WO2016197899A1 - 基于子帧偏移的载波聚合方法和基站 - Google Patents

基于子帧偏移的载波聚合方法和基站 Download PDF

Info

Publication number
WO2016197899A1
WO2016197899A1 PCT/CN2016/085027 CN2016085027W WO2016197899A1 WO 2016197899 A1 WO2016197899 A1 WO 2016197899A1 CN 2016085027 W CN2016085027 W CN 2016085027W WO 2016197899 A1 WO2016197899 A1 WO 2016197899A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
secondary carrier
subframe
base station
binding
Prior art date
Application number
PCT/CN2016/085027
Other languages
English (en)
French (fr)
Inventor
赵楠
程竹林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16806797.3A priority Critical patent/EP3297365B1/en
Priority to JP2017563956A priority patent/JP6463516B2/ja
Publication of WO2016197899A1 publication Critical patent/WO2016197899A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a carrier aggregation method and a base station based on subframe offset.
  • CA Carrier Aggregation
  • multiple carriers performing carrier aggregation may use the same or different subframe ratios. Considering that most services have more downlink services and fewer uplink services, the mainstream subframe ratio is also less for uplink subframes.
  • uplink subframes of multiple carriers may overlap.
  • uplink subframe overlap means that multiple carriers are used for uplink transmission in the same time slot.
  • both the uplink service and the downlink service are increased, one secondary carrier can be added to increase the capacity of the system.
  • the user cannot obtain significant benefits for the COSCO point user, and the COSCO point user is relative to the central user.
  • the mid-range users cannot use the uplink subframes of the two carriers to transmit data at the same time. Therefore, if there are uplink subframe overlaps in the carrier aggregation, the mid-range users cannot obtain the carrier aggregation radio resources. The proceeds.
  • the embodiment of the present invention provides a carrier aggregation method based on a subframe offset and a base station, which causes the uplink subframe of each carrier in the carrier aggregation to be shifted by the subframe offset, so that the user at the center can also obtain the carrier aggregation. Gain, reaching the enhanced goal of coverage and capacity.
  • a first aspect of the present invention provides a carrier aggregation method based on a subframe offset, including:
  • the base station determines to add a secondary carrier
  • a subframe offset to the secondary carrier Determining, by the base station, a subframe offset to the secondary carrier, and determining, according to a subframe ratio of the primary carrier and a subframe ratio of the secondary carrier, a subframe offset of the secondary carrier relative to the primary carrier
  • the amount of the subframe offset is a size of N subframes, and the subframe offset is not equal to an integer multiple of a period of the subframe ratio of the secondary carrier, and N is a positive value greater than or equal to 1.
  • the base station configures the secondary carrier for each UE in the first UE set in the coverage, and sends configuration information to each UE in the first UE set, where the configuration information includes: the secondary carrier The frequency point, the subframe ratio of the secondary carrier, and the subframe offset of the secondary carrier.
  • the method further includes:
  • the base station determines, according to the uplink traffic volume and/or the downlink traffic volume, that the subframe offset of the secondary carrier is adjusted;
  • the base station switches the UE in the third UE set that is camped on the secondary carrier to another carrier, where the UE in the third UE set is the UE that uses the secondary carrier as the primary carrier;
  • the base station reconfigures the secondary carrier for each UE in the first UE set according to the to-be-adjusted subframe offset, and sends each UE and the third in the first UE set
  • Each of the UEs in the UE set sends the updated carrier information, where the updated carrier information includes: a frequency of the secondary carrier, a subframe ratio of the secondary carrier, and the subframe offset to be adjusted. ;
  • the UE performs handover.
  • the method further includes:
  • a binding subframe for binding at least two carriers from the activated carrier where the binding subframe is consecutive among the at least two carriers used for binding transmission a subframe, the binding subframe is used to transmit the same data
  • the configuration information of the binding transmission includes : the at least two carriers for binding transmission, the resource blocks participating in the binding transmission in the at least two carriers for binding transmission, the sequence number of the binding subframe, and the binding The scheduling method of the transmission.
  • the method before the base station configures the secondary carrier in each of the first user equipment UE set in the coverage, the method further includes :
  • the base station broadcasts, by using the secondary carrier, a frequency point, a subframe ratio, and a subframe offset of the secondary carrier to all UEs in the coverage of the base station;
  • the UE constitutes the first set of UEs.
  • the subframe offset of the secondary carrier is the same as the subframe offset of the other secondary carriers of the primary carrier.
  • the subframe offset of the secondary carrier is different from the subframe offset of the other secondary carriers of the primary carrier.
  • a subframe ratio of the secondary carrier is the same as a subframe ratio of the primary carrier and other secondary carriers of the primary carrier.
  • a subframe ratio of the secondary carrier is different from a subframe ratio of the primary carrier and other secondary carriers of the primary carrier.
  • a second aspect of the present invention provides a base station, including:
  • a determining module configured to determine to add a secondary carrier
  • the determining module is further configured to determine a subframe offset for the secondary carrier, and determine, according to a subframe ratio of the primary carrier and a subframe ratio of the secondary carrier, the secondary carrier relative to the primary carrier. a subframe offset, where the subframe offset is a size of N subframes, and the subframe offset is not equal to an integer multiple of a period of the subframe ratio of the secondary carrier, where N is a positive integer greater than or equal to 1;
  • a configuration module configured to configure the secondary carrier for each UE in the first user equipment UE set in the coverage of the base station
  • a sending module configured to send configuration information to each UE in the first UE set, where the configuration information includes: a frequency point of the secondary carrier, a subframe ratio of the secondary carrier, and the secondary carrier Subframe offset.
  • the determining module is further configured to:
  • the sending module is further configured to send, to each UE in the first UE set, a deletion configuration indication of the secondary carrier, where the deletion configuration indication is used to indicate that each UE in the first UE set is deleted.
  • the configuration of the secondary carrier
  • the base station further includes: a handover module, configured to switch a UE in a third UE set camped on the secondary carrier to another carrier, where the UE in the third UE set uses the secondary carrier as UE of the primary carrier;
  • the configuration module is further configured to re-take the first according to the to-be-adjusted subframe offset
  • Each UE in the UE set configures the secondary carrier
  • the sending module is further configured to send updated carrier information to each UE in the first UE set and each UE in the third UE set, where the updated carrier information includes: a frequency of the secondary carrier, a subframe ratio of the secondary carrier, and an offset of the subframe to be adjusted;
  • the base station further includes: a receiving module, configured to receive a measurement result of the secondary carrier sent by each UE in the third UE set, where the measurement result of the secondary carrier is each of the third UE set The UEs are measured according to the updated carrier information;
  • the switching module is further configured to determine, according to the measurement result of the secondary carrier that is sent by each UE in the third UE set, whether to select each UE in the third UE set from the other carrier Switching to the secondary carrier, performing handover for the UE in the third UE set that needs to be handed over to the secondary carrier.
  • the determining module is further configured to:
  • the binding subframe is used to transmit the same data
  • the sending module is further configured to send the configuration information of the binding transmission to the first UE, so that the first UE performs binding transmission according to the configuration information of the binding transmission, where the binding is performed.
  • the configuration information of the transmission includes: at least two carriers used for binding transmission, a resource block participating in the binding transmission in at least two carriers used for binding transmission, and a sequence number of the binding subframe And the scheduling mode of the binding transmission.
  • the sending module is further configured to:
  • the configuration module configures the secondary carrier for each UE in the first UE set in the coverage of the base station, using the secondary carrier to use the secondary carrier to match the frequency of the secondary carrier, the subframe ratio, and the subcarrier.
  • the frame offset is broadcast to all UEs in the coverage of the base station;
  • the determining module is further configured to: determine, by the base station, from all the UEs according to preset selection conditions. Determining a second UE set;
  • the sending module is further configured to send a measurement indication to each UE in the second UE set, where the measurement indication is used to indicate that each UE in the second UE set performs measurement on the secondary carrier;
  • the base station further includes:
  • a receiving module configured to receive a measurement result of the secondary carrier returned by each UE in the second UE set
  • the determining module is further configured to: according to the measurement result of the secondary carrier returned by each UE in the second UE set, determine, from the second UE set, that the UE whose measurement result meets a preset condition, The UEs of the preset conditions constitute the first UE set.
  • the subframe offset of the secondary carrier is the same as the subframe offset of the other secondary carriers of the primary carrier.
  • the subframe offset of the secondary carrier is different from the subframe offset of the other secondary carriers of the primary carrier.
  • a subframe ratio of the secondary carrier is the same as a subframe ratio of the primary carrier and other secondary carriers of the primary carrier.
  • a subframe ratio of the secondary carrier is different from a subframe ratio of the primary carrier and other secondary carriers of the primary carrier.
  • the base station determines the subframe offset by adding the secondary carrier, and determines the subframe offset relative to the primary carrier for the secondary carrier, and then And configuring a secondary carrier for each UE in the first UE set in the coverage, and sending configuration information to each UE in the first UE set, where the configuration information includes: a frequency of the secondary carrier, and a subframe of the secondary carrier.
  • the subframe offset of the ratio and the secondary carrier is the subframe offset of the ratio and the secondary carrier.
  • the uplink subframe of the secondary carrier and the primary carrier may be shifted, or the secondary carrier may be offset from the uplink subframe of the other carrier, thereby enabling the remote point user supporting carrier aggregation. It can be used on the uplink subframes of different carriers, so that the users at the far-end point can also obtain the gain brought by the carrier aggregation to achieve the enhanced coverage and capacity.
  • FIG. 1 is a flowchart of a method for carrier aggregation based on subframe offset according to Embodiment 1 of the present invention
  • 2 is a subframe pattern after a subframe offset of a carrier of the same subframe ratio
  • 3 is another seed frame pattern after a subframe offset of a carrier of the same subframe ratio
  • 4 is a sub-frame pattern after a subframe offset of a carrier of a different subframe ratio
  • 5 is another seed frame pattern after a subframe offset of a carrier of a different subframe ratio
  • 6 is another seed frame pattern after a subframe offset of a carrier of a different subframe ratio
  • 7 is a subframe pattern of a subframe offset combined with a TDD carrier and an FDD carrier;
  • FIG. 8 is a flowchart of a carrier aggregation method based on subframe offset according to Embodiment 2 of the present invention.
  • FIG. 9 is a flowchart of a carrier aggregation method based on subframe offset according to Embodiment 3 of the present invention.
  • 10 is another seed frame pattern after a subframe offset of a carrier of the same subframe ratio
  • FIG. 11 is a schematic structural diagram of a base station according to Embodiment 4 of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station according to Embodiment 5 of the present invention.
  • FIG. 13 is a schematic diagram of a result of a base station according to Embodiment 7 of the present invention.
  • the method of the embodiment of the present invention is mainly applied to a communication system in which TDD supports carrier aggregation, for example.
  • TDD supports carrier aggregation
  • the carrier aggregation cell generally includes one primary carrier and at least one secondary carrier.
  • uplink subframes of multiple carriers that perform carrier aggregation may overlap.
  • one secondary carrier may be added to increase the capacity of the system, but the addition of the secondary carrier does not bring significant benefits to the user at the far-end point.
  • the mid-range users cannot use the uplink subframes of the two carriers to transmit data at the same time.
  • the far-end point user is a user who is far away from the base station. For example, taking the coverage area of the base station as a circle is taken as an example.
  • the medium-distance point user refers to a user whose distance from the base station is greater than 1/2 of the radius of the coverage area of the base station.
  • FIG. 1 is a flowchart of a method for carrier aggregation based on subframe offset according to Embodiment 1 of the present invention. As shown in FIG. 1, the method of this embodiment may include the following steps:
  • Step 101 The base station determines to add one secondary carrier.
  • the base station may specifically determine whether to add the secondary carrier by: the base station determines that the expected uplink traffic volume in the communication system is higher than the current uplink traffic volume, or the base station determines that the expected downlink traffic volume in the communication system is higher than the current downlink traffic volume, or The base station determines that the expected uplink traffic in the communication system is higher than the current uplink traffic, and the expected downlink traffic is also higher than the current downlink traffic.
  • the base station needs to select the attribute of the newly added secondary carrier according to the attributes of the primary carrier and the existing secondary carrier, for example, determining a new increase according to the frequency of the primary carrier and the frequency of the existing secondary carrier.
  • the bandwidth of the newly added secondary carrier is determined according to the expected uplink traffic and/or downlink traffic to meet the needs of the service.
  • Step 102 The base station determines to perform subframe offset on the secondary carrier, and determines a subframe offset of the secondary carrier relative to the primary carrier according to the subframe ratio of the primary carrier and the subframe ratio of the secondary carrier, where the subframe offset
  • the shift amount is the size of N subframes, and the subframe offset is not equal to an integer multiple of the period of the subframe ratio of the secondary carrier, and N is a positive integer greater than or equal to 1.
  • the base station determines whether to perform subframe offset on the secondary carrier, and needs to consider any one of the following factors or a combination thereof: (1) whether the uplink coverage of the communication system is worse than the downlink coverage, if the uplink coverage is lower than the downlink coverage If the difference is small, the subframe offset of the secondary carrier is considered. Otherwise, the purpose of not performing the subframe offset for subframe offset is mainly to increase the uplink coverage. (2) If the guard interval between any two carriers is less than a certain threshold (for example, 20 MHz), the subframe offset cannot be performed.
  • any two carriers may be a primary carrier and a secondary carrier, or may be two secondary carriers.
  • the UE simultaneously transmits and receives data on the two carriers, and the interference between the two carriers is large, which in turn reduces the capacity of the communication system. .
  • the user equipment User Equipment, UE for short
  • the subframe offset cannot be performed. For example, the number of UEs supporting the subframe offset in the communication system occupies the UE. If the ratio of the total is less than 5%, the sub-frame offset cannot be performed.
  • the UE reports its own capability parameter to the base station.
  • the capability parameter includes the capability supported by the UE.
  • the base station determines whether the UE supports the subframe offset according to the capability parameter of the UE, thereby counting the number of UEs supporting the subframe offset in the communication system. (4) Whether the original uplink subframe and the downlink subframe are affected after the subframe offset is performed, for example, in some uplink subframes, all UEs in the communication system need to perform uplink transmission or downlink reception at the same time, When performing subframe offset, this type of subframe should be avoided to prevent the UE from transmitting and receiving system information after the subframe offset due to the transmission and reception capability.
  • the base station After determining the subframe offset of the secondary carrier, the base station determines the subframe offset of the secondary carrier relative to the primary carrier according to the subframe ratio of the primary carrier and the subframe ratio of the secondary carrier.
  • the uplink and downlink are separated in time, and the carrier frequency is the same. That is, in every 10 ms period, there are a total of 10 subframes available for uplink and downlink, and each subframe is either an uplink subframe or a downlink subframe.
  • each radio frame is first divided into two 5ms half frames, which can be divided into two types: 5ms period and 10ms period, which is convenient for flexibly supporting uplink and downlink services with different subframe ratios.
  • subframe 1 and subframe 6 are fixedly configured as special subframes; in the 10 ms period, subframe 1 is fixedly configured as a special subframe.
  • 7 seed frame ratios are supported, as shown in Table 1:
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • the subframe ratio of the primary carrier and the carrier may be the same or different.
  • the subframe ratio of the primary carrier and the subframe ratio of the secondary carrier are the same, all the uplink subframes of the primary carrier and the secondary carrier overlap, when the subframe ratio of the primary carrier and the subframe ratio of the secondary carrier are different, Only some of the uplink subframes of the primary carrier and the secondary carrier overlap.
  • the size of the subframe offset may be determined according to actual needs, where the subframe offset is the size of the N subframes, and the subframe offset is not equal to the period of the subframe ratio of the secondary carrier. Integer multiple.
  • the subframe of the secondary carrier in a scheduling period, the first subframe of the primary carrier and the secondary carrier in the subframe pattern are aligned, but in this embodiment, the subframe of the secondary carrier is offset, so that the primary subframe is in the pattern.
  • the first subframe of the carrier and the secondary carrier are no longer aligned, such that the secondary carrier and the uplink subframe of the primary carrier or other secondary carrier are staggered.
  • the primary carrier may be configured with multiple secondary carriers, and the subframe offset of the newly added secondary carrier may be the same as or different from the subframe offset of the other secondary carriers of the primary carrier.
  • the subframe ratio of the secondary carrier may be the same as or different from the subframe ratio of the primary carrier and other secondary carriers of the primary carrier.
  • FIG. 2 is a subframe pattern after a subframe offset of a carrier of the same subframe ratio.
  • the subframe ratio of the primary carrier and the secondary carrier are ratio 2
  • the subframe offsets of the secondary carrier are 1, 2, 3, and 4, respectively.
  • the subframe offset is 0, that is, no subframe offset is performed.
  • 3 is another seed frame pattern after the subframe offset of the carrier of the same subframe ratio, and there are three carriers in FIG. 3: one carrier and two secondary carriers, and the subframe ratio of the primary carrier and the two secondary carriers. Both are ratio 2, and the sub-frame offsets of the two subcarriers are different.
  • uplink subframe offsets on two or more carriers may be implemented according to different subframe offsets.
  • FIG. 4 is a sub-frame pattern after a subframe offset of a carrier of a different subframe ratio.
  • 5 is another seed frame pattern after a subframe offset of a carrier of a different subframe ratio.
  • the ratio of the subframes of the two subcarriers is the ratio 1, and the subframe offsets of the two secondary carriers are different.
  • 6 is another seed frame pattern after a subframe offset of a carrier of a different subframe ratio.
  • the subframe ratio of the primary carrier is ratio 2
  • the subframe ratio of the secondary carrier 1 is the ratio 1
  • the subframe ratio of the secondary carrier is the ratio 3
  • the subframe offsets of the two secondary carriers are different. 4 to FIG. 6 , it can be seen that when carrier aggregation of two or more TDD different ratios is performed, uplink subframe offset of two or more carriers is implemented according to different subframe offsets.
  • the secondary carrier may further include an FDD.
  • the primary carrier is a TDD carrier
  • the secondary carrier should be at least Including a TDD carrier
  • FIG. 7 is a subframe pattern in which a TDD carrier and an FDD carrier are combined to perform subframe offset. As shown in FIG. 7, there are four carriers in FIG. 7: one primary carrier and three secondary carriers, and a primary carrier.
  • the sub-frame ratio is ratio 2
  • the sub-frame ratio of the sub-carrier 1 is ratio 1
  • the sub-carrier 3 is the FDD uplink carrier
  • the carrier 4 is the FDD downlink carrier
  • the sub-frame offset of the sub-carrier 1 is 1 And 2.
  • the subframe ratio of two or more carriers is the same as the existing protocol definition, but two or more carriers are aggregated and reach the prior art.
  • the subframe pattern of the carrier aggregation is completely different, and the uplink subframes are all staggered by the subframe offset, so that the uplink subframes of different carriers can be used by the same UE.
  • Step 103 The base station configures a secondary carrier for each UE in the first UE set in the coverage, and sends configuration information to each UE in the first UE set, where the configuration information includes: a frequency of the secondary carrier, and a secondary carrier. Subframe ratio and sub-frame offset of the secondary carrier.
  • the base station Before the base station configures the secondary carrier for each UE in the first UE set in the coverage, the base station may further perform the following operations: the base station uses the primary carrier or the secondary carrier to offset the frequency of the secondary carrier, the subframe ratio, and the subframe.
  • the mobile broadcast is broadcast to all UEs in the coverage of the base station.
  • the base station determines a second UE set from all UEs according to a preset selection condition, and sends a measurement indication to each UE in the second UE set, where the measurement indication is used to indicate that each UE in the second UE set measures the secondary carrier. .
  • Each of the second UE sets meets a preset selection condition, and the preset selection conditions include, but are not limited to, the following conditions: (1) the UE supports uplink carrier aggregation; (2) the UE supports the subframe aggregation of the subframe offset. (3) The UE supports full duplex; (4) the UE belongs to a weak coverage user, for example, the reference signal receiving power (RSRP) of the UE is less than -120 dBm (decibel); (5) the uplink service of the UE is affected by Power limit, such as UE power headroom report (Power Headroom The report (PHR) is 0, and the Signal to Interference plus Noise Ratio (SINR) is less than -3 dB. (5) The uplink service of the UE is limited. For example, the air interface rate is insufficient for the user rate requirement. (6) The downlink service of the UE is limited. For example, the air interface rate is less than 10% of the user rate requirement.
  • RSRP reference signal receiving power
  • PHR Power Headroom The report
  • the configuration information may further include: a bandwidth of the secondary carrier, and the base station may also notify the configuration information of the secondary carrier secondary carrier.
  • each UE in the second UE set After receiving the measurement indication sent by the base station, each UE in the second UE set measures the secondary carrier, and returns the measurement result of the secondary carrier to the base station, and the base station receives the measurement of the secondary carrier returned by each UE in the second UE set.
  • the UE that determines that the measurement result meets the preset condition is determined from the second UE set, and the UE that meets the preset condition is formed into the first UE set.
  • the preset conditions include, but are not limited to, the following conditions: the downlink RSRP of the UE is above a certain threshold and/or the SINR is above a certain threshold.
  • the UEs that meet the preset conditions are grouped into a first UE set, and then the secondary carriers are configured for the UEs in the first UE set.
  • the configuration information of each UE in the first UE set is transmitted to each UE, so that each UE in the first set performs data transmission and reception according to the configuration information of the secondary carrier.
  • the base station determines a subframe offset with respect to the primary carrier for the added secondary carrier, and then configures a secondary carrier for each UE in the first UE set in the coverage, and aggregates the first carrier.
  • Each of the UEs sends configuration information, where the configuration information includes: a frequency of the secondary carrier, a subframe ratio of the secondary carrier, and a subframe offset of the secondary carrier.
  • the uplink subframe of the secondary carrier and the primary carrier may be shifted, or the secondary carrier may be offset from the uplink subframe of the other carrier, thereby enabling the remote point user supporting carrier aggregation. It can be used on the uplink subframes of different carriers, so that the users at the far-end point can also obtain the gain brought by the carrier aggregation to achieve the enhanced coverage and capacity.
  • a secondary carrier may be added to the primary carrier at the time of T1, and then, during the operation of the network system, according to the service requirement, at time T2. Set the subframe offset for the secondary carrier.
  • FIG. 8 is a flowchart of a method for carrier aggregation based on subframe offset according to Embodiment 2 of the present invention. As shown in FIG. 8, the method in this embodiment may include the following steps:
  • Step 201 The base station determines to add a secondary carrier.
  • Step 202 The base station determines to perform subframe offset on the secondary carrier, and allocates according to the subframe of the primary carrier. Determining a subframe offset of the secondary carrier relative to the primary carrier, wherein the subframe offset is a size of N subframes, and the subframe offset is not equal to the subframe of the secondary carrier An integer multiple of the period of the ratio, N is a positive integer greater than or equal to 1.
  • Step 203 The base station configures a secondary carrier for each UE in the first UE set in the coverage, and sends configuration information to each UE in the first UE set, where the configuration information includes: a frequency of the secondary carrier, and a secondary carrier. Subframe ratio and subframe offset of the secondary carrier.
  • Step 204 The base station determines, according to the uplink traffic volume and/or the downlink traffic volume, the subframe offset of the secondary carrier.
  • the base station may adjust the subframe offset of the secondary carrier to adapt to the change of traffic in the communication system, so that the communication The capacity of the system is maximized.
  • Step 205 The base station determines a subframe offset to be adjusted of the secondary carrier.
  • the subframe offset may be adjusted to maximize the number of uplink subframes in the primary carrier and the secondary carrier, that is, all uplink subframes can be used by the user. If the uplink traffic is reduced, the number of uplink subframes in the primary carrier and the secondary carrier may be reduced by adjusting the subframe offset, or the subframe offset may be adjusted to 0, that is, the subframe offset is not required. shift.
  • Step 206 The base station sends a deletion configuration indication of the secondary carrier to each UE in the first UE set, where the deletion configuration indication is used to indicate that each UE in the first UE set deletes the configuration of the secondary carrier.
  • the base station needs to delete the original configuration of the secondary carriers of all the UEs that have been configured with the secondary carrier, and reconfigure the subframe offset for the secondary carrier.
  • Step 207 The base station switches the UE in the third UE set that resides on the secondary carrier to another carrier, and the UE in the third UE set is the UE that uses the secondary carrier as the primary carrier.
  • the primary carrier and the secondary carrier are relative to the UE, and for some UEs, one carrier is a secondary carrier, but for other UEs, the carrier is a primary carrier. Therefore, the secondary carrier added by the base station may be the primary carrier of the UE in the third UE set, and the UE in the third UE set uses the secondary carrier as the primary carrier, that is, the secondary carrier is used to connect to the network. To change The configuration information of the secondary carrier also affects the UEs in the third UE set. In order not to affect the UE data transmission and reception in the third UE set, the base station switches the UEs in the third UE set to other carriers.
  • Step 208 The base station reconfigures the secondary carrier for each UE in the first UE set according to the to-be-adjusted subframe offset, and sends an update to each UE in the first UE set and each UE in the third UE set.
  • the updated carrier information includes: a frequency of the secondary carrier, a subframe ratio of the secondary carrier, and a subframe offset to be adjusted.
  • the base station After deleting the original configuration of the secondary carrier of each UE in the first UE set, the base station re-configures the secondary carrier for each UE, and sends the updated carrier information to each UE, and the secondary carrier information in the updated carrier information.
  • the sub-frame offset has changed.
  • the UE in the first UE set transmits and receives data, the UE performs data transmission and reception according to the updated carrier information.
  • Step 209 The base station receives a measurement result of the secondary carrier sent by each UE in the third UE set.
  • the measurement result of the secondary carrier is obtained by each UE in the third UE set according to the updated carrier information.
  • the base station sends the updated carrier information to the UE in the third UE set, so that the UE in the third UE set re-measures the secondary carrier.
  • Step 210 The base station determines, according to the measurement result of the secondary carrier sent by each UE in the third UE set, whether to switch each UE in the third UE set from the other carrier to the secondary carrier, for the third UE set.
  • the UE that needs to switch to the secondary carrier needs to switch.
  • the UE is switched from the other carrier to the secondary carrier, and the handover condition is not met.
  • the UE does not perform a handover operation.
  • the UE switches from the other carrier to the secondary carrier, that is, the UE performs inter-cell handover.
  • the base station may also change the subframe offset of the secondary carrier according to the change of the traffic, so that the resources in the communication system can be maximized.
  • the basic unit of physical layer scheduling is 1 millisecond (ms), that is, the size of one subframe, such a small time interval can make the delay of data in LTE small, however, for the center point user, due to its own power In the time interval of 1 ms, the block error ratio (BER) requirement of data transmission may not be met.
  • TTI binding Budding
  • the continuous TTI with the uplink can be allocated to the same UE.
  • the same content is sent in these uplink TTIs, which can improve the probability of successful data decoding and improve the coverage of LTE uplink coverage.
  • four consecutive TTIs are usually bound, and the four TTIs that belong to each other belong to the same subcarrier.
  • FIG. 9 is a flowchart of a method for carrier aggregation based on a subframe offset according to Embodiment 3 of the present invention.
  • the present embodiment is performed on the basis of Embodiment 1 and Embodiment 2, as shown in FIG.
  • the method can include the following steps:
  • Step 301 The base station determines to add a secondary carrier.
  • Step 302 The base station determines to perform subframe offset on the secondary carrier, and determines a subframe offset of the secondary carrier relative to the primary carrier according to a subframe ratio of the primary carrier and a subframe ratio of the secondary carrier, where,
  • the frame offset is a size of N subframes, and the subframe offset is not equal to an integer multiple of the period of the subframe ratio of the secondary carrier, and N is a positive integer greater than or equal to 1.
  • Step 303 The base station configures a secondary carrier for each UE in the first UE set in the coverage, and sends configuration information to each UE in the first UE set, where the configuration information includes: a frequency of the secondary carrier, and a secondary carrier. Subframe ratio and sub-frame offset of the secondary carrier.
  • Step 304 The base station determines a carrier that the first UE has activated, and the first UE is any one of the first UE sets.
  • Step 305 The base station determines, from the activated carriers, a binding subframe used for binding the at least two carriers, where the binding subframe is a consecutive subframe of at least two carriers used for binding transmission, the binding The stator frame is used to transmit the same data.
  • the carrier that performs the binding transmission may be two carriers or more carriers.
  • the at least two carriers that the user binds to transmit may be the primary carrier and the secondary carrier, or both of them may be secondary carriers.
  • 10 is another seed frame pattern after the subframe offset of the carrier of the same subframe ratio. As shown in FIG. 10, the ratio of carrier 1 and carrier 2 is ratio 2, and the carrier 2 is subframe. Offset, after the carrier offset, the first UE may perform uplink transmission on subframes 2, 3, 7, and 8 of carrier 1, and uplink transmission on subframes 4, 5, 9, and 10 of carrier 2. As can be seen from the foregoing, the first UE can transmit uplink data on consecutive subframes 2, 3, 4, and 5, and in consecutive subframes 7, The uplink data is transmitted on 8, 9, and 10.
  • the uplink subframes 2 and 3 of the carrier 1 and the uplink subframes 4 and 5 of the carrier 2 can be bound by the TTI binding, and the uplink subframes 7 and 8 of the carrier 1 and the uplink subframe 9 of the carrier 2 are 10 bindings.
  • Step 306 The base station sends the configuration information of the binding transmission to the first UE, so that the first UE performs binding transmission according to the configuration information of the binding transmission, where the configuration information of the binding transmission includes: Two carriers, a resource block participating in the binding transmission of the at least two carriers used for the binding transmission, a sequence number of the binding subframe, and a scheduling manner of the binding transmission.
  • the base station After determining the binding subframe, the base station sends the configuration information of the binding transmission to the first UE, and the base station may send the configuration information of the binding transmission by using the primary carrier, or may send the configuration information of the binding transmission by using the secondary carrier, or The base station may also jointly send the configuration information of the binding transmission through the primary carrier and the secondary carrier.
  • the configuration information of the binding transmission includes: at least two carriers for binding transmission, and a resource block (RB) for binding transmission in at least two carriers used for binding transmission, and a binding subroutine The sequence number of the frame and the scheduling mode of the binding transmission.
  • Each carrier that participates in the binding transmission includes multiple resource blocks, where some resource blocks participate in the binding transmission, and some resource blocks do not participate in the binding transmission. Therefore, the base station also needs to notify the first UE which resource blocks participate in the binding transmission.
  • Scheduling methods include dynamic scheduling and semi-persistent scheduling (SPS).
  • the base station may indicate the scheduling information of the semi-persistent scheduling by one of the carriers in the carrier aggregation, which is generally indicated by the primary carrier, and may of course be indicated by the secondary carrier;
  • the scheduling information of each semi-persistent scheduling may be indicated by different carriers; once indicated, the transmission resources of the base station in the entire semi-persistent scheduling period are determined, and the transmission resources may belong to different carriers until semi-static The scheduling period ends, or the dynamic scheduling reallocates resources.
  • the time-divisional gain can also be obtained by performing cross-carrier frequency hopping in semi-persistent scheduling across carriers.
  • the base station may indicate that the first UE is configured with different frequency hopping modes on different carriers, or that some carriers adopt frequency modulation, and some carriers do not hop.
  • FIG. 11 is a schematic structural diagram of a base station according to Embodiment 4 of the present invention.
  • the base station provided in this embodiment may include: a determining module 11, a configuration module 12, and a sending module 13.
  • the determining module 11 is configured to determine to add one secondary carrier.
  • the determining module 11 is further used Determining a subframe offset for the secondary carrier, and determining a subframe offset of the secondary carrier relative to the primary carrier according to a subframe ratio of the primary carrier and a subframe ratio of the secondary carrier,
  • the subframe offset is a size of N subframes, and the subframe offset is not equal to an integer multiple of a period of the subframe ratio of the secondary carrier, and N is a positive integer greater than or equal to 1.
  • the configuration module 12 is configured to configure the secondary carrier for each UE in the first UE set in the coverage of the base station.
  • the sending module 13 is configured to send configuration information to each UE in the first UE set, where the configuration information includes: a frequency point of the secondary carrier, a subframe ratio of the secondary carrier, and the secondary carrier Subframe offset.
  • the sending module 13 is further configured to: before the configuration module 12 configures the secondary carrier in each of the first UE set in the coverage of the base station, using the secondary carrier The frequency of the secondary carrier, the subframe ratio, and the subframe offset are broadcast to all UEs in the coverage of the base station.
  • the determining module 11 is further configured to determine, by the base station, a second UE set from all the UEs according to a preset selection condition.
  • the sending module 13 is further configured to send a measurement indication to each UE in the second UE set, where the measurement indication is used to indicate that each UE in the second UE set performs measurement on the secondary carrier.
  • the base station further includes: a receiving module, configured to receive a measurement result of the secondary carrier returned by each UE in the second UE set.
  • the determining module is further configured to: according to the measurement result of the secondary carrier returned by each UE in the second UE set, determine, from the second UE set, that the UE whose measurement result meets a preset condition, The UEs of the preset conditions constitute the first UE set.
  • the subframe offset of the secondary carrier is the same as the subframe offset of the other secondary carriers of the primary carrier.
  • the subframe offset of the secondary carrier is different from the subframe offset of the other secondary carriers of the primary carrier.
  • the subframe ratio of the secondary carrier is the same as the subframe ratio of the primary carrier and other secondary carriers of the primary carrier.
  • the subframe ratio of the secondary carrier is different from the subframe ratio of the primary carrier and other secondary carriers of the primary carrier.
  • the base station in this embodiment may be used to perform the method provided in the first embodiment.
  • the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of a base station according to Embodiment 5 of the present invention.
  • the base station base station of this embodiment is based on the base station shown in FIG.
  • the base station further includes: a switching module 14 and a receiving module 15.
  • the base station of the embodiment has the following functions on the basis of the base station of the fourth embodiment:
  • the determining module 11 is further configured to: determine, according to an uplink traffic volume and/or a downlink traffic volume, adjust a subframe offset of the secondary carrier; and determine a subframe offset to be adjusted of the secondary carrier.
  • the sending module 13 is further configured to send, to each UE in the first UE set, a deletion configuration indication of the secondary carrier, where the deletion configuration indication is used to indicate each UE in the first UE set.
  • the configuration of the secondary carrier is deleted.
  • the switching module 14 is configured to switch a UE in a third UE set that resides on the secondary carrier to another carrier, where the UE in the third UE set uses the secondary carrier as a primary carrier. UE.
  • the configuration module 12 is further configured to reconfigure the secondary carrier for each UE in the first UE set according to the to-be-adjusted subframe offset.
  • the sending module 13 is further configured to send the updated carrier information to each UE in the first UE set and the third UE set, where the updated carrier information includes: the auxiliary The frequency of the carrier, the subframe ratio of the secondary carrier, and the offset of the subframe to be adjusted.
  • the receiving module 15 is configured to receive a measurement result of the secondary carrier that is sent by each UE in the third UE set, where the measurement result of the secondary carrier is that each UE in the third UE set is configured according to The updated carrier information is measured.
  • the switching module 14 is further configured to determine, according to the measurement result of the secondary carrier that is sent by each UE in the third UE set, whether to select each UE in the third UE set from the other carrier. Switching to the secondary carrier, and performing handover on the UE that needs to be handed over to the secondary carrier in the third UE set.
  • the base station in this embodiment may be used to perform the method provided in the second embodiment, and the specific implementation manner and technical effects are similar, and details are not described herein again.
  • a sixth embodiment of the present invention provides a base station.
  • the structure of the base station is as shown in FIG. 11 or FIG. 12.
  • the base station in this embodiment has the following functions on the basis of the base stations in the fourth embodiment and the fifth embodiment:
  • the determining module 11 is further configured to: determine a carrier that the first UE has activated, the first UE is any one of the first UE sets; and determine from the activated carrier Binding subframes for binding at least two carriers, the binding subframes being consecutive subframes of the at least two carriers used for binding transmission, the binding subframes being used for transmission The same data.
  • the sending module 13 is further configured to send the configuration information of the binding transmission to the first UE, so that the first UE performs binding transmission according to the configuration information of the binding transmission, where the binding is performed.
  • the configuration information of the fixed transmission includes: the at least two carriers used for the binding transmission, the resource blocks participating in the binding transmission in the at least two carriers used for the binding transmission, and the binding subframe The sequence number and the scheduling mode of the binding transmission.
  • the base station in this embodiment may be used to perform the method provided in the third embodiment, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 13 is a schematic diagram of a result of a base station according to Embodiment 7 of the present invention.
  • the base station 200 provided in this embodiment includes: a processor 21, a memory 22, a transmitter 23, and a receiver 24.
  • Memory 22, transmitter 23 and receiver 24 are coupled to and in communication with processor 21 via a system bus.
  • the memory 23 is used to store a computer program, and the processor 21 is configured to execute the computer program to perform the method as follows:
  • the processor 21 is configured to: determine to add a secondary carrier; determine a subframe offset for the secondary carrier, and determine, according to a subframe ratio of the primary carrier and a subframe ratio of the secondary carrier, the secondary carrier is relative to a subframe offset of the primary carrier, where the subframe offset is a size of N subframes, and the subframe offset is not equal to an integer of a period of a subframe ratio of the secondary carrier In multiples, N is a positive integer greater than or equal to 1; the secondary carrier is configured for each UE in the first set of user equipment UEs within the coverage of the base station.
  • the transmitter 23 is configured to: send configuration information to each UE in the first UE set, where the configuration information includes: a frequency point of the secondary carrier, a subframe ratio of the secondary carrier, and the secondary carrier Subframe offset.
  • the processor 21 is further configured to: determine, according to uplink traffic and/or downlink traffic, adjust a subframe offset of the secondary carrier; and determine a subframe offset to be adjusted of the secondary carrier.
  • the transmitter 23 is further configured to: send, to each UE in the first UE set, a deletion configuration indication of the secondary carrier, where the deletion configuration indication is used to indicate each of the first UE set The UE deletes the configuration of the secondary carrier, and switches the UE in the third UE set that resides on the secondary carrier to another carrier, where the UE in the third UE set uses the auxiliary
  • the carrier is the UE of the primary carrier.
  • the secondary carrier is configured for each UE in the first UE set according to the to-be-adjusted subframe offset.
  • the transmitter 23 is further configured to send updated carrier information to each UE in the first UE set and the third UE set, where the updated carrier information includes: the secondary carrier The frequency of the subframe, the subframe ratio of the secondary carrier, and the offset of the subframe to be adjusted.
  • the receiver 24 is further configured to receive a measurement result of the secondary carrier that is sent by each UE in the third UE set, where the measurement result of the secondary carrier is that each UE in the third UE set is configured according to The updated carrier information is measured.
  • the processor 21 is further configured to determine, according to the measurement result of the secondary carrier that is sent by each UE in the third UE set, whether to select each UE in the third UE set from the other carrier. Switching to the secondary carrier, performing handover for the UE in the third UE set that needs to be handed over to the secondary carrier.
  • the processor 21 is further configured to: determine a carrier that the first UE has activated, the first UE is any one of the first UE set, and determine, from the activated carrier, Binding subframes of at least two carriers that are transmitted, the binding subframes being consecutive subframes of the at least two carriers used for binding transmission, the binding subframes being used for transmitting the same data .
  • the transmitter 23 is further configured to: send the configuration information of the binding transmission to the first UE, so that the first UE performs binding transmission according to the configuration information of the binding transmission, where
  • the configuration information of the binding transmission includes: at least two carriers used for binding transmission, and a resource block participating in the binding transmission among the at least two carriers used for binding transmission, the binding subframe The sequence number and the scheduling method of the binding transmission.
  • the processor 21 is further configured to: use the secondary carrier to select a frequency of the secondary carrier And the subframe ratio and the subframe offset are broadcasted to all UEs in the coverage of the base station; the second UE set is determined from the all UEs according to a preset selection condition, and each of the second UE sets is set to The UE sends a measurement indication, where the measurement indication is used to indicate that each UE in the second UE set performs measurement on the secondary carrier.
  • the receiver 24 is configured to: receive a measurement result of the secondary carrier returned by each UE in the second UE set.
  • the processor 21 is further configured to: according to the measurement result of the secondary carrier returned by each UE in the second UE set, determine, from the second UE set, that the UE whose measurement result meets a preset condition, The UE of the preset condition constitutes the first UE set.
  • the subframe offset of the secondary carrier is the same as the subframe offset of the other secondary carriers of the primary carrier.
  • the subframe offset of the secondary carrier is different from the subframe offset of the other secondary carriers of the primary carrier.
  • the subframe ratio of the secondary carrier is the same as the subframe ratio of the primary carrier and other secondary carriers of the primary carrier.
  • the subframe ratio of the secondary carrier is different from the subframe ratio of the primary carrier and other secondary carriers of the primary carrier.
  • the base station in this embodiment may be used to perform the methods provided in the first embodiment to the third embodiment.
  • the specific implementation manners and technical effects are similar, and details are not described herein again.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种基于子帧偏移的载波聚合方法和基站,基站确定为新增的辅载波进行子帧偏移,并为辅载波确定相对于主载波的子帧偏移量,然后,为覆盖范围内的第一UE集合中的每个UE配置辅载波,并向第一UE集合中的每个UE发送配置信息,配置信息包括:辅载波的频点、辅载波的子帧配比和辅载波的子帧偏移量。所述方法中,通过为辅载波设置子帧偏移量,可以使得辅载波和主载波的上行子帧错开,或者辅载波与其他载波的上行子帧错开,从而使得支持载波聚合的中远点用户,在不同载波的上行子帧上都可以被使用,使得中远点用户也可以获取载波聚合带来的增益,达到覆盖和容量的增强的目标。

Description

基于子帧偏移的载波聚合方法和基站 技术领域
本发明实施例涉及通信技术,尤其涉及一种基于子帧偏移的载波聚合方法和基站。
背景技术
从长期演进系统(Long Term Evolution Advanced,简称LTE)到长期演进高级系统(Long Term Evolution Advanced,简称LTE-A)系统的演进过程中,更宽频谱的需求将确实是影响演进的最重要因素。为此第三代合作伙伴项目(the 3rd Generation Partnership Project,简称3GPP)中提出了载波聚合(Carrier Aggregation,简称CA)技术,CA通过对多个连续或者非连续的载波进行聚合以获取更大的带宽。
在LTE-A时分双工(Division Duplexing Time,简称TDD)系统中,进行载波聚合的多个载波可以使用相同或不同的子帧配比。考虑到大多数业务都是下行业务多,上行业务较少,所以主流的子帧配比也是上行子帧较少。载波聚合后,多个载波的上行子帧可能存在重叠,这里上行子帧重叠是指多个载波在同一时隙都用于上行发射。当上行业务和下行业务都增加时,可以增加一个辅载波以提高系统的容量,但增加辅载波后并不能对中远点用户带来明显的收益,中远点用户是相对于中心用户而言的。中远点用户由于受到自身发射功率的限制,无法在同一时刻使用两个载波的上行子帧发送数据,因此,在载波聚合中若存在上行子帧重叠,则中远点用户无法获取载波聚合无线资源增加的收益。
发明内容
本发明实施例提供一种基于子帧偏移的载波聚合方法和基站,通过子帧偏移使得载波聚合中的各载波的上行子帧错开,从而使得中远点用户也可以获取载波聚合带来的增益,达到覆盖和容量的增强的目标。
本发明第一方面提供一种基于子帧偏移的载波聚合方法,包括:
基站确定增加一个辅载波;
所述基站确定对所述辅载波进行子帧偏移,并根据主载波的子帧配比和所述辅载波的子帧配比确定所述辅载波相对于所述主载波的子帧偏移量,其中,所述子帧偏移量为N个子帧的大小,且所述子帧偏移量不等于所述辅载波的子帧配比的周期的整数倍,N为大于等于1的正整数;
所述基站为覆盖范围内的第一UE集合中的每个UE配置所述辅载波,并向所述第一UE集合中的每个UE发送配置信息,所述配置信息包括:所述辅载波的频点、所述辅载波的子帧配比和所述辅载波的子帧偏移量。
结合第一方面,在第一方面的第一种可能的实现方式中,所述方法还包括:
所述基站根据上行业务量和/或下行业务量确定调整所述辅载波的子帧偏移量;
所述基站确定所述辅载波的待调整子帧偏移量;
所述基站向所述第一UE集合中的每个UE发送所述辅载波的删除配置指示,所述删除配置指示用于指示所述第一UE集合中的每个UE删除所述辅载波的配置;
所述基站将驻留在所述辅载波上的第三UE集合中的UE切换到其他载波上,所述第三UE集合中的UE为使用所述辅载波作为主载波的UE;
所述基站根据所述待调整子帧偏移量重新为所述第一UE集合中的每个UE配置所述辅载波,并向所述第一UE集合中的每个UE和所述第三UE集合中的每个UE发送更新后的载波信息,所述更新后的载波信息包括:所述辅载波的频点、所述辅载波的子帧配比和所述待调整子帧偏移量;
所述基站接收所述第三UE集合中的每个UE发送的所述辅载波的测量结果,所述辅载波的测量结果是所述第三UE集合中的每个UE根据所述更新后的载波信息进行测量得到的;
所述基站根据所述第三UE集合中的每个UE发送的所述辅载波的测量结果,确定是否将所述第三UE集合中的每个UE从所述其他载波上切换到所述辅载波上,对于所述第三UE集合中需要切换到所述辅载波上的 UE进行切换。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述方法还包括:
所述基站确定第一UE已经激活的载波,所述第一UE为所述第一UE集合中的任意一个UE;
所述基站从所述已经激活的载波中确定用于绑定传输的至少两个载波的绑定子帧,所述绑定子帧为所述用于绑定传输的至少两个载波中连续的子帧,所述绑定子帧用于传输相同的数据;
所述基站将所述绑定传输的配置信息发送给所述第一UE,以使所述第一UE根据所述绑定传输的配置信息进行绑定传输,所述绑定传输的配置信息包括:所述用于绑定传输的至少两个载波、所述用于绑定传输的至少两个载波中参与所述绑定传输的资源块、所述绑定子帧的序号和所述绑定传输的调度方式。
结合第一方面,在第一方面的第三种可能的实现方式中,所述基站为覆盖范围内的第一用户设备UE集合中的每个UE配置所述辅载波之前,所述方法还包括:
所述基站使用所述辅载波将所述辅载波的频点、子帧配比、子帧偏移量广播给所述基站覆盖范围内所有UE;
所述基站按照预设的选择条件从所述所有UE中确定第二UE集合,向所述第二UE集合中每个UE发送测量指示,所述测量指示用于指示所述第二UE集合中每个UE对所述辅载波进行测量;
所述基站接收所述第二UE集合中每个UE返回的所述辅载波的测量结果;
所述基站根据所述第二UE集合中每个UE返回的所述辅载波的测量结果,从所述第二UE集合中确定测量结果满足预设条件的UE,将满足所述预设条件的UE组成所述第一UE集合。
结合第一方面,在第一方面的第四种可能的实现方式中,所述辅载波的子帧偏移量与所述主载波的其他辅载波的子帧偏移量相同。
结合第一方面,在第一方面的第五种可能的实现方式中,所述辅载波的子帧偏移量与所述主载波的其他辅载波的子帧偏移量不同。
结合第一方面,在第一方面的第六种可能的实现方式中,所述辅载波的子帧配比与所述主载波和所述主载波的其他辅载波的子帧配比相同。
结合第一方面,在第一方面的第七种可能的实现方式中,所述辅载波的子帧配比与所述主载波和所述主载波的其他辅载波的子帧配比不相同。
本发明第二方面提供一种基站,包括:
确定模块,用于确定增加一个辅载波;
所述确定模块,还用于确定对所述辅载波进行子帧偏移,并根据主载波的子帧配比和所述辅载波的子帧配比确定所述辅载波相对于所述主载波的子帧偏移量,其中,所述子帧偏移量为N个子帧的大小,且所述子帧偏移量不等于所述辅载波的子帧配比的周期的整数倍,N为大于等于1的正整数;
配置模块,用于为所述基站的覆盖范围内的第一用户设备UE集合中的每个UE配置所述辅载波;
发送模块,用于向所述第一UE集合中的每个UE发送配置信息,所述配置信息包括:所述辅载波的频点、所述辅载波的子帧配比和所述辅载波的子帧偏移量。
结合第二方面,在第二方面的第一种可能的实现方式中,所述确定模块还用于:
根据上行业务量和/或下行业务量确定调整所述辅载波的子帧偏移量;
确定所述辅载波的待调整子帧偏移量;
所述发送模块,还用于向所述第一UE集合中的每个UE发送所述辅载波的删除配置指示,所述删除配置指示用于指示所述第一UE集合中的每个UE删除所述辅载波的配置;
所述基站还包括:切换模块,用于将驻留在所述辅载波上的第三UE集合中的UE切换到其他载波上,所述第三UE集合中的UE为使用所述辅载波作为主载波的UE;
所述配置模块,还用于根据所述待调整子帧偏移量重新为所述第一 UE集合中的每个UE配置所述辅载波;
所述发送模块,还用于向所述第一UE集合中的每个UE和所述第三UE集合中的每个UE发送更新后的载波信息,所述更新后的载波信息包括:所述辅载波的频点、所述辅载波的子帧配比和所述待调整子帧偏移量;
所述基站还包括:接收模块,用于接收所述第三UE集合中的每个UE发送的所述辅载波的测量结果,所述辅载波的测量结果是所述第三UE集合中的每个UE根据所述更新后的载波信息进行测量得到的;
所述切换模块,还用于根据所述第三UE集合中的每个UE发送的所述辅载波的测量结果,确定是否将所述第三UE集合中的每个UE从所述其他载波上切换到所述辅载波上,对于所述第三UE集合中需要切换到所述辅载波上的UE进行切换。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述确定模块还用于:
确定第一UE已经激活的载波,所述第一UE为所述第一UE集合中的任意一个UE;
从所述已经激活的载波中确定用于绑定传输的至少两个载波的绑定子帧,所述绑定子帧为所述用于绑定传输的至少两个载波中连续的子帧,所述绑定子帧用于传输相同的数据;
所述发送模块,还用于将所述绑定传输的配置信息发送给所述第一UE,以使所述第一UE根据所述绑定传输的配置信息进行绑定传输,所述绑定传输的配置信息包括:所述用于绑定传输的至少两个载波、所述用于绑定传输的至少两个载波中参与所述绑定传输的资源块、所述绑定子帧的序号和所述绑定传输的调度方式。
结合第二方面,在第二方面的第三种可能的实现方式中,所述发送模块还用于:
在所述配置模块为所述基站的覆盖范围内的第一UE集合中的每个UE配置所述辅载波之前,使用所述辅载波将所述辅载波的频点、子帧配比、子帧偏移量广播给所述基站覆盖范围内所有UE;
所述确定模块,还用于基站按照预设的选择条件从所述所有UE中确 定第二UE集合;
所述发送模块,还用于向所述第二UE集合中每个UE发送测量指示,所述测量指示用于指示所述第二UE集合中每个UE对所述辅载波进行测量;
所述基站还包括:
接收模块,用于接收所述第二UE集合中每个UE返回的所述辅载波的测量结果;
所述确定模块,还用于根据所述第二UE集合中每个UE返回的所述辅载波的测量结果,从所述第二UE集合中确定测量结果满足预设条件的UE,将满足所述预设条件的UE组成所述第一UE集合。
结合第二方面,在第二方面的第四种可能的实现方式中,所述辅载波的子帧偏移量与所述主载波的其他辅载波的子帧偏移量相同。
结合第二方面,在第二方面的第五种可能的实现方式中,所述辅载波的子帧偏移量与所述主载波的其他辅载波的子帧偏移量不同。
结合第二方面,在第二方面的第六种可能的实现方式中,所述辅载波的子帧配比与所述主载波和所述主载波的其他辅载波的子帧配比相同。
结合第二方面,在第二方面的第七种可能的实现方式中,所述辅载波的子帧配比与所述主载波和所述主载波的其他辅载波的子帧配比不相同。
本发明实施例提供的基于子帧偏移的载波聚合方法和基站,基站通过确定为新增的辅载波进行子帧偏移,并为辅载波确定相对于主载波的子帧偏移量,然后,为覆盖范围内的第一UE集合中的每个UE配置辅载波,并向第一UE集合中的每个UE发送配置信息,配置信息包括:辅载波的频点、辅载波的子帧配比和辅载波的子帧偏移量。所述方法中,通过为辅载波设置子帧偏移量,可以使得辅载波和主载波的上行子帧错开,或者辅载波与其他载波的上行子帧错开,从而使得支持载波聚合的中远点用户,在不同载波的上行子帧上都可以被使用,使得中远点用户也可以获取载波聚合带来的增益,达到覆盖和容量的增强的目标。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的基于子帧偏移的载波聚合的方法的流程图;
图2为相同子帧配比的载波的子帧偏移后的一种子帧图样;
图3为相同子帧配比的载波的子帧偏移后的另一种子帧图样;
图4为不同子帧配比的载波的子帧偏移后的一种子帧图样;
图5为不同子帧配比的载波的子帧偏移后的另一种子帧图样;
图6为不同子帧配比的载波的子帧偏移后的又一种子帧图样;
图7为TDD载波和FDD载波结合进行子帧偏移的一种子帧图样;
图8为本发明实施例二提供的基于子帧偏移的载波聚合方法的流程图;
图9为本发明实施例三提供的基于子帧偏移的载波聚合方法的流程图;
图10为相同子帧配比的载波的子帧偏移后的又一种子帧图样;
图11为本发明实施例四提供的基站的结构示意图;
图12为本发明实施例五提供的基站的结构示意图;
图13为本发明实施例七提供的基站的结果示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的方法主要应用在TDD支持载波聚合的通信系统,例 如,可以应用在TDD LTE-A系统,或者基于TDD LTE-A演进的系统。载波聚合小区一般包括一个主载波和至少一个辅载波,现有技术中,进行载波聚合的多个载波的上行子帧可能存在重叠。当上行业务和下行业务都增加时,可以增加一个辅载波以提高系统的容量,但增加辅载波后并不能对中远点用户带来明显的收益。中远点用户由于受到自身发射功率的限制,无法在同一时刻使用两个载波的上行子帧发送数据,因此,在载波聚合中若存在上行子帧重叠,则中远点用户无法获取载波聚合无线资源增加的收益。中远点用户是指距离基站较远的用户,例如,以基站的覆盖区域为圆形为例,中远点用户是指与基站之间的距离大于基站的覆盖区域的半径的1/2的用户。
为了解决现有技术的问题,本发明实施例一提供一种基于子帧偏移的载波聚合方法,图1为本发明实施例一提供的基于子帧偏移的载波聚合的方法的流程图,如图1所示,本实施例的方法可以包括以下步骤:
步骤101、基站确定增加一个辅载波。
基站具体可以通过以下方法确定是否增加辅载波:基站确定通信系统中的预期上行业务量高于当前上行业务量,或者,基站确定通信系统中的预期下行业务量高于当前下行业务量,或者,基站确定通信系统中的预期上行业务量高于当前上行业务量,且预期下行业务量也高于当前下行业务量。基站在确定增加辅载波后,还需要根据主载波和已有的辅载波的属性选择新增加的辅载波的属性,例如,根据主载波的频点和已有的辅载波的频点确定新增加的辅载波的频点,尽量选择距离主载波的频点和已有的辅载波的频点较远的频点作为新增加的辅载波的频点,以保证载波之间的隔离度。另外,根据预期的上行业务量和/或下行业务量确定新增加的辅载波的带宽,以满足业务的需求。
步骤102、基站确定对辅载波进行子帧偏移,并根据主载波的子帧配比和辅载波的子帧配比确定辅载波相对于主载波的子帧偏移量,其中,子帧偏移量为N个子帧的大小,且子帧偏移量不等于辅载波的子帧配比的周期的整数倍,N为大于等于1的正整数。
基站确定对辅载波进行子帧偏移时需要考虑以下因素中任意一个或其组合:(1)通信系统的上行覆盖是否差于下行覆盖,若上行覆盖比下行覆盖 差,则考虑进行辅载波的子帧偏移,否则,不进行子帧偏移进行子帧偏移的目的主要是增大上行覆盖。(2)若任意两个载波之间的保护间隔小于一定门限(例如20MHz),则不能进行子帧偏移,这里任意两个载波可以是主载波和辅载波,也可以是两个辅载波,主要是因为:若两个载波的保护间隔太小,则进行子帧偏移后,UE同时在这两个载波上收发数据,两个载波之间的干扰较大,反而会降低通信系统的容量。(3)若通信系统中支持子帧偏移的用户设备(User Equipment,简称UE)小于一定门限,则不能进行子帧偏移,例如,通信系统中支持子帧偏移的UE的数量占UE总数的比例小于5%,则不能进行子帧偏移。UE会向基站上报自己的能力参数,能力参数中包括UE支持的能力,基站根据UE的能力参数确定UE是否支持子帧偏移,从而统计通信系统中支持子帧偏移的UE的数量。(4)进行子帧偏移后,是否会对原有上行子帧和下行子帧产生影响,例如,在某些上行子帧需要通信系统中的所有UE同时进行上行发射或下行接收,则在进行子帧偏移时,应该避开这一类子帧,避免UE因为收发能力在子帧偏移后无法收发系统信息。
基站在确定对辅载波进行子帧偏移后,根据主载波的子帧配比和所述辅载波的子帧配比确定所述辅载波相对于所述主载波的子帧偏移量。对于TDD,上下行在时间上分开,载波频率相同,即在每10ms周期内,上下行总共有10个子帧可用,每个子帧或者为上行子帧或者为下行子帧。TDD帧结构中,每个无线帧首先分割为2个5ms的半帧,可以分为5ms周期和10ms周期两类,便于灵活地支持不同子帧配比的上下行业务。在5ms周期中,子帧1和子帧6固定配置为特殊子帧;10ms周期中,子帧1固定配置为特殊子帧。在TDD-LTE通信系统中,支持7种子帧配比,如表1所示:
表1
Figure PCTCN2016085027-appb-000001
Figure PCTCN2016085027-appb-000002
表1中,D表示下行子帧,U表示上行子帧,S表示特殊子帧。本实施例中,主载波和载波的子帧配比可以相同,也可以不同。当主载波的子帧配比和辅载波的子帧配比相同时,主载波和辅载波的所有上行子帧都重叠,当主载波的子帧配比和辅载波的子帧配比不相同时,主载波和辅载波的只有部分上行子帧重叠。
本实施例中,子帧偏移量的大小可以根据实际需要确定,其中,子帧偏移量为N个子帧的大小,且子帧偏移量不等于辅载波的子帧配比的周期的整数倍。现有技术中,在一个调度周期内,子帧图样中主载波和辅载波的首个子帧是对齐的,而本实施例中,将辅载波的子帧进行偏移,使得子帧图样中主载波和辅载波的首个子帧不再对齐,从而使得辅载波和主载波或其他辅载波的上行子帧错开。
需说明的是,主载波可以配置有多个辅载波,该新增的辅载波的子帧偏移量与主载波的其他辅载波的子帧偏移量可以相同也可以不同。并且,辅载波的子帧配比与主载波和主载波的其他辅载波的子帧配比可以相同也可以不同。
如图2所示,图2为相同子帧配比的载波的子帧偏移后的一种子帧图样。图2中共有两个载波:一个主载波和一个辅载波,主载波和辅载波的子帧配比均为配比2,辅载波的子帧偏移量分别为1、2、3、4,其中,子帧偏移量为0即没有进行子帧偏移。图3为相同子帧配比的载波的子帧偏移后的另一种子帧图样,图3中共有三个载波:一个载波和两个辅载波,主载波和两个辅载波的子帧配比均为配比2,两个辅载波的子帧偏移量不同。通过图2和图3所示,进行两个或以上相同配比的载波聚合时,可以根据不同的子帧偏移量实现两个或以上载波上的上行子帧错开。
图4为不同子帧配比的载波的子帧偏移后的一种子帧图样。图4中共有两个载波:一个主载波和一个辅载波,主载波使用配比2,辅载波使用配比1,辅载波的子帧偏移量分别为1、2、3、4。图5为不同子帧配比的载波的子帧偏移后的另一种子帧图样,图5中共有三个载波:一个载波和两个辅载波,主载波的子帧配比为配比2,两个辅载波的子帧配比为配比 1,并且两个辅载波的子帧偏移量不同。图6为不同子帧配比的载波的子帧偏移后的又一种子帧图样,图5中共有三个载波:一个载波和两个辅载波,主载波的子帧配比为配比2,辅载波1的子帧配比为配比1,辅载波的子帧配比为配比3,并且两个辅载波的子帧偏移量不同。通过图4至图6,可知进行两个或以上TDD不同配比的载波聚合时,根据不同的子帧偏移量实现两个或以上载波的上行子帧错开。
图2-图6中主载波和辅载波都为TDD载波,本发明实施例的方法中辅载波还可以包括FDD,在TDD载波和FDD载波结合时,主载波为TDD载波,辅载波中应该至少包括一个TDD载波,图7为TDD载波和FDD载波结合进行子帧偏移的一种子帧图样,如图7所示,图7中共有四个载波:一个主载波和三个辅载波,主载波的子帧配比为配比2,辅载波1的子帧配比为配比1,辅载波3为FDD上行载波,载波4为FDD下行载波,辅载波1的子帧偏移量粉笔为1和2。
通过图2-图7所示例子,可知相比于现有技术,单独看两个或以上载波的子帧配比与现有协议定义相同,但两个或以上载波聚合后与现有技术达到的载波聚合的子帧图样完全不同,通过子帧偏移将上行子帧均错开了,这样不同载波的上行子帧都能够被同一个UE使用。
步骤103、基站为覆盖范围内的第一UE集合中的每个UE配置辅载波,并向第一UE集合中的每个UE发送配置信息,该配置信息包括:辅载波的频点、辅载波的子帧配比和辅载波的子帧偏移量。
基站在为覆盖范围内的第一UE集合中的每个UE配置辅载波之前,基站还可以执行以下操作:基站使用主载波或辅载波将辅载波的频点、子帧配比、子帧偏移量广播给基站覆盖范围内所有UE。然后,基站按照预设的选择条件从所有UE中确定第二UE集合,向第二UE集合中每个UE发送测量指示,测量指示用于指示第二UE集合中每个UE对辅载波进行测量。第二UE集合中的每个UE都满足预设的选择条件,预设的选择条件包括但不限于以下条件:(1)UE支持上行的载波聚合(2)UE支持子帧偏移的载波聚合;(3)UE支持全双工;(4)UE属于弱覆盖用户,例如UE的参考信号接收功率(Reference Signal Receiving Power,简称RSRP)小于-120dBm(分贝);(5)UE的上行业务受功率限制,例如UE的功率余量报告(Power Headroom  Report,简称PHR)为0,且信号与干扰加噪声比(Signal to Interference plus Noise Ratio,简称SINR)小于-3dB;(5)UE的上行业务受限,例如,空口速率不足用户速率要求的10%;(6)UE的下行业务受限,例如,空口速率不足用户速率要求的10%。
配置信息还可以包括:辅载波的带宽,同时基站还可以通知相邻小区辅载波的配置信息。
第二UE集合中的每个UE接收到基站发送的测量指示后,对辅载波进行测量,并向基站返回辅载波的测量结果,基站接收第二UE集合中每个UE返回的辅载波的测量结果,根据第二UE集合中每个UE返回的辅载波的测量结果,从第二UE集合中确定测量结果满足预设条件的UE,将满足预设条件的UE组成第一UE集合。该预设条件包括但不限于以下条件:UE的下行RSRP高于一定门限和/或SINR高于一定门限。将满足预设条件的UE组成第一UE集合,然后,为第一UE集合中的UE配置辅载波。将第一UE集合中的各UE的配置信息发送给各UE,使得第一集合中的各UE根据辅载波的配置信息进行数据的收发。
本实施例中,基站为新增的辅载波确定相对于主载波的子帧偏移量,然后,为覆盖范围内的第一UE集合中的每个UE配置辅载波,并向第一UE集合中的每个UE发送配置信息,配置信息包括:辅载波的频点、辅载波的子帧配比和辅载波的子帧偏移量。所述方法中,通过为辅载波设置子帧偏移量,可以使得辅载波和主载波的上行子帧错开,或者辅载波与其他载波的上行子帧错开,从而使得支持载波聚合的中远点用户,在不同载波的上行子帧上都可以被使用,使得中远点用户也可以获取载波聚合带来的增益,达到覆盖和容量的增强的目标。
需要说明的是,在上述实施例一的基础上,在其他实施例中,也可以在T1时刻选择为主载波增加一个辅载波,然后,在网络系统运行过程中,根据业务需求,在T2时刻为辅载波设置子帧偏移量。
图8为本发明实施例二提供的基于子帧偏移的载波聚合方法的流程图,如图8所示,本实施例的方法可以包括以下步骤:
步骤201、基站确定增加一个辅载波。
步骤202、基站确定对辅载波进行子帧偏移,并根据主载波的子帧配 比和辅载波的子帧配比确定辅载波相对于主载波的子帧偏移量,其中,子帧偏移量为N个子帧的大小,且子帧偏移量不等于辅载波的子帧配比的周期的整数倍,N为大于等于1的正整数。
步骤203、基站为覆盖范围内的第一UE集合中的每个UE配置辅载波,并向第一UE集合中的每个UE发送配置信息,配置信息包括:辅载波的频点、辅载波的子帧配比和辅载波的子帧偏移量。
步骤201-203的具体实现方式可参照实施例一的描述,这里不再赘述。
步骤204、基站根据上行业务量和/或下行业务量确定调整辅载波的子帧偏移量。
当通信系统中的上行业务量增大或者减少,和/或,下行业务量增大或减少,那么基站可以调整辅载波的子帧偏移量,以适应通信系统中业务量的变化,使得通信系统的容量达到最大。
步骤205、基站确定辅载波的待调整子帧偏移量。
具体的,若上行业务量增大,那么可以通过调整子帧偏移量,使得主载波和辅载波中的上行子帧的数量达到最大值,即将所有上行子帧都能够被用户使用。若上行业务量减少,那么可以通过调整子帧偏移量,使得主载波和辅载波中的上行子帧的数量减少,或者,将子帧偏移量调整为0,即不需要进行子帧偏移。
步骤206、基站向第一UE集合中的每个UE发送辅载波的删除配置指示,删除配置指示用于指示第一UE集合中的每个UE删除辅载波的配置。
基站需要删除已经配置了辅载波的所有UE的辅载波的原有配置,重新为辅载波配置子帧偏移量。
步骤207、基站将驻留在辅载波上的第三UE集合中的UE切换到其他载波上,第三UE集合中的UE为使用辅载波作为主载波的UE。
需要说明的是,主载波和辅载波是相对于UE而言,对于有些UE而言某个载波为辅载波,但是对其他UE而言该载波为主载波。因此,基站增加的该辅载波可能为第三UE集合中的UE的主载波,第三UE集合中的UE使用该辅载波作为主载波,即使用该辅载波连接到网络。若要变更 该辅载波的配置信息,同样会对第三UE集合中的UE的产生影响,为了不影响第三UE集合中的UE数据收发,基站将第三UE集合中的UE切换到其他载波上。
步骤208、基站根据待调整子帧偏移量重新为第一UE集合中的每个UE配置辅载波,并向第一UE集合中的每个UE和第三UE集合中的每个UE发送更新后的载波信息,更新后的载波信息包括:辅载波的频点、辅载波的子帧配比和待调整子帧偏移量。
基站在删除第一UE集合中的每个UE的辅载波的原有配置之后,重新为每个UE配置辅载波,并向每个UE发送更新后的载波信息,更新后的载波信息中辅载波的子帧偏移量变化了。第一UE集合中的UE在后续收发数据时,根据更新后的载波信息进行数据收发。
步骤209、基站接收第三UE集合中的每个UE发送的辅载波的测量结果。
其中,辅载波的测量结果是第三UE集合中的每个UE根据更新后的载波信息进行测量得到的。基站将更新后的载波信息发送给第三UE集合中的UE,就是为了让第三UE集合中的UE对辅载波重新进行测量。
步骤210、基站根据第三UE集合中的每个UE发送的辅载波的测量结果,确定是否将第三UE集合中的每个UE从其他载波上切换到辅载波上,对于第三UE集合中需要切换到辅载波上的UE进行切换。
具体的,若第三UE集合中的某个UE上报的辅载波的测量结果中辅载波的信号质量满足切换条件,则将该UE从其他载波上切换到辅载波上,对于不满足切换条件的UE,则不进行切换操作。UE从其他载波上切换到辅载波上即UE执行了小区间的切换。
本实施例中,基站还可以根据业务量的变化变更辅载波的子帧偏移量,从而使得通信系统中的资源能够达到最大利用。
LTE系统中,物理层调度的基本单位是1毫秒(ms),即一个子帧的大小,这样小的时间间隔可以使得LTE中数据的延迟较小,然而,对于中远点用户,由于自身功率受限,在1ms的时间间隔内,可能无法满足数据发送的误块率(Block Error Ratio,简称BER)要求。为此,提出了TTI绑定(Budding)的概念,对与上行的连续TTI可以分配给同一个UE, 这些上行的TTI中发送的是相同的内容,这样可以提高数据解码成功的概率,提高LTE上行覆盖的范围。现有技术中,通常对连续的4个TTI进行绑定,联系的4个TTI属于同一个子载波。本发明各实施例的方法,通过子帧偏移后各载波间存在更多的连续上行时隙和连续下行时隙,基于此可以实现跨载波的TTI绑定。
图9为本发明实施例三提供的基于子帧偏移的载波聚合方法的流程图,本实施例是在实施例一和实施例二的基础上进行了,如图9所示,本实施例的方法可以包括以下步骤:
步骤301、基站确定增加一个辅载波。
步骤302、基站确定对所述辅载波进行子帧偏移,并根据主载波的子帧配比和辅载波的子帧配比确定辅载波相对于主载波的子帧偏移量,其中,子帧偏移量为N个子帧的大小,且子帧偏移量不等于辅载波的子帧配比的周期的整数倍,N为大于等于1的正整数。
步骤303、基站为覆盖范围内的第一UE集合中的每个UE配置辅载波,并向第一UE集合中的每个UE发送配置信息,该配置信息包括:辅载波的频点、辅载波的子帧配比和辅载波的子帧偏移量。
步骤301-303的具体实现方式可参照实施例一的描述,这里不再赘述。
步骤304、基站确定第一UE已经激活的载波,第一UE为第一UE集合中的任意一个UE。
步骤305、基站从已经激活的载波中确定用于绑定传输的至少两个载波的绑定子帧,绑定子帧为用于绑定传输的至少两个载波中连续的子帧,该绑定子帧用于传输相同的数据。
进行绑定传输的载波可以为两个载波,也可以为更多的载波,用户绑定传输的至少两个载波可以是主载波和辅载波,也可以都是辅载波。图10为相同子帧配比的载波的子帧偏移后的又一种子帧图样,如图10所示,载波1和载波2的配比均为配比2,对载波2进行了子帧偏移,在载波偏移后,第一UE可以在载波1的子帧2、3、7、8上进行上行传输,以及载波2的子帧4、5、9、10上进行上行传输。通过上述可知,第一UE可以在连续的子帧2、3、4、5上传输上行数据,以及在连续的子帧7、 8、9、10上传输上行数据。因此,可以通过TTI绑定,将载波1的上行子帧2、3与载波2的上行子帧4、5绑定,将载波1的上行子帧7、8与载波2的上行子帧9、10绑定。
步骤306、基站将绑定传输的配置信息发送给第一UE,以使第一UE根据绑定传输的配置信息进行绑定传输,该绑定传输的配置信息包括:用于绑定传输的至少两个载波、用于绑定传输的至少两个载波中参与绑定传输的资源块、所述绑定子帧的序号和所述绑定传输的调度方式。
基站在确定绑定子帧后,将绑定传输的配置信息发送给第一UE,基站可以使用主载波发送绑定传输的配置信息,也可以通过辅载波发送绑定传输的配置信息,或者,基站也可以通过主载波和辅载波共同发送绑定传输的配置信息。该绑定传输的配置信息中包括:用于绑定传输的至少两个载波、用于绑定传输的至少两个载波中参与绑定传输的资源块(Resource Block,简称RB)、绑定子帧的序号和绑定传输的调度方式。参与绑定传输的每个载波包括多个资源块,其中,有些资源块参与绑定传输,有些资源块不参与绑定传输,因此,基站还需要通知第一UE哪些资源块参与绑定传输。调度方式包括动态调度和半静态调度(Semi-Persistent Scheduling,简称SPS)。
本实施例中,在进行跨载波的半静态调度中,基站可以通过载波聚合中的其中一个载波指示该半静态调度的调度信息,一般是由主载波指示,当然也可以由辅载波指示;也可以是每次半静态调度的调度信息由不同的载波进行指示;一旦指示后,基站在整个半静态调度周期内的传输资源就确定了,并且该传输资源可以分属不同的载波,直到半静态调度周期结束,或者动态调度重新分配资源。
本实施例中,还可以在进行跨载波的半静态调度中,配合跨载波的跳频,获得时间上的分集增益。在跨载波的半静态调度过程中,基站可以指示第一UE,在不同的载波上配置不同的跳频模式,也可以是某些载波采用调频,某些载波不跳频。
图11为本发明实施例四提供的基站的结构示意图,如图11所示,本实施例提供的基站可以包括:确定模块11、配置模块12和发送模块13。
其中,确定模块11,用于确定增加一个辅载波。所述确定模块11,还用 于确定对所述辅载波进行子帧偏移,并根据主载波的子帧配比和所述辅载波的子帧配比确定所述辅载波相对于所述主载波的子帧偏移量,其中,所述子帧偏移量为N个子帧的大小,且所述子帧偏移量不等于所述辅载波的子帧配比的周期的整数倍,N为大于等于1的正整数。配置模块12,用于为所述基站的覆盖范围内的第一UE集合中的每个UE配置所述辅载波。发送模块13,用于向所述第一UE集合中的每个UE发送配置信息,所述配置信息包括:所述辅载波的频点、所述辅载波的子帧配比和所述辅载波的子帧偏移量。
可选的,所述发送模块13还用于:在所述配置模块12为所述基站的覆盖范围内的第一UE集合中的每个UE配置所述辅载波之前,使用所述辅载波将所述辅载波的频点、子帧配比、子帧偏移量广播给所述基站覆盖范围内所有UE。所述确定模块11,还用于基站按照预设的选择条件从所述所有UE中确定第二UE集合。所述发送模块13,还用于向所述第二UE集合中每个UE发送测量指示,所述测量指示用于指示所述第二UE集合中每个UE对所述辅载波进行测量。相应的,所述基站还包括:接收模块,用于接收所述第二UE集合中每个UE返回的所述辅载波的测量结果。所述确定模块,还用于根据所述第二UE集合中每个UE返回的所述辅载波的测量结果,从所述第二UE集合中确定测量结果满足预设条件的UE,将满足所述预设条件的UE组成所述第一UE集合。
可选的,所述辅载波的子帧偏移量与所述主载波的其他辅载波的子帧偏移量相同。
可选的,所述辅载波的子帧偏移量与所述主载波的其他辅载波的子帧偏移量不同。
可选的,所述辅载波的子帧配比与所述主载波和所述主载波的其他辅载波的子帧配比相同。
可选的,所述辅载波的子帧配比与所述主载波和所述主载波的其他辅载波的子帧配比不相同。
本实施例的基站,可用于执行实施例一提供的方法,具体实现方式和技术效果类似,这里不再赘述。
本发明实施例五提供一种基站,图12为本发明实施例五提供的基站的结构示意图,如图12所示,本实施例的基站基站在图11所示基站的基 础上还包括:切换模块14和接收模块15,相应的,本实施例的基站在实施例四的基站的基础上,还具有以下功能:
所述确定模块11还用于:根据上行业务量和/或下行业务量确定调整所述辅载波的子帧偏移量;确定所述辅载波的待调整子帧偏移量。
所述发送模块13,还用于向所述第一UE集合中的每个UE发送所述辅载波的删除配置指示,所述删除配置指示用于指示所述第一UE集合中的每个UE删除所述辅载波的配置。
所述切换模块14,用于将驻留在所述辅载波上的第三UE集合中的UE切换到其他载波上,所述第三UE集合中的UE为使用所述辅载波作为主载波的UE。
所述配置模块12,还用于根据所述待调整子帧偏移量重新为所述第一UE集合中的每个UE配置所述辅载波。
所述发送模块13,还用于向所述第一UE集合中的每个UE和第三UE集合中的每个UE发送更新后的载波信息,所述更新后的载波信息包括:所述辅载波的频点、所述辅载波的子帧配比和所述待调整子帧偏移量。
所述接收模块15,用于接收所述第三UE集合中的每个UE发送的所述辅载波的测量结果,所述辅载波的测量结果是所述第三UE集合中的每个UE根据所述更新后的载波信息进行测量得到的。
所述切换模块14,还用于根据所述第三UE集合中的每个UE发送的所述辅载波的测量结果,确定是否将所述第三UE集合中的每个UE从所述其他载波上切换到所述辅载波上,对于所述第三UE集合中需要切换到所述辅载波上的UE进行切换。
本实施例的基站,可用于执行实施例二提供的方法,具体实现方式和技术效果类似,这里不再赘述。
本发明实施例六提供一种基站,所述基站的结构请参照图11或图12所示,本实施例的基站在实施例四和实施例五的基站的基础上,还具有以下功能:
所述确定模块11还用于:确定第一UE已经激活的载波,所述第一UE为所述第一UE集合中的任意一个UE;从所述已经激活的载波中确定 用于绑定传输的至少两个载波的绑定子帧,所述绑定子帧为所述用于绑定传输的至少两个载波中连续的子帧,所述绑定子帧用于传输相同的数据。
所述发送模块13,还用于将所述绑定传输的配置信息发送给所述第一UE,以使所述第一UE根据所述绑定传输的配置信息进行绑定传输,所述绑定传输的配置信息包括:所述用于绑定传输的至少两个载波、所述用于绑定传输的至少两个载波中参与所述绑定传输的资源块、所述绑定子帧的序号和所述绑定传输的调度方式。
本实施例的基站,可用于执行实施例三提供的方法,具体实现方式和技术效果类似,这里不再赘述。
图13为本发明实施例七提供的基站的结果示意图,如图13所示,本实施例提供的基站200包括:处理器21、存储器22、发射器23和接收器24。存储器22、发射器23和接收器24通过系统总线与处理器21连接并通信。其中,存储器23用于存储计算机程序,处理器21用于执行所述计算机程序以执行如下所述方法:
处理器21用于:确定增加一个辅载波;确定对所述辅载波进行子帧偏移,并根据主载波的子帧配比和所述辅载波的子帧配比确定所述辅载波相对于所述主载波的子帧偏移量,其中,所述子帧偏移量为N个子帧的大小,且所述子帧偏移量不等于所述辅载波的子帧配比的周期的整数倍,N为大于等于1的正整数;为所述基站的覆盖范围内的第一用户设备UE集合中的每个UE配置所述辅载波。
发射器23用于:向所述第一UE集合中的每个UE发送配置信息,所述配置信息包括:所述辅载波的频点、所述辅载波的子帧配比和所述辅载波的子帧偏移量。
可选的,处理器21还用于:根据上行业务量和/或下行业务量确定调整所述辅载波的子帧偏移量;确定所述辅载波的待调整子帧偏移量。相应的,发射器23还用于:向所述第一UE集合中的每个UE发送所述辅载波的删除配置指示,所述删除配置指示用于指示所述第一UE集合中的每个UE删除所述辅载波的配置,以及将驻留在所述辅载波上的第三UE集合中的UE切换到其他载波上,所述第三UE集合中的UE为使用所述辅 载波作为主载波的UE。然后,根据所述待调整子帧偏移量重新为所述第一UE集合中的每个UE配置所述辅载波。所述发射器23还用于向所述第一UE集合中的每个UE和第三UE集合中的每个UE发送更新后的载波信息,所述更新后的载波信息包括:所述辅载波的频点、所述辅载波的子帧配比和所述待调整子帧偏移量。所述接收器24还用于接收所述第三UE集合中的每个UE发送的所述辅载波的测量结果,所述辅载波的测量结果是所述第三UE集合中的每个UE根据所述更新后的载波信息进行测量得到的。所述处理器21还用于根据所述第三UE集合中的每个UE发送的所述辅载波的测量结果,确定是否将所述第三UE集合中的每个UE从所述其他载波上切换到所述辅载波上,对于所述第三UE集合中需要切换到所述辅载波上的UE进行切换。
可选的,处理器21还用于:确定第一UE已经激活的载波,所述第一UE为所述第一UE集合中的任意一个UE;从所述已经激活的载波中确定用于绑定传输的至少两个载波的绑定子帧,所述绑定子帧为所述用于绑定传输的至少两个载波中连续的子帧,所述绑定子帧用于传输相同的数据。相应的,发射器23还用于:将所述绑定传输的配置信息发送给所述第一UE,以使所述第一UE根据所述绑定传输的配置信息进行绑定传输,所述绑定传输的配置信息包括:所述用于绑定传输的至少两个载波、所述用于绑定传输的至少两个载波中参与所述绑定传输的资源块、所述绑定子帧的序号和所述绑定传输的调度方式。
可选的,处理器21在为所述基站的覆盖范围内的第一UE集合中的每个UE配置所述辅载波之前,还用于:使用所述辅载波将所述辅载波的频点、子帧配比、子帧偏移量广播给所述基站覆盖范围内所有UE;按照预设的选择条件从所述所有UE中确定第二UE集合,向所述第二UE集合中每个UE发送测量指示,所述测量指示用于指示所述第二UE集合中每个UE对所述辅载波进行测量。相应的,接收器24用于:接收所述第二UE集合中每个UE返回的所述辅载波的测量结果。处理器21还用于:根据所述第二UE集合中每个UE返回的所述辅载波的测量结果,从所述第二UE集合中确定测量结果满足预设条件的UE,将满足所述预设条件的UE组成所述第一UE集合。
可选的,所述辅载波的子帧偏移量与所述主载波的其他辅载波的子帧偏移量相同。
可选的,所述辅载波的子帧偏移量与所述主载波的其他辅载波的子帧偏移量不同。
可选的,所述辅载波的子帧配比与所述主载波和所述主载波的其他辅载波的子帧配比相同。
可选的,所述辅载波的子帧配比与所述主载波和所述主载波的其他辅载波的子帧配比不相同。
本实施例的基站,可用于执行实施例一至实施例三提供的方法,具体实现方式和技术效果类似,这里不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (16)

  1. 一种基于子帧偏移的载波聚合方法,其特征在于,包括:
    基站确定增加一个辅载波;
    所述基站确定对所述辅载波进行子帧偏移,并根据主载波的子帧配比和所述辅载波的子帧配比确定所述辅载波相对于所述主载波的子帧偏移量,其中,所述子帧偏移量为N个子帧的大小,且所述子帧偏移量不等于所述辅载波的子帧配比的周期的整数倍,N为大于等于1的正整数;
    所述基站为覆盖范围内的第一用户设备UE集合中的每个UE配置所述辅载波,并向所述第一UE集合中的每个UE发送配置信息,所述配置信息包括:所述辅载波的频点、所述辅载波的子帧配比和所述辅载波的子帧偏移量。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述基站根据上行业务量和/或下行业务量确定调整所述辅载波的子帧偏移量;
    所述基站确定所述辅载波的待调整子帧偏移量;
    所述基站向所述第一UE集合中的每个UE发送所述辅载波的删除配置指示,所述删除配置指示用于指示所述第一UE集合中的每个UE删除所述辅载波的配置;
    所述基站将驻留在所述辅载波上的第三UE集合中的UE切换到其他载波上,所述第三UE集合中的UE为使用所述辅载波作为主载波的UE;
    所述基站根据所述待调整子帧偏移量重新为所述第一UE集合中的每个UE配置所述辅载波,并向所述第一UE集合中的每个UE和所述第三UE集合中的每个UE发送更新后的载波信息,所述更新后的载波信息包括:所述辅载波的频点、所述辅载波的子帧配比和所述待调整子帧偏移量;
    所述基站接收所述第三UE集合中的每个UE发送的所述辅载波的测量结果,所述辅载波的测量结果是所述第三UE集合中的每个UE根据所述更新后的载波信息进行测量得到的;
    所述基站根据所述第三UE集合中的每个UE发送的所述辅载波的测量结果,确定是否将所述第三UE集合中的每个UE从所述其他载波上切 换到所述辅载波上,对于所述第三UE集合中需要切换到所述辅载波上的UE进行切换。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述基站确定第一UE已经激活的载波,所述第一UE为所述第一UE集合中的任意一个UE;
    所述基站从所述已经激活的载波中确定用于绑定传输的至少两个载波的绑定子帧,所述绑定子帧为所述用于绑定传输的至少两个载波中连续的子帧,所述绑定子帧用于传输相同的数据;
    所述基站将所述绑定传输的配置信息发送给所述第一UE,以使所述第一UE根据所述绑定传输的配置信息进行绑定传输,所述绑定传输的配置信息包括:所述用于绑定传输的至少两个载波、所述用于绑定传输的至少两个载波中参与所述绑定传输的资源块、所述绑定子帧的序号和所述绑定传输的调度方式。
  4. 根据权利要求1所述的方法,其特征在于,所述基站为覆盖范围内的第一用户设备UE集合中的每个UE配置所述辅载波之前,所述方法还包括:
    所述基站使用所述辅载波将所述辅载波的频点、子帧配比、子帧偏移量广播给所述基站覆盖范围内所有UE;
    所述基站按照预设的选择条件从所述所有UE中确定第二UE集合,向所述第二UE集合中每个UE发送测量指示,所述测量指示用于指示所述第二UE集合中每个UE对所述辅载波进行测量;
    所述基站接收所述第二UE集合中每个UE返回的所述辅载波的测量结果;
    所述基站根据所述第二UE集合中每个UE返回的所述辅载波的测量结果,从所述第二UE集合中确定测量结果满足预设条件的UE,将满足所述预设条件的UE组成所述第一UE集合。
  5. 根据权利要求1所述的方法,其特征在于,所述辅载波的子帧偏移量与所述主载波的其他辅载波的子帧偏移量相同。
  6. 根据权利要求1所述的方法,其特征在于,所述辅载波的子帧偏 移量与所述主载波的其他辅载波的子帧偏移量不同。
  7. 根据权利要求1所述的方法,其特征在于,所述辅载波的子帧配比与所述主载波和所述主载波的其他辅载波的子帧配比相同。
  8. 根据权利要求1所述的方法,其特征在于,所述辅载波的子帧配比与所述主载波和所述主载波的其他辅载波的子帧配比不相同。
  9. 一种基站,其特征在于,包括:
    确定模块,用于确定增加一个辅载波;
    所述确定模块,还用于确定对所述辅载波进行子帧偏移,并根据主载波的子帧配比和所述辅载波的子帧配比确定所述辅载波相对于所述主载波的子帧偏移量,其中,所述子帧偏移量为N个子帧的大小,且所述子帧偏移量不等于所述辅载波的子帧配比的周期的整数倍,N为大于等于1的正整数;
    配置模块,用于为所述基站的覆盖范围内的第一用户设备UE集合中的每个UE配置所述辅载波;
    发送模块,用于向所述第一UE集合中的每个UE发送配置信息,所述配置信息包括:所述辅载波的频点、所述辅载波的子帧配比和所述辅载波的子帧偏移量。
  10. 根据权利要求9所述的基站,其特征在于,所述确定模块还用于:
    根据上行业务量和/或下行业务量确定调整所述辅载波的子帧偏移量;
    确定所述辅载波的待调整子帧偏移量;
    所述发送模块,还用于向所述第一UE集合中的每个UE发送所述辅载波的删除配置指示,所述删除配置指示用于指示所述第一UE集合中的每个UE删除所述辅载波的配置;
    所述基站还包括:切换模块,用于将驻留在所述辅载波上的第三UE集合中的UE切换到其他载波上,所述第三UE集合中的UE为使用所述辅载波作为主载波的UE;
    所述配置模块,还用于根据所述待调整子帧偏移量重新为所述第一UE集合中的每个UE配置所述辅载波;
    所述发送模块,还用于向所述第一UE集合中的每个UE和所述第三UE集合中的每个UE发送更新后的载波信息,所述更新后的载波信息包括:所述辅载波的频点、所述辅载波的子帧配比和所述待调整子帧偏移量;
    所述基站还包括:接收模块,用于接收所述第三UE集合中的每个UE发送的所述辅载波的测量结果,所述辅载波的测量结果是所述第三UE集合中的每个UE根据所述更新后的载波信息进行测量得到的;
    所述切换模块,还用于根据所述第三UE集合中的每个UE发送的所述辅载波的测量结果,确定是否将所述第三UE集合中的每个UE从所述其他载波上切换到所述辅载波上,对于所述第三UE集合中需要切换到所述辅载波上的UE进行切换。
  11. 根据权利要求9或10所述的基站,其特征在于,所述确定模块还用于:
    确定第一UE已经激活的载波,所述第一UE为所述第一UE集合中的任意一个UE;
    从所述已经激活的载波中确定用于绑定传输的至少两个载波的绑定子帧,所述绑定子帧为所述用于绑定传输的至少两个载波中连续的子帧,所述绑定子帧用于传输相同的数据;
    所述发送模块,还用于将所述绑定传输的配置信息发送给所述第一UE,以使所述第一UE根据所述绑定传输的配置信息进行绑定传输,所述绑定传输的配置信息包括:所述用于绑定传输的至少两个载波、所述用于绑定传输的至少两个载波中参与所述绑定传输的资源块、所述绑定子帧的序号和所述绑定传输的调度方式。
  12. 根据权利要求9所述的基站,其特征在于,所述发送模块还用于:
    在所述配置模块为所述基站的覆盖范围内的第一UE集合中的每个UE配置所述辅载波之前,使用所述辅载波将所述辅载波的频点、子帧配比、子帧偏移量广播给所述基站覆盖范围内所有UE;
    所述确定模块,还用于基站按照预设的选择条件从所述所有UE中确定第二UE集合;
    所述发送模块,还用于向所述第二UE集合中每个UE发送测量指示,所述测量指示用于指示所述第二UE集合中每个UE对所述辅载波进行测量;
    所述基站还包括:
    接收模块,用于接收所述第二UE集合中每个UE返回的所述辅载波的测量结果;
    所述确定模块,还用于根据所述第二UE集合中每个UE返回的所述辅载波的测量结果,从所述第二UE集合中确定测量结果满足预设条件的UE,将满足所述预设条件的UE组成所述第一UE集合。
  13. 根据权利要求9所述的基站,其特征在于,所述辅载波的子帧偏移量与所述主载波的其他辅载波的子帧偏移量相同。
  14. 根据权利要求9所述的基站,其特征在于,所述辅载波的子帧偏移量与所述主载波的其他辅载波的子帧偏移量不同。
  15. 根据权利要求9所述的基站,其特征在于,所述辅载波的子帧配比与所述主载波和所述主载波的其他辅载波的子帧配比相同。
  16. 根据权利要求9所述的基站,其特征在于,所述辅载波的子帧配比与所述主载波和所述主载波的其他辅载波的子帧配比不相同。
PCT/CN2016/085027 2015-06-11 2016-06-07 基于子帧偏移的载波聚合方法和基站 WO2016197899A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16806797.3A EP3297365B1 (en) 2015-06-11 2016-06-07 Carrier aggregation method using subframe offset and base station
JP2017563956A JP6463516B2 (ja) 2015-06-11 2016-06-07 サブフレームオフセットをベースとするキャリアアグリゲーション方法および基地局

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510319680.8 2015-06-11
CN201510319680.8A CN106301730B (zh) 2015-06-11 2015-06-11 基于子帧偏移的载波聚合方法和基站

Publications (1)

Publication Number Publication Date
WO2016197899A1 true WO2016197899A1 (zh) 2016-12-15

Family

ID=57502857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085027 WO2016197899A1 (zh) 2015-06-11 2016-06-07 基于子帧偏移的载波聚合方法和基站

Country Status (4)

Country Link
EP (1) EP3297365B1 (zh)
JP (1) JP6463516B2 (zh)
CN (1) CN106301730B (zh)
WO (1) WO2016197899A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108260208A (zh) * 2016-12-29 2018-07-06 华为技术有限公司 一种多载波中传输数据的方法、终端设备和网络设备
WO2018171520A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 一种数据传输方法、终端设备和接入网设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018157320A1 (zh) * 2017-02-28 2018-09-07 华为技术有限公司 基于载波聚合的信息发送方法及装置
CN107222238A (zh) * 2017-05-18 2017-09-29 无锡睿思凯科技股份有限公司 一种基于半双工射频跳频通信协议的通信方法及通信系统
CN109088709A (zh) * 2017-06-14 2018-12-25 中兴通讯股份有限公司 一种周期cqi发送时机的分配方法及装置
CN109587679B (zh) 2017-09-28 2023-12-08 华为技术有限公司 信息传输的方法、终端设备和网络设备
CN109041238B (zh) * 2018-09-11 2020-11-03 京信通信系统(中国)有限公司 一种载波配置的检测方法、装置、设备及介质
US11606789B2 (en) * 2019-10-18 2023-03-14 Qualcomm Incorporated Asynchronous carrier aggregation slot alignment
CN115134818B (zh) * 2022-07-13 2024-03-19 中国电信股份有限公司 终端用户的辅小区配置方法、装置、设备及计算机介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651523A (zh) * 2008-08-11 2010-02-17 华为技术有限公司 多载波模式下的反馈控制信息的发送方法和装置
CN102685897A (zh) * 2011-03-09 2012-09-19 中兴通讯股份有限公司 一种载波聚合系统中的时序配置方法及装置
CN102685891A (zh) * 2011-03-09 2012-09-19 中兴通讯股份有限公司 一种无线通信系统中载波聚合的实现方法及系统
WO2015045270A1 (en) * 2013-09-26 2015-04-02 Sharp Kabushiki Kaisha Subframe offset in tdd-fdd carrier aggregation
WO2015050817A1 (en) * 2013-10-04 2015-04-09 Qualcomm Incorporated Adaptive lna operation for shared lna receiver for carrier aggregation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223728A (zh) * 2011-07-08 2011-10-19 电信科学技术研究院 一种进行调度的方法、系统和设备
CN102984794B (zh) * 2011-09-05 2017-11-07 中兴通讯股份有限公司 一种多点传输系统数据发送的方法、系统、基站和终端
US9497747B2 (en) * 2012-06-22 2016-11-15 Qualcomm Incorporated Data transmission in carrier aggregation with different carrier configurations
US9642140B2 (en) * 2013-06-18 2017-05-02 Samsung Electronics Co., Ltd. Methods of UL TDM for inter-enodeb carrier aggregation
JP2015070442A (ja) * 2013-09-27 2015-04-13 京セラ株式会社 ユーザ端末、基地局、及びプロセッサ
WO2015064896A1 (ko) * 2013-10-30 2015-05-07 엘지전자 주식회사 복수의 셀에 동시 접속한 사용자 장치가 harq ack/nack을 전송하는 방법
CN104683082B (zh) * 2013-12-03 2018-10-09 索尼公司 无线通信系统和在无线通信系统中进行无线通信的方法
WO2016012367A1 (en) * 2014-07-22 2016-01-28 Basf Se Modification of carbon particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651523A (zh) * 2008-08-11 2010-02-17 华为技术有限公司 多载波模式下的反馈控制信息的发送方法和装置
CN102685897A (zh) * 2011-03-09 2012-09-19 中兴通讯股份有限公司 一种载波聚合系统中的时序配置方法及装置
CN102685891A (zh) * 2011-03-09 2012-09-19 中兴通讯股份有限公司 一种无线通信系统中载波聚合的实现方法及系统
WO2015045270A1 (en) * 2013-09-26 2015-04-02 Sharp Kabushiki Kaisha Subframe offset in tdd-fdd carrier aggregation
WO2015050817A1 (en) * 2013-10-04 2015-04-09 Qualcomm Incorporated Adaptive lna operation for shared lna receiver for carrier aggregation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI; ET AL.: "Periodic CQI/PMI/RI reporting for CA", 3GPP TSG RAN WG1 MEETING #63, R1-105833, 19 November 2010 (2010-11-19), XP050466688 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108260208A (zh) * 2016-12-29 2018-07-06 华为技术有限公司 一种多载波中传输数据的方法、终端设备和网络设备
EP3550909A4 (en) * 2016-12-29 2019-12-11 Huawei Technologies Co., Ltd. METHOD FOR TRANSMITTING DATA IN MULTI-CARRIER, TERMINAL DEVICE AND NETWORK DEVICE
CN108260208B (zh) * 2016-12-29 2020-12-08 华为技术有限公司 一种多载波中传输数据的方法、终端设备和网络设备
US11038632B2 (en) 2016-12-29 2021-06-15 Huawei Technologies Co., Ltd. Method, terminal device, and network device for time-frequency resource bundling in transmitting data on multiple carriers
EP3876640A1 (en) * 2016-12-29 2021-09-08 Huawei Technologies Co., Ltd. Method for transmitting data on multiple carriers, terminal device, and network device
WO2018171520A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 一种数据传输方法、终端设备和接入网设备
CN108633090A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种数据传输方法、终端设备和接入网设备
CN108633090B (zh) * 2017-03-24 2020-08-14 华为技术有限公司 一种数据传输方法、终端设备和接入网设备

Also Published As

Publication number Publication date
CN106301730B (zh) 2019-09-20
CN106301730A (zh) 2017-01-04
JP6463516B2 (ja) 2019-02-06
JP2018521571A (ja) 2018-08-02
EP3297365A1 (en) 2018-03-21
EP3297365A4 (en) 2018-06-20
EP3297365B1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
WO2016197899A1 (zh) 基于子帧偏移的载波聚合方法和基站
JP6942731B2 (ja) 非対称的キャリアアグリゲーションにおける衝突を伴うサウンディング基準信号
JP7016422B2 (ja) マルチキャリアシステムのための能力構造のサイズが最適化された符号化
JP6936386B2 (ja) 帯域幅パートにおけるサウンディング基準信号(srs)送信を管理するための技法および装置
US11985016B2 (en) Apparatuses and methods of switching between different numerologies
JP6816104B2 (ja) 拡張キャリアアグリゲーションについてのフォーマット選択のための設定可能なしきい値
US11166277B2 (en) Communication method using frequency band of base station in wireless communication system, and device using method
TW201947959A (zh) 一種使用者設備的無線通訊方法及用於無線通訊的裝置
TW201828634A (zh) 用於選擇或發送針對相位追蹤參考信號的頻域模式的系統和方法
TW202002548A (zh) 使用者設備及其無線通訊方法
US20200077287A1 (en) Apparatus, method and computer program
TW201843976A (zh) 針對可變長度上行鏈路控制通道的可配置的時槽內頻率躍變
TW202010284A (zh) 無線通訊方法與無線通訊裝置
WO2013127310A1 (zh) 干扰协调的方法和装置
TWI704790B (zh) 使用者設備及其無線通訊方法
TW202127939A (zh) 針對srs/pucch的預設空間關係
US11843936B2 (en) Techniques for PUSCH scheduling in a wireless communication system
JP2021515430A (ja) Bwpの周波数ホッピング設定方法及びネットワーク装置、端末
KR20230051177A (ko) 사이드링크 캐리어 어그리게이션 크로스 캐리어 스케줄링
TWI758526B (zh) 用信號發送使用者設備能力資訊
US20230164772A1 (en) Joint scheduling of sidelink and uu link
WO2016101556A1 (zh) 频带修改方法、装置、终端及基站
TWI780252B (zh) 使用網路向下選擇替代方案的通道狀態回饋
TW202126088A (zh) 針對配置的路徑損耗參考信號和啟用的路徑損耗參考信號的ue能力報告
CN114600511B (zh) 控制小区状态的方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016806797

Country of ref document: EP