WO2016197663A1 - 一种具有太阳能、低谷电加热蓄能的热水供热装置及应用 - Google Patents

一种具有太阳能、低谷电加热蓄能的热水供热装置及应用 Download PDF

Info

Publication number
WO2016197663A1
WO2016197663A1 PCT/CN2016/077318 CN2016077318W WO2016197663A1 WO 2016197663 A1 WO2016197663 A1 WO 2016197663A1 CN 2016077318 W CN2016077318 W CN 2016077318W WO 2016197663 A1 WO2016197663 A1 WO 2016197663A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat
heating
electric heating
constant pressure
Prior art date
Application number
PCT/CN2016/077318
Other languages
English (en)
French (fr)
Inventor
宋世海
王子乐
Original Assignee
宋世海
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宋世海 filed Critical 宋世海
Priority to AU2016275938A priority Critical patent/AU2016275938A1/en
Publication of WO2016197663A1 publication Critical patent/WO2016197663A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D12/00Other central heating systems
    • F24D12/02Other central heating systems having more than one heat source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to a hot water heating device with solar energy and low valley electric heating energy storage and an application thereof, and belongs to the field of energy utilization.
  • Building energy consumption mainly includes heating, air conditioning, hot water supply, ventilation, lighting, etc., of which heating and air conditioning consume more energy, followed by hot water supply.
  • Wind energy and solar energy are renewable energy sources, and wind turbines and solar collectors have remarkable characteristics such as pollution-free, energy-saving, environmental protection and safety.
  • the existing wind power generation system is restricted by the natural environment, the power generation capacity is unstable, and the power cannot be supplied when there is no wind. At present, there is a certain limit to the use of the wind power generation, and wind power generation is rarely used in the heating field.
  • Solar energy is mainly used for hot water supply, and it is less involved in winter heating.
  • the object of the present invention is to provide a hot water heating device and application with solar energy and low valley electric heating energy storage, so as to achieve energy saving and environmental protection, low use cost, reasonable energy utilization and convenient use and management.
  • a hot water heating device with solar energy and low valley electric heating energy storage device comprises: a trough electric heating energy storage device, a constant pressure energy storage water tank, a solar heat collecting device and a controller, and the specific structure is as follows:
  • the constant pressure storage tank is arranged above the trough electric heating energy storage device, and the constant pressure storage tank is connected with the trough electric heating energy storage device, the solar heat collecting device and the heating system of the user system through the insulated pipe and the valve, respectively It is connected with a constant pressure storage tank and a valley electric heating energy storage device, and the controller controls the supply of thermal energy to the user system.
  • the hot water heating device with solar energy and low valley electric heating energy storage further comprises a wind power generator, and the electric heater in the wind power generator and the constant pressure storage water tank is connected by a cable, and the electric energy of the wind power generator is supplied to the constant An electric heater in the pressure storage tank is directly heated by the electric heater to the water in the constant pressure storage tank.
  • the hot water heating device with solar energy and low valley electric heating energy storage the water inlet of the solar heat collecting device is connected with the lower part of the side of the constant pressure storage water tank through a pipeline, and a solar heat collecting circulation pump is arranged on the pipeline. Effluent of solar collector The mouth is connected to the top of the constant pressure storage tank.
  • the hot water heating device with solar energy and low valley electric heating energy storage the water outlet I is arranged at the upper part of the side of the constant pressure storage water tank, and the water outlet pipe I communicates with the user system through the pipeline, and a heating cycle is arranged on the pipeline Pump; the lower part of the side of the constant pressure storage tank is provided with the outlet pipe II, the outlet pipe II, the return pipe III of the user system is connected with the return pipe IV; the return pipe IV separates the two paths, and the inlet of the all the way and the trough electric heating accumulator Connected, the other way is connected to the bottom of the constant pressure storage tank through the return pipe V.
  • the hot water heating device with solar energy and low valley electric heating energy storage communicates with the outlet pipe of the heating circulation pump through the pipeline, so that the hot water in the outlet pipe II directly enters the user system;
  • a decontamination device and an opening and closing valve are respectively disposed on the pipeline connected to the trough electric heating accumulator, and the opening and closing valve is connected to the outlet pipe of the heating circulation pump through the pipeline, and the hot water in the outlet pipe II together with the return pipe of the user system
  • the return water in III flows through the decontamination device, the opening and closing valve, and the pipeline into the user system; the heating circulation pump, the decontamination device, and the opening and closing valve constitute a user system, so that the heat energy of the valley electric energy and the solar energy conversion is transmitted to the user system.
  • the hot equipment; the two sides of the decontamination device and the opening and closing valve are connected through the return pipe I, the hot water in the outlet pipe II together with the return water in the return pipe III of the user system, directly enters the trough electric heating accumulator through the return pipe I Inlet.
  • the hot water heating device with solar energy and low valley electric heating energy storage device is provided with a temperature control regulating valve, a temperature control regulating valve and a trough electric heating energy storage device on a pipeline connecting the return water pipe IV and the trough electric heating energy storage device.
  • the thermostatic adjustment system is composed of the temperature control valve opening and closing and opening degree to control the flow direction of the return water; when the temperature control regulating valve is closed, the return water directly enters the bottom of the constant pressure storage tank through the return pipe V; When the regulating valve is fully opened, the return water directly enters the trough electric heating accumulator for heating, and the heated water enters the middle of the side of the constant pressure accumulating water tank through the return pipe II.
  • the hot water heating device with solar energy and low valley electric heating energy storage device is provided with a static pressure line in the constant pressure storage water tank, and an overflow port is arranged at a horizontal upper position of the side surface of the constant pressure storage water tank and the static pressure line.
  • an overflow port is arranged at a horizontal upper position of the side surface of the constant pressure storage water tank and the static pressure line.
  • the hot water heating device with solar energy, low valley electric heating energy storage, low valley electric heating energy storage device is arranged in the bottom floor or underground room of the building, and the low valley electric heating energy storage device is a modular type that changes the heat storage capacity according to needs.
  • Structure, low valley electric heating energy storage device uses different heat storage module groups according to heat storage demand to provide different heat storage capacity;
  • low valley electric heating energy storage device is provided with metal frame structure and sealing steel plate box, box Built-in energy storage material: metal oxide or phase change material, heat conducting serpentine tube and valley electric heating component are arranged in the energy storage material, heat medium in the heat conducting serpentine tube is heated by the heat provided by the energy storage material;
  • the tube is at least one group, forming a heat conducting serpentine tube heat exchange device, and adjusting the heat conduction area of the trough electric heating energy storage device by changing the number of the heat conducting serpentine tubes; setting the inlet and the outlet of each group of the heat conducting serpentine tubes Drain valve and partition After the valve is closed, the heat-conductive serpentine tube stops
  • the solar energy received by the solar heat collecting device is used to heat the water in the constant pressure storage water tank, and the low valley electric heating energy storage device is stored in the valley electricity period.
  • the heat stored by the valley electricity also heats the hot water in the constant pressure storage tank, and the controller controls the low-temperature electric heating energy storage device to supply heat to the constant pressure storage tank to maintain the water supply temperature of the heating system.
  • the thermal energy produced by the combined light and valley electric heating energy storage hot water heating device described above passes through the heat insulating pipe and the user system according to the actual situation of the user system.
  • the heating equipment is connected, the circulating power of the heating system is provided by the circulating water pump; the solar heat collecting device and the low-altitude electric heating energy storage device are combined, and the heat storage heating device that manages the low-temperature electric heating energy storage by the controller is used.
  • the heat storage and heat supply are adjusted according to the change of outdoor air temperature during the heating period and the needs of the user system.
  • the application of the hot water heating device with solar energy and low valley electric heating energy storage the solar energy received by the solar heat collecting device is used to heat the water in the constant pressure storage water tank, and the low valley electric heating energy storage device is stored in the valley electricity period.
  • the heat stored by the valley electricity also heats the hot water in the constant pressure storage tank, and the controller controls the low-temperature electric heating energy storage device to supply heat to the constant pressure storage tank to maintain the water supply temperature of the heating system.
  • the heat energy produced by the combined wind, light and valley electric heating energy storage hot water heating device described above is passed according to the actual situation of the user system.
  • the insulated pipe is connected to the heating equipment of the user system, and the circulating power of the heating system is provided by the circulating water pump; the combination of wind energy, solar energy and low valley electricity is used to combine the wind power generator, the solar heat collecting device and the low valley electric heating energy storage.
  • the heat storage heating device that uses the controller to manage the low-temperature electric heating energy storage, according to the change of outdoor air temperature during the heating period and the user EC needs to be adjusted for thermal storage and heat.
  • the hot water heating device of the present invention may include a wind power generator, a solar heat collecting device, a constant pressure energy storage water tank, a low valley electric heating energy storage device filled with an energy storage material (metal oxide or phase change material), etc., wherein: the wind power The electric energy generated by the generator is not stored directly for heating the hot water in the constant pressure storage tank.
  • the solar heat collecting device, the constant pressure storage water tank, the low valley electric heating energy storage device filled by the energy storage material (metal oxide or phase change material) are connected through the heat preservation pipe and the valve, and the heating time and heating of the valley electric power by the controller are adopted. The temperature is controlled to ensure a stable and continuous supply of heat energy.
  • the low-valley electric heating energy storage device adopts a box body composed of a metal frame structure and a sealing steel plate, and a high-temperature resistant heat insulating material is disposed on the outer side of the box body, thereby reducing the heat loss of the low valley electric heating energy storage device.
  • An emergency electric heating pipe is arranged in the constant pressure storage tank to provide hot water heating for the hot user system when the valley electric device fails. In summer, solar installations can provide domestic hot water.
  • the invention fully utilizes wind energy by utilizing the organic combination of wind energy, solar heat collecting device and trough electric heating accumulating device.
  • the effective energy of solar energy and the low-cost electric energy of the nighttime valley electricity period achieve the purpose of energy saving and environmental protection and reducing heating costs while satisfying people's winter heating demand.
  • the controller of the device of the invention can realize unmanned management and scientific operation, and meets the heating demand of the people, reduces the time and effort spent on the heating system management, and greatly improves and improves the quality of life of the people.
  • Figure 1 is a schematic view showing the structure of an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of another embodiment of the present invention.
  • 1 low valley electric heating energy storage device 2 constant pressure energy storage water tank; 3 solar heat collecting circulation pump; 4 solar heat collecting device; 5 heating circulating pump; 6 decontaminator; 7 opening and closing valve; 9 return pipe I; 10 temperature control regulating valve; 11 overflow port; 12 float ball; 13 water supply pipe; 14 return pipe II; 15 outlet pipe I; 16 outlet pipe II; 17 user system; 18 return pipe III; Water pipe IV; 20 pipe; 21 return pipe V; 22 wind power generator; 101 heat conductive serpentine pipe; 102 energy storage material; 103 exhaust valve; 104 case; 105 isolation valve; 106 valley electric heating component.
  • the embodiment has a hot water heating device with solar energy and low valley electric heating energy storage, and mainly includes: a trough electric heating energy storage device, a constant pressure storage water tank 2, a solar heat collecting device 4, and a controller. 8, etc., the specific structure is as follows:
  • the water inlet of the solar heat collecting device 4 communicates with the lower portion of the side surface of the constant pressure storage tank 2 through a pipeline, and a solar heat collecting circulation pump 3 is disposed on the pipeline, and the water outlet of the solar heat collecting device 4 and the constant pressure storage tank 2 The top is connected.
  • the constant pressure storage tank 2 is arranged above the trough electric heating energy storage device 1, and the constant pressure storage tank 2 is heated by the insulated pipe and the valve and the trough electric heating energy storage device 1, the solar heat collecting device 4 and the user system 17.
  • the system is connected, and the controller 8 controls the supply of thermal energy to the user system 17.
  • the solar heat collecting circulation pump 3 and the solar heat collecting device 4 are arranged according to the actual situation of the user system 17, and the solar energy amount collected during the day is sent to the constant pressure storage water tank 2 as heating energy for heating.
  • the controller 8 is connected to the constant pressure storage tank 2 and the valley electric heating storage device 1, respectively, and the controller 8 controls the operation of the valley electric heating energy storage device 1 and the solar heat collecting device 4 according to the demand of the user system 17 and the climate change.
  • User system 17 delivers thermal energy.
  • An outlet pipe I15 is disposed at an upper portion of the side surface of the constant pressure storage tank 2, and the outlet pipe I15 communicates with the user system 17 through a pipe, and a heating circulation pump 5 is disposed on the pipe.
  • An outlet pipe II16 is disposed at a lower portion of the side of the constant pressure storage tank 2, and the outlet pipe II16 and the return pipe III18 of the user system 17 are in communication with the return pipe IV19.
  • the return pipe IV19 is divided into two ways, one way and the trough electric heating energy storage device The water inlet of 1 is connected, and the other road is connected to the bottom of the constant pressure storage tank 2 through the return pipe V21.
  • the return pipe IV19 communicates with the outlet pipe of the heating circulation pump 5 through the pipeline, so that the hot water in the outlet pipe II16 can directly enter the user system 17 for heating.
  • the decontamination device 6, the opening and closing valve 7, and the temperature control regulating valve 10 are respectively disposed on the pipeline communicating with the trough electric heating accumulator 1 in the return pipe IV19, and the dirt in the return pipe IV19 can be discharged through the decontamination device 6,
  • the on-off valve 7 communicates with the outlet pipe of the heating circulation pump 5 through the pipeline 20, and the hot water in the outlet pipe II16 can be flowed through the decontamination device 6, the on-off valve together with the return water in the return pipe III18 of the user system 17 on the other hand.
  • Line 20 enters user system 17 for heating.
  • the user system 17 composed of the heating circulation pump 5, the decontamination device 6, and the on-off valve 7 is responsible for conveying the heat energy of the valley electric energy and the solar energy conversion to the heating device (heat radiator or heat exchanger) of the user system 17.
  • the hot water in the outlet pipe II16 can be directly fed through the return pipe I9 into the trough electric heating together with the return water in the return pipe III18 of the user system 17.
  • the opening and closing and opening degree of the temperature control regulating valve 10 can be used to control the flow direction of the return water. When the temperature control regulating valve 10 is closed, the return water directly enters the bottom of the constant pressure storage tank 2 via the return pipe V21.
  • the temperature control regulating valve 10 When the temperature control regulating valve 10 is fully opened, the return water directly enters the trough electric heating accumulator 1 for heating, and the heated water enters the middle of the side of the constant pressure accumulating water tank 2 through the return pipe II14 (thick pipe), so that the constant pressure The water in the storage tank 2 is rapidly heated, and the low-temperature electric heating energy storage is fully utilized.
  • the temperature control regulating valve 10 and the low valley electric heating energy storage device 1 are bypassed to form a constant temperature adjusting system.
  • the heating capacity of the low valley electric heating energy storage device 1 can be adjusted in time to make the user system The heating system of 17 runs smoothly.
  • a static pressure line (constant pressure point) is arranged in the constant pressure storage tank 2, and an overflow port 11 is provided at a horizontal position of the upper side of the constant pressure storage tank 2 and the static pressure line, and the water surface in the constant pressure storage tank 2 exceeds
  • the bottom of the constant pressure storage tank 2 is drained through the overflow port 11 to bring the water surface to the static pressure line.
  • a water supply pipe 13 is inserted into the water of the constant pressure storage tank 2, and the water supply pipe 13 is connected with the tap water.
  • the floating ball 12 is disposed on the water surface of the constant pressure storage water tank 2, and the float ball 12 is connected with the valve on the water supply pipe 13 at a constant pressure.
  • the trough electric heating energy storage device 1 is usually arranged in the bottom floor or the basement of the building, and the trough electric heating energy storage device 1 is a modular structure that can change the heat storage capacity as needed, and the trough electric heating energy storage device 1 can be based on the heat storage demand. Different types of heat storage modules are used to provide different heat storage capacities.
  • the trough electric heating energy storage device 1 is provided with a metal frame structure and a casing 104 for sealing steel plates.
  • the casing 104 has an energy storage material 102 (metal oxide or phase change material), and a certain amount is arranged in the energy storage material 102.
  • the heat conducting coil 101 and the valley electric heating member 106; the heat medium (e.g., water) in the heat conducting coil 101 is heated by the heat supplied from the energy storage material 102, and the tank 104 operates under normal pressure.
  • the heat conducting serpentine tube 101 is at least one group, forming a heat conducting serpentine tube heat exchange device, which can change the heat conducting serpentine tube 101 The amount of heat is used to adjust the heat transfer area of the trough electric heating accumulator 1.
  • An venting valve 103 and an isolation valve 105 are disposed at the inlet and the outlet of each set of the heat conducting coils 101. After the isolation valve 105 is closed, the heat conducting serpentine tube 101 is stopped, and the venting valve 103 can discharge the heat conducting serpentine tube 101.
  • Thermal medium In addition, the inner and outer sides of the box body 104 can be provided with a certain thickness of high temperature resistant heat insulating material to form a high-efficiency composite heat insulating structure.
  • the controller 8 is connected to the temperature sensor on the water outlet pipe I15 of the constant pressure storage tank 2, the valley electric heating unit 106 of the valley electric heating energy storage device 1, the heating circulation pump 5, and the temperature control regulating valve 10 on the return pipe IV19.
  • the controller 8 issues an instruction to control the opening and closing of the valley electric heating unit 106, the heating circulation pump 5, and the temperature control regulating valve 10, respectively, according to the temperature signal of the temperature sensor.
  • the solar energy received by the solar heat collecting device 4 is used to heat the water in the constant pressure storage tank 2, and the low-temperature electric heating energy storage device 1 stores the heat converted from the valley electricity during the valley electricity period and also heats the constant.
  • the hot water in the pressure storage tank is controlled by the controller 8 to control the supply of heat to the constant pressure storage tank 2, and maintain the water supply temperature of the heating system, together with the solar collector 4
  • the user system 17 needs heat supply, and the heat energy produced by the combined light and valley electric heating energy storage hot water heating device described above passes through the heat insulating pipe and the heating device of the user system 17 according to the actual situation of the user system 17 (heat dissipation) Connected to the heat exchanger, the circulating power of the heating system is provided by a circulating water pump (heating circulation pump 5, solar collector circulating pump 3, etc.).
  • the combination of the use of solar energy and low-grid electricity that is, the combination of a solar heat collecting device and a trough electric heating energy storage device, and a high-tech heat storage heating device that manages the low-altitude electric heating energy storage by the controller can
  • the heat storage and heat supply are adjusted according to the change of outdoor air temperature during the heating period and the needs of the user system.
  • the hot water heating device with wind energy, solar energy and low valley electric heating energy storage mainly includes: low valley electric heating energy storage device 1 and constant pressure storage energy.
  • the water tank 2, the solar heat collecting device 4, the wind power generator 22, the controller 8, etc., the specific structure is as follows:
  • the water inlet of the solar heat collecting device 4 communicates with the lower portion of the side surface of the constant pressure storage tank 2 through a pipeline, and a solar heat collecting circulation pump 3 is disposed on the pipeline, and the water outlet of the solar heat collecting device 4 and the constant pressure storage tank 2 The top is connected.
  • the constant pressure storage tank 2 is arranged above the trough electric heating energy storage device 1, and the constant pressure storage tank 2 passes through the insulation pipe and the valve and the trough electric heating energy storage device 1, the solar heat collecting device 4 and the user system 17 heating system
  • the connection is controlled by the controller 8 to supply thermal energy to the user system 17.
  • the solar heat collecting circulation pump 3 and the solar heat collecting device 4 are arranged according to the actual situation of the user system 17, and the solar energy amount collected during the day is sent to the constant pressure storage water tank 2 as heating energy for heating.
  • the wind generator 22 and the electric heater in the constant pressure storage tank 2 are connected by a cable, and the electric energy of the wind power generator 22 is supplied to the electric heater in the constant pressure storage tank 2, and the electric heater directly directly presses the constant pressure The water in the storage tank 2 is heated.
  • the controller 8 is connected to the constant pressure storage tank 2 and the valley electric heating storage device 1 respectively. Then, the controller 8 controls the operation of the valley electric heating energy storage device 1, the wind power generator 22, and the solar heat collecting device 4 according to the demand of the user system 17 and the climate change, and transfers the thermal energy to the user system 17.
  • the solar energy received by the solar heat collecting device 4 is used to heat the water in the constant pressure storage tank 2, and the low-temperature electric heating energy storage device 1 stores the heat converted from the valley electricity during the valley electricity period and also heats the constant.
  • the hot water in the pressure storage tank is controlled by the controller 8 to control the supply of heat to the constant pressure storage tank 2, and maintain the water supply temperature of the heating system, and the wind generator 22, solar collector
  • the device 4 together meets the heat supply requirement of the user system 17, and the heat energy produced by the combined wind, light and valley electric heating energy storage hot water heating device described above passes through the heat preservation pipe and the user system according to the actual situation of the user system 17.
  • the heating equipment (heat sink or heat exchanger, etc.) of 17 is connected, and the circulating power of the heating system is provided by a circulating water pump (heating circulation pump 5, solar collector circulating pump 3, etc.).
  • the combination of wind energy, solar energy and low valley electricity use that is, the wind power generator, the solar heat collecting device and the low valley electric heating energy storage are combined, and the controller pair is adopted.
  • the high-tech regenerative heating device that manages the low-temperature electric heating energy storage can adjust the heat storage and heat supply according to the change of outdoor air temperature during the heating period and the needs of the user system.

Abstract

一种热水供热装置及其应用,该供热装置包括:低谷电加热蓄能装置(1)、恒压蓄能水箱(2)、太阳能集热装置(4)、风力发电机(22)、控制器(8)。恒压蓄能水箱(2)与低俗电加热蓄能装置(1)、太阳能集热装置(4)和用户系统(17)连接,控制器(8)分别与恒压蓄能水箱(2)、低谷电加热蓄能装置(1)连接,由控制器(8)控制向用户系统(17)供应热能。风力发电机(22)的电能供电给恒压蓄能水箱(2)中的电加热器,直接对恒压蓄能水箱(2)中的水加热。

Description

一种具有太阳能、低谷电加热蓄能的热水供热装置及应用 技术领域
本发明涉及一种具有太阳能、低谷电加热蓄能的热水供热装置及应用,属于能源利用领域。
背景技术
建筑能耗主要包括采暖、空调、热水供应、通风、照明等,其中以采暖和空调能耗较大,其次为热水供应。风能和太阳能为可再生能源,风力发电机、太阳能集热装置具有无污染、节能、环保、安全等显著特点。现有风力发电系统受到自然环境的制约,发电生产能力不稳定,无风时无法提供电力,目前风力发电的上网使用有一定的限制,风力发电也很少在供热领域使用。太阳能利用以热水供应为主,较少涉及冬季采暖使用。
随着人类节能环保意识的不断增强,更加充分的利用风能、太阳能,在更多的领域使用风能和太阳能已经成为人们的共识。因此,建筑供暖、空调和热水供应系统的热源选择和配置时,使用风能、太阳能的需求越来越大。但是,在风能和太阳能的应用过程中有一些不足,经常受到气候和昼夜条件的限制,影响到用户系统的使用。为了克服风能和太阳能使用时的条件限制,结合国家制定的低谷电优惠政策,应该考虑将风能、太阳能和低谷电的使用结合起来,更好的发挥风能、太阳能节能、环保的优势,在保证用户系统需求的前提下,降低供热成本。
发明内容
本发明的目的在于提供一种具有太阳能、低谷电加热蓄能的热水供热装置及应用,以达到节能环保且使用成本低,能源利用合理、使用管理方便。
本发明的技术方案是:
一种具有太阳能、低谷电加热蓄能的热水供热装置,该装置包括:低谷电加热蓄能装置、恒压蓄能水箱、太阳能集热装置、控制器,具体结构如下:
恒压蓄能水箱布置在低谷电加热蓄能装置的上方,恒压蓄能水箱通过保温管道和阀门与低谷电加热蓄能装置、太阳能集热装置和用户系统的供热系统连接,控制器分别与恒压蓄能水箱、谷电加热蓄能装置连接,由控制器控制向用户系统供应热能。
所述的具有太阳能、低谷电加热蓄能的热水供热装置,还包括风力发电机,风力发电机与恒压蓄能水箱中的电加热器通过电缆连接,风力发电机的电能供电给恒压蓄能水箱中的电加热器,通过所述电加热器直接对恒压蓄能水箱中水加热。
所述的具有太阳能、低谷电加热蓄能的热水供热装置,太阳能集热装置的进水口通过管路与恒压蓄能水箱侧面下部连通,在所述管路上设置太阳能集热循环泵,太阳能集热装置的出水 口与恒压蓄能水箱顶部连通。
所述的具有太阳能、低谷电加热蓄能的热水供热装置,恒压蓄能水箱的侧面上部设置出水管Ⅰ,出水管Ⅰ通过管路与用户系统连通,在所述管路上设置采暖循环泵;恒压蓄能水箱的侧面下部设置出水管Ⅱ,出水管Ⅱ、用户系统的回水管Ⅲ与回水管Ⅳ连通;回水管Ⅳ分出两路,一路与低谷电加热蓄能装置的进水口连通,另一路通过回水管Ⅴ与恒压蓄能水箱的底部连通。
所述的具有太阳能、低谷电加热蓄能的热水供热装置,回水管Ⅳ通过管路与采暖循环泵的出水管连通,使出水管Ⅱ中的热水直接进入用户系统;在回水管Ⅳ与低谷电加热蓄能装置连通的管路上,分别设置除污器、开闭阀,开闭阀通过管路与采暖循环泵的出水管连通,出水管Ⅱ中的热水连同用户系统的回水管Ⅲ中的回水流经除污器、开闭阀、管路进入用户系统;采暖循环泵、除污器、开闭阀组成用户系统,使谷电能量、太阳能转换的热能输送到用户系统的供热设备;在除污器和开闭阀两端通过回水管Ⅰ连通,出水管Ⅱ中的热水连同用户系统的回水管Ⅲ中的回水,直接经过回水管Ⅰ进入低谷电加热蓄能装置的进水口。
所述的具有太阳能、低谷电加热蓄能的热水供热装置,在回水管Ⅳ与低谷电加热蓄能装置连通的管路上设置温控调节阀,温控调节阀和低谷电加热蓄能装置组成恒温调节系统,温控调节阀的启闭和开度大小,控制回水的流向;当温控调节阀关闭时,回水直接经回水管Ⅴ进入恒压蓄能水箱的底部;当温控调节阀完全开启时,回水直接进入低谷电加热蓄能装置进行加热,经过加热的水通过回水管Ⅱ进入恒压蓄能水箱的侧面中部。
所述的具有太阳能、低谷电加热蓄能的热水供热装置,恒压蓄能水箱内设置静压线,恒压蓄能水箱侧面上部与所述静压线水平位置设有溢流口,在恒压蓄能水箱内水面超过静压线时,通过溢流口或恒压蓄能水箱底部排水,使水面达到静压线;恒压蓄能水箱的水中插设补水管,补水管与自来水连通,恒压蓄能水箱的水面上设置浮球,浮球与补水管上的阀门连接,在恒压蓄能水箱内水面低于静压线时,浮球对所述阀门的压力减小,将所述阀门打开,通过补水管向恒压蓄能水箱加水,使水面达到静压线。
所述的具有太阳能、低谷电加热蓄能的热水供热装置,低谷电加热蓄能装置布置在建筑物的底层或地下室内,低谷电加热蓄能装置为根据需要改变蓄热能力的模块式结构,低谷电加热蓄能装置根据蓄热需求,使用不同规格的蓄热模块组,提供不同的蓄热能力;低谷电加热蓄能装置设有金属框架结构和密封用钢板组成的箱体,箱体内置蓄能材料:金属氧化物或相变材料,在蓄能材料中布置导热蛇形管和谷电加热部件,导热蛇形管中供热介质由蓄能材料提供的热量升温;导热蛇形管为至少一组,形成导热蛇形管换热装置,通过改变导热蛇形管的使用数量,来调整低谷电加热蓄能装置的热传导面积;在每组导热蛇形管的进口、出口均设置排空阀和隔 离阀,隔离阀关闭后,导热蛇形管停止工作,排空阀排放导热蛇形管中的导热介质;箱体的内外侧设有耐高温保温材料,形成复合保温结构。
所述的具有太阳能、低谷电加热蓄能的热水供热装置的应用,太阳能集热装置接收的太阳能用来加热恒压蓄能水箱中的水,低谷电加热蓄能装置在谷电时段蓄储由谷电转换来的热量同时也加热恒压蓄能水箱中的热水,其他时段由控制器控制低谷电加热蓄能装置向恒压蓄能水箱供热,保持供热系统的供水温度,与太阳能集热装置一起共同满足用户系统供热的需求,以上所述的光、谷电组合式加热蓄能热水供热装置生产的热能,根据用户系统的实际情况通过保温管道与用户系统的供热设备连接,供热系统的循环动力由循环水泵提供;将太阳能集热装置和低谷电加热蓄能装置结合起来使用,同时采用控制器对低谷电加热蓄能进行管理的蓄热供暖装置,根据采暖期室外气温的变化及用户系统的需要调整蓄热和供热量。
所述的具有太阳能、低谷电加热蓄能的热水供热装置的应用,太阳能集热装置接收的太阳能用来加热恒压蓄能水箱中的水,低谷电加热蓄能装置在谷电时段蓄储由谷电转换来的热量同时也加热恒压蓄能水箱中的热水,其他时段由控制器控制低谷电加热蓄能装置向恒压蓄能水箱供热,保持供热系统的供水温度,与风力发电机、太阳能集热装置一起共同满足用户系统供热的需求,以上所述的风、光、谷电组合式加热蓄能热水供热装置生产的热能,根据用户系统的实际情况通过保温管道与用户系统的供热设备连接,供热系统的循环动力由循环水泵提供;将风能、太阳能和低谷电使用结合起来,即将风力发电机、太阳能集热装置和低谷电加热蓄能结合起来使用,同时采用控制器对低谷电加热蓄能进行管理的蓄热供暖装置,根据采暖期室外气温的变化及用户系统的需要调整蓄热和供热量。
本发明的设计思想是:
本发明热水供热装置可以包括风力发电机、太阳能集热装置、恒压蓄能水箱、由蓄能材料(金属氧化物或相变材料)填充的低谷电加热蓄能装置等,其中:风力发电机所发的电能不做存储直接用于加热恒压蓄能水箱中的热水。太阳能集热装置、恒压蓄能水箱、由蓄能材料(金属氧化物或相变材料)填充的低谷电加热蓄能装置通过保温管道和阀门进行连接,采用控制器对谷电加热时间和供暖温度进行控制,保证提供稳定连续的热能供应。低谷电加热蓄能装置采用金属框架结构和密封用钢板组成的箱体,在箱体内外侧均敷设耐高温保温材料,降低了低谷电加热蓄能装置的热损失。恒压蓄能水箱中设置应急电加热管,可以在谷电装置出现故障时,为热用户系统提供热水供暖。夏季时,太阳能装置可以提供生活热水。
本发明的优点及有益效果是:
1、本发明通过风能、太阳能集热装置、低谷电加热蓄能装置的有机结合,充分利用了风能、 太阳能的有效能量和夜间谷电时段的低价电能,在满足人们冬季采暖需求的同时,实现了节能环保和降低供热费用的目的。
2、本发明装置的控制器可以实现无人管理,科学运行,在满足人们供暖需求的同时,减少了采暖系统管理耗费的时间和精力,极大提升和改善的人们生活质量。
附图说明
图1为本发明的一个实施例结构示意图。
图2为本发明的另一实施例结构示意图。
图中,1低谷电加热蓄能装置;2恒压蓄能水箱;3太阳能集热循环泵;4太阳能集热装置;5采暖循环泵;6除污器;7开闭阀;8控制器;9回水管Ⅰ;10温控调节阀;11溢流口;12浮球;13补水管;14回水管Ⅱ;15出水管Ⅰ;16出水管Ⅱ;17用户系统;18回水管Ⅲ;19回水管Ⅳ;20管路;21回水管Ⅴ;22风力发电机;101导热蛇形管;102蓄能材料;103排空阀;104箱体;105隔离阀;106谷电加热部件。
具体实施方式
下面,通过实施例和附图对本发明进一步详细阐述。但这些实施例不是对本发明保护范围的限制,所有在本发明技术方案基本思路范围内或本质上等同于本发明技术方案的改变均为本发明的保护范围。
实施例1
如图1所示,本实施例具有太阳能、低谷电加热蓄能的热水供热装置,主要包括:低谷电加热蓄能装置1、恒压蓄能水箱2、太阳能集热装置4、控制器8等,具体结构如下:
太阳能集热装置4的进水口通过管路与恒压蓄能水箱2侧面下部连通,在所述管路上设置太阳能集热循环泵3,太阳能集热装置4的出水口与恒压蓄能水箱2顶部连通。恒压蓄能水箱2布置在低谷电加热蓄能装置1的上方,恒压蓄能水箱2通过保温管道和阀门与低谷电加热蓄能装置1、太阳能集热装置4和用户系统17的供热系统连接,由控制器8控制向用户系统17供应热能。太阳能集热循环泵3和太阳能集热装置4根据用户系统17的现场实际进行布置,收集日间的太阳能量输送到恒压蓄能水箱2作为采暖的热能。控制器8分别与恒压蓄能水箱2、谷电加热蓄能装置1连接,控制器8根据用户系统17需求和气候变化控制谷电加热蓄能装置1、太阳能集热装置4的运行,向用户系统17输送热能。
恒压蓄能水箱2的侧面上部设置出水管Ⅰ15,出水管Ⅰ15通过管路与用户系统17连通,在所述管路上设置采暖循环泵5。恒压蓄能水箱2的侧面下部设置出水管Ⅱ16,出水管Ⅱ16、用户系统17的回水管Ⅲ18与回水管Ⅳ19连通。回水管Ⅳ19分出两路,一路与低谷电加热蓄能装置 1的进水口连通,另一路通过回水管Ⅴ21与恒压蓄能水箱2的底部连通。另外,回水管Ⅳ19通过管路与采暖循环泵5的出水管连通,使出水管Ⅱ16中的热水一方面可以直接进入用户系统17供热。
在回水管Ⅳ19与低谷电加热蓄能装置1连通的管路上,分别设置除污器6、开闭阀7、温控调节阀10,通过除污器6可以将回水管Ⅳ19中的污垢排出,开闭阀7通过管路20与采暖循环泵5的出水管连通,出水管Ⅱ16中的热水另一方面可以连同用户系统17的回水管Ⅲ18中的回水流经除污器6、开闭阀7、管路20进入用户系统17供热。采暖循环泵5、除污器6、开闭阀7组成的用户系统17,负责将谷电能量、太阳能转换的热能输送到用户系统17的供热设备(散热器或换热器)。
另外,在除污器6和开闭阀7两端通过回水管Ⅰ9连通,出水管Ⅱ16中的热水可以连同用户系统17的回水管Ⅲ18中的回水,直接经过回水管Ⅰ9进入低谷电加热蓄能装置1的进水口。温控调节阀10的启闭和开度大小,可以用来控制回水的流向。当温控调节阀10关闭时,回水直接经回水管Ⅴ21进入恒压蓄能水箱2的底部。当温控调节阀10完全开启时,回水直接进入低谷电加热蓄能装置1进行加热,经过加热的水通过回水管Ⅱ14(粗管)进入恒压蓄能水箱2的侧面中部,使恒压蓄能水箱2中的水快速升温,充分利用了低谷电加热蓄能。由温控调节阀10和低谷电加热蓄能装置1旁路组成恒温调节系统,当用户系统17需要的热量发生变化时,能够及时调整低谷电加热蓄能装置1的供热能力,使用户系统17的供热系统平稳运行。
恒压蓄能水箱2内设置静压线(恒压点),恒压蓄能水箱2侧面上部与所述静压线水平位置设有溢流口11,在恒压蓄能水箱2内水面超过静压线时,通过溢流口11或恒压蓄能水箱2底部排水,使水面达到静压线。恒压蓄能水箱2的水中插设补水管13,补水管13与自来水连通,恒压蓄能水箱2的水面上设置浮球12,浮球12与补水管13上的阀门连接,在恒压蓄能水箱2内水面低于静压线时,浮球12对所述阀门的压力减小,将所述阀门打开,通过补水管13向恒压蓄能水箱2加水,使水面达到静压线。从而,实现恒压蓄能水箱2的自动恒压功能。
低谷电加热蓄能装置1通常布置在建筑物的底层或地下室内,低谷电加热蓄能装置1为可以根据需要改变蓄热能力的模块式结构,低谷电加热蓄能装置1可以根据蓄热需求,使用不同规格的蓄热模块组,提供不同的蓄热能力。低谷电加热蓄能装置1设有金属框架结构和密封用钢板组成的箱体104,箱体104内置蓄能材料102(金属氧化物或相变材料),在蓄能材料102中布置一定数量的导热蛇形管101和谷电加热部件106;导热蛇形管101中供热介质(如:水)由蓄能材料102提供的热量升温,箱体104在常压下工作。
导热蛇形管101为至少一组,形成导热蛇形管换热装置,可以通过改变导热蛇形管101的 使用数量,来调整低谷电加热蓄能装置1的热传导面积。在每组导热蛇形管101的进口、出口均设置排空阀103和隔离阀105,隔离阀105关闭后,导热蛇形管101停止工作,排空阀103可以排放导热蛇形管101中的导热介质。另外,箱体104的内外侧均可设有一定厚度的耐高温保温材料,形成高效复合保温结构。
控制器8分别与恒压蓄能水箱2的出水管Ⅰ15上温度传感器、谷电加热蓄能装置1的谷电加热部件106、采暖循环泵5、回水管Ⅳ19上的温控调节阀10连接,控制器8根据接收所述温度传感器的温度信号,发出指令分别控制谷电加热部件106、采暖循环泵5和温控调节阀10的启闭。
本实施例中,太阳能集热装置4接收的太阳能用来加热恒压蓄能水箱2中的水,低谷电加热蓄能装置1在谷电时段蓄储由谷电转换来的热量同时也加热恒压蓄能水箱中的热水,其他时段由控制器8控制低谷电加热蓄能装置1向恒压蓄能水箱2供热,保持供热系统的供水温度,与太阳能集热装置4一起共同满足用户系统17供热的需求,以上所述的光、谷电组合式加热蓄能热水供热装置生产的热能,根据用户系统17的实际情况通过保温管道与用户系统17的供热设备(散热器或换热器等)连接,供热系统的循环动力由循环水泵(采暖循环泵5、太阳能集热循环泵3等)提供。
从而,将太阳能和低谷电的使用有机结合起来,即将太阳能集热装置和低谷电加热蓄能装置结合起来使用,同时采用控制器对低谷电加热蓄能进行管理的高科技蓄热供暖装置,可以根据采暖期室外气温的变化及用户系统的需要调整蓄热和供热量。
实施例2
如图2所示,与实施例1不同之处在于,本实施例具有风能、太阳能、低谷电加热蓄能的热水供热装置,主要包括:低谷电加热蓄能装置1、恒压蓄能水箱2、太阳能集热装置4、风力发电机22、控制器8等,具体结构如下:
太阳能集热装置4的进水口通过管路与恒压蓄能水箱2侧面下部连通,在所述管路上设置太阳能集热循环泵3,太阳能集热装置4的出水口与恒压蓄能水箱2顶部连通。恒压蓄能水箱2布置在低谷电加热蓄能装置1的上方,恒压蓄能水箱2通过保温管道和阀门与低谷电加热蓄能装置1、太阳能集热装置4和用户系统17供热系统连接,由控制器8控制向用户系统17供应热能。太阳能集热循环泵3和太阳能集热装置4根据用户系统17的现场实际进行布置,收集日间的太阳能量输送到恒压蓄能水箱2作为采暖的热能。风力发电机22与恒压蓄能水箱2中的电加热器通过电缆连接,风力发电机22的电能供电给恒压蓄能水箱2中的电加热器,通过所述电加热器直接对恒压蓄能水箱2中水加热。控制器8分别与恒压蓄能水箱2、谷电加热蓄能装置1连 接,控制器8根据用户系统17需求和气候变化控制谷电加热蓄能装置1、风力发电机22、太阳能集热装置4的运行,向用户系统17输送热能。
本实施例中,太阳能集热装置4接收的太阳能用来加热恒压蓄能水箱2中的水,低谷电加热蓄能装置1在谷电时段蓄储由谷电转换来的热量同时也加热恒压蓄能水箱中的热水,其他时段由控制器8控制低谷电加热蓄能装置1向恒压蓄能水箱2供热,保持供热系统的供水温度,与风力发电机22、太阳能集热装置4一起共同满足用户系统17供热的需求,以上所述的风、光、谷电组合式加热蓄能热水供热装置生产的热能,根据用户系统17的实际情况通过保温管道与用户系统17的供热设备(散热器或换热器等)连接,供热系统的循环动力由循环水泵(采暖循环泵5、太阳能集热循环泵3等)提供。
从而,针对现有风能、太阳能使用过程中存在的不足,将风能、太阳能和低谷电使用结合起来,即将风力发电机、太阳能集热装置和低谷电加热蓄能结合起来使用,同时采用控制器对低谷电加热蓄能进行管理的高科技蓄热供暖装置,可以根据采暖期室外气温的变化及用户系统的需要调整蓄热和供热量。

Claims (10)

  1. 一种具有太阳能、低谷电加热蓄能的热水供热装置,其特征在于,该装置包括:低谷电加热蓄能装置、恒压蓄能水箱、太阳能集热装置、控制器,具体结构如下:
    恒压蓄能水箱布置在低谷电加热蓄能装置的上方,恒压蓄能水箱通过保温管道和阀门与低谷电加热蓄能装置、太阳能集热装置和用户系统的供热系统连接,控制器分别与恒压蓄能水箱、谷电加热蓄能装置连接,由控制器控制向用户系统供应热能。
  2. 按照权利要求1所述的具有太阳能、低谷电加热蓄能的热水供热装置,其特征在于,还包括风力发电机,风力发电机与恒压蓄能水箱中的电加热器通过电缆连接,风力发电机的电能供电给恒压蓄能水箱中的电加热器,通过所述电加热器直接对恒压蓄能水箱中水加热。
  3. 按照权利要求1所述的具有太阳能、低谷电加热蓄能的热水供热装置,其特征在于,太阳能集热装置的进水口通过管路与恒压蓄能水箱侧面下部连通,在所述管路上设置太阳能集热循环泵,太阳能集热装置的出水口与恒压蓄能水箱顶部连通。
  4. 按照权利要求1所述的具有太阳能、低谷电加热蓄能的热水供热装置,其特征在于,恒压蓄能水箱的侧面上部设置出水管Ⅰ,出水管Ⅰ通过管路与用户系统连通,在所述管路上设置采暖循环泵;恒压蓄能水箱的侧面下部设置出水管Ⅱ,出水管Ⅱ、用户系统的回水管Ⅲ与回水管Ⅳ连通;回水管Ⅳ分出两路,一路与低谷电加热蓄能装置的进水口连通,另一路通过回水管Ⅴ与恒压蓄能水箱的底部连通。
  5. 按照权利要求4所述的具有太阳能、低谷电加热蓄能的热水供热装置,其特征在于,回水管Ⅳ通过管路与采暖循环泵的出水管连通,使出水管Ⅱ中的热水直接进入用户系统;在回水管Ⅳ与低谷电加热蓄能装置连通的管路上,分别设置除污器、开闭阀,开闭阀通过管路与采暖循环泵的出水管连通,出水管Ⅱ中的热水连同用户系统的回水管Ⅲ中的回水流经除污器、开闭阀、管路进入用户系统;采暖循环泵、除污器、开闭阀组成用户系统,使谷电能量、太阳能转换的热能输送到用户系统的供热设备;在除污器和开闭阀两端通过回水管Ⅰ连通,出水管Ⅱ中的热水连同用户系统的回水管Ⅲ中的回水,直接经过回水管Ⅰ进入低谷电加热蓄能装置的进水口。
  6. 按照权利要求4所述的具有太阳能、低谷电加热蓄能的热水供热装置,其特征在于,在回水管Ⅳ与低谷电加热蓄能装置连通的管路上设置温控调节阀,温控调节阀和低谷电加热蓄能装置组成恒温调节系统,温控调节阀的启闭和开度大小,控制回水的流向;当温控调节阀关闭时,回水直接经回水管Ⅴ进入恒压蓄能水箱的底部;当温控调节阀完全开启时,回水直接进入低谷电加热蓄能装置进行加热,经过加热的水通过回水管Ⅱ进入恒压蓄能水箱的侧面中部。
  7. 按照权利要求1所述的具有太阳能、低谷电加热蓄能的热水供热装置,其特征在于,恒压蓄能水箱内设置静压线,恒压蓄能水箱侧面上部与所述静压线水平位置设有溢流口,在恒压蓄能水箱内水面超过静压线时,通过溢流口或恒压蓄能水箱底部排水,使水面达到静压线;恒压蓄能水箱的水中插设补水管,补水管与自来水连通,恒压蓄能水箱的水面上设置浮球,浮球与补水管上的阀门连接,在恒压蓄能水箱内水面低于静压线时,浮球对所述阀门的压力减小,将所述阀门打开,通过补水管向恒压蓄能水箱加水,使水面达到静压线。
  8. 按照权利要求1所述的具有太阳能、低谷电加热蓄能的热水供热装置,其特征在于,低谷电加热蓄能装置布置在建筑物的底层或地下室内,低谷电加热蓄能装置为根据需要改变蓄热能力的模块式结构,低谷电加热蓄能装置根据蓄热需求,使用不同规格的蓄热模块组,提供不同的蓄热能力;低谷电加热蓄能装置设有金属框架结构和密封用钢板组成的箱体,箱体内置蓄能材料:金属氧化物或相变材料,在蓄能材料中布置导热蛇形管和谷电加热部件,导热蛇形管中供热介质由蓄能材料提供的热量升温;导热蛇形管为至少一组,形成导热蛇形管换热装置,通过改变导热蛇形管的使用数量,来调整低谷电加热蓄能装置的热传导面积;在每组导热蛇形管的进口、出口均设置排空阀和隔离阀,隔离阀关闭后,导热蛇形管停止工作,排空阀排放导热蛇形管中的导热介质;箱体的内外侧设有耐高温保温材料,形成复合保温结构。
  9. 一种权利要求1所述的具有太阳能、低谷电加热蓄能的热水供热装置的应用,其特征在于,太阳能集热装置接收的太阳能用来加热恒压蓄能水箱中的水,低谷电加热蓄能装置在谷电时段蓄储由谷电转换来的热量同时也加热恒压蓄能水箱中的热水,其他时段由控制器控制低谷电加热蓄能装置向恒压蓄能水箱供热,保持供热系统的供水温度,与太阳能集热装置一起共同满足用户系统供热的需求,以上所述的光、谷电组合式加热蓄能热水供热装置生产的热能,根据用户系统的实际情况通过保温管道与用户系统的供热设备连接,供热系统的循环动力由循环水泵提供;将太阳能集热装置和低谷电加热蓄能装置结合起来使用,同时采用控制器对低谷电加热蓄能进行管理的蓄热供暖装置,根据采暖期室外气温的变化及用户系统的需要调整蓄热和供热量。
  10. 一种权利要求2所述的具有太阳能、低谷电加热蓄能的热水供热装置的应用,其特征在于,太阳能集热装置接收的太阳能用来加热恒压蓄能水箱中的水,低谷电加热蓄能装置在谷电时段蓄储由谷电转换来的热量同时也加热恒压蓄能水箱中的热水,其他时段由控制器控制低谷电加热蓄能装置向恒压蓄能水箱供热,保持供热系统的供水温度,与风力发电机、太阳能集热装置一起共同满足用户系统供热的需求,以上所述的风、光、谷电组合式加热蓄能热水供热装置生产的热能,根据用户系统的实际情况通过保温管道与用户系统的供热设备连接,供热系 统的循环动力由循环水泵提供;将风能、太阳能和低谷电使用结合起来,即将风力发电机、太阳能集热装置和低谷电加热蓄能结合起来使用,同时采用控制器对低谷电加热蓄能进行管理的蓄热供暖装置,根据采暖期室外气温的变化及用户系统的需要调整蓄热和供热量。
PCT/CN2016/077318 2015-06-11 2016-03-25 一种具有太阳能、低谷电加热蓄能的热水供热装置及应用 WO2016197663A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2016275938A AU2016275938A1 (en) 2015-06-11 2016-03-25 Hot water heating device having solar energy and off-peak electric heating energy storage and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510321212.4A CN104864449B (zh) 2015-06-11 2015-06-11 一种具有太阳能、低谷电加热蓄能的热水供热装置及应用
CN201510321212.4 2015-06-11

Publications (1)

Publication Number Publication Date
WO2016197663A1 true WO2016197663A1 (zh) 2016-12-15

Family

ID=53910465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077318 WO2016197663A1 (zh) 2015-06-11 2016-03-25 一种具有太阳能、低谷电加热蓄能的热水供热装置及应用

Country Status (3)

Country Link
CN (1) CN104864449B (zh)
AU (1) AU2016275938A1 (zh)
WO (1) WO2016197663A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155114A1 (en) 2018-02-06 2019-08-15 Mika Tapio Reijonen Method and apparatus for storing solar energy

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864449B (zh) * 2015-06-11 2017-09-29 宋世海 一种具有太阳能、低谷电加热蓄能的热水供热装置及应用
CN105299731B (zh) * 2015-11-15 2018-03-27 甘肃华瑞农业股份有限公司 一种太阳能加热及利用峰谷电辅助加热采暖工艺
CN105352023A (zh) * 2015-12-02 2016-02-24 宋世海 一种具有低谷电加热蓄能的二次换热供热系统
CN107289494A (zh) * 2016-04-13 2017-10-24 华电电力科学研究院 基于分布式加热储热技术的集中供热系统
CN106382668B (zh) * 2016-08-29 2019-04-23 东北大学 一种电蓄热锅炉与太阳能联合采暖的系统与方法
CN106403009A (zh) * 2016-11-24 2017-02-15 中城科新能源科技(北京)有限公司 一种光伏电蓄热采暖系统装置
CN106440021A (zh) * 2016-11-24 2017-02-22 中城科新能源科技(北京)有限公司 一种光伏电蓄热采暖系统的控制方法
CN106765463A (zh) * 2016-12-15 2017-05-31 杭州工电能源科技有限公司 一种家庭谷电蓄热利用系统
CN106765459A (zh) * 2016-12-21 2017-05-31 大连宝锋机器制造有限公司 有多种能量加热器以谷电为主的节能环保供暖系统及方法
CN107940771A (zh) * 2017-11-10 2018-04-20 上海交通大学 一种太阳能光热/谷电储热互补储热供热系统
CN109827220A (zh) * 2019-03-27 2019-05-31 北控清洁热力有限公司 一种复合源供热系统
CN115863851B (zh) * 2022-12-01 2023-10-10 茂炜能源股份有限公司 一种基于锌升华和氧化的储能装置及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201412901Y (zh) * 2009-05-27 2010-02-24 丹东大正机电设备科技有限公司 低谷电辅助式太阳能供暖系统
JP2014092326A (ja) * 2012-11-05 2014-05-19 Marinekkus:Kk ハイブリッド型給湯装置
CN203758038U (zh) * 2014-03-25 2014-08-06 河南水木太阳能科技有限公司 太阳能辅助电锅炉采暖、热水系统
CN104864449A (zh) * 2015-06-11 2015-08-26 宋世海 一种具有太阳能、低谷电加热蓄能的热水供热装置及应用
CN204693564U (zh) * 2015-06-11 2015-10-07 宋世海 一种具有太阳能、低谷电加热蓄能的热水供热装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980003321U (ko) * 1996-06-28 1998-03-30 자동차의 도아 키홀 해빙장치
CN2602318Y (zh) * 2002-11-21 2004-02-04 谢建庆 太阳能结合储能快热式热水炉供水、供暖系统
CN102538053A (zh) * 2012-02-22 2012-07-04 西南交通大学 一种主动式太阳能和风能联合供暖系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201412901Y (zh) * 2009-05-27 2010-02-24 丹东大正机电设备科技有限公司 低谷电辅助式太阳能供暖系统
JP2014092326A (ja) * 2012-11-05 2014-05-19 Marinekkus:Kk ハイブリッド型給湯装置
CN203758038U (zh) * 2014-03-25 2014-08-06 河南水木太阳能科技有限公司 太阳能辅助电锅炉采暖、热水系统
CN104864449A (zh) * 2015-06-11 2015-08-26 宋世海 一种具有太阳能、低谷电加热蓄能的热水供热装置及应用
CN204693564U (zh) * 2015-06-11 2015-10-07 宋世海 一种具有太阳能、低谷电加热蓄能的热水供热装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155114A1 (en) 2018-02-06 2019-08-15 Mika Tapio Reijonen Method and apparatus for storing solar energy

Also Published As

Publication number Publication date
AU2016275938A1 (en) 2018-02-01
CN104864449B (zh) 2017-09-29
CN104864449A (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2016197663A1 (zh) 一种具有太阳能、低谷电加热蓄能的热水供热装置及应用
WO2017092179A1 (zh) 一种具有低谷电加热蓄能的二次换热供热系统
CN101650098B (zh) 一种太阳能-地源热泵自平衡综合应用系统
CN201488394U (zh) 一种太阳能-地源热泵自平衡综合应用系统
CN110224672B (zh) 太阳能光伏光热综合利用装置及该装置的通风采暖系统
CN111536573B (zh) 一种太阳能热水装置及其控制方法
CN206846864U (zh) 双热源蓄热型智能供暖系统
CN210050873U (zh) 一种梯级蓄热式太阳能与地源热泵复合供暖系统
CN109737486B (zh) 一种集热蓄热墙和空气水集热器的组合供暖系统
CN204693564U (zh) 一种具有太阳能、低谷电加热蓄能的热水供热装置
CN210197447U (zh) 多能源互补的学校供暖节能系统
CN109737615B (zh) 小型家用太阳能热电冷多联产系统
CN111895572A (zh) 一种住宅新风系统控制方法及系统
CN207555710U (zh) 一种空气源热泵和蓄热电锅炉联合集中供热系统
CN208124530U (zh) 相变蓄能热泵恒温系统
CN205174553U (zh) 一种具有低谷电加热蓄能的二次换热供热系统
CN214791621U (zh) 建筑物5g舒适系统
CN205090466U (zh) 低谷电加热蓄能的热水供热装置
CN204574343U (zh) 分户式相变储能型太阳能热水采暖空调
CN103876518B (zh) 温控床的温度调节系统
CN203249305U (zh) 一种智能控制的太阳能、空气源、电能互补供暖供热系统
CN206131519U (zh) 基于太阳能热利用的三重复合地源热泵系统
CN215412110U (zh) 一种太阳能供暖系统
CN209726310U (zh) 一种基于太阳能与空气能的综合室内供热系统
CN215637471U (zh) 一种太阳能采暖和生活热水供应系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016275938

Country of ref document: AU

Date of ref document: 20160325

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/05/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16806561

Country of ref document: EP

Kind code of ref document: A1