WO2016198260A1 - Vakuumpumpen-rotor - Google Patents

Vakuumpumpen-rotor Download PDF

Info

Publication number
WO2016198260A1
WO2016198260A1 PCT/EP2016/061786 EP2016061786W WO2016198260A1 WO 2016198260 A1 WO2016198260 A1 WO 2016198260A1 EP 2016061786 W EP2016061786 W EP 2016061786W WO 2016198260 A1 WO2016198260 A1 WO 2016198260A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
wing
pump rotor
rotor according
hub
Prior art date
Application number
PCT/EP2016/061786
Other languages
English (en)
French (fr)
Inventor
Rainer Hölzer
Kai Uhlig
Original Assignee
Leybold Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202015004001.2U external-priority patent/DE202015004001U1/de
Priority claimed from DE202015004160.4U external-priority patent/DE202015004160U1/de
Application filed by Leybold Gmbh filed Critical Leybold Gmbh
Priority to SG11201708740XA priority Critical patent/SG11201708740XA/en
Priority to JP2017556803A priority patent/JP6731421B2/ja
Priority to US15/568,840 priority patent/US10393124B2/en
Priority to EP16725126.3A priority patent/EP3280916B1/de
Priority to KR1020177031399A priority patent/KR102521349B1/ko
Priority to CN201680025153.9A priority patent/CN107646076B/zh
Publication of WO2016198260A1 publication Critical patent/WO2016198260A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/322Blade mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/70Treatment or modification of materials
    • F05D2300/702Reinforcement

Definitions

  • the invention relates to a vacuum pump rotor, in particular a rotor for a turbomolecular vacuum pump.
  • Vacuum pumps such as turbomolecular vacuum pumps, have a rotor on a rotor shaft.
  • the rotor shaft is driven by an electric motor.
  • the blades of the rotor cooperate with stator disks, which are usually fixed in a pump housing together.
  • stator disks which are usually fixed in a pump housing together.
  • high-speed rotors as used in particular in turbomolecular pumps, it is known to produce rotors made of aluminum, steel or corresponding alloys.
  • the rotors In order to obtain a high vacuum of, in particular less than 10 "4 mbar, the rotors must be operated at high rotational speeds.
  • the Tipspeed of the rotor blades that is, occurring at the wing tips tangential velocity.
  • a speed of 400 m / s can be achieved with known rotors, which also involves conveying light gases, such as helium or hydrogen, since they have a high thermal velocity and, in order to promote high rotors, ie a high tip speed is required ,
  • the object of the invention is to provide a vacuum pump rotor with which a high tip speed can be achieved.
  • the object is achieved according to the invention by the features of claim 1.
  • the vacuum pump rotor according to the invention has a hub element, which can be connected to the shaft of the vacuum pump or forms the shaft. With the hub member in particular employed at an angle rotor blades are connected.
  • the rotor elements and / or the hub element have a plurality of layers of material. It is thereby possible to provide different materials during operation in high stress areas by material layers are arranged of different materials. It is particularly preferred in this case that at least one of the material layers has fiber-reinforced material. In particular, by providing at least one material layer with fiber reinforced material, it is possible to operate vacuum pump rotors at higher speeds. In particular, it is possible to achieve a tip speed of more than 400 m / s, in particular more than 500 m / s and particularly preferably more than 600 m / s.
  • the vacuum pump rotor has a hub member for connection to a rotor shaft, wherein the rotor shaft can also be formed by a plurality of hub members.
  • Several rotor blades surrounding the rotor element are connected to the rotor element.
  • the rotor blades preferably each have a blade root connected to the hub element and a wing head connected thereto.
  • the hub element has at least one fiber-reinforced material exhibiting retaining element.
  • a base element is connected to the holding element of the hub element, wherein the base element is connected directly or indirectly to the wing base or the wing head of a respective rotor blade.
  • connection between the holding element and the base element takes place such that these two elements partially overlap, so that at least two layers of material are thereby formed.
  • at least one of the two elements has fiber-reinforced material, wherein it is preferred that both elements have fiber-reinforced material.
  • the hub element preferably has two opposing holding elements, wherein a hub part of the base element is arranged between the two holding elements.
  • a three-layer structure is realized in this area, wherein it is again preferred that both hub elements and / or the hub part are made of fiber-reinforced material.
  • the entire base member is made of fiber reinforced material.
  • a stiffening element which preferably comprises fiber-reinforced material.
  • the at least one stiffening element is preferably connected in a flat manner to the holding element of the hub element, wherein it is particularly preferred for the stiffening element to protrude into the blade root of the respective rotor blade.
  • the stiffening element thus forms a further material layer.
  • two stiffening elements are provided, which are connected on opposite sides with the base element, in particular the hub portion of the base member.
  • the Base element here represents in a particularly preferred embodiment, a middle material layer, wherein at least in the region of the hub part opposite each one stiffening element is arranged, which preferably projects into the viagelfuß and is in particular connected flat with the base member.
  • Two further layers of material are given in a particular embodiment by the two holding elements, which in turn are arranged on the outer side of the stiffening elements and form an integral part of the hub member.
  • the two holding elements are arranged opposite one another and preferably connected directly or evenly flat with the respective upper conductors of the stiffening elements. It is possible to further improve the strength of the rotor blade, further intermediate layers, in particular of different material and / or with different orientation of fibers provided.
  • the at least one, in particular both stiffening elements on an inner side may have a fixing element.
  • the fixing element is preferably formed as an axially extending approach. This engages in the radial direction preferably the respective holding element.
  • At least one additional wing element is formed, which preferably comprises fiber-reinforced material.
  • the at least one additional wing element is connected directly or indirectly to the retaining element.
  • the additional wing element is preferably connected directly or indirectly to the wing base and / or the hub part of the base element.
  • the additional wing element may also be connected in particular flat with the wing head. In this case, it is preferable for the additional wing element to be flat as a further material layer.
  • the additional wing element further has on an inner side a fixing element, which in turn can partially extend axially corresponding to a projection and / or in particular engages radially behind the retaining element.
  • the additional wing element is designed as an inner additional wing element and at least one additional outer wing element is provided.
  • This is preferably connected flat to the inner auxiliary wing element, wherein it is particularly preferred that the outer dimensions of the two additional wing elements are identical.
  • the outer auxiliary wing element but also cover only a part of the inner auxiliary wing element. It is also possible that the outer dimensions of the inner auxiliary wing element are smaller than those of the outer additional wing element.
  • the outer auxiliary wing member may extend into the wing head and possibly even completely cover it, wherein the inner auxiliary wing member is disposed only in the region of the blade root and / or optionally covers only parts of the wing head.
  • the base element and at least one, preferably all, additional wing elements preferably have substantially the same outer contour, in particular a wing outer contour.
  • the at least one stiffening element rests in the area of the blade foot directly on the surface of the base element and / or one of the additional wing elements and is preferably firmly connected thereto. Furthermore, it is preferred that the internal additive Wing element in the region of the blade root or the wing head abuts immediately flat on the outer auxiliary wing element and is preferably connected thereto.
  • the construction of the individual rotor blades and also of the hub element is preferably multi-layered such that the structure is symmetrical to the base element.
  • a usually ring-shaped hub member preferably has on the circumference a plurality of rotor blades in particular employed.
  • the hub element and / or the rotor blades preferably have fiber-reinforced material.
  • the fibers are preferably arranged to a large extent in accordance with stress. This has the consequence that the vacuum pump rotors according to the invention can be operated at higher speeds. In particular, it is possible to achieve a tip speed of more than 400 m / s, in particular more than 500 m / s and particularly preferably more than 600 m / s.
  • the material used is preferably a long-fiber-reinforced material with fiber lengths of 1 to 50 mm or continuous fibers with lengths of more than 50 mm.
  • the claim-oriented arrangement of the fibers is preferably carried out by a suitable orientation of the fibers, so that they can absorb the forces and moments occurring at such high speeds.
  • a stress-sensitive arrangement is also achieved by optionally additionally varying the direction, the density, the strength and / or the thickness of the fibers used depending on the type of stress. This depends in particular on the region of the stress on the hub element and / or on the rotor blades. Furthermore, it is particularly preferred that for claim-appropriate arrangement additionally for the appropriate stress particularly suitable fibers are used.
  • metal, plastic or carbon fibers are used.
  • metal fibers in the region of the hub element or the part of the rotor blade facing the hub element if necessary, since they have a different fracture behavior.
  • solid metal or plastic parts can also be incorporated into the laminate to stabilize the position of fibers or to create volumes.
  • plastic, carbon and / or metal fibers are impregnated or preimpregnated.
  • the impregnation with epoxy resin, phenolic resin, Bismaimiden and / or thermoplastics, but also polyurethane is preferred.
  • TFP Trimed Fiber Placement
  • load-compatible mixed forms of different fiber arrangements are possible and also preferred.
  • the fibers provided in or on the hub element and / or in or on the rotor blades are arranged in accordance with stress, ie in particular in the main stress direction.
  • the fibers preferably extend in the radial direction in order to absorb the forces.
  • parts of the fibers are preferably placed purely in the circumferential direction, but other regions have different directions in order to enable a voltage displacement.
  • the fiber volume fraction based on the total volume of the hub element and / or the rotor blades is in this case preferably greater than 50%, in particular greater than 60%.
  • the fibers arranged in or on the hub element are preferably arranged substantially in the circumferential direction, ie in the direction of rotation of the hub element.
  • the fibers are preferably arranged so that the fibers can absorb the forces in the circumferential direction.
  • a deviation in an angular range of ⁇ 10 ° to ⁇ 20 ° is defined such that these are still fibers that run essentially in the circumferential direction.
  • the fibers In or on the rotor blades, the fibers preferably extend substantially radially. In the area of the wings, the fibers must be arranged so that the fibers absorb the forces in the radial direction. A deviation in the range of ⁇ 10 ° to ⁇ 20 ° further defines a substantially radially extending fiber.
  • the fibers in the salaried area of the wing parts of the rotor blades, it is preferable to additionally use intersecting fibers in order to make a stress-oriented arrangement of the fibers, for example against twisting of the wings.
  • the fibers preferably extend in an angular range of ⁇ 30 ° to ⁇ 45 ° with respect to the wing longitudinal axis and ⁇ 70 ° to ⁇ 90 ° to each other.
  • Suitable fiber layers are suitable here, such as patches or spread tows.
  • fibers pass from the hub element into the rotor vanes, so that the connection region between the hub element and the rotor vanes is formed as stress-resistant as possible.
  • the hub member and the rotor vanes are formed integrally.
  • the rotor blades are connected by hooking, plugging into corresponding grooves and the like to the hub. Combinations thereof are also possible, so that initially hinged or otherwise connected to the hub member Wing elements are then connected via a fiber layer in this area with the hub member.
  • Bonding of the fibers may be accomplished by subsequent potting, resination or the like. First of all, however, in order to define an exact position of the fibers, bonding of the fibers to one another can take place.
  • the fibers may also be fixed or joined together by stitching, knitting or the like in the required direction.
  • the rotor blades can have an angle of attack of 8 ° - 50 °.
  • the vacuum pump rotors described above it is possible in particular to achieve a high tip speed of more than 400 m / s, in particular more than 500 m / s and particularly preferably more than 600 m / s.
  • This has the advantage essential to the invention that the rotors are also suitable for conveying light gases, in particular helium and hydrogen. This also makes it possible to realize pump rotors with smaller diameters at high flow rates.
  • one of the additional wing elements in particular both the inner and the outer auxiliary wing elements have a radial layer of a fiber-reinforced material, in particular fiber-reinforced plastic. Furthermore, it is preferred that one of the additional wing elements, in particular the two outer additional wing elements, have a Spreadtow fabric layer.
  • the at least one stiffening element preferably also comprises fiber material, in particular plastic fiber material.
  • a part of the fibers preferably runs in the circumferential direction.
  • a tangential layer is formed.
  • the at least one retaining element also comprises fibers which run in the circumferential direction, so that further tangential layers are formed.
  • the particular inner additional wing elements have, as the main fiber direction in a preferred embodiment radially extending fibers, so that thereby radial layers are formed. In the preferably provided two outer additional wing elements, the fibers are arranged crossed to each other and in particular a Spreadtow fabric provided.
  • the multi-layered design of the vacuum pump rotor of preferably different material layers with particularly preferred different orientations of the material fibers it is possible to produce vacuum pump rotors that withstand extremely high loads, so that very high tip speeds can be achieved.
  • vacuum pump rotors are also preferred for other high-speed rotors, such as those used in the field of blowers, fans, gas extraction, according to the invention, this being an independent invention.
  • the figure shows a section of a vacuum pump rotor in the assembled state and partially as an exploded view, wherein the representation is made schematically simplified.
  • a part of a multi-layer vacuum pump rotor is shown schematically with interconnected material layers.
  • a part of a hub member 10 is shown.
  • the hub member 10 surrounds, for example, a rotor shaft with which it is firmly connected.
  • a plurality of such annular hub elements are arranged one behind the other in the axial direction, so that a plurality of vacuum pump stages are formed and form, for example, a rotor for a turbomolecular pump.
  • the individual hub elements can be connected to a rotor shaft or even form the rotor shaft by being connected together accordingly.
  • the hub element 10 is connected in the circumferential direction in each case radially extending rotor blades 12 which are set at an angle, with only a single rotor blade 12 being shown for the purpose of illustration.
  • a base element 14 is shown as the middle layer.
  • the structure of the entire vacuum pump rotor in the illustrated preferred embodiment is constructed symmetrically to the base member 14.
  • a stiffening element 16 is arranged, wherein symmetrically to the base member 14 on the opposite side, a further stiffening element is arranged symmetrically to the illustrated stiffening element 16.
  • two outer additional wing elements 20 are provided and in turn arranged symmetrically to the base member 14.
  • two holding elements 22 are provided, which in turn are arranged symmetrically to the base element 14.
  • the holding elements 22 in this case represent the essential elements of the hub member 10.
  • the base element 14, which forms the plane of symmetry, in the illustrated preferred embodiment has an outer contour that corresponds to the outer contour of the wing 12.
  • the base element 14 in this case has a hub part 24 which projects into the hub element 10 or is arranged between the two retaining elements 22 of the hub element 10. It should be noted that the two holding elements 22 in particular annular are formed, between which two annular support members 22 a plurality of hub portions corresponding to the number of rotor blades 12 are arranged.
  • a wing base 26 is connected and in particular integrally formed.
  • the wing base 26 represents the connecting element between the hub part and a wing head 28.
  • the wing head 28 is in this case the essential part of the rotor blade 12.
  • the base element 14 is preferably formed in one piece and has a carbon fiber fleece in a preferred embodiment.
  • the next layer is formed by the two opposing stiffening elements 16.
  • the outer contour of the stiffening elements 16 corresponds in the illustrated embodiment, the outer contour of the hub portion 24 and the wellgelfußes 26.
  • the stiffening element 16 protrudes only in a part of the wellgelfußes 26.
  • the stiffening element has on an inner side a fixing element 30. This protrudes axially outward and engages behind each of the two holding elements 22.
  • the stiffening element 16 is preferably formed as a tangential layer and thus has a plurality in the circumferential direction for receiving tangential forces suitable fibers.
  • the Dickengradient is high at the hub interior.
  • the next material layer is formed by the two inner additional wing elements 18.
  • the outer contour of the inner additional wing elements corresponds to the outer contour of the base element.
  • the inner additional wing elements 18 likewise have a fixing element 32, which engages radially behind the retaining elements 22 in accordance with the fixing element 32.
  • the material fibers of the inner auxiliary wing members 18 are radially aligned so that these layers can be considered as radial layers.
  • the next layers of material are formed by the outer auxiliary wing elements 20.
  • the outer contour of the outer additional wing elements 20 in turn corresponds to the outer contour of the base element 14.
  • the outer additional wing elements 20 also have a fixing element 34, which in turn radially engages behind the two retaining elements 22. It is preferred that the outer auxiliary wing members 20 are made of a Spreadtow fabric.
  • the outer material layer is formed by the two holding elements 22, wherein these do not extend into the rotor blade 12, but essentially form the hub element.
  • the holding elements 22 preferably also comprise material fibers, in particular plastic fibers or carbon fibers.
  • vacuum pump rotor Essential for the invention is the multilayer structure of the vacuum pump rotor.
  • the design and the choice of material of the individual layers are hereby preferably selected such that a selection of material that is as stress-resistant as possible and a fiber course suitable for the strain are realized.
  • vacuum pump rotors can be produced which withstand extremely high stresses and in particular can achieve a tip speed of more than 400 m / s, in particular more than 500 m / s and in particular more than 600 m / s.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Ein Vakuumpumpen-Rotor, bei dem es sich insbesondere um einen Vakuumpumpen-Rotor für eine Turbomolekularpumpe handelt, weist ein Nabenelement (10) zur Verbindung mit einer Rotorwelle oder zur Ausgestaltung einer Rotorwelle auf. Mit dem Nabenelement (10) sind mehrere Rotorflügel (12) verbunden. Zur Ausgestaltung eines Vakuumpumpen-Rotors, mit dem eine hohe Tipspeed erzielt werden kann, sind das Nabenelement (10) und/oder die Rotorflügel (12) aus mehreren Materiallagen hergestellt.

Description

Vakuumpumpen-Rotor
Die Erfindung betrifft einen Vakuum pumpen -Rotor, insbesondere einen Rotor für eine Turbomolekularvakuumpumpe.
Vakuumpumpen, wie Turbomolekularvakuumpumpen, weisen auf einer Rotorwelle einen Rotor auf. Die Rotorwelle ist über einen Elektromotor angetrieben. Die Flügel des Rotors wirken mit Statorscheiben, die üblicherweise in einem Pumpengehäuse fixiert sind, zusammen. Bei schnelldrehenden Rotoren, wie sie insbesondere in Turbomolekularpumpen eingesetzt werden, ist es bekannt, Rotoren aus Aluminium, Stahl oder entsprechenden Legierungen herzustellen. Zur Erzielung von hohem Vakuum von insbesondere weniger als 10"4 mbar müssen die Rotoren mit hohen Drehgeschwindigkeiten betrieben werden. Eine Grenze beim Einsatz von Rotoren aus Stahl, Aluminium oder dergleichen stellt die Tipspeed der Rotorflügel, d.h. die an den Flügelspitzen auftretende Tangentialgeschwindigkeit dar. Mit bekannten Rotoren kann eine Tipspeed von 400 m/s erzielt werden. Problematisch ist hierbei auch das Fördern von leichten Gasen, wie Helium oder Wasserstoff, da diese eine hohe thermische Geschwindigkeit aufweisen und zur Förderung hohe Drehzahlen der Rotoren, d.h. insbesondere eine hohe Tipspeed erforderlich ist.
Aufgabe der Erfindung ist es, einen Vakuumpumpen-Rotor zu schaffen, mit dem eine hohe Tipspeed erzielt werden kann. Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.
Der erfindungsgemäße Vakuumpumpenrotor weist ein Nabenelement auf, das mit der Welle der Vakuumpumpe verbindbar ist oder die Welle ausbildet. Mit dem Nabenelement sind insbesondere in einem Winkel angestellte Rotorflügel verbunden.
Zur erfindungsgemäßen Erhöhung der Tipspeed weisen die Rotorelemente und/oder das Nabenelement mehrere Materiallagen auf. Es ist hierdurch möglich, während des Betriebs in stark beanspruchten Bereichen unterschiedliche Materialien vorzusehen, indem Materiallagen aus unterschiedlichem Material angeordnet werden. Besonders bevorzugt ist es hierbei, dass zumindest eine der Materiallagen faserverstärktes Material aufweist. Insbesondere durch Vorsehen von mindestens einer Materiallage mit faserverstärktem Material ist es möglich, Vakuumpumpen-Rotoren mit höheren Drehzahlen zu betreiben. Insbesondere ist es möglich, hierdurch eine Tipspeed von mehr als 400 m/s, insbesondere mehr als 500 m/s und besonders bevorzugt mehr als 600 m/s zu erzielen.
Der Vakuumpumpen-Rotor weist ein Nabenelement zur Verbindung mit einer Rotorwelle auf, wobei die Rotorwelle ebenso durch mehrere Nabenelemente ausgebildet werden kann. Mit dem Rotorelement sind mehrere das Rotorelement umgebende Rotorflügel verbunden. Vorzugsweise weisen die Rotorflügel jeweils einen mit dem Nabenelement verbundenen Flügelfuß und einen mit diesem verbundenen Flügelkopf auf. Vorzugsweise weist das Nabenelement mindestens ein faserverstärktes Material aufweisendes Halteelement auf. Mit dem Halteelement des Nabenelements ist ein Basiselement verbunden, wobei das Basiselement mittelbar oder unmittelbar mit dem Flügelfuß bzw. dem Flügelkopf jeweils eines Rotorflügels verbunden ist. Insbesondere erfolgt die Verbindung zwischen dem Halteelement und dem Basiselement derart, dass sich diese beiden Elemente teilweise überdecken, sodass hierdurch zumindest zwei Materiallagen ausgebildet sind. Hierbei weist zumindest eines der beiden Elemente faserverstärktes Material auf, wobei es bevorzugt ist, dass beide Elemente faserverstärktes Material aufweisen. Durch einen derartigen Aufbau sind hohe Beanspruchungen des Vakuumpumpen- Rotors und insbesondere eine hohe Tipspeed erzielbar.
Insbesondere durch die nachfolgend beschriebenen bevorzugten Weiterbildungen der Erfindung ist es möglich, Vakuumpumpen-Rotoren herzustellen, die großen Beanspruchungen standhalten. Dies hat zu Folge, dass schnelldrehende Vakuumpumpen-Rotoren hergestellt werden können. Hierbei ist es möglich, den Durchmesser der Vakuumpumpen-Rotoren zu verringern, da auf Grund der möglichen Erhöhung der Drehzahl die erforderliche Tipspeed von insbesondere mehr als 400 m/s erzielt werden kann.
Vorzugsweise weist das Nabenelement zwei gegenüberliegende Halteelemente auf, wobei zwischen den beiden Halteelementen ein Nabenteil des Basiselements angeordnet ist. Insofern ist in diesem Bereich eine dreilagige Struktur realisiert, wobei es wiederum bevorzugt ist, dass beide Nabenelemente und/oder das Nabenteil aus faserverstärktem Material hergestellt sind. Vorzugsweise ist das gesamte Basiselement aus faserverstärktem Material hergestellt.
In einer weiteren bevorzugten Ausführungsform ist ein Versteifungselement vorgesehen, das vorzugsweise faserverstärktes Material aufweist. Das mindestens eine Versteifungselement ist vorzugsweise flächig mit dem Haltelement des Nabenelements verbunden, wobei es besonders bevorzugt ist, dass das Versteifungselement in den Flügelfuß des jeweiligen Rotorflügels ragt. Das Versteifungselement bildet somit eine weitere Materiallage. Besonders bevorzugt ist es, dass zwei Versteifungselemente vorgesehen sind, die auf einander gegenüberliegenden Seiten mit dem Basiselement, insbesondere dem Nabenteil des Basiselements, verbunden sind. Das Basiselement stellt hierbei in besonders bevorzugter Ausführungsform eine mittlere Materiallage dar, wobei zumindest im Bereich des Nabenteils einander gegenüberliegend jeweils ein Versteifungselement angeordnet ist, das vorzugweise in den Flügelfuß ragt und insbesondere flächig mit dem Basiselement verbunden ist. Zwei weitere Materiallagen sind in besonderer Ausführungsform durch die beiden Halteelemente gegeben, die wiederum an der Außenseite der Versteifungselemente angeordnet sind und einen wesentlichen Bestandteil des Nabenelements ausbilden. Die beiden Halteelemente sind einander gegenüberliegend angeordnet und vorzugsweise flächig mit den jeweiligen Oberleitern der Versteifungselemente mittelbar oder unmittelbar verbunden. Es ist zur weiteren Verbesserung der Beanspruchbarkeit des Rotorflügels möglich, weitere Zwischenlagen, insbesondere aus unterschiedlichem Material und/oder mit unterschiedlicher Ausrichtung von Fasern, vorzusehen.
Zusätzlich kann das mindestens eine, insbesondere beide Versteifungselemente an einer Innenseite ein Fixierelement aufweisen. Das Fixierelement ist vorzugsweise als ein sich axial erstreckender Ansatz ausgebildet. Dieser hintergreift in radialer Richtung vorzugsweise das jeweilige Haltelement.
In einer weiteren bevorzugten Ausführungsform ist mindestens ein Zusatz- Flügelelement ausgebildet, das vorzugsweise faserverstärktes Material aufweist. Das mindestens eine Zusatz-Flügelelement ist mittelbar oder unmittelbar mit dem Halteelement verbunden. Ferner ist das Zusatz- Flügelelement vorzugsweise mittelbar oder unmittelbar mit dem Flügelfuß und/oder dem Nabenteil des Basiselements verbunden. Das Zusatz- Flügelelement kann ferner auch mit dem Flügelkopf insbesondere flächig verbunden sein. Hierbei ist es bevorzugt, dass das Zusatz-Flügelelement als weitere Materiallage flächig ausgebildet ist. Das Zusatz-Flügelelement hat ferner an einer Innenseite ein Fixierelement, das sich wiederum teilweise axial entsprechend eines Ansatzes erstrecken kann und/oder das Halteelement insbesondere radial hintergreift.
Bevorzugt ist es wiederum, auch in dieser Ausführungsform zwei Zusatz- Flügelelemente vorzusehen, die an unterschiedlichen Seiten des Basiselements angeordnet sind, wobei insbesondere ein symmetrischer Aufbau bevorzugt ist, bei dem das Basiselement die Mittelebene bildet.
In einer weiteren bevorzugten Ausführungsform des Vakuumpumpen-Rotors ist eine weitere Materiallage vorgesehen. Hierbei ist das Zusatz-Flügelelement als inneres Zusatz-Flügelelement ausgebildet und es ist mindestens ein weiteres äußeres Zusatz-Flügelelement vorgesehen. Dieses ist vorzugsweise flächig mit dem inneren Zusatz-Flügelelement verbunden, wobei es besonders bevorzugt ist, dass die Außenabmessungen der beiden Zusatz-Flügelelemente identisch sind. Gegebenenfalls kann das äußere Zusatz-Flügelelement aber auch nur einen Teil des inneren Zusatz-Flügelelements abdecken. Auch ist es möglich, dass die Außenabmessungen des inneren Zusatz-Flügelelements kleiner sind als diejenigen des äußeren Zusatz-Flügelelements. Beispielsweise kann sich das äußere Zusatz-Flügelelement bis in den Flügelkopf hinein erstrecken und gegebenenfalls diesen sogar vollständig abdecken, wobei das innere Zusatz-Flügelelement nur im Bereich des Flügelfußes angeordnet ist und/oder gegebenenfalls nur Teile des Flügelkopfs abdeckt.
Vorzugsweise weisen das Basiselement und mindestens eines, vorzugsweise alle Zusatz-Flügelelemente im Wesentlichen dieselbe Außenkontur, insbesondere eine Flügel-Außenkontur, auf.
Bevorzugt ist es weiter, dass das mindestens eine Versteifungselement im Bereich des Flügelfußes unmittelbar flächig an dem Basiselement und/oder einem der Zusatz-Flügelelemente anliegt und mit diesem vorzugsweise fest verbunden ist. Des Weiteren ist es bevorzugt, dass das innere Zusatz- Flügelelement im Bereich des Flügelfußes oder des Flügelkopfes unmittelbar flächig an dem äußeren Zusatz-Flügelelement anliegt und vorzugsweise mit diesem verbunden ist. Der Aufbau der einzelnen Rotorflügel und auch des Nabenelements ist vorzugsweise derart mehrschichtig, dass der Aufbau symmetrisch zu dem Basiselement ist.
Ein üblicherweise ringförmig ausgebildetes Nabenelement weist am Umfang vorzugsweise eine Mehrzahl von insbesondere angestellten Rotorflügeln auf.
Zur erfindungsgemäßen Erhöhung der Tipspeed weist das Nabenelement und/ oder die Rotorflügel vorzugsweise faserverstärktes Material auf. Hierbei sind die Fasern vorzugsweise zu einem Großteil beanspruchungsgerecht angeordnet. Dies hat zur Folge, dass die erfindungsgemäßen Vakuumpumpenrotoren mit höheren Drehzahlen betrieben werden können. Insbesondere ist es möglich, hierdurch eine Tipspeed von mehr als 400 m/s, insbesondere mehr als 500 m/s und besonders bevorzugt mehr als 600 m/s zu erzielen.
Vorzugsweise handelt es sich bei dem verwendeten Material um ein langfaserverstärktes Material mit Faserlängen von 1 bis 50mm oder um Endlosfasern mit Längen über 50 mm.
Die beanspruchungsgerechte Anordnung der Fasern erfolgt vorzugsweise durch eine geeignete Ausrichtung der Fasern, so dass diese die bei derart hohen Geschwindigkeiten auftretenden Kräfte und Momente aufnehmen können. Eine beanspruchungsgerechte Anordnung wird auch dadurch erzielt, dass ggf. zusätzlich je nach Art der Beanspruchung die Richtung, die Dichte, die Festigkeit und/oder die Dicke der verwendeten Fasern variiert werden. Dies ist insbesondere vom Bereich der Beanspruchung an dem Nabenelement und/oder an den Rotorflügeln abhängig. Des Weiteren ist es besonders bevorzugt, dass zur beanspruchungsgerechten Anordnung zusätzlich auch für die entsprechende Beanspruchung besonders geeignete Fasern verwendet werden.
Bevorzugt ist es hierbei, dass Metall-, Kunststoff- oder Kohlefasern verwendet werden. Hierbei ist es wiederum bevorzugt, im Bereich des Nabenelements oder dem dem Nabenelement zugewandten Teil der Rotorflügel ggf. Metallfasern einzusetzen, da sie ein anderes Bruchverhalten aufweisen.
Es können im Nabenbereich zur Stabilisierung der Lage von Fasern oder zur Schaffung von Volumen auch massive Metall- oder Kunststoffteile in das Laminat mit eingearbeitet sein. Bevorzugt ist es ferner, dass beispielsweise Kunststoff-, Kohle- und/oder Metallfasern imprägniert oder vorimprägniert werden. Hierbei ist die Imprägnierung mit Epoxidharz, Phenolharz, Bismaimiden und/ oder thermoplastischen Kunststoffen, aber auch Polyurethan bevorzugt. Des Weiteren ist es bevorzugt, die Fasern als Gewebe, als Spread Tow, als Tape-Lagen, als TFP (Tailored-Fiber-Placement) gewickelt, geflochten und/oder als Spiralgewebe anzuordnen. Ferner sind insbesondere belastungsgerechte Mischformen unterschiedlicher Faseranordnungen möglich und auch bevorzugt.
Zur Erzielung besonders hoher Tipspeeds ist es bevorzugt, dass mindestens 20%, vorzugsweise mindestens 30% der im bzw. am Nabenelement und/oder im bzw. an den Rotorflügeln vorgesehenen Fasern beanspruchungsgerecht, d.h. insbesondere in Hauptspannungsrichtung angeordnet sind. Im Flügelbereich verlaufen die Fasern vorzugsweise in radialer Richtung, um die Kräfte aufzunehmen. Im Nabenbereich sind Teile der Fasern vorzugsweise rein in Umfangsrichtung gelegt, andere Bereiche weisen aber abweichende Richtungen auf, um eine Spannungverlagerung zu ermöglichen. Der Faservolumenanteil bezogen auf das Gesamtvolumen des Nabenelements und/oder der Rotorflügel ist hierbei vorzugsweise größer als 50%, insbesondere größer als 60%. Die im oder am Nabenelement angeordneten Fasern sind vorzugsweise im Wesentlichen in Umfangsrichtung, d.h. in Rotationsrichtung des Nabenelements angeordnet. Hierbei sind die Fasern vorzugsweise so angeordnet, dass die Fasern die Kräfte in Umfangs-Richtung aufnehmen können. Hierbei ist, bezogen auf die Umfangsrichtung, eine Abweichung in einem Winkelbereich von ± 10° bis ± 20° derart definiert, dass es sich hierbei immer noch um Fasern handelt, die im Wesentlichen in Umfangsrichtung verlaufen.
In oder an den Rotorflügeln verlaufen die Fasern vorzugsweise im Wesentlichen radial. Im Bereich der Flügel müssen die Fasern so angeordnet sein, dass die Fasern die Kräfte in radialer Richtung aufnehmen. Eine Abweichung im Bereich von ± 10° bis ± 20° definiert hierbei weiterhin eine im Wesentlichen radial verlaufende Faser.
Insbesondere im angestellten Bereich der Flügelteile der Rotorflügel ist es bevorzugt, zusätzlich sich kreuzende Fasern zu verwenden, um eine beanspruchungsgerechte Anordnung der Fasern, z.B. gegen Verdrehen der Flügel, vorzunehmen. Die Fasern verlaufen hierbei vorzugsweise in einem Winkelbereich von ± 30° bis ± 45° gegenüber der Flügellängsachse und ± 70° bis ± 90° zueinander. Geeignet sind hierbei entsprechende Faserlagen, wie Patches oder Spread Tows. In einem Übergangsbereich zwischen den Nabenelementen und den Rotorflügeln ist es besonders bevorzugt, dass Fasern von dem Nabenelement in die Rotorflügel übergehen, so dass der Verbindungsbereich zwischen dem Nabenelement und den Rotorflügeln möglichst belastungsgerecht ausgebildet ist. Insbesondere bei einer derartigen Konstruktion ist es bevorzugt, dass das Nabenelement und die Rotorflügel einstückig ausgebildet sind. Es ist jedoch auch möglich, dass die Rotorflügel durch Einhängen, Einstecken in entsprechende Nuten und dergleichen mit der Nabe verbunden sind. Auch Kombinationen hiervon sind möglich, so dass zunächst eingehängte oder auf andere Art mit dem Nabenelement verbundene Flügelelemente anschließend über eine Faserlage in diesem Bereich mit dem Nabenelement verbunden werden.
Ein Verbinden der Fasern kann durch anschließendes Vergießen, Verharzen oder dergleichen erfolgen. Zunächst kann aber auch, um eine exakte Position der Fasern zu definieren, ein Verkleben der Fasern miteinander erfolgen. Die Fasern können auch durch Sticken, Stricken oder dergleichen in der erforderlichen Richtung fixiert oder miteinander verbunden werden.
Des Weiteren ist es bevorzugt, dass die Rotorflügel einen Anstellwinkel von 8° - 50° aufweisen können.
Mit Hilfe der vorstehend beschriebenen Vakuumpumpen-Rotoren ist es insbesondere möglich, eine hohe Tipspeed von mehr als 400 m/s, insbesondere mehr als 500 m/s und besonders bevorzugt mehr als 600 m/s zu erreichen. Dies hat den erfindungswesentlichen Vorteil, dass die Rotoren auch zum Fördern leichter Gase, wie insbesondere Helium und Wasserstoff, geeignet sind. Auch ist es hierdurch möglich, bei hohen Förderleistungen Pumpenrotoren mit geringeren Durchmessern zu realisieren.
Besonders bevorzugt ist es, dass eines der Zusatz-Flügelelemente, insbesondere sowohl die inneren als auch die äußeren Zusatz-Flügelelemente eine Radialschicht aus einem faserverstärkten Material, insbesondere faserverstärkten Kunststoff aufweisen. Des Weiteren ist es bevorzugt, dass eines der Zusatz-Flügelelemente, insbesondere die beiden äußeren Zusatz- Flügelelemente, eine Spreadtow-Gewebeschicht aufweisen.
Das mindestens eine Versteifungselement weist vorzugsweise ebenfalls Fasermaterial, insbesondere Kunststoff-Fasermaterial auf. Ein Teil der Fasern verläuft hierbei vorzugsweise in Umfangsrichtung. Hierdurch ist eine Tangentialschicht ausgebildet. Es ist bevorzugt, dass das mindestens eine Halteelement ebenfalls Fasern aufweist, die in Umfangsrichtung verlaufen, so dass weitere Tangentialschichten ausgebildet sind. Die insbesondere inneren Zusatz-Flügelelemente weisen als Hauptfaserrichtung in bevorzugter Ausführungsform radial verlaufende Fasern auf, so dass hierdurch Radialschichten ausgebildet sind. Bei den vorzugsweise vorgesehenen zwei äußeren Zusatz-Flügelelementen sind die Fasern gekreuzt zueinander angeordnet und insbesondere ein Spreadtow-Gewebe vorgesehen.
Insbesondere durch die mehrschichtige Ausgestaltung des Vakuumpumpen- Rotors aus vorzugsweise unterschiedlichen Materiallagen mit besonders bevorzugten unterschiedlichen Ausrichtungen der Materialfasern ist es möglich, Vakuumpumpen-Rotoren herzustellen die extrem hohen Belastungen standhalten, sodass sehr hohe Tipspeeds erzielt werden können.
Der vorstehend beschriebene Aufbau von Vakuum pumpen -Rotoren ist auch für andere schnelldrehende Rotoren, wie sie beispielsweise im Bereich Gebläse, Ventilatoren, Gasförderung verwendet werden, erfindungsgemäß bevorzugt, wobei dies eine unabhängige Erfindung darstellt.
Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegende Zeichnung näher erläutert.
Die Figur zeigt einen Ausschnitt eines Vakuumpumpen-Rotors in zusammengefügtem Zustand sowie teilweise als Explosionsdarstellung, wobei die Darstellung schematisch vereinfacht erfolgt.
In der Figur ist zunächst schematisch ein Teil eines mehrlagigen Vakuumpumpen-Rotors mit miteinander verbundenen Materiallagen dargestellt. Hierbei ist ein Teil eines Nabenelements 10 dargestellt. Hierbei ist nur ein Kreisringsegment des kreisringförmigen Nabenelements 10 dargestellt. Das Nabenelement 10 umgibt beispielsweise eine Rotorwelle, mit der es fest verbunden ist. Üblicherweise sind mehrere derartige ringförmige Nabenelemente in axialer Richtung hintereinander angeordnet, sodass mehrere Vakuumpumpen-Stufen ausgebildet sind und beispielsweise einen Rotor für eine Turbomolekularpumpe ausbilden. Hierdurch können die einzelnen Nabenelemente mit einer Rotorwelle verbunden sein oder selbst die Rotorwelle ausbilden, indem sie entsprechend miteinander verbunden werden. Mit dem Nabenelement 10 sind in Umfangsrichtung jeweils radial verlaufende in einem Winkel angestellte Rotorflügel 12 verbunden, wobei zur Veranschaulichung nur ein einziger Rotorflügel 12 dargestellt ist.
Zur Verdeutlichung des mehrschichtigen Aufbaus weist die Zeichnung ferner eine Explosionsdarstellung der einzelnen Schichten auf. Hierbei ist als mittlere Schicht ein Basiselement 14 dargestellt. Der Aufbau des gesamten Vakuumpumpen-Rotors in der dargestellten bevorzugten Ausführungsform ist symmetrisch zu dem Basiselement 14 aufgebaut. Auf dem Basiselement 14 ist ein Versteifungselement 16 angeordnet, wobei symmetrisch zum Basiselement 14 auf der gegenüberliegenden Seite ein weiteres Versteifungselement symmetrisch zum dem dargestellten Versteifungselement 16 angeordnet ist. Entsprechendes gilt auch für die nächste Schicht, die durch ein inneres Zusatz- Flügelelement 18 ausgebildet ist, wobei das zweite Zusatz-Flügelelement 18 wiederum auf der gegenüberliegenden Seite symmetrisch zu dem Basiselement 14 vorgesehen ist. Entsprechend sind auch zwei äußere Zusatz- Flügelelemente 20 vorgesehen und wiederum symmetrisch zu dem Basiselement 14 angeordnet. Als weiteres Element sind zwei Halteelemente 22 vorgesehen, die wiederum symmetrisch zum Basiselement 14 angeordnet sind. Die Halteelemente 22 stellen hierbei die wesentlichen Elemente des Nabenelements 10 dar.
Das Basiselement 14, welches die Symmetrieebene ausbildet, weist in der dargestellten bevorzugten Ausführungsform eine Außenkontur auf, die der Außenkontur des Flügels 12 entspricht. Das Basiselement 14 weist hierbei ein Nabenteil 24 auf, das in das Nabenelement 10 ragt bzw. zwischen den beiden Halteelementen 22 des Nabenelements 10 angeordnet ist. Hierbei ist zu berücksichtigen, dass die beiden Halteelemente 22 insbesondere ringförmig ausgebildet sind, wobei zwischen diesen beiden ringförmigen Halteelementen 22 mehrere Nabenteile entsprechend der Anzahl der Rotorflügel 12 angeordnet sind. Mit dem Nabenteil 24 ist ein Flügelfuß 26 verbunden und insbesondere einstückig ausgebildet. Der Flügelfuß 26 stellt das Verbindungselement zwischen dem Nabenteil und einem Flügelkopf 28 dar. Der Flügelkopf 28 ist hierbei der wesentliche Bestandteil des Rotorflügels 12. Das Basiselement 14 ist vorzugsweise einstückig ausgebildet und weist in bevorzugter Ausführungsform ein Kohlefaservlies auf.
Die nächste Schicht ist durch die beiden einander gegenüberliegenden Versteifungselemente 16 ausgebildet. Die Außenkontur der Versteifungselemente 16 entspricht im dargestellten Ausführungsbeispiel der Außenkontur des Nabenteils 24 und des Flügelfußes 26. Gegebenenfalls ragt das Versteifungselement 16 nur in einen Teil des Flügelfußes 26. Das Versteifungselement weist an einer Innenseite ein Fixierelement 30 auf. Dieses ragt axial nach Außen und hintergreift jeweils die beiden Halteelemente 22. Das Versteifungselement 16 ist vorzugsweise als Tangentialschicht ausgebildet und weist insofern eine Vielzahl in Umfangsrichtung zur Aufnahme von Tangentialkräften geeignete Fasern auf. Hierbei ist der Dickengradient am Nabeninnenbereich hoch.
Die nächste Materiallage ist durch die beiden inneren Zusatz-Flügelelemente 18 ausgebildet. Die Außenkontur der inneren Zusatz-Flügelelemente entspricht der Außenkontur des Basiselements. Die inneren Zusatz-Flügelelemente 18 weisen ebenfalls ein Fixierelement 32 auf, das die Halteelemente 22 entsprechend dem Fixierelement 32 radial hintergreift. Vorzugsweise sind die Materialfasern der inneren Zusatz-Flügelelemente 18 radial ausgerichtet, sodass diese Schichten als Radialschichten angesehen werden können.
Die nächsten Materiallagen werden durch die äußeren Zusatz-Flügelelemente 20 ausgebildet. Die Außenkontur der äußeren Zusatz-Flügelelemente 20 entspricht wiederum der Außenkontur des Basiselements 14. Des Weiteren weisen auch die äußeren Zusatz-Flügelelemente 20 ein Fixierelement 34 auf, das wiederum die beiden Halteelemente 22 radial hintergreift. Bevorzugt ist es, dass die äußeren Zusatz-Flügelelemente 20 aus einem Spreadtow-Gewebe hergestellt sind.
Die äußere Materiallage wird durch die beiden Halteelemente 22 ausgebildet, wobei sich diese nicht in den Rotorflügel 12 hinein strecken, sondern im Wesentlichen das Nabenelement ausbilden. Auch die Halteelemente 22 weisen vorzugsweise Materialfasern, insbesondere Kunststofffasern oder Kohlenstofffasern auf.
Wesentlich für die Erfindung ist der mehrlagige Aufbau des Vakuumpumpen- Rotors. Die Ausgestaltung und die Materialwahl der einzelnen Lagen sind hierbei vorzugsweise derart gewählt, dass eine möglichst beanspruchungsgerechte Materialauswahl und ein beanspruchungsgerechter Faserverlauf realisiert sind. Hierdurch können Vakuumpumpen-Rotoren hergestellt werden, die äußerst hohen Beanspruchungen standhalten und insbesondere eine Tipspeed von mehr als 400 m/s, insbesondere mehr als 500 m/s und insbesondere mehr als 600 m/s realisieren können.

Claims

Ansprüche
Vakuum pumpen -Rotor, insbesondere für Turbomolekularpumpen, mit einem Nabenelement (10) zur Verbindung mit einer Rotorwelle und/oder zum Ausbilden einer Rotorwelle und mit den Nabenelement (10) verbundenen Rotorflügeln (12), dadurch gekennzeichnet, dass das Nabenelement (10) und/oder die Rotorflügel (12) mehrere Materiallagen aufweisen.
Vakuumpumpen-Rotor nach Anspruch 1, dadurch gekennzeichnet, dass zumindest eine der Materiallagen faserverstärktes Material aufweist.
Vakuumpumpen-Rotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mehrere das Nabenelement (10) umgebene Rotorflügel (12) vorgesehen sind, die jeweils einen mit dem Nabenelement (10) verbundenen Flügelfuß (26) und einen mit diesem verbundenen Flügelkopf (28) aufweisen.
Vakuumpumpen-Rotor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Nabenelement (10) mindestens ein faserverstärktes Material aufweisendes Halteelement (22) aufweist.
Vakuumpumpen-Rotor nach Anspruch 4, dadurch gekennzeichnet, dass ein Basiselement (14), das faserverstärktes Material aufweist, vorgesehen ist, das mittelbar oder unmittelbar mit dem mindestens einen Halteelement (22) verbunden ist.
6. Vakuumpumpen-Rotor nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Basiselement (14) ein im Nabenelement (10) angeordnetes Nabenteil (24) aufweist und den Flügelfuß (26) sowie vorzugsweise auch den Flügelkopf (28) ausbildet.
7. Vakuumpumpen-Rotor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Nabenelement (10) zwei einander gegenüberliegende Halteelemente (22) aufweist, zwischen denen ein Nabenteil (24) des Basiselements (14) angeordnet ist.
8. Vakuumpumpen-Rotor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein Versteifungselement (16), das vorzugsweise faserverstärktes Material aufweist, vorgesehen ist, welches mit dem Halteelement (22) flächig verbunden ist und in den Flügelfuß (26) ragt.
9. Vakuumpumpen-Rotor nach Anspruch 8, dadurch gekennzeichnet, dass das Versteifungselement (16) an einer Innenseite ein Fixierelement (30) aufweist, das sich vorzugsweise zumindest teilweise axial erstreckt und/oder das Halteelement (22) hintergreift.
10. Vakuumpumpen-Rotor nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass zwei einander gegenüberliegende Versteifungselemente (16) auf unterschiedlichen Seiten des Basiselements (14) angeordnet sind.
11. Vakuumpumpen-Rotor nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass mindestens ein Zusatz-Flügelelement (18, 20), das faserverstärktes Material aufweist, vorgesehen ist, welches mit dem Halteelement (22) verbunden ist und in den Flügelfuß (26) sowie vorzugsweise in den Flügelkopf (28) ragt.
12. Vakuumpumpen-Rotor nach Anspruch 11, dadurch gekennzeichnet, dass das mindestens eine Zusatz-Flügelelement (18, 20) an einer Innenseite ein Fixierelement (32) aufweist, das sich vorzugsweise zumindest teilweise axial erstreckt und/oder das Halteelement (22) hintergreift.
13. Vakuumpumpen-Rotor nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass eines der Zusatz-Flügelelemente (18) eine Radialschicht eines faserverstärkten Materials aufweist.
14. Vakuumpumpen-Rotor nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass eines der Zusatz-Flügelelemente (20) eine Spreadtow-Gewebeschicht aufweist.
15. Vakuumpumpen-Rotor nach Anspruch 13, dadurch gekennzeichnet, dass zumindest eines der Zusatz-Flügelelemente als inneres Zusatz- Flügelelement (18) ausgebildet ist, das vorzugsweise flächig mit einem Flügelkopf (28) des Basiselements (14) verbunden ist.
16. Vakuumpumpen-Rotor nach Anspruch 14, dadurch gekennzeichnet, dass zumindest eines der Zusatz-Flügelelemente als äußeres Zusatz- Flügelelement (20) ausgebildet ist, das vorzugsweise flächig mit dem inneren Zusatz-Flügelelement (18) verbunden ist.
17. Vakuumpumpen-Rotor nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das Basiselement (14) und mindestens ein, vorzugsweise alle Zusatz-Flügelelemente (18, 20) im Wesentlichen dieselbe Außenkontur, insbesondere eine Flügel-Außenkontur, aufweisen.
18. Vakuumpumpen-Rotor nach einem der Ansprüche 8 bis 17, dadurch gekennzeichnet, dass das Versteifungselement (16) im Bereich des Flügelfußes (26) unmittelbar flächig an dem Basiselement (14) und/oder einem der Zusatz-Flügelelemente (18, 20) anliegt.
Vakuumpumpen-Rotor nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass das innere Zusatz-Flügelelement (18) im Bereich des Flügelfußes (26) und/oder des Flügelkopfes (28) unmittelbar flächig an dem äußeren Zusatz-Flügelelement (20) anliegt.
20. Vakuumpumpen-Rotor nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass der Rotor zum Basiselement (14) symmetrisch, mehrschichtig aufgebaut ist.
PCT/EP2016/061786 2015-06-08 2016-05-25 Vakuumpumpen-rotor WO2016198260A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201708740XA SG11201708740XA (en) 2015-06-08 2016-05-25 Vacuum-pump rotor
JP2017556803A JP6731421B2 (ja) 2015-06-08 2016-05-25 真空ポンプロータ
US15/568,840 US10393124B2 (en) 2015-06-08 2016-05-25 Vacuum-pump rotor
EP16725126.3A EP3280916B1 (de) 2015-06-08 2016-05-25 Vakuumpumpen-rotor
KR1020177031399A KR102521349B1 (ko) 2015-06-08 2016-05-25 진공 펌프 회전자
CN201680025153.9A CN107646076B (zh) 2015-06-08 2016-05-25 真空泵转子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE202015004001.2 2015-06-08
DE202015004001.2U DE202015004001U1 (de) 2015-06-08 2015-06-08 Vakuumpumpenrotor
DE202015004160.4 2015-06-15
DE202015004160.4U DE202015004160U1 (de) 2015-06-15 2015-06-15 Vakuumpumpen-Rotor

Publications (1)

Publication Number Publication Date
WO2016198260A1 true WO2016198260A1 (de) 2016-12-15

Family

ID=56081480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/061786 WO2016198260A1 (de) 2015-06-08 2016-05-25 Vakuumpumpen-rotor

Country Status (7)

Country Link
US (1) US10393124B2 (de)
EP (1) EP3280916B1 (de)
JP (1) JP6731421B2 (de)
KR (1) KR102521349B1 (de)
CN (1) CN107646076B (de)
SG (1) SG11201708740XA (de)
WO (1) WO2016198260A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155235A1 (en) * 2018-02-12 2019-08-15 Edwards Limited Reinforced vacuum system component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2600878B (en) * 2018-02-12 2022-12-14 Edwards Ltd Reinforced vacuum system component
GB2583938A (en) * 2019-05-14 2020-11-18 Edwards Ltd Vacuum rotor blade

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303288A (ja) * 1996-05-16 1997-11-25 Daikin Ind Ltd ターボ分子ポンプの翼
WO2005001294A1 (en) * 2003-06-25 2005-01-06 The Boc Group Plc Rotary impeller for a turbomolecular pump
WO2005052375A1 (de) * 2003-11-20 2005-06-09 Leybold Vacuum Gmbh Turbomolekularpumpen-rotorstufe
US20140363304A1 (en) * 2012-05-01 2014-12-11 Ihi Corporation Rotor blade and fan

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1071275B (de) 1959-12-17
GB2456637B (en) * 1997-06-03 2010-01-13 Rolls Royce Plc A fibre reinforced metal rotor
JP4324649B2 (ja) * 2001-11-28 2009-09-02 福井県 繊維強化熱可塑性樹脂シート及びそれを用いた構造材並びに繊維強化熱可塑性樹脂シートの製造方法
FR2845737B1 (fr) * 2002-10-11 2005-01-14 Cit Alcatel Pompe turbomoleculaire a jupe composite
GB0229355D0 (en) * 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping arrangement
JP2006090231A (ja) * 2004-09-24 2006-04-06 Boc Edwards Kk ターボ分子ポンプ固定翼の製造方法および真空ポンプ
DE102007006915A1 (de) 2007-02-13 2008-08-14 Oerlikon Leybold Vacuum Gmbh Rotorelement für Turbopumpenrotoren sowie Turbopumpenrotor
CN201050492Y (zh) * 2007-06-29 2008-04-23 成都无极真空科技有限公司 新立式涡轮分子泵
EP2040354B2 (de) * 2007-09-21 2019-01-23 Grundfos Management A/S Spaltrohr eines Antriebsmotors für ein Pumpenaggregat
CN101254578A (zh) * 2008-04-09 2008-09-03 北京中科科仪技术发展有限责任公司 大型涡轮分子泵的涡轮转子的制造方法
JP5676453B2 (ja) * 2009-08-26 2015-02-25 株式会社島津製作所 ターボ分子ポンプおよびロータの製造方法
ITTO20100070A1 (it) 2010-02-01 2011-08-02 Varian Spa Pompa da vuoto, in particolare pompa da vuoto turbomolecolare.
WO2011162070A1 (ja) * 2010-06-24 2011-12-29 エドワーズ株式会社 真空ポンプ
GB2498816A (en) * 2012-01-27 2013-07-31 Edwards Ltd Vacuum pump
DE102012003680A1 (de) * 2012-02-23 2013-08-29 Pfeiffer Vacuum Gmbh Vakuumpumpe
US9239062B2 (en) * 2012-09-10 2016-01-19 General Electric Company Low radius ratio fan for a gas turbine engine
US20140178204A1 (en) * 2012-12-21 2014-06-26 General Electric Company Wind turbine rotor blades with fiber reinforced portions and methods for making the same
DE202013002970U1 (de) 2013-03-27 2014-06-30 Oerlikon Leybold Vacuum Gmbh Werkzeug zur Herstellung einer mehrere Rotorschaufeln aufweisenden Rotorscheibe sowie Rotorscheibe
DE202015004160U1 (de) 2015-06-15 2016-09-19 Oerlikon Leybold Vacuum Gmbh Vakuumpumpen-Rotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303288A (ja) * 1996-05-16 1997-11-25 Daikin Ind Ltd ターボ分子ポンプの翼
WO2005001294A1 (en) * 2003-06-25 2005-01-06 The Boc Group Plc Rotary impeller for a turbomolecular pump
WO2005052375A1 (de) * 2003-11-20 2005-06-09 Leybold Vacuum Gmbh Turbomolekularpumpen-rotorstufe
US20140363304A1 (en) * 2012-05-01 2014-12-11 Ihi Corporation Rotor blade and fan

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155235A1 (en) * 2018-02-12 2019-08-15 Edwards Limited Reinforced vacuum system component
JP2021513029A (ja) * 2018-02-12 2021-05-20 エドワーズ リミテッド 強化された真空システム部品
US11739764B2 (en) 2018-02-12 2023-08-29 Edwards Limited Reinforced vacuum system component

Also Published As

Publication number Publication date
CN107646076B (zh) 2020-06-09
JP6731421B2 (ja) 2020-08-05
KR20180018488A (ko) 2018-02-21
CN107646076A (zh) 2018-01-30
JP2018517090A (ja) 2018-06-28
SG11201708740XA (en) 2017-11-29
EP3280916A1 (de) 2018-02-14
KR102521349B1 (ko) 2023-04-12
US10393124B2 (en) 2019-08-27
US20180100510A1 (en) 2018-04-12
EP3280916B1 (de) 2021-10-20

Similar Documents

Publication Publication Date Title
EP2209995B1 (de) Mehrstufiger turbomolekularpumpen-pumpenrotor
EP3018342B1 (de) Verfahren zum herstellen eines rotorblatts einer windenergieanlage
EP3280916B1 (de) Vakuumpumpen-rotor
EP3367541B1 (de) Rotor eines elektromotors
DE202015004160U1 (de) Vakuumpumpen-Rotor
EP2826958A1 (de) Rotor für eine thermische Strömungsmaschine
EP3058640B1 (de) Läuferkappe für elektrische generatoren
DE202015004001U1 (de) Vakuumpumpenrotor
EP2826957A1 (de) Rotor für eine thermische Strömungsmaschine
EP1498612B1 (de) Turbomolekularpumpe
EP2344769B1 (de) Vakuumpumpenrotor
EP3564523B1 (de) Flanschanschluss für ein windenergieanlagenrotorblatt, versteifungslage für einen flanschanschluss, flanscheinleger, windenergieanlagenrotorblatt, windenergieanlage sowie verfahren zum herstellen eines flanschanschlusses
DE102007006915A1 (de) Rotorelement für Turbopumpenrotoren sowie Turbopumpenrotor
DE102013209475B4 (de) Verfahren und Werkzeug zur Herstellung einer mehrere Rotorschaufeln aufweisenden Rotorscheibe sowie Rotorscheibe
DE102009010613A1 (de) Verfahren zum Anbringen bzw. Herstellen eines geschlossenen Deckbandes für eine Laufbeschaufelung einer Turbinenstufe sowie Laufbeschaufelung einer Turbinenstufe für eine Turbine
DE2304043A1 (de) Laufrad fuer eine stroemungsmaschine
CH699902B1 (de) Laufrad für einen Axial-Ventilator oder einen Axial-Lüfter.
DE102010021220A1 (de) Rotor sowie Turbomaschine
WO2015078648A1 (de) Rotorscheibe sowie rotor für eine vakuumpumpe
DE112019007538T5 (de) Rotor, motor und verfahren zur herstellung eines rotors
EP3480930A1 (de) Axialflussmaschine
WO2023285213A1 (de) Rotor für eine elektrische maschine
DE10113609C1 (de) Turbinenrotor, insbesondere für Aufwindturbinen
EP3362679A1 (de) Windenergieanlagen-rotorblatt und verfahren zum herstellen eines windenergieanlagen-rotorblattes
EP2813710A2 (de) Vakuumpumpe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16725126

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15568840

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177031399

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2017556803

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016725126

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE