WO2016199297A1 - 燃料噴射制御装置及び燃料噴射制御方法 - Google Patents

燃料噴射制御装置及び燃料噴射制御方法 Download PDF

Info

Publication number
WO2016199297A1
WO2016199297A1 PCT/JP2015/067033 JP2015067033W WO2016199297A1 WO 2016199297 A1 WO2016199297 A1 WO 2016199297A1 JP 2015067033 W JP2015067033 W JP 2015067033W WO 2016199297 A1 WO2016199297 A1 WO 2016199297A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel injection
injection control
piston crown
crown surface
Prior art date
Application number
PCT/JP2015/067033
Other languages
English (en)
French (fr)
Inventor
貴義 兒玉
尊雄 井上
亮 内田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to MYPI2017704695A priority Critical patent/MY167720A/en
Priority to US15/735,248 priority patent/US10100772B2/en
Priority to EP15894982.6A priority patent/EP3309378B1/en
Priority to CN201580080858.6A priority patent/CN107735560B/zh
Priority to KR1020187000104A priority patent/KR101838865B1/ko
Priority to BR112017026075-1A priority patent/BR112017026075B1/pt
Priority to CA2988880A priority patent/CA2988880C/en
Priority to RU2017143398A priority patent/RU2654508C1/ru
Priority to MX2017015524A priority patent/MX360380B/es
Priority to PCT/JP2015/067033 priority patent/WO2016199297A1/ja
Priority to JP2017523071A priority patent/JP6384607B2/ja
Publication of WO2016199297A1 publication Critical patent/WO2016199297A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/02Engines characterised by air compression and subsequent fuel addition with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/242Arrangement of spark plugs or injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/28Other pistons with specially-shaped head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/241Cylinder heads specially adapted to pent roof shape of the combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to fuel injection control of a cylinder injection type spark ignition internal combustion engine that directly injects fuel into a cylinder.
  • JP2004-21664A discloses a technique for correcting the advance angle of the fuel injection timing during the compression stroke in accordance with the blowback amount during the valve overlap period in order to suppress the adhesion of fuel to the piston crown surface.
  • stratified combustion is performed by compression stroke injection.
  • the fuel injection timing during the compression stroke is advanced to make the distance between the fuel injection valve and the piston crown surface during fuel injection longer than before correction, and the amount of fuel adhering to the piston crown surface Is decreasing.
  • the advance angle correction amount is constant, and the fuel spray collides with the same position on the piston crown surface every time. Therefore, the amount of fuel adhering to the piston crown surface is small. It will increase.
  • an object of the present invention is to provide a fuel injection control device and a fuel injection control method that can reduce the amount of fuel adhering to the piston crown.
  • fuel injection control of a direct injection fuel spark ignition engine that includes a fuel injection valve that directly injects fuel into the cylinder, and an ignition plug that sparks and ignites an air-fuel mixture in the cylinder.
  • An apparatus is provided.
  • the fuel injection control device performs fuel injection under a predetermined operating condition so that the fuel spray is prevented from continuously colliding with the same position when a portion where the injected fuel collides is in a predetermined low temperature state. Change the conditions and inject fuel.
  • FIG. 1 is a configuration diagram of an internal combustion engine to which the control of this embodiment is applied.
  • FIG. 2 is a flowchart showing a control routine of the present embodiment.
  • FIG. 3 is a table showing a changeable range of the fuel injection timing.
  • FIG. 4 is a table showing the relationship between the change amount and the fuel injection amount when changing the fuel injection timing with a constant fuel pressure.
  • FIG. 5 is a table showing a changeable range of the fuel pressure.
  • FIG. 6 is a table showing the relationship between the change amount and the fuel injection amount when changing the fuel pressure at a constant fuel injection timing.
  • FIG. 7 is a map showing a changeable range of the fuel pressure and the fuel injection timing.
  • FIG. 8 is a diagram illustrating an example of how to change the fuel injection timing.
  • FIG. 9 is a diagram showing the relationship between the fuel spray collision position on the piston crown and the fuel injection timing.
  • FIG. 10 is a diagram for explaining the effect when the control of the present embodiment is executed.
  • FIG. 1 is a schematic configuration diagram around a combustion chamber of an in-cylinder direct fuel injection spark ignition engine (hereinafter also referred to as “engine”) 1 to which the present embodiment is applied.
  • engine direct fuel injection spark ignition engine
  • FIG. 1 shows only one cylinder, this embodiment can also be applied to a multi-cylinder engine.
  • the cylinder block 1B of the engine 1 includes a cylinder 2.
  • a piston 3 is accommodated in the cylinder 2 so as to be able to reciprocate.
  • the piston 3 is connected to a crankshaft (not shown) via a connecting rod 12 and reciprocates as the crankshaft rotates.
  • the piston 3 includes a cavity 10 described later on a crown surface 3A (hereinafter also referred to as a piston crown surface 3A).
  • the cylinder head 1A of the engine 1 includes a concave combustion chamber 11.
  • the combustion chamber 11 is configured as a so-called pent roof type, and a pair of intake valves 6 are disposed on the inclined surface on the intake side, and a pair of exhaust valves 7 are disposed on the inclined surface on the exhaust side.
  • An ignition plug 8 is disposed along the axis of the cylinder 2 at a substantially central position of the combustion chamber 11 surrounded by the pair of intake valves 6 and the pair of exhaust valves 7.
  • a fuel injection valve 9 is arranged at a position between the pair of intake valves 6 in the cylinder head 1A so as to face the combustion chamber 11. The directivity of fuel spray injected from the fuel injection valve 9 will be described later.
  • the intake valve 6 and the exhaust valve 7 are driven to open and close by camshafts (not shown).
  • a variable valve mechanism may be arranged on at least one of the intake side or the exhaust side so that the valve opening timing and the valve closing timing can be variably controlled.
  • the valve opening timing is the timing for starting the valve opening operation
  • the valve closing timing is the timing for ending the valve closing operation.
  • a known mechanism such as a mechanism that changes the rotational phase of the camshaft relative to the crankshaft or a mechanism that can change not only the rotational phase but also the operating angle of each valve can be used.
  • An exhaust purification catalyst for purifying the exhaust gas of the engine 1 is interposed on the exhaust flow downstream side of the exhaust passage 5.
  • the exhaust purification catalyst is, for example, a three-way catalyst.
  • the piston 3 includes the cavity 10 in the piston crown surface 3A as described above.
  • the cavity 10 is provided at a position biased toward the intake side on the piston crown surface 3A.
  • the fuel injection valve 9 is arranged so that the fuel spray is directed to the cavity 10 when fuel is injected when the piston 3 is in the vicinity of the top dead center.
  • the cavity 10 has such a shape that the fuel spray that has collided and bounced is directed toward the spark plug 8.
  • the fuel injection amount, fuel injection timing, ignition timing, and the like of the engine 1 are controlled by the controller 100 according to the operating state of the engine 1.
  • the fuel injection timing here is the timing at which fuel injection is started.
  • the engine 1 includes various detection devices such as a crankshaft angle sensor, a cooling water temperature sensor, and an air flow meter that detects an intake air amount.
  • Exhaust gas purification catalyst does not exhibit sufficient purification performance at temperatures lower than the activation temperature. For this reason, it is necessary to raise the temperature of the exhaust purification catalyst at an early stage at the time of cold start when the exhaust purification catalyst is lower than the activation temperature. Therefore, when the exhaust purification catalyst is in an inactive state in an idle state immediately after the cold start, the controller 100 performs super retarded stratified combustion to activate the exhaust purification catalyst at an early stage. Super retarded stratified combustion itself is known (see Japanese Patent Application Laid-Open No. 2008-25535).
  • the controller 100 sets the ignition timing to the first half of the expansion stroke, for example, 15-30 deg after compression top dead center. Further, the controller 100 sets the first fuel injection timing in the first half of the intake stroke, and sets the second fuel injection timing in the second half of the compression stroke so that the fuel spray can reach the periphery of the spark plug 8 by the ignition timing. For example, it is set to 50-60 deg before compression top dead center.
  • the air-fuel ratio of the exhaust gas discharged by the above-mentioned super retarded stratified combustion is stoichiometric (theoretical air-fuel ratio).
  • the controller 100 calculates the amount of fuel that can be completely burned with the amount of intake air per cycle (hereinafter also referred to as the total fuel amount), as in the general fuel injection amount setting method.
  • a part of the total fuel amount, for example, 50 to 90% by weight is set as the first injection amount, and the rest is set as the second injection amount.
  • the fuel spray injected in the first fuel injection diffuses into the cylinder 2 without colliding with the cavity 10, mixes with air, and is stoichiometric throughout the combustion chamber 11. A leaner homogeneous mixture is formed.
  • the fuel spray injected in the second fuel injection collides with the cavity 10 and reaches the vicinity of the spark plug 8 by being wound up, and concentrates the air-fuel mixture richer than stoichiometric around the spark plug 8. To form. Thereby, the air-fuel mixture in the combustion chamber 11 is in a stratified state. If a spark is ignited by the spark plug 8 in this state, combustion that is resistant to disturbances in which misfires and smoke are suppressed is performed.
  • the combustion mentioned above is stratified combustion, in order to distinguish from the general stratified combustion whose ignition timing is before compression top dead, it is called super retarded stratified combustion.
  • the first fuel injection described above is divided into two, and the fuel amount required per cycle is divided into a total of three injections, two for the intake stroke and one for the compression stroke. Also good.
  • the exhaust temperature can be raised as compared with the conventional homogeneous stoichiometric combustion, and the amount of hydrocarbon (HC) discharged from the combustion chamber 11 to the exhaust passage 5 is reduced. it can. That is, according to super retarded stratified combustion, only conventional homogeneous stoichiometric combustion, only stratified combustion, or a combustion mode in which additional fuel is injected after the later stage of combustion (after the expansion stroke or during the exhaust stroke), etc. Compared with the case where warm-up is performed, early activation of the exhaust purification catalyst can be realized while suppressing the discharge of HC into the atmosphere between the start of starting and the activation of the exhaust purification catalyst.
  • the predetermined period is a period until the amount of liquid fuel remaining on the piston crown surface 3A vaporizes in one cycle is larger than the amount attached to the piston crown surface 3A in one cycle. It is.
  • the super retarded stratified combustion may be switched to the homogeneous stoichiometric combustion with the liquid fuel remaining on the piston crown surface 3A.
  • the homogeneous stoichiometric combustion here is a combustion mode in which a stoichiometric air-fuel ratio mixture is formed in the entire combustion chamber 11 and spark ignition is performed at an optimum ignition timing (MBT).
  • the controller 100 executes the control described below in order to reduce the amount of liquid fuel remaining on the piston crown surface 3A.
  • FIG. 2 is a flowchart showing a control routine executed by the controller 100. This routine is repeatedly executed at a short cycle (for example, every 10 milliseconds).
  • step S10 the controller 100 determines whether or not there is an acceleration request. Specifically, it is determined whether or not the accelerator pedal opening (APO) is larger than zero, that is, whether or not the accelerator pedal is depressed. Since it is only necessary to determine whether or not there is an acceleration request in this step, for example, it may be determined that there is an acceleration request when the change speed of the accelerator pedal opening is larger than a predetermined value, or the accelerator pedal opening is zero. It may be determined that there is an acceleration request when the acceleration pedal opening rate is greater than the predetermined value.
  • APO accelerator pedal opening
  • step S50 When the accelerator pedal opening is larger than zero, the controller 100 determines that there is an acceleration request, and executes homogeneous stoichiometric combustion in step S50. On the other hand, when the accelerator pedal opening is zero, the controller 100 determines that there is no acceleration request, and executes the process of step S20.
  • step S20 the controller 100 determines whether or not the catalyst temperature is higher than the catalyst activation temperature (A ° C.). If the catalyst temperature is higher than the catalyst activation temperature, the controller 100 executes homogeneous stoichiometric combustion in step S50. On the other hand, if the catalyst temperature is lower than the catalyst activation temperature, the controller 100 performs super retarded stratified combustion (FIR) in step S30 in order to promote the temperature rise of the catalyst.
  • FIR super retarded stratified combustion
  • the controller 100 performs super retarded stratified combustion if the catalyst is in an inactive state, and performs homogeneous stoichiometric combustion if the catalyst is in an activated state.
  • homogeneous stoichiometric combustion is performed in order to achieve acceleration that satisfies the acceleration request.
  • step S40 the controller 100 changes the fuel injection timing and the fuel injection pressure (hereinafter also referred to as “fuel pressure”) for each cycle as described later.
  • step S60 the temperature of the piston crown surface 3A (hereinafter, also referred to as “piston crown surface temperature”), which is a portion where fuel flow spray collides. It is determined whether the temperature is lower than a preset temperature (B ° C.). The controller 100 ends this routine if the piston crown surface temperature is equal to or higher than B ° C., and executes the process of step S40 if it is lower than B ° C.
  • the preset temperature (B ° C.) used in step S60 is, for example, the piston crown surface temperature when the liquid fuel remaining on the piston crown surface 3A is reduced with time.
  • the piston crown surface temperature can be estimated from the cylinder wall surface temperature when the above state is reached.
  • the cylinder wall surface temperature can be estimated from the cooling water temperature.
  • the controller 100 executes super retarded stratified combustion if the catalyst is in an inactive state, and performs homogeneous stoichiometric combustion if the catalyst is in an active state.
  • the fuel injection timing and the fuel pressure are changed for each cycle.
  • the controller 100 determines the fuel injection timing and the fuel pressure every cycle as long as the piston crown surface temperature is lower than B ° C. even when the homogeneous mode is executed, that is, the temperature at which liquid fuel can be accumulated in the piston crown surface 3A. And change.
  • the cycle to be changed is not limited to every cycle, and may be changed every several cycles or at an irregular cycle.
  • predetermined engine operating conditions are environmental conditions (intake air amount, temperature, required torque, etc.) when calculating each control parameter sequentially during engine operation. That is, conventionally, if the engine operating conditions are predetermined (identical), the engine is controlled under the same fuel injection conditions (fuel injection timing and fuel pressure). In the present embodiment, the engine operating conditions are predetermined (identical). However, the fuel flow injection condition (at least one of the fuel injection timing and the fuel pressure) is intentionally changed, and control is performed so that the position where the fuel adheres shifts with the lapse of time in a microscopic manner. Further, the amount of shifting the position where the fuel adheres only needs to obtain an effect of suppressing the increase in PN, and does not need to be shifted more than necessary.
  • step S20 also serves as the determination regarding the crown surface temperature. That is, the catalyst may become inactive when the engine is started cold, or when returning from idling stop or fuel cut, but these are also in a state where the piston crown surface temperature becomes low, so that the catalyst temperature is lower than the active temperature in step S20. In this case, it can be estimated that the piston crown surface temperature is also low.
  • step S40 will be described.
  • the controller 100 changes the fuel injection timing and the fuel pressure for each cycle in step S40. This is because the position of the piston crown surface 3A where the fuel spray collides (also referred to as a fuel collision position) is changed every cycle. When the fuel collision position does not change, the fuel spray of the next cycle collides before the fuel adhering to the piston crown surface 3A is vaporized, and this is repeated to accumulate liquid fuel at the fuel collision position. Therefore, the controller 100 executes fuel injection control for shifting the fuel injection position in the current cycle from the fuel collision position in the previous cycle in order to suppress such accumulation of liquid fuel.
  • three patterns of fuel injection control capable of shifting the fuel injection position in the current cycle from the fuel collision position in the previous cycle will be described.
  • the first pattern is a pattern in which the controller 100 changes the fuel injection timing while keeping the fuel pressure constant.
  • FIG. 3 is a table showing the changeable range of the fuel injection timing.
  • the vertical axis in FIG. 3 is the fuel pressure
  • the horizontal axis is the fuel injection timing
  • IT0 in the figure is the fuel injection timing (basic fuel injection timing) that serves as a reference when super retarded stratified combustion is executed.
  • FIG. 4 is a table showing the relationship between the change amount and the fuel injection amount when changing the fuel injection timing with the fuel pressure constant.
  • the fuel injection amount does not change substantially during the super retard stratified combustion, but the fuel injection amount changes according to the operating state during the homogeneous stoichiometric combustion, so the fuel injection amount and the fuel injection timing change as shown in FIG. It is meaningful to establish a relationship with quantity.
  • the fuel spray colliding with the piston crown surface 3A must be reflected in the direction of the spark plug 8 to form a stratified mixture, and therefore, in setting the advance limit IT1 and the retard limit IT2. It is necessary to consider whether or not the fuel spray is reflected. On the other hand, in the case of homogeneous stoichiometric combustion, the ease with which the fuel adhering to the piston crown surface 3A evaporates may be mainly considered.
  • the second pattern is a pattern in which the controller 100 changes the fuel pressure while keeping the fuel injection timing constant.
  • FIG. 5 is a table showing the changeable range of the fuel pressure in the second pattern.
  • the vertical axis in FIG. 5 is the fuel pressure
  • the horizontal axis is the fuel injection timing
  • P0 in the figure is the fuel pressure (basic fuel pressure) that serves as a reference when super retarded stratified combustion is performed.
  • FIG. 6 is a table showing the relationship between the change amount and the fuel injection amount when changing the fuel pressure at a constant fuel injection timing.
  • the fuel pressure change amount is increased as the fuel injection amount is increased.
  • the lower the fuel pressure the more difficult it is to atomize the fuel, and the combustion stability decreases in both super retarded stratified combustion and homogeneous stoichiometric combustion.
  • the fuel spray colliding with the piston crown surface 3A becomes harder to be reflected, and it becomes difficult to form a stratified mixture around the spark plug, so the combustion stability in the super retarded stratified combustion mode is lowered.
  • the limit on the high pressure side is determined by the performance of the fuel pump and the like.
  • the low pressure limit P1 and the high pressure limit P2 are set as shown in FIG. 5, and the low pressure limit P1 is set as the basic fuel pressure. That is, “change in fuel pressure” in the present embodiment means increasing the fuel pressure.
  • the basic fuel pressure may be set higher than the low pressure limit P1.
  • the third pattern is a pattern in which the controller 100 changes the fuel pressure and the fuel injection timing.
  • FIG. 7 is a map showing the changeable range of the fuel pressure and fuel injection timing in the third pattern.
  • the changeable range of the fuel injection timing is wider in the case of the fuel pressure P2 than in the case of the fuel pressure P1 for the following reason.
  • the fuel spray is atomized and the momentum of the fuel spray increases, so that the combustion stability increases.
  • the higher the fuel pressure the higher the fuel spray speed and the reachable distance. Therefore, even if the distance from the fuel injection valve 9 to the piston crown surface 3A at the fuel injection timing is increased, the fuel spray will remain on the piston crown surface 3A. This is because it is possible to form a stratified mixture around the spark plug 8 and improve the combustion stability.
  • the fuel injection timing can be changed only within the range from the advance angle limit IT1 to the retard angle limit IT2 with the fuel pressure kept constant, but by changing the fuel pressure,
  • the changeable range can be expanded to the range indicated by the broken line.
  • the fuel collision position of the piston crown surface 3A can be shifted in any pattern, but in this embodiment, the controller 100 executes the third pattern for changing the fuel pressure and the fuel injection timing.
  • the order may be changed in the order of reference ⁇ delay angle ⁇ reference ⁇ advance angle ⁇ reference ... or change in the order of reference ⁇ delay angle ⁇ advance angle ⁇ reference ⁇ delay angle ⁇ advance angle ... May be.
  • step S40 the controller 100 executes the fuel injection control of any of the first to third patterns described above.
  • the fuel injection timing and the fuel pressure are changed so that the fuel spray collects around the spark plug 8 during the execution of super retard stratified combustion.
  • the cavity 10 functions to guide the collided fuel spray toward the spark plug 8, but the fuel spray does not necessarily collide with the cavity 10 in order to reflect the fuel spray toward the spark plug 8.
  • the fuel spray that has collided with the position away from the cavity 10 of the piston crown surface 3A is reflected directly or again on the cylinder wall and gathers around the spark plug 8. Can be.
  • FIG. 9 shows the relationship between the fuel spray and the piston 3 when the fuel injection timing and the fuel pressure are changed as follows: reference ⁇ advance angle ⁇ retard angle ⁇ reference ⁇ advance angle.
  • the fuel spray collides with the vicinity of the center of the piston crown surface 3A including the cavity 10.
  • the fuel injection timing is changed to the retard side, and the collision position of the fuel spray is shifted from the collision position at the reference position to the right side in the figure.
  • the fuel injection timing is changed to the advance side, and the collision position of the fuel spray is shifted from the collision position at the reference position to the left side in the figure.
  • FIG. 10 is a timing chart of piston crown surface temperature and liquid fuel amount when the fuel injection control of FIG. 9 is executed. As a comparative example, a timing chart when the fuel injection timing and the fuel pressure are not changed is indicated by a broken line.
  • the fuel injection timing and the fuel injection pressure are changed for each cycle, but the present invention is not limited to this. If it is possible to prevent the fuel spray from continuously colliding with the same position on the piston crown surface 3A or the cylinder wall surface, for example, it may be changed every several cycles or may be changed randomly. Also good.
  • “continuously” means that the liquid fuel is continuously accumulated to the extent that the piston crown surface 3A and the cylinder wall surface accumulate. How long the liquid fuel accumulates depends on various factors such as the fuel injection pattern (spray shape), the shape of the piston crown surface 3A, the fuel injection amount per time, and so on. .
  • the predetermined operating condition is set so that the fuel spray is prevented from continuously colliding with the same position.
  • the fuel injection condition is changed and fuel is injected.
  • the piston crown surface temperature is lower than a predetermined temperature
  • the fuel is injected such that the fuel spray collision position of the piston crown surface 3A changes every cycle.
  • the portion where the fuel spray collides is the piston crown surface 3A
  • the control of the present embodiment is applied to the cylinder. Accumulation of fuel due to the fuel spray continuously colliding with the same position on the wall surface can be suppressed.
  • the fuel injection timing is changed in order to change the fuel spray collision position of the piston crown surface 3A.
  • the expansion stroke injection for changing the fuel injection timing and the fuel pressure is for injecting fuel to be used for so-called main combustion, but may be applied to so-called post injection or after injection. This is because the fuel injected by these fuel injections can also cause an increase in PN if accumulated in the piston crown surface 3A and the like.
  • the fuel spray is prevented from continuously colliding with the same position by changing the fuel injection pressure.
  • the fuel collision distance of the piston crown surface 3A changes due to the change of the fuel spray flight distance and the like, so that liquid fuel accumulates on the piston crown surface 3A as in the case of changing the fuel injection timing. Can be suppressed.
  • the expansion stroke injection for changing the fuel injection pressure may be so-called post injection or after injection, as in the case of changing the fuel injection timing.
  • the fuel injection timing and the fuel injection pressure may be changed.
  • the fuel pressure increase amount is adjusted according to the change amount of the fuel injection timing.
  • the fuel pressure is increased, atomization of the fuel spray is promoted and the momentum of the fuel spray is increased, so that the combustion stability is improved.
  • the fuel spray deviating from the cavity 10 increases due to a change in the fuel injection timing, it is possible to suppress a decrease in combustion stability.
  • the amount of change in the fuel injection timing is increased as the fuel pressure is higher.
  • the amount of change in the fuel spray collision position of the piston crown surface 3A is greater than when the fuel pressure is not changed, it is easy to suppress the liquid fuel from adhering to the piston crown surface 3A.
  • the fuel injection timing and the change amount of the fuel pressure are increased as the fuel injection amount increases.
  • the injection pulse becomes longer and the piston movement amount during the injection period becomes larger. Therefore, the fuel spray collision position of the piston crown surface 3A per cycle becomes wider. Therefore, by increasing the fuel injection timing and the change amount of the fuel pressure as the fuel injection amount is larger as in the present embodiment, it is possible to suppress the overlapping of the fuel spray collision positions on the piston crown surface 3A in successive cycles.
  • the fuel injection valve 6 is applied to the so-called side injection type engine 1 provided on the side of the combustion chamber.
  • the fuel injection valve 6 is provided near the top of the combustion chamber.
  • the so-called direct injection type engine 1 can be similarly applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

筒内に燃料を直接噴射する燃料噴射弁と、筒内の混合気に火花点火する点火プラグと、を備える筒内直接燃料噴射式火花点火エンジンを制御する燃料噴射制御装置は、噴射された燃料が衝突する部位が所定の低温状態である場合に、燃料噴霧が継続的に同じ位置に衝突し続けることが抑制されるように所定の運転条件における燃料噴射条件を変更して燃料を噴射する。

Description

燃料噴射制御装置及び燃料噴射制御方法
 本発明は、筒内に燃料を直接的に噴射する筒内噴射式火花点火内燃機関の燃料噴射制御に関する。
 筒内噴射式火花点火内燃機関においては、ピストン冠面等に燃料が付着する場合がある。この燃料の付着量が増大し、燃焼火炎により点火されて燃焼すると、PN(Particulate Number)の増大を招くこととなる。そこで、ピストン冠面への燃料の付着を抑制するために、圧縮行程中の燃料噴射タイミングをバルブオーバーラップ期間中の吹き返し量に応じて進角補正する技術がJP2004-211664Aに開示されている。
 上記文献では、圧縮行程噴射による成層燃焼を行うこととなっている。そして、上記文献では圧縮行程中の燃料噴射タイミングを進角することで燃料噴射時における燃料噴射弁とピストン冠面との距離を補正前よりも長くして、ピストン冠面への燃料の付着量を減少させている。
 しかしながら、上記文献の制御では、例えばアイドル運転中には進角補正量が一定となり、燃料噴霧は毎回ピストン冠面の同じ位置に衝突することになるので、ピストン冠面への燃料の付着量が増大してしまう。
 そこで本発明では、ピストン冠面への燃料付着量を低減し得る燃料噴射制御装置及び燃料噴射制御方法を提供することを目的とする。
 本発明のある態様によれば、筒内に燃料を直接噴射する燃料噴射弁と、筒内の混合気に火花点火する点火プラグと、を備える筒内直接燃料噴射式火花点火エンジンの燃料噴射制御装置が提供される。燃料噴射制御装置は、噴射された燃料が衝突する部位が所定の低温状態である場合に、燃料噴霧が継続的に同じ位置に衝突し続けることが抑制されるように所定の運転条件における燃料噴射条件を変更して燃料を噴射する。
図1は、本実施形態の制御を適用する内燃機関の構成図である。 図2は、本実施形態の制御ルーチンを示すフローチャートである。 図3は、燃料噴射タイミングの変更可能範囲を示すテーブルである。 図4は、燃圧一定で燃料噴射タイミングを変更する際の変更量と燃料噴射量との関係を示すテーブルである。 図5は、燃圧の変更可能範囲を示すテーブルである。 図6は、燃料噴射タイミング一定で燃圧を変更する際の変更量と燃料噴射量との関係を示すテーブルである。 図7は、燃圧および燃料噴射タイミングの変更可能範囲を示すマップである。 図8は、燃料噴射タイミングの変化のさせ方の例を示す図である。 図9は、ピストン冠面の燃料噴霧衝突位置と燃料噴射タイミングとの関係を示す図である。 図10は、本実施形態の制御を実行した場合の効果を説明するための図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、本実施形態を適用する筒内直接燃料噴射式火花点火エンジン(以下、「エンジン」ともいう)1の、燃焼室周辺の概略構成図である。なお、図1はひとつの気筒についてのみ示しているが、本実施形態は多気筒エンジンにも適用可能である。
 エンジン1のシリンダブロック1Bはシリンダ2を備える。シリンダ2にはピストン3が往復動可能に収められている。ピストン3はコネクティングロッド12を介して図示しないクランクシャフトと連結されており、クランクシャフトが回転することにより往復動する。また、ピストン3は冠面3A(以下、ピストン冠面3Aともいう)に後述するキャビティ10を備える。
 エンジン1のシリンダヘッド1Aは凹状の燃焼室11を備える。燃焼室11は、いわゆるペントルーフ型に構成されており、吸気側の傾斜面には一対の吸気バルブ6が、排気側の傾斜面には一対の排気バルブ7がそれぞれ配置されている。そして、これら一対の吸気バルブ6及び一対の排気バルブ7に囲まれた燃焼室11の略中心位置に、点火プラグ8がシリンダ2の軸線に沿うように配置されている。
 また、シリンダヘッド1Aの、一対の吸気バルブ6に挟まれた位置には、燃料噴射弁9が燃焼室11に臨むように配置されている。燃料噴射弁9から噴射される燃料噴霧の指向性については後述する。
 吸気バルブ6及び排気バルブ7は、それぞれ図示しないカムシャフトにより開閉駆動される。なお、吸気側または排気側の少なくとも一方に可変動弁機構を配置して、開弁タイミング及び閉弁タイミングを可変制御し得るようにしてもよい。開弁タイミングとは開弁動作を開始するタイミング、閉弁タイミングとは閉弁動作を終了するタイミングである。可変動弁機構としては、カムシャフトのクランクシャフトに対する回転位相を変化させるものや、回転位相だけでなく各バルブの作動角も変化させ得るもの等、公知の機構を用いることができる。
 排気通路5の排気流れ下流側には、エンジン1の排気ガスを浄化するための排気浄化触媒が介装されている。排気浄化触媒は、例えば三元触媒である。
 ピストン3は、上述したようにピストン冠面3Aにキャビティ10を備える。キャビティ10は、ピストン冠面3Aにおいて吸気側に偏った位置に設けられている。そして、燃料噴射弁9は、ピストン3が上死点近傍にあるときに燃料噴射すれば燃料噴霧がこのキャビティ10を指向するように配置されている。キャビティ10は、衝突して跳ね返った燃料噴霧が点火プラグ8の方向へ向かうような形状になっている。
 なお、エンジン1の燃料噴射量、燃料噴射タイミング、及び点火時期等は、コントローラ100によりエンジン1の運転状態に応じて制御される。なお、ここでいう燃料噴射タイミングとは、燃料噴射を開始するタイミングである。また、これらの制御を実行するために、エンジン1はクランクシャフト角度センサ、冷却水温センサ、吸入空気量を検出するエアフローメータ等の各種検出装置を備える。
 次に、コントローラ100が実行する、エンジン1の始動時における制御について説明する。本実施形態では、1サイクルあたりに必要な燃料量を2回に分けて噴射する、いわゆる2段噴射を行うこととする。
 排気浄化触媒は、活性化温度より低温では十分な浄化性能を発揮しない。このため、排気浄化触媒が活性化温度より低温である冷機始動時には、排気浄化触媒を早期に昇温する必要がある。そこで、コントローラ100は、冷間始動直後のアイドル状態で排気浄化触媒が不活性状態にある場合に、排気浄化触媒を早期に活性化させるために超リタード成層燃焼を実行する。なお、超リタード成層燃焼そのものは公知(特開2008-25535号公報参照)である。
 超リタード成層燃焼では、コントローラ100は点火タイミングを膨張行程の前半の、例えば圧縮上死点後15-30degに設定する。また、コントローラ100は1回目の燃料噴射タイミングを吸気行程の前半に設定し、2回目の燃料噴射タイミングを圧縮行程の後半の、燃料噴霧が点火タイミングまでに点火プラグ8の周辺に到達し得るタイミング、例えば圧縮上死点前50-60degに設定する。
 ここで、1回目の燃料噴射量と2回目の燃料噴射量とについて説明する。
 上述した超リタード成層燃焼で排出される排気ガスの空燃比はストイキ(理論空燃比)である。コントローラ100は一般的な燃料噴射量設定方法と同様に、1サイクル当たりの吸入空気量で完全燃焼させ得る燃料量(以下、トータル燃料量ともいう)を算出する。このトータル燃料量のうちの一部、例えば50-90重量%を1回目の噴射量とし、残りを2回目の噴射量とする。
 上記のように燃料噴射量を設定すると、1回目の燃料噴射で噴射された燃料噴霧は、キャビティ10に衝突することなくシリンダ2内に拡散し、空気と混合して燃焼室11の全域にストイキよりもリーンな均質混合気を形成する。そして、2回目の燃料噴射で噴射された燃料噴霧は、キャビティ10に衝突し、巻き上げられることによって点火プラグ8の近傍に到達し、点火プラグ8の周りにストイキよりもリッチな混合気を集中的に形成する。これにより燃焼室11内の混合気は成層状態となる。この状態で点火プラグ8により火花点火すれば、失火やスモーク発生が抑制された外乱に強い燃焼が行われる。ところで、上述した燃焼は成層燃焼であるが、点火タイミングが圧縮上死前である一般的な成層燃焼と区別するために、超リタード成層燃焼と称する。なお、上述した1回目の燃料噴射を2回に分割して、1サイクルあたりに必要な燃料量を吸気行程に2回、圧縮行程に1回の合計3回に分けて噴射する3段噴射としてもよい。
 上記のような超リタード成層燃焼によれば、従来の均質ストイキ燃焼と比較して排気温度を上昇させることができるだけでなく、燃焼室11から排気通路5へのハイドロカーボン(HC)排出量を低減できる。すなわち、超リタード成層燃焼によれば、従来の均質ストイキ燃焼だけ、成層燃焼だけ、或いは、これらに対し更に追加燃料を燃焼後期以降(膨張行程以降や排気行程中)に噴射する燃焼形態等、で暖機を行なわせる場合に比べて、始動開始から排気浄化触媒が活性化するまでの間における大気中へのHCの排出を抑制しながら、排気浄化触媒の早期活性化を実現することができる。
 ところで、超リタード成層燃焼の実行中にピストン冠面3Aに衝突した燃料の一部は、点火プラグ8の方向に向かわずに、ピストン冠面3Aに付着する。ピストン冠面3Aに燃料が付着した場合でも、付着した燃料が気化して当該サイクル中に燃焼すれば、ピストン冠面3Aに燃料が残留することはない。しかし、超リタード成層燃焼を実行するのは冷機始動時なので、ピストン冠面3Aの温度が上昇するまでは、付着した燃料は気化し難い。また、付着した燃料が当該サイクルの燃焼火炎が伝播することによって燃焼すれば、ピストン冠面3Aに燃料が残留することはない。しかし、超リタード成層燃焼では膨張行程で燃焼を開始するので、燃焼火炎がピストン冠面3Aに到達しなかったり、または膨張行程後半で温度低下した状態でピストン冠面3Aに到達することとなったりする。このため、付着した燃料を当該サイクル中に燃やし切ることは難しい。なお、ピストン冠面3Aに残留している液状燃料が燃焼火炎によって点火されて燃焼する現象をプールファイヤと称する。
 したがって、冷機始動してからの所定期間は、ピストン冠面3Aに残留する液状燃料は増加し続ける。ここでいう所定期間とは、1サイクル中にピストン冠面3Aに付着する量よりも、ピストン冠面3Aに残留していた液状燃料が1サイクル中に気化する量の方が多くなるまでの期間である。
 つまり、所定期間を超えて超リタード成層燃焼を継続すれば、ピストン冠面3Aに残留していた液状燃料は徐々に減少する。しかし、所定期間経過前に、ピストン冠面3Aに液状燃料が残留した状態で超リタード成層燃焼から均質ストイキ燃焼に切り替わる場合がある。例えば、排気浄化触媒が活性化した場合や、アクセルペダルが踏み込まれて加速する場合である。なお、ここでいう均質ストイキ燃焼とは、燃焼室11の全体に理論空燃比の混合気を形成し、最適点火時期(MBT:minimum advance for best torque)で火花点火する燃焼形態である。
 ピストン冠面3Aに液状燃料が残留している状態で均質ストイキ燃焼に切り替わると、燃焼火炎が高温のままピストン冠面3Aに到達してプールファイヤが生じ、残留している液状燃料が燃焼する。このように、今回のサイクルまでに蓄積した液状燃料が燃焼すると、PNが増加する傾向がある。
 そこで本実施形態では、ピストン冠面3Aに残留する液状燃料量を低減するために、コントローラ100が以下に説明する制御を実行する。
 図2は、コントローラ100が実行する制御ルーチンを示すフローチャートである。本ルーチンは、短い周期(例えば10ミリ秒毎)で繰り返し実行される。
 ステップS10で、コントローラ100は加速要求の有無を判定する。具体的には、アクセルペダル開度(APO)がゼロより大きいか否か、つまりアクセルペダルが踏み込まれたか否かを判定する。なお、本ステップでは加速要求の有無を判定できればよいので、例えば、アクセルペダル開度の変化速度が所定値よりも大きい場合に加速要求あり、と判定してもよいし、アクセルペダル開度がゼロより大きく、かつアクセルペダル開度の変化速度が所定値より大きい場合に加速要求あり、と判定してもよい。
 コントローラ100は、アクセルペダル開度がゼロより大きい場合は加速要求有りと判定して、ステップS50にて均質ストイキ燃焼を実行する。一方、アクセルペダル開度がゼロの場合は、コントローラ100は加速要求無し、と判定して、ステップS20の処理を実行する。
 ステップS20で、コントローラ100は触媒温度が触媒活性温度(A℃)より高いか否かを判定する。コントローラ100は、触媒温度が触媒活性温度より高い場合にはステップS50で均質ストイキ燃焼を実行する。一方、触媒温度が触媒活性温度より低い場合には、コントローラ100は触媒の昇温を促進するためにステップS30で超リタード成層燃焼(FIR)を実行する。
 つまり、コントローラ100は、触媒が未活性状態であれば超リタード成層燃焼を実行し、活性状態であれば均質ストイキ燃焼を実行する。ただし、加速要求が有る場合には、加速要求を満足する加速をするために、均質ストイキ燃焼を実行する。
 ステップS40で、コントローラ100は後述するように1サイクル毎に燃料噴射タイミングと燃料噴射圧力(以下、「燃圧」ともいう)とを変更する。
 また、ステップS50で均質ストイキ燃焼を実行した場合には、コントローラ100はステップS60で、燃流噴霧が衝突する部位であるピストン冠面3Aの温度(以下、「ピストン冠面温度」ともいう)が予め設定した温度(B℃)より低いか否かを判定する。コントローラ100はピストン冠面温度がB℃以上であれば本ルーチンを終了し、B℃より低ければステップS40の処理を実行する。ステップS60で用いる予め設定した温度(B℃)は、例えばピストン冠面3Aに残留している液状燃料が時間経過に伴って減少する状態になったときのピストン冠面温度である。なお、ピストン冠面温度は、前記状態となったときのシリンダ壁面温度から推定することができる。そして、シリンダ壁面温度は冷却水温から推定することができる。
 上述したように、コントローラ100は、加速要求が無い場合には触媒が非活性状態であれば超リタード成層燃焼を実行し、触媒が活性状態であれば均質ストイキ燃焼を実行する。そして、超リタード成層燃焼を実行する場合には、1サイクル毎に燃料噴射タイミングと燃圧とを変更する。また、コントローラ100は、均質モードを実行する場合でもピストン冠面温度がB℃より低ければ、つまりピストン冠面3Aに液状燃料が蓄積し得る温度であれば、1サイクル毎に燃料噴射タイミングと燃圧とを変更する。
 なお、必ずしも燃料噴射タイミングと燃圧との両方を変更しなくてはならないわけではなく、上述した効果が得られるのであれば、いずれか一方だけを変更してもよい。また、変更する周期は1サイクル毎に限られるわけではなく、数サイクル毎や、変則的な周期で変更してもよい。所定の(同一の)エンジン運転条件においてコントローラ100により算出される基本となる燃料噴射条件(燃料噴射タイミングまたは燃圧)を変更することなく継続することによって、同じ部位に継続して燃料が吹きつけられて液状の燃料が乾きにくい状態になることを抑制できるのであれば、さらに他の形態であってもよい。
 上記の「所定のエンジン運転条件」とは、エンジン運転中に逐次、各制御パラメータを計算するときの環境条件(吸入空気量、温度、要求トルク等)のことである。すなわち、従来は所定の(同一の)エンジン運転条件であれば、同じ燃料噴射条件(燃料噴射タイミングと燃圧)で制御されるが、本実施形態では所定の(同一の)エンジン運転条件であっても、意図的に燃流噴射条件(燃料噴射タイミングと燃圧との少なくとも一方)は変更され、ミクロ的な時間経過とともに燃料が付着する位置がズレるように制御される。また、燃料が付着する位置をズラす量はPNの増大が抑制できる効果が得られればよく、必要以上に大きくズラさなくてもよい。
 なお、超リタード成層燃焼を実行する場合に冠面温度についての判定を実行しないのは、ステップS20が冠面温度についての判定を兼ねているからである。すなわち、触媒は冷機始動時や、アイドリングストップや燃料カットからの復帰時に非活性状態になり得るが、これらはピストン冠面温度が低くなる状態でもあるので、ステップS20で触媒温度が活性温度より低ければ、ピストン冠面温度も低い状態であると推定できる。
 ここで、ステップS40の処理について説明する。
 上述したように、コントローラ100はステップS40において、1サイクル毎に燃料噴射タイミングと燃圧とを変更する。これは、ピストン冠面3Aの、燃料噴霧が衝突する位置(燃料衝突位置ともいう)を1サイクル毎に変えるためである。燃料衝突位置が変化しない場合には、ピストン冠面3Aに付着した燃料が気化する前に次サイクルの燃料噴霧が衝突し、これが繰り返されることにより燃料衝突位置に液状燃料が蓄積する。そこでコントローラ100は、このような液状燃料の蓄積を抑制するために、今回のサイクルにおける燃料噴射位置を前サイクルにおける燃料衝突位置からずらすための燃料噴射制御を実行する。以下、今回のサイクルにおける燃料噴射位置を前サイクルにおける燃料衝突位置からずらすことが可能な燃料噴射制御の3つのパターンについて説明する。
 (第1パターン)
 第1パターンは、コントローラ100が燃圧一定のまま燃料噴射タイミングを変更するパターンである。
 図3は、燃料噴射タイミングの変更可能範囲を示すテーブルである。図3の縦軸は燃圧、横軸は燃料噴射タイミングであり、図中のIT0は超リタード成層燃焼実行時の基準となる燃料噴射タイミング(基本燃料噴射タイミング)である。図4は燃圧一定で燃料噴射タイミングを変更する際の変更量と燃料噴射量との関係を示すテーブルである。
 ピストン冠面3Aに液状燃料が蓄積することを抑制するためには、ピストン冠面3Aの同じ位置に燃料噴霧が衝突し続けない事が望ましい。そして、燃圧一定であれば燃料噴射量が多いほど噴射時間が長くなる。そこで、図4に示すように、燃料噴射量が多いほど燃料噴射タイミング変更量を大きくする。ただし、燃料噴霧がキャビティ10に衝突しなくなるほど燃料噴射タイミング変更量を大きくすると、点火プラグ周りに成層混合気が形成され難くなるので、超リタード成層燃焼モードにおいては燃焼安定度が低下する。そこで、燃料噴射タイミングを変更しても燃焼安定度を確保するため、図3に示すように進角限界IT1及び遅角限界IT2を設定する。
 なお、超リタード成層燃焼実行中は燃料噴射量がほぼ変化しないが、均質ストイキ燃焼実行中は運転状態に応じて燃料噴射量が変化するので、図4のように燃料噴射量と燃料噴射タイミング変更量との関係を定めておく意義がある。
 また、超リタード成層燃焼はピストン冠面3Aに衝突した燃料噴霧が点火プラグ8方向へ反射して成層混合気を形成しなければならないので、進角限界IT1及び遅角限界IT2を設定するにあたっては、燃料噴霧が反射するか否かを考慮する必要がある。一方、均質ストイキ燃焼の場合は、ピストン冠面3Aに付着した燃料の蒸発し易さを主に考慮すればよい。
 (第2パターン)
 第2パターンは、コントローラ100が燃料噴射タイミング一定のまま燃圧を変更するパターンである。
 図5は、第2パターンにおける、燃圧の変更可能範囲を示すテーブルである。図5の縦軸は燃圧、横軸は燃料噴射タイミングであり、図中のP0は超リタード成層燃焼実行時の基準となる燃圧(基本燃圧)である。図6は燃料噴射タイミング一定で燃圧を変更する際の変更量と燃料噴射量との関係を示すテーブルである。
 燃料噴射タイミングが固定であっても、燃圧を変更すれば燃料噴霧の速度や到達距離が変わるので、ピストン冠面3Aの燃料衝突位置も変わる。例えば、燃料噴射タイミングが同じであっても、燃圧を高めると燃料噴霧がピストン3に衝突するまでの時間が短くなるので、燃料噴霧が衝突するときにピストン3は燃圧低下前に比べて下死点に近い位置にある。燃料噴射弁9の噴射方向は一定なので、ピストン位置が下死点側にずれることで、ピストン冠面3Aの燃料衝突位置もずれる。
 また、図6に示すように燃料噴射量が多いほど燃圧変更量を大きくする。ただし、燃圧が低くなるほど燃料は霧化し難くなり、超リタード成層燃焼及び均質ストイキ燃焼のいずれの場合も燃焼安定性が低下する。また、燃圧が低くなるほどピストン冠面3Aに衝突した燃料噴霧が反射しにくくなり、点火プラグ周りに成層混合気を形成し難くなるので、超リタード成層燃焼モードにおける燃焼安定性が低下する。また、燃圧は燃料ポンプの性能等により高圧側の限界が定まる。そこで、燃料の霧化特性、燃焼安定度、及び燃料ポンプの性能等に基づいて、図5に示すように低圧限界P1及び高圧限界P2を設定し、低圧限界P1を基本燃圧とする。つまり、本実施形態における「燃圧の変更」は燃圧を高めることを意味する。なお、基本燃圧を低圧限界P1より高く設定してもかまわない。
 (第3パターン)
 第3パターンは、コントローラ100が燃圧及び燃料噴射タイミングを変更するパターンである。
 図7は、第3パターンにおける燃圧および燃料噴射タイミングの変更可能範囲を示すマップである。図7において燃圧P1の場合よりも燃圧P2の場合の方が燃料噴射タイミングの変更可能範囲が広いのは、次の理由による。第1に、燃圧が高くなるほど燃料噴霧が微粒化され、かつ燃料噴霧の運動量が大きくなることによって、燃焼安定度が高まるからである。第2に、燃圧が高くなるほど燃料噴霧の速度が高く、到達距離も増大するので、燃料噴射タイミングにおける燃料噴射弁9からピストン冠面3Aまでの距離をのばしても、燃料噴霧はピストン冠面3Aで反射して点火プラグ8の周りに成層混合気を形成することができ、燃焼安定度が向上するからである。
 すなわち、図8に示すように、燃圧一定のままでは燃料噴射タイミングを進角限界IT1から遅角限界IT2までの範囲内でしか変更できないのに対し、燃圧も変更することにより、図8中の破線で示した範囲まで変更可能範囲を拡大できるようになる。上記のようにいずれのパターンでもピストン冠面3Aの燃料衝突位置をずらすことはできるが、本実施形態では、コントローラ100は燃圧及び燃料噴射タイミングを変更する第3パターンを実行する。
 なお、図8において、基準→遅角→基準→進角→基準・・・の順に変更してもよいし、基準→遅角→進角→基準→遅角→進角・・・の順に変更してもよい。
 ステップS40においてコントローラ100は、上述した第1パターンから第3パターンのいずれかの燃料噴射制御を実行する。いずれの燃料噴射制御も、超リタード成層燃焼実行中は燃料噴霧が点火プラグ8の周りに集まるように燃料噴射タイミングや燃圧を変更する。なお、キャビティ10は衝突した燃料噴霧を点火プラグ8の方向へ導く機能を果たすが、燃料噴霧が点火プラグ8の方向へ反射するためには、必ずしも燃料噴霧がキャビティ10に衝突する必要はない。例えば、燃圧を高めて燃料噴霧の運動量を増大させることにより、ピストン冠面3Aのキャビティ10から外れた位置に衝突した燃料噴霧が直接またはシリンダ壁に再度反射して点火プラグ8の周辺に集まるようにすることができる。
 次に、本実施形態の作用効果について説明する。
 図9は、超リタード成層燃焼実行中に、燃料噴射タイミング及び燃圧を1サイクル毎に基準→進角→遅角→基準→進角・・・と変更した場合の燃料噴霧とピストン3との関係を示す図である。
 基準の位置では燃料噴霧がキャビティ10を含むピストン冠面3Aの中心付近に衝突している。次サイクルでは、燃料噴射タイミングが遅角側に変更されて、燃料噴霧の衝突位置は基準位置における衝突位置から図中右側へずれている。そして、次々サイクルでは燃料噴射タイミングが進角側に変更されて、燃料噴霧の衝突位置は基準位置における衝突位置から図中左側へずれている。
 図10は、図9の燃料噴射制御を実行した場合の、ピストン冠面温度及び液状燃料量のタイミングチャートである。比較例として、燃料噴射タイミング及び燃圧を変化させない場合のタイミングチャートを破線で示している。
 比較例では、毎サイクル、燃料噴霧がピストン冠面3Aの同じ位置に衝突するので、冷機始動時のようにピストン冠面温度が低い場合には前回のサイクルで付着した燃料が気化する前に次のサイクルの燃料噴霧が衝突する。このため、ピストン冠面3Aに付着した燃料が液膜を形成し易く、液膜が形成されることによりピストン冠面温度が上昇し難くなり、さらに液状燃料量が増加するという悪循環が生じる。
 これに対して本実施形態では、1サイクル毎にピストン冠面3Aの燃料噴霧が衝突する位置が変化するので、ピストン冠面3Aに付着した燃料が気化する時間を稼ぐことができる。その結果、比較例のような悪循環が生じ難くなり、比較例に比べてピストン冠面温度は上昇し易くなり、ピストン冠面3Aに蓄積する液状燃料量を抑制できる。
 なお、本実施形態では燃料噴射タイミングや燃料噴射圧力を1サイクル毎に変更しているが、これに限られるわけではない。ピストン冠面3Aやシリンダ壁面の同じ位置に燃料噴霧が継続的に衝突し続けることを抑制できるのであれば、例えば、数サイクル毎に変更するようにしてもよいし、ランダムに変更するようにしてもよい。ここでいう「継続的に」とは、ピストン冠面3Aやシリンダ壁面に液状燃料が蓄積する程度に連続して、との意味である。どの程度連続すると液状燃料が蓄積するのかは、燃料噴射パターン(噴霧形状)、ピストン冠面3Aの形状、1回当たりの燃料噴射量等、様々な要因によって異なるので、実験等により予め調べておく。
 以上のように本実施形態では、噴射された燃料が衝突する部位が所定の低温状態である場合に、燃料噴霧が継続的に同じ位置に衝突し続けることが抑制されるように所定の運転条件における燃料噴射条件を変更して燃料を噴射する。具体的には、ピストン冠面温度が所定温度より低い場合に、ピストン冠面3Aの燃料噴霧衝突位置が1サイクル毎に変化するように燃料を噴射する。これにより、ピストン冠面3Aに局所的に燃料が付着することが抑制されるので、ピストン冠面3Aに液状燃料が蓄積することを抑制できる。
 なお、本実施形態では燃料噴霧が衝突する部位がピストン冠面3Aである場合について説明したが、燃料噴霧が衝突する部位がシリンダ壁面の場合でも、本実施形態の制御を適用することで、シリンダ壁面の同じ位置に燃料噴霧が衝突し続けることによる燃料の蓄積を抑制できる。
 本実施形態では、ピストン冠面3Aの燃料噴霧衝突位置を変化させるために、燃料噴射タイミングを変更する。これにより、ピストン冠面3Aに液状燃料が蓄積することを抑制できる。なお、本実施形態において燃料噴射タイミングや燃圧を変更する膨張行程噴射は、いわゆる主燃焼に供される燃料を噴射するものであるが、いわゆるポスト噴射やアフター噴射に適用してもよい。これらの燃料噴射で噴射された燃料も、ピストン冠面3A等に蓄積すればPN増大の原因となり得るからである。
 本実施形態では、燃料噴射圧力を変更することにより燃料噴霧が継続的に同じ位置に衝突し続けることを抑制する。燃圧を変更すると、燃料噴霧の飛距離等が変化することにより、ピストン冠面3Aの燃料衝突位置が変化するので、燃料噴射タイミングを変更する場合と同様に、ピストン冠面3Aに液状燃料が蓄積することを抑制できる。燃料噴射圧力を変更する膨張行程噴射がいわゆるポスト噴射やアフター噴射であってもよい点も、燃料噴射タイミングを変更する場合と同様である。
 また、燃料噴射タイミング及び燃料噴射圧力を変更してもよい。例えば、燃焼安定度を確保できる燃圧を基準として、そこからの燃圧上昇量を燃料噴射タイミングの変更量に応じて調整する。燃圧を上昇させると、燃料噴霧の微粒化が促進され、かつ、燃料噴霧の運動量が増加するので、燃焼安定度が向上する。その結果、燃料噴射タイミングの変更によりキャビティ10から外れる燃料噴霧が増えても、燃焼安定度の低下を抑制できる。
 燃料噴射タイミング及び燃料噴射圧力を変更する場合には、燃圧が高いほど燃料噴射タイミングの変更量を大きくする。これにより、燃圧を変更しない場合に比べてピストン冠面3Aの燃料噴霧衝突位置の変化量が大きくなるので、ピストン冠面3Aに液状燃料が付着することを抑制し易くなる。
 本実施形態では、燃料噴射量が多い場合ほど、燃料噴射タイミング及び燃圧の変更量を大きくする。燃料噴射量が多くなるほど、噴射パルスが長くなり、噴射期間中におけるピストン移動量が大きくなるので、1サイクルあたりのピストン冠面3Aの燃料噴霧衝突位置が広範囲になる。そこで、本実施形態のように燃料噴射量が多い場合ほど燃料噴射タイミング及び燃圧の変更量を大きくすることで、連続するサイクルにおけるピストン冠面3Aの燃料噴霧衝突位置の重複を抑制できる。
 なお、本実施形態では、燃料噴射弁6が燃焼室の側方に設けられた、いわゆるサイド噴射式のエンジン1に適用する場合について説明したが、燃料噴射弁6が燃焼室の頂部近傍に設けられた、いわゆる直上噴射式のエンジン1であっても同様に適用できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (7)

  1.  筒内に燃料を直接噴射する燃料噴射弁と、
     筒内の混合気に火花点火する点火プラグと、
    を備える筒内直接燃料噴射式火花点火エンジンの燃料噴射制御装置において、
     噴射された燃料が衝突する部位が所定の低温状態である場合に、燃料噴霧が継続的に同じ位置に衝突し続けることが抑制されるように所定の運転条件における燃料噴射条件を変更して燃料を噴射する燃料噴射制御装置。
  2.  請求項1に記載の燃料噴射制御装置において、
     所定の運転条件における燃料噴射条件を変更する場合には、燃料噴射タイミングを変更する燃料噴射制御装置。
  3.  請求項1または2に記載の燃料噴射制御装置において、
     所定の運転条件における燃料噴射条件を変更する場合には、燃料噴霧の飛距離が変化するように燃料噴射圧力を変更する燃料噴射制御装置。
  4.  請求項3に記載の燃料噴射制御装置において、
     燃料噴射タイミング及び燃料噴射圧力を変更する場合には、燃焼噴射圧力が高いほど燃料噴射タイミングの変更量を大きくする燃料噴射制御装置。
  5.  請求項2から4のいずれかに記載の燃料噴射制御装置において、
     燃料噴射量が多いほど前記燃料噴射タイミングの変更量を大きくする燃料噴射制御装置。
  6.  請求項3から5のいずれかに記載の燃料噴射制御装置において、
     燃料噴射量が多いほど前記燃料噴射圧力の変更量を大きくする燃料噴射制御装置。
  7.  筒内に燃料を直接噴射する燃料噴射弁と、
     筒内の混合気に火花点火する点火プラグと、
    を備える筒内直接燃料噴射式火花点火エンジンの燃料噴射制御方法において、
     噴射された燃料が衝突する部位が所定の低温状態である場合に、燃料噴霧が継続的に同じ位置に衝突し続けることが抑制されるように所定の運転条件における燃料噴射条件を変更して燃料を噴射する燃料噴射制御方法。
PCT/JP2015/067033 2015-06-12 2015-06-12 燃料噴射制御装置及び燃料噴射制御方法 WO2016199297A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
MYPI2017704695A MY167720A (en) 2015-06-12 2015-06-12 Fuel injection control device and fuel injection control method
US15/735,248 US10100772B2 (en) 2015-06-12 2015-06-12 Fuel injection control device and fuel injection control method
EP15894982.6A EP3309378B1 (en) 2015-06-12 2015-06-12 Fuel injection control device and fuel injection control method
CN201580080858.6A CN107735560B (zh) 2015-06-12 2015-06-12 燃料喷射控制装置以及燃料喷射控制方法
KR1020187000104A KR101838865B1 (ko) 2015-06-12 2015-06-12 연료 분사 제어 장치 및 연료 분사 제어 방법
BR112017026075-1A BR112017026075B1 (pt) 2015-06-12 2015-06-12 Dispositivo de controle de injeção de combustível e método de controle de injeção de combustível
CA2988880A CA2988880C (en) 2015-06-12 2015-06-12 Fuel injection control device and fuel injection control method
RU2017143398A RU2654508C1 (ru) 2015-06-12 2015-06-12 Устройство и способ для управления впрыском топлива
MX2017015524A MX360380B (es) 2015-06-12 2015-06-12 Dispositivo de control de inyeccion de combustible y metodo de control de inyeccion de combustible.
PCT/JP2015/067033 WO2016199297A1 (ja) 2015-06-12 2015-06-12 燃料噴射制御装置及び燃料噴射制御方法
JP2017523071A JP6384607B2 (ja) 2015-06-12 2015-06-12 燃料噴射制御装置及び燃料噴射制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067033 WO2016199297A1 (ja) 2015-06-12 2015-06-12 燃料噴射制御装置及び燃料噴射制御方法

Publications (1)

Publication Number Publication Date
WO2016199297A1 true WO2016199297A1 (ja) 2016-12-15

Family

ID=57503436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067033 WO2016199297A1 (ja) 2015-06-12 2015-06-12 燃料噴射制御装置及び燃料噴射制御方法

Country Status (11)

Country Link
US (1) US10100772B2 (ja)
EP (1) EP3309378B1 (ja)
JP (1) JP6384607B2 (ja)
KR (1) KR101838865B1 (ja)
CN (1) CN107735560B (ja)
BR (1) BR112017026075B1 (ja)
CA (1) CA2988880C (ja)
MX (1) MX360380B (ja)
MY (1) MY167720A (ja)
RU (1) RU2654508C1 (ja)
WO (1) WO2016199297A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139468A (ja) * 2019-02-28 2020-09-03 ダイハツ工業株式会社 内燃機関の制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267216A (ja) * 2007-04-18 2008-11-06 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2009036102A (ja) * 2007-08-01 2009-02-19 Toyota Motor Corp 燃料噴射制御装置
JP2010048116A (ja) * 2008-08-20 2010-03-04 Denso Corp 筒内噴射式の内燃機関の燃料噴射制御装置
JP2013068128A (ja) * 2011-09-21 2013-04-18 Hitachi Automotive Systems Ltd 内燃機関の燃料噴射制御装置
JP2014173464A (ja) * 2013-03-07 2014-09-22 Hitachi Automotive Systems Ltd エンジンの制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3797278B2 (ja) 2002-04-26 2006-07-12 トヨタ自動車株式会社 筒内噴射式内燃機関の燃料噴射制御装置
JP4170773B2 (ja) 2003-01-08 2008-10-22 株式会社日本自動車部品総合研究所 筒内噴射型エンジンの燃料噴射時期制御装置
RU2519272C2 (ru) * 2012-01-10 2014-06-10 Аркадий Фёдорович Щербаков Способ регулирования параметров впрыска двс
CN104968913B (zh) * 2012-12-07 2018-04-06 乙醇推动系统有限责任公司 用于减少来自涡轮增压直喷式汽油发动机的颗粒的进气口喷射系统
US9441570B2 (en) * 2012-12-07 2016-09-13 Ethanol Boosting Systems, Llc Gasoline particulate reduction using optimized port and direct injection
JP6171351B2 (ja) * 2013-01-17 2017-08-02 日産自動車株式会社 エンジンの燃料噴射時期制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267216A (ja) * 2007-04-18 2008-11-06 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2009036102A (ja) * 2007-08-01 2009-02-19 Toyota Motor Corp 燃料噴射制御装置
JP2010048116A (ja) * 2008-08-20 2010-03-04 Denso Corp 筒内噴射式の内燃機関の燃料噴射制御装置
JP2013068128A (ja) * 2011-09-21 2013-04-18 Hitachi Automotive Systems Ltd 内燃機関の燃料噴射制御装置
JP2014173464A (ja) * 2013-03-07 2014-09-22 Hitachi Automotive Systems Ltd エンジンの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3309378A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139468A (ja) * 2019-02-28 2020-09-03 ダイハツ工業株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
CN107735560A (zh) 2018-02-23
EP3309378B1 (en) 2019-05-08
US20180171926A1 (en) 2018-06-21
KR101838865B1 (ko) 2018-04-27
US10100772B2 (en) 2018-10-16
BR112017026075B1 (pt) 2022-12-20
JPWO2016199297A1 (ja) 2018-03-22
CN107735560B (zh) 2019-06-28
EP3309378A4 (en) 2018-08-08
EP3309378A1 (en) 2018-04-18
KR20180009810A (ko) 2018-01-29
MY167720A (en) 2018-09-21
RU2654508C1 (ru) 2018-05-21
CA2988880A1 (en) 2016-12-15
JP6384607B2 (ja) 2018-09-05
BR112017026075A2 (ja) 2018-08-21
MX2017015524A (es) 2018-02-21
MX360380B (es) 2018-10-31
CA2988880C (en) 2018-05-15

Similar Documents

Publication Publication Date Title
JP6521060B2 (ja) エンジン制御装置及びエンジン制御方法
JP6376289B2 (ja) 内燃機関制御装置及び内燃機関制御方法
KR101894693B1 (ko) 엔진 제어 장치 및 엔진 제어 방법
EP3633171B1 (en) Method and device for controlling internal combustion engine
KR101817049B1 (ko) 엔진 제어 장치 및 엔진 제어 방법
JP6384607B2 (ja) 燃料噴射制御装置及び燃料噴射制御方法
JP6369629B2 (ja) エンジン制御装置及びエンジン制御方法
JP6789007B2 (ja) エンジン制御方法及びエンジン制御装置
JP2021175889A (ja) エンジン装置
WO2017134747A1 (ja) 筒内直接噴射式内燃機関の制御方法及び制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523071

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/015524

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2988880

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15735248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187000104

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015894982

Country of ref document: EP

Ref document number: 2017143398

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017026075

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017026075

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171204