) WO2016199468A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114422708A (zh) * 2022-03-15 2022-04-29 深圳市海清视讯科技有限公司 图像获取方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992237U (ja) * 1972-11-29 1974-08-09
JPH10260471A (ja) * 1997-03-19 1998-09-29 Minolta Co Ltd 多焦点カメラ
JP2007115299A (ja) * 2005-10-18 2007-05-10 Konica Minolta Holdings Inc 光ピックアップ用液晶デバイスおよび光ピックアップ
JP2012155188A (ja) * 2011-01-27 2012-08-16 Nippon Electric Glass Co Ltd 液晶レンズの製造方法及び液晶レンズ
JP2014006440A (ja) * 2012-06-26 2014-01-16 Akita Prefecture マトリクス駆動液晶光学素子及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992237U (ja) * 1972-11-29 1974-08-09
JPH10260471A (ja) * 1997-03-19 1998-09-29 Minolta Co Ltd 多焦点カメラ
JP2007115299A (ja) * 2005-10-18 2007-05-10 Konica Minolta Holdings Inc 光ピックアップ用液晶デバイスおよび光ピックアップ
JP2012155188A (ja) * 2011-01-27 2012-08-16 Nippon Electric Glass Co Ltd 液晶レンズの製造方法及び液晶レンズ
JP2014006440A (ja) * 2012-06-26 2014-01-16 Akita Prefecture マトリクス駆動液晶光学素子及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114422708A (zh) * 2022-03-15 2022-04-29 深圳市海清视讯科技有限公司 图像获取方法、装置、设备及存储介质
CN114422708B (zh) * 2022-03-15 2022-06-24 深圳市海清视讯科技有限公司 图像获取方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JP2017003731A (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
US9690112B2 (en) Image capturing apparatus
WO2013042323A1 (ja) ライトフィールド撮像装置、および画像処理装置
TWI336810B (en) Method of generating image data having parallax using a digital image-capturing device and digital image-capturing device
JP2013077935A (ja) 撮像装置及び撮像方法
JP2011517192A5 (ja)
Bae et al. High contrast ultrathin light‐field camera using inverted microlens arrays with metal–insulator–metal optical absorber
JP2012230341A (ja) 撮像装置及び撮像方法
TWI703344B (zh) 堆疊的晶圓透鏡及影像攝錄器
JP6004280B2 (ja) ライトフィールド撮像装置および撮像素子
JP2010056737A (ja) 3次元表示装置および方法並びにプログラム
JP2011215545A (ja) 視差画像取得装置
WO2016199468A1 (ja) 撮像装置、撮像方法及び液晶レンズの使用方法
WO2018163335A1 (ja) 距離計測装置、ヘッドマウントディスプレイ装置、携帯情報端末、映像表示装置、周辺監視システム、及び距離計測方法
JPS6238695A (ja) 立体表示システム
JP2012123098A (ja) 立体映像撮影アダプタ及び撮像装置
JPWO2015029819A1 (ja) 露光装置
JP2007065151A5 (ja)
JP2018032948A5 (ja)
JP2011232650A (ja) 光学ローパスフィルタ及びデジタルカメラ
TW201350908A (zh) 多焦距光學對位裝置及複數片堆疊的基板的對位方法
JP2014063099A (ja) 撮像装置
JP2014038276A (ja) 撮像装置
JP5452800B2 (ja) 立体像撮影装置
WO2012169363A1 (ja) ステレオカメラの製造方法及びステレオカメラ
KR20130143431A (ko) 기판의 다면 관찰용 결상 광학 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807175

Country of ref document: EP

Kind code of ref document: A1