WO2016197457A1 - A synergistic composition comprising insecticides and fungicides - Google Patents

A synergistic composition comprising insecticides and fungicides Download PDF

Info

Publication number
WO2016197457A1
WO2016197457A1 PCT/CN2015/087326 CN2015087326W WO2016197457A1 WO 2016197457 A1 WO2016197457 A1 WO 2016197457A1 CN 2015087326 W CN2015087326 W CN 2015087326W WO 2016197457 A1 WO2016197457 A1 WO 2016197457A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
plants
synergistic composition
weight
water
Prior art date
Application number
PCT/CN2015/087326
Other languages
French (fr)
Inventor
Timothy James BRISTOW
Original Assignee
Rotam Agrochem International Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rotam Agrochem International Company Limited filed Critical Rotam Agrochem International Company Limited
Publication of WO2016197457A1 publication Critical patent/WO2016197457A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having no bond to a nitrogen atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/24Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof containing the groups, or; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/34Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the groups, e.g. biuret; Thio analogues thereof; Urea-aldehyde condensation products
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N2300/00Combinations or mixtures of active ingredients covered by classes A01N27/00 - A01N65/48 with other active or formulation relevant ingredients, e.g. specific carrier materials or surfactants, covered by classes A01N25/00 - A01N65/48

Definitions

  • the present invention relates to a synergistic composition
  • a synergistic composition comprising (A) an insecticidal component comprising fipronil and thiodicarb; and (B) a fungicidal component comprising one or more selected from azoxystrobin and thiophanate-methyl.
  • the present invention is also related to a method to prevent, control and/or treat insect, nematode and fungal infestations in plants, plant parts and/or their surroundings by applying a synergistic composition according to the present invention to the locus to be treated.
  • the present invention also relates to the use of the aforementioned composition, in particular in the treatment of seeds, foliage and soil applications.
  • Nematode and insect infestations and fungal diseases represent a major threat to economically important agricultural crops, like cereals, fiber, leguminous plants and sugarcane.
  • the yield of plants, for example, sugarcane and soybean are adversely impacted by nematode, insect and fungi attack. Therefore, there is a continuing need to provide a composition for preventing, controlling and/or treating nematode, insect and fungal infestations, thereby increasing the yield of plant.
  • the insecticidal and fungicidal active ingredients forming the synergistic composition of this invention are independently known in the art for their effects on plant protection. They are all disclosed in The Pesticides Manual, Twelfth Edition, 2000, published by The British Crop Protection Council. They are also commercially available.
  • Azoxystrobin a strobilurin-type fungicide
  • a strobilurin-type fungicide is a well-known fungicide having a broad spectrum of disease control. It is extracted from the fungus Strobilurus tenacellus. It has a suppressive effect on other fungi, reducing competition for nutrients; it inhibits electron transfer between cytochrome b and cytochrome C 1 at the ubiquinol oxidising site in mitochondria, disrupting metabolism and preventing growth of the target fungi.
  • Thiophanate-methyl is a systemic fungicide with protective and curative action. It is being absorbed by leaves and roots.
  • Fipronil belongs to a class of insecticides known as phenylpyrazoles. Fipronil interferes with the passage of chloride ions through the gamma-aminobutyric acid (GABA) -regulated chloride channel disrupting CNS activity. It is moderately systemic and can be used to control insects when applied as a soil or seed treatment. A method to prepare fipronil is disclosed in WO2013037291 A1.
  • GABA gamma-aminobutyric acid
  • Thiodicarb is a N-methyl oxyimidothioate carbamate insecticide. It is a neurotoxic compound and its mode of action is via the inhabitation of cholinesterase enzymes.
  • the present invention relates to a synergistic composition
  • a synergistic composition comprising:
  • fungicidal component comprising azoxystrobin and/or thiophanate-methyl.
  • the synergistic compositions of the present invention can provide advantages over the use of the individual components (A) and (B) .
  • the rates of application of the individual components can be markedly reduced while maintaining a high level of insecticidal or fungicidal efficacy.
  • the composition can have a considerably broader spectrum against which it is effective than does either of the components alone.
  • the composition can have the potential to control fungal and/or insect and/or nematode species at a low application rate at which the individual compounds alone were ineffective.
  • the composition can have a speed of action which is faster than that which would have been predicted from the speed of the individual components.
  • composition contains an insecticidal effective amount of component (A) and a fungicidal effective amount of component (B) .
  • the term "effective amount” means the quantity of such a compound or combination of such compounds that is capable of providing preventing, controlling and/or treating insect, nematode and/or fungal infestations of plants.
  • Plant refers to all plant and plant populations such as desired and undesired wild plants or crop plants.
  • Plant parts refers to all parts and organs of plants, such as shoot, leaves, needles, stalks, stems, fruit bodies, fruits, seeds, roots, tubers and rhizomes.
  • Harvested materials, and vegetative and generative propagation materials for example, cutting, tubers, meristem tissue, rhizomes, offsets, seeds, single and multiple plant cells and any other plant tissues, are also included.
  • the word “surrounding” or “locus” refers to the place on which the plants are growing, the place on which the plant propagation materials of the plants are sown or the place on which the plant propagation materials of the plants will be sown.
  • the invention also relates to a method of preventing, controlling and/or treating insecticidal, nematode and fungicidal infestations, and to the use of this synergistic composition.
  • synergistic composition comprising (A) an insecticidal component comprising fipronil and thiodicarb; and (B) a fungicidal component comprising azoxystrobin and/or thiophanate-methyl on the plants, plant parts and/or their surroundings, particularly on cereals, fiber plants, leguminous plants and sugarcane, an excellent performance in preventing, controlling and/or treating insect, nematode and fungal infestations may be observed.
  • the insecticidal component (A) may be present in the composition of the present invention in any suitable amount, and is generally present in an amount of from about 20%to about 80%by weight of the composition, preferably from about 30%to about 70%by weight of the composition, more preferably from about 35 %to about 65 %be weight or from about 40%to about 65%by weight of the composition.
  • Fipronil may be present in the composition of the present invention in any suitable amount, and is generally present in an amount of from about 1%to about 50%by weight of the composition, preferably from about 1%to about 30%or from about 5%to about 20%by weight of the composition, more preferably from about 5%to about 15%by weight of the composition. In some embodiments, fipronil present in an amount of from about 10%by weight of the composition. In certain embodiments, fipronil present in an amount of from about 7%by weight of the composition.
  • Thiodicarb may be present in the composition of the present invention in any suitable amount, and is generally present in an amount of from about 1%to about 70%by weight of the composition, preferably from about 1%to about 55%or from about 30%to about 55%by weight of the composition, more preferably from about 32%to about 50%by weight of the composition. In some embodiments, thiodicarb present in an amount of from about 44%by weight of the composition. In certain embodiments, thiodicarb present in an amount of from about 35%by weight of the composition.
  • the fungicidal component (B) may be present in the composition of the present invention in any suitable amount, and is generally present in an amount of from about 0.5%to about 50%by weight of the composition, preferably from about 0.5%to about 30%or from about 0.5%to about 20%by weight of the composition, more preferably from about 0.5%to about 15%by weight of the composition.
  • Azoxystrobin may be present in the composition of the present invention in any suitable amount, and is generally present in an amount of from about 0%to about 50%by weight of the composition, preferably from about 0.5%to about 30%or from about 0.5%to about 15%by weight of the composition, more preferably from about 0.5%to about 10%by weight of the composition. In some embodiments, azoxystrobin is present in an amount of from about 6%by weight of the composition. In certain embodiments, azoxystrobin present in an amount of from about 0.6%by weight of the composition.
  • Thiophanate-methyl may be present in the composition of the present invention in any suitable amount, and is generally present in an amount of from about 0%to about 50%by weight of the composition, preferably from about 0.5%to about 30%or from about 0.5%to about 15%by weight of the composition, more preferably from about 5%to about 10%by weight of the composition. In some embodiments, thiophanate-methyl present in an amount of from about 7.4%by weight of the composition.
  • the weight percentages of the components in the composition are independently: from about 5%to about 12%of fipronil; from about 40%to about 50%of thiodicarb; and from about 5%to about 10%of azoxystrobin by weight of the composition.
  • the weight percentages of components in the composition are independently: from about 5%to about 10%of fipronil; from about 30%to about 40%of thiodicarb; from about 0.5%to about 1%of azoxystrobin; and from about 5%to about 10%of thiophanate-methyl by weight of the composition.
  • the components (A) and (B) may be present in the composition or applied in any amounts relative to each other, to provide the enhanced or synergistic effect of the mixture.
  • the weight ratio of the components (A) and (B) in the composition independently is preferably in the range of from about 50: 1 to about 1: 50 or from about 15: 1 to about 1: 15, more preferably from about 12: 1 to about 1: 12, even more preferred from about 9: 1 to about 1: 9.
  • the weight ratio of the components (A) to (B) in the composition is about 9: 1, or 8: 1 or 7: 1 or 6: 1 or 5: 1 or 4: 1 or 3: 1 or 2: 1 or 1: 1.
  • the weight ratio of the components (A) to (B) in the composition is about 5: 1.
  • the components (A) and (B) together may be present in the composition in any suitable amount, and is generally present in an amount of from about 2%to about 95%by weight of the composition, preferably from about 25%to about 80%by weight of the composition more preferably from about 35%to about 70%, even more preferred from about 45%to about 65%by weight of the composition.
  • each combination is a composition comprising, components (A) and (B) , and optionally one or more auxiliaries.
  • the auxiliaries employed in the composition will depend upon the type of formulation and/or the manner in which the formulation is to be applied by the end user. Formulations incorporating the composition of the present invention are described hereinafter.
  • Suitable auxiliaries which may be comprised in the composition according to the invention are all customary formulation adjuvants or components, such as extender, carriers, solvents, surfactants, stabilizers, anti-foaming agents, anti-freezing agents, preservatives, antioxidants, colorants, thickeners, solid adherents and inert fillers.
  • Such auxiliaries are known in the art and are commercially available. Their use in the formulation of the compositions of the present invention will be apparent to the person skilled in the art.
  • the composition may further comprise one or more inert fillers.
  • inert fillers are known in the art and available commercially.
  • Suitable fillers in a form of a solid include, for example, natural ground minerals, such as kaolins, aluminas, talc, chalk, quartz, attapulgite, montmorillonite, and diatomaceous earth, or synthetic ground minerals, such as highly dispersed silicic acid, aluminum oxide, silicates, and calcium phosphates and calcium hydrogen phosphates.
  • Suitable inert fillers for granules include, for example, crushed and fractionated natural minerals, such as calcite, marble, pumice, sepiolite, and dolomite, or synthetic granules of inorganic and organic ground materials, as well as granules of organic material, such as sawdust, coconut husks, corn cobs, and tobacco stalks.
  • the composition optionally includes one or more surfactants which are preferably non-ionic, cationic and/or anionic in nature and surfactant mixtures which have good emulsifying, dispersing and wetting properties, depending on the nature of the active compound to be formulated.
  • Suitable surfactants are known in the art and are commercially available.
  • Suitable anionic surfactants can be both so-called water-soluble soaps and water-soluble synthetic surface-active compounds. Soaps which may be used are the alkali metal, alkaline earth metal or substituted or unsubstituted ammonium salts of higher fatty acid (C 10 -C 22 ) , for example the sodium or potassium salt of oleic or stearic acid, or of natural fatty acid mixtures.
  • the surfactant can be an emulsifier, dispersant or wetting agent of ionic or nonionic type.
  • examples which may be used are salts of polyacrylic acids, salts of lignosulphonic acid, salts of phenylsulphonic or naphthalenesulphonic acids, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols, especially alkylphenols, sulphosuccinic ester salts, taurine derivatives, especially alkyltaurates, or phosphoric esters of polyethoxylated phenols or alcohols.
  • the presence of at least one surfactant is generally required when the active compound and/or the inert carrier and/or auxiliary/adjuvant are insoluble in water and the vehicle for the final application of the composition is water.
  • the composition optionally further comprises one or more polymeric stabilizer.
  • suitable polymeric stabilizers that may be used in the present invention include, but are not limited to, polypropylene, polyisobutylene, polyisoprene, copolymers of monoolefins and diolefins, polyacrylates, polystyrene, polyvinyl acetate, polyurethanes or polyamides. Suitable stabilizers are known in the art and commercially available.
  • surfactants and polymeric stabilizers mentioned above are generally believed to impart stability to the composition, in turn allowing the composition to be formulated, stored, transported and applied.
  • Suitable anti-foams include all substances which can normally be used for this purpose in agrochemical compositions. Suitable anti-foam agents are known in the art and are available commercially. Particularly preferred antifoam agents are mixtures of polydimethylsiloxanes and perfluroalkylphosphonic acids, such as the silicone anti-foam agents available from GE or Compton.
  • Suitable organic solvents are selected from all customary organic solvents which thoroughly dissolve the active compounds employed. Again, suitable organic solvents for the active components (A) and (B) are known in the art. The following may be mentioned as being preferred: N-methyl pyrrolidone, N-octyl pyrrolidone, cyclohexyl-1- pyrrolidone; or SOLVESSO TM 200, a mixture of paraffinic, isoparaffinic, cycloparaffinic and aromatic hydrocarbons. Suitable solvents are commercially available.
  • Suitable preservatives include all substances which can normally be used for this purpose in agrochemical compositions of this type and again are well known in the art. Suitable examples that may be mentioned include (from Bayer AG) and (from Bayer AG) .
  • Suitable antioxidants are all substances which can normally be used for this purpose in agrochemical compositions, as is known in the art. Preference is given to butylated hydroxytoluene.
  • Suitable thickeners include all substances which can normally be used for this purpose in agrochemical compositions.
  • thickeners are known in the art and available commercially.
  • the composition may further comprise one or more solid adherents.
  • adherents are known in the art and available commercially. They include organic adhesives, including tackifiers, such as celluloses of substituted celluloses, natural and synthetic polymers in the form of powders, granules, or lattices, and inorganic adhesives such as gypsum, silica or cement.
  • composition according to the invention may also comprise water.
  • compositions according to the present invention comprise the following combinations of components:
  • composition of the present invention can be used in the agricultural sector and related fields of use for control insects, including termite, beetle, moth, weevils, millipedes; nematodes; and fungi, for example, but not limited to:
  • Nematodes Meloidogyne javanica; Pratylenchus brachyurus;
  • Ant Acromyrmex landolti landolti, Atta capiguara, Atta sexdens rubropilosa
  • Fungi Bipolaris oryzae, Bipolaris sorokiniana, Drechslera teres, Drechslera tritici-repentis,
  • Nematodes Meloidogyne javanica; Pratylenchus brachyurus;
  • Ant Acromyrmex landolti landolti, Atta sexdens rubropilosa
  • Thrip Frankliniella schultzeI
  • Nematodes Meloidogyne javanica; Pratylenchus brachyurus;
  • Fungi Pineapple diseases (fungus complex, the major one is: Ceratocystis paradoxa) ;
  • Root rots (Pythium spp) ; Phytophthora rot of cuttings (Phytophthora spp. ) ; fusariose (Fusarium semitectum)
  • Nematodes Meloidogyne javanica; Pratylenchus brachyurus;
  • Moth Elasmopalpus lignosellus; Spodoptera frugiperda; Agrotis ipsilon;
  • Fungi Purple seed stain (Cercospora kikuchii) ; stem anthracnose (Colletotrichum dematium f. sp. Truncatum) ; fusariose (Fusarium semitectum) ; Pod and stem blight, Stem canker, seed decay (Diaporthe phaseolorum var. sojae) ; stem rot (Sclerotinia sclerotiorum) ; Damping-off, Pythium rot (Pythium spp) ; Phytophthora rot of cuttings (Phytophthora spp. )
  • composition according to the present invention is suitable for plants of the crops: cereals (wheat, barley, rye, oats, maize, rice, sorghum, triticale and related crops) ; beet (such as sugar beet and fodder beet) ; fruit, such as pomes, stone fruit and soft fruit, such as apples, grapes, pears, plums, peaches, almonds, cherries, and berries, for example strawberries, raspberries and blackberries; leguminous plants (drybeans, lentils, peas, soybeans) ; oil plants (rape, mustard, sunflowers) ; cucurbitaceae (marrows, cucumbers, melons) ; fibre plants (cotton, flax, hemp, jute) ; citrus, such as oranges, lemons, grapefruit and mandarins; vegetables (spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, paprika) ; coffee; sugarcane; as well as ornamentals (flowers, such
  • the synergistic composition comprising (A) an insecticidal component comprising fipronil and thiodicarb; and (B) a fungicidal component comprising azoxystrobin and/or thiophanate-methyl, is particularly effective in preventing, controlling and/or treating of insect, nematode and fungal infestations as mentioned above in wheat, soybean, cotton and sugarcane, their plant parts and/or surroundings.
  • the rates of application (use) of the composition of the present invention may vary, for example, according to the degree of control required, type of use, type of crop, the specific active compounds in the combination, type of plants, but is such that the active compounds in the combination in an effective amount to provide the desired action (such as insects, nematode or fungal control) .
  • the application rate of the composition for a given set of conditions can readily be determined by trials.
  • the composition of the invention can be applied at an application rate of between about 0.1 kilograms/hectare (kg/ha) and about 4 kg/ha, based on the total amount of active ingredient (component (A) + component (B) ) in the composition.
  • the application rate may be between about 10 g a.i. /ha and about 500 g a.i. /ha preferably about 150 g a.i. /ha and about 250 g a.i. /ha, based on the total amount of active ingredient (component (A) + component (B) ) in the composition.
  • compositions of this invention are useful as insecticides, nematicides and fungicides, demonstrating synergistic activity for preventing, controlling and/or treating insect, nematode and fungal infestations.
  • the compositions can be formulated in the same manner in which insecticides, nematicides and fungicides are generally formulated.
  • the compounds may be applied either separately or combined as part of a two-part system, three-part or four-part.
  • the components (A) and (B) or active ingredients may be applied in any desired sequence, any combination, consecutively or simultaneously.
  • components (A) and (B) or active ingredients are applied simultaneously in the present invention, they may be applied as a composition containing components (A) and (B) or active ingredients, in which case components (A) and (B) or active ingredients can be obtained from a separate formulation source and mixed together (known as a tank-mix, ready-to-apply, spray broth, or slurry) , optionally with other pesticides, or components (A) and (B) or active ingredients can be obtained as a single formulation mixture source (known as a pre-mix, concentrate, formulated compound (or product) ) , and optionally mixed together with other pesticides.
  • a composition containing components (A) and (B) or active ingredients in which case components (A) and (B) or active ingredients can be obtained from a separate formulation source and mixed together (known as a tank-mix, ready-to-apply, spray broth, or slurry) , optionally with other pesticides, or components (A) and (B) or active ingredients can be obtained as a single formulation
  • compositions of the present invention can be applied in a variety of ways known to those skilled in the art, at various concentrations.
  • the compositions are useful in preventing, controlling and/or treating insect, nematode and fungal infestations in plants, plant parts and/or surroundings by preemergence or postemergence application to plants, plant parts and/or surroundings is desired.
  • compositions of this invention preferably also comprise an agriculturally acceptable carrier therefor.
  • the composition is the industry for facilitating dispersion.
  • the choice of formulation and mode of application for any given compound may affect its activity, and selection will be made accordingly.
  • the compositions of the invention may thus be formulated as:
  • SL water-soluble concentrate
  • EW emulsion
  • ME micro-emulsion
  • SC suspension concentrates
  • OD oil-based suspension concentrates
  • FS flowable suspension
  • WG water-dispersible granule
  • SG water-soluble granule
  • WP water-dispersible powder
  • SP water soluble powder
  • GR granule
  • CG encapsulated granule
  • FG fine granule
  • GG macrogranule
  • SE aqueous suspo-emulsion
  • SE microencapsuleated suspension
  • CS microencapsuleated suspension
  • MG microgranule
  • MG microgranule
  • formulation can be diluted with water having the rate of about 100 mL -5L of composition in 100 L of water.
  • the composition is formulated as suspension concentrate.
  • SC formulation the composition can be diluted with water having the rate of 2 L of composition in 100 L of water.
  • FS formulation the composition can be diluted with water having a concentration of 360 mL of composition in 100 L of water.
  • composition can be applied with the methods known in the art. These methods include coating, spraying, dipping, soaking, injection, irrigation etc.
  • compositions may contain, in addition to components (A) and (B) , herbicides, insecticides, fungicides, bactericides, acaracides or nematicides, in order to broaden the spectrum of activity.
  • the compositions according to the invention are distinguished by the fact that they are especially well tolerated by plants and are environmentally friendly.
  • results of individual tests can affect the results of individual tests and render them non-reproducible.
  • the results may vary depending on environmental factors, such as amount of sunlight and water, soil type, pH of the soil, temperature, and humidity, among other factors.
  • the depth of planting, the application rate of individual and combined insecticides and fungicides, and the ratio of each insecticide and fungicide, as well as the nature of crops or weeds being tested, can affect the results of the test. Results may vary from crop to crop within the crop varieties.
  • Fipronil 10% Thiodicarb 44% Propylene glycol 10% Tristyrylphenol ethoxylates 5% Sodium lignosulfonate 1% Carboxymethylcellulose 1% Silicone oil (in the form of a 75%emulsion in water) 1% Xanthan gum 0.1% NIPACIDE BIT 20 0.1% Water Balance to 1L
  • Fipronil 10% Thiodicarb 44% Azoxystrobin 6% Propylene glycol 10% Tristyrylphenol ethoxylates 5% Sodium lignosulfonate 1% Carboxymethylcellulose 1% Silicone oil (in the form of a 75%emulsion in water) 1% Xanthan gum 0.1% NIPACIDE BIT 20 0.1% Water Balance to 1L
  • Soybean seeds were treated with Formulations Examples 3, 5 and 10 and then sprayed with a conidial suspension of Cercospora kikuchii, and incubated at 20 °C and 100 %relative atmospheric humidity for 48 hours. The soybean seeds were planted. After staying in a greenhouse at 15 °C and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 1) .
  • Soybean seeds were treated with Formulations Examples 3, 5 and 10 and then sprayed with a conidial suspension of Colletotrichum dematium f. sp. Truncatum, and incubated at 20 °C and 100 %relative atmospheric humidity for 48 hours. The soybean seeds were planted. After staying in a greenhouse at 15 °C and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 2) .
  • a nematode inoculum was prepared from a pure subpopulation of Meloidogyne javanica kept from tomato (Solanum lycopersicom L. ) in clay recipients in a greenhouse.
  • the subpopulation was previously identified based on morphological characters of perineal patterns prepared as per TAYLOR &NETSCHER (1974) , on the morphology of the mouth region of males (EISENBACK et al., 1981) , and on the isoenzymatic phenotype for esterasis obtained by the technique by ESBENSHADE &TRIANTAPHYLLOU (1990) , using a traditional vertical electropheresis system, namely Mini Protean II by BIO-RAD.
  • a suspension containg eggs and second stage jveniles (J2) was prepared from the tomato roots. 10mL of the suspension was inoculated with eggplant for 22 days. Thereafter, the eggplant was transplanted to pots and kept in the greenhouse. After 100 days, the roots of the eggplant were washed and ground in a blender with a solution of 0.5%sodium hypochlorite. The suspension was then passed through a sieve of 200 mesh (0.074 mm openings) on 500 (0.025 mm openings) . The eggs and juveniles retained on the 500 mesh sieve were collected and washed.
  • Soybean seeds were treated with the Formulations Examples 3, 5 and 10. The seeds were then inoculated with 3 mL of a suspension containing 3, 000 eggs and second stage juveniles of Meloidogyne javanica.
  • a nematode inoculum was prepared from a pure subpopulation of Pratylenchus Brachyurus recovered from sugarcane crops. The subpopulation was multiplied from corn plants in clay recipients in a greenhouse. The subpopulation was previously identified based on morphological characters of adult females mounted in temporary slides by using a dicotomic key created by SANTOS et al. (2005) .
  • Soybean seeds were treated with the Formulations Examples 3, 5 and 10. The seeds were then inoculated with 3 mL of a suspension containing Pratylenchus Brachyurus in various developmental stages, after which the roots were covered with soil.
  • the number of nematode eggs in the roots of the plants was counted 100 days after sowing. The results are set out in Table 4 below.
  • Soybean seeds were treated with the Formulations Examples 3, 5 and 10 and planted.
  • Beetles (Phyllophaga cuyabana) were reared in the laboratory. The number of beetles were counted, collected and then put on the planting area. The remaining population of beetle was examined after sowing of 10 days. (Table 5)
  • Soybean seeds were treated with Formulations Examples 3, 5 and 10 and then planted.
  • Moths (larvae) (Elasmopalpus lignosellus) were reared in the laboratory. The number of larvae were counted, collected and then put on the planting area. The remaining population of larvae was examined after sowing of 15 days. (Table 6)
  • Moths (larvae) (Spodoptera frugiperda) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young soybean plants. The Formulations Examples 1, 2, 4, 6 -9 were diluted with water and then sprayed on the plants. After staying in a greenhouse at 21-25 °C and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 7)
  • Weevil (Sternechus subsignatus) were reared in the laboratory. The number of weevils were counted, collected and then put on healthy young soybean plants. The Formulations Examples 1, 2, 4, 6 -9 were diluted with water and then sprayed on the plants. After staying in a greenhouse at 21-25 °C and 80 %relative atmospheric humidity for 10 days, the remaining population of weevils was examined. (Table 8)
  • Soybean seeds were treated with Formulations Examples 3, 5 and 10 and then planted. Millipedes (Julus Hesperus) were reared in the laboratory. The number of millipedes were counted, collected and then put on the planting area. The remaining population of millipedes was examined after sowing of 10 days. (Table 9)
  • Young soybean plants were treated with Formulations Examples 1, 2, 4, 6 –9 and then sprayed with a conidial suspension of Fusarium semitectum) , and incubated at 20 °C and 100 %relative atmospheric humidity for 48 hours. After staying in a greenhouse at 15 °C and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 10) .
  • Young soybean plants were treated with Formulations Examples 1, 2, 4, 6 –9 and then sprayed with a conidial suspension of Sclerotinia sclerotiorum, and incubated at 20 °C and 100 %relative atmospheric humidity for 48 hours. After staying in a greenhouse at 15 °C and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 11) .
  • Young soybean plants were treated with Formulations Examples 1, 2, 4, 6 –9 and then sprayed with a conidial suspension of Pythium spp, and incubated at 20 °Cand 100 %relative atmospheric humidity for 48 hours. After staying in a greenhouse at 15 °C and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 12) .
  • Young soybean plants were treated with Formulations Examples 1, 2, 4, 6 –9 and then sprayed with a conidial suspension of Phytophthora spp., and incubated at 20 °C and 100 %relative atmospheric humidity for 48 hours. After staying in a greenhouse at 15 °C and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 13) .
  • a nematode inoculum was prepared from a pure subpopulation of Meloidogyne javanica kept in soybean plants (Glycine max L. ) in clay recipients in a greenhouse.
  • the subpopulation was previously identified based on morphological characters of perineal patterns prepared as per TAYLOR &NETSCHER (1974) , on the morphology of the mouth region of males (EISENBACK et al., 1981) , and on the isoenzymatic phenotype for esterasis obtained by the technique by ESBENSHADE &TRIANTAPHYLLOU (1990) , using a traditional vertical electropheresis system, namely Mini Protean II by BIO-RAD.
  • a nematode inoculum was prepared from a pure subpopulation of Pratylenchus Brachyurus recovered from sugarcane crops. The subpopulation was multiplied from corn plants in clay recipients in a greenhouse. The subpopulation was previously identified based on morphological characters of adult females mounted in temporary slides by using a dicotomic key created by SANTOS et al. (2005) .
  • Termites Heterotermes tenuis
  • Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then applied to the soil. After staying in a greenhouse at 21-25 °C and 80 %relative atmospheric humidity for 10 days, the remaining population of termites was examined. (Table 16)
  • Termite (Cornitermes cumulan) were reared in the laboratory. The number of termites were counted, collected and then put on healthy young sugarcane plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then applied on the soil. After staying in a greenhouse at 21-25 °C and 80 %relative atmospheric humidity for 10 days, the remaining population of termites was examined. (Table 17)
  • Young sugarcane plants were treated with Formulations Examples 1, 2, 4, 6 –9 and then sprayed with a conidial suspension of fungus complex (the major one is: Ceratocystis paradoxa) (causing Pineapple diseases) , and incubated at 20 °C and 100 %relative atmospheric humidity for 48 hours. After staying in a greenhouse at 15 °Cand 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 20) .
  • a nematode inoculum was prepared from a pure subpopulation of Meloidogyne javanica in tomato (Solanum lycopersicom L. ) in clay recipients in a greenhouse. The subpopulation was previously identified based on morphological characters of perineal patterns, on the morphology of the mouth region, and on the isoenzymatic phenotype for esterasis.
  • a nematode inoculum was prepared from a pure subpopulation of Pratylenchus brachyurus in tomato (Solanum lycopersicom L. ) in clay recipients in a greenhouse.
  • the subpopulation was previously identified based on morphological characters of perineal patterns, on the morphology of the mouth region, and on the isoenzymatic phenotype for esterasis.
  • Termite Heterotermes tenuis
  • the Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then applied to the soil. After staying in a greenhouse at 21-25 °C and 80 %relative atmospheric humidity for 10 days, the remaining population of termites was examined. (Table 24)
  • Moths (larvae) (Spodoptera frugiperda) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young wheat plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then sprayed on the plants. After staying in a greenhouse at 21-25 °C and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 25)
  • a nematode inoculum was prepared from a pure subpopulation of Meloidogyne javanica in tomato (Solanum lycopersicom L. ) in clay recipients in a greenhouse. The subpopulation was previously identified based on morphological characters of perineal patterns, on the morphology of the mouth region, and on the isoenzymatic phenotype for esterasis.
  • a nematode inoculum was prepared from a pure subpopulation of Pratylenchus brachyurus recovered from sugarcane crops. The subpopulation was multiplied from corn plants in clay recipients in a greenhouse. The subpopulation was previously identified based on morphological characters of adult females mounted in temporary slides by using a dicotomic key created by SANTOS et al. (2005) .
  • Moths (larvae) (Spodoptera frugiperda) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young cotton plants. 200 mL of the Formulations Examples were diluted with water and then sprayed on the plants. After staying in a greenhouse at 21-25 °C and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 28)
  • Cotton seeds were treated with Formulations Examples 3, 5 and 10 and then planted. Moths (larvae) (Elasmopalpus lignosellus) were reared in the laboratory. The number of larvae were counted, collected and then put on the planting area. The remaining population of larvae was examined after sowing of 15 days. (Table 31)
  • Cotton seeds were treated with Formulations Examples 3, 5 and 10 and then planted. Moths (larvae) (Agrotis ipsilon) were reared in the laboratory. The number of larvae were counted, collected and then put on the planting area. The remaining population of larvae was examined after sowing of 15 days. (Table 32)
  • Soybean seeds were treated with Formulations Examples 3, 5 and 10 and then planted.
  • Moths (larvae) (Agrotis ipsilon) were reared in the laboratory. The number of larvae were counted, collected and then put on the planting area. The remaining population of larvae was examined after sowing of 15 days. (Table 33)
  • Moths (larvae) (Elasmopalus Lignosellus) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young wheat plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then sprayed to the plants. After staying in a greenhouse at 21-25 °C and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 35)
  • Moths (larvae) (Agrotis ipsilon) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young wheat plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then sprayed to the plants. After staying in a greenhouse at 21-25 °C and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 36)
  • Moths (larvae) (Agrotis ipsilon) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young cotton plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then sprayed to the plants. After staying in a greenhouse at 21-25 °C and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 38)
  • Moths (larvae) (Agrotis ipsilon) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young soybean plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then sprayed to the plants. After staying in a greenhouse at 21-25 °C and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 39)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention relates to a synergistic composition comprising an insecticidal component (A) comprising fipronil and thiodicarb; and a fungicidal component (B) comprising azoxystrobin and thiophanate-methyl. The present invention also relates to a method to prevent, control and/or treat insect, nematode and fungal infestations in plants, plant parts and/or surroundings by applying the synergistic composition.

Description

A SYNERGISTIC COMPOSITION COMPRISING INSECTICIDES AND FUNGICIDES
The present invention relates to a synergistic composition comprising (A) an insecticidal component comprising fipronil and thiodicarb; and (B) a fungicidal component comprising one or more selected from azoxystrobin and thiophanate-methyl. The present invention is also related to a method to prevent, control and/or treat insect, nematode and fungal infestations in plants, plant parts and/or their surroundings by applying a synergistic composition according to the present invention to the locus to be treated. The present invention also relates to the use of the aforementioned composition, in particular in the treatment of seeds, foliage and soil applications.
BACKGROUND
Nematode and insect infestations and fungal diseases represent a major threat to economically important agricultural crops, like cereals, fiber, leguminous plants and sugarcane. The yield of plants, for example, sugarcane and soybean are adversely impacted by nematode, insect and fungi attack. Therefore, there is a continuing need to provide a composition for preventing, controlling and/or treating nematode, insect and fungal infestations, thereby increasing the yield of plant.
Researchers in the field of chemistry have synthesized lots of chemicals and formulations to treat nematode, insect and fungal infestations. Different types of insecticides and fungicides are known and available in the market. In some cases, insecticidal and fungicidal active ingredients have been shown to be more effective in combination than when applied individually, and this is referred to as "synergism. " As defined in the Herbicide Handbook of the Weed Science Society of America, Seventh Edition, 1994, page 318, "'s ynergism' [is] an interaction of two or more factors such that the effect when combined is greater than the predicted effect based on the response to each factor applied separately. " The present invention is based on the discovery that certain fungicides and insecticides display a synergistic effect when applied in combination.
The insecticidal and fungicidal active ingredients forming the synergistic composition of this invention are independently known in the art for their effects on plant protection. They are all disclosed in The Pesticides Manual, Twelfth Edition, 2000, published by The British Crop Protection Council. They are also commercially available.
Azoxystrobin, a strobilurin-type fungicide, is a well-known fungicide having a broad spectrum of disease control. It is extracted from the fungus Strobilurus tenacellus. It has a suppressive effect on other fungi, reducing competition for nutrients; it inhibits electron transfer between cytochrome b and cytochrome C1 at the ubiquinol oxidising site in mitochondria, disrupting metabolism and preventing growth of the target fungi.
Thiophanate-methyl is a systemic fungicide with protective and curative action. It is being absorbed by leaves and roots.
Fipronil belongs to a class of insecticides known as phenylpyrazoles. Fipronil interferes with the passage of chloride ions through the gamma-aminobutyric acid (GABA) -regulated chloride channel disrupting CNS activity. It is moderately systemic and can be used to control insects when applied as a soil or seed treatment. A method to prepare fipronil is disclosed in WO2013037291 A1.
Thiodicarb is a N-methyl oxyimidothioate carbamate insecticide. It is a neurotoxic compound and its mode of action is via the inhabitation of cholinesterase enzymes.
SUMMARY OF THE INVENTION
The present invention relates to a synergistic composition comprising:
(A) an insecticidal component comprising fipronil and thiodicarb; and
(B) a fungicidal component comprising azoxystrobin and/or thiophanate-methyl.
The synergistic compositions of the present invention can provide advantages over the use of the individual components (A) and (B) . The rates of application of the individual components can be markedly reduced while maintaining a high level of insecticidal or fungicidal efficacy. The composition can have a considerably broader spectrum against which it is effective than does either of the components alone. The  composition can have the potential to control fungal and/or insect and/or nematode species at a low application rate at which the individual compounds alone were ineffective. The composition can have a speed of action which is faster than that which would have been predicted from the speed of the individual components.
The composition contains an insecticidal effective amount of component (A) and a fungicidal effective amount of component (B) .
The term "effective amount" means the quantity of such a compound or combination of such compounds that is capable of providing preventing, controlling and/or treating insect, nematode and/or fungal infestations of plants.
"Plant" as used herein, refers to all plant and plant populations such as desired and undesired wild plants or crop plants.
"Plant parts" as used herein, refers to all parts and organs of plants, such as shoot, leaves, needles, stalks, stems, fruit bodies, fruits, seeds, roots, tubers and rhizomes. Harvested materials, and vegetative and generative propagation materials, for example, cutting, tubers, meristem tissue, rhizomes, offsets, seeds, single and multiple plant cells and any other plant tissues, are also included.
The word “surrounding” or “locus” refers to the place on which the plants are growing, the place on which the plant propagation materials of the plants are sown or the place on which the plant propagation materials of the plants will be sown.
The invention also relates to a method of preventing, controlling and/or treating insecticidal, nematode and fungicidal infestations, and to the use of this synergistic composition.
It has now surprisingly been found that when applying a synergistic composition comprising (A) an insecticidal component comprising fipronil and thiodicarb; and (B) a fungicidal component comprising azoxystrobin and/or thiophanate-methyl on the plants, plant parts and/or their surroundings, particularly on cereals, fiber plants, leguminous plants and sugarcane, an excellent performance in preventing, controlling and/or treating insect, nematode and fungal infestations may be observed.
The insecticidal component (A) may be present in the composition of the present invention in any suitable amount, and is generally present in an amount of from about 20%to about 80%by weight of the composition, preferably from about 30%to about 70%by weight of the composition, more preferably from about 35 %to about 65 %be weight or from about 40%to about 65%by weight of the composition.
Fipronil may be present in the composition of the present invention in any suitable amount, and is generally present in an amount of from about 1%to about 50%by weight of the composition, preferably from about 1%to about 30%or from about 5%to about 20%by weight of the composition, more preferably from about 5%to about 15%by weight of the composition. In some embodiments, fipronil present in an amount of from about 10%by weight of the composition. In certain embodiments, fipronil present in an amount of from about 7%by weight of the composition.
Thiodicarb may be present in the composition of the present invention in any suitable amount, and is generally present in an amount of from about 1%to about 70%by weight of the composition, preferably from about 1%to about 55%or from about 30%to about 55%by weight of the composition, more preferably from about 32%to about 50%by weight of the composition. In some embodiments, thiodicarb present in an amount of from about 44%by weight of the composition. In certain embodiments, thiodicarb present in an amount of from about 35%by weight of the composition.
The fungicidal component (B) may be present in the composition of the present invention in any suitable amount, and is generally present in an amount of from about 0.5%to about 50%by weight of the composition, preferably from about 0.5%to about 30%or from about 0.5%to about 20%by weight of the composition, more preferably from about 0.5%to about 15%by weight of the composition.
Azoxystrobin may be present in the composition of the present invention in any suitable amount, and is generally present in an amount of from about 0%to about 50%by weight of the composition, preferably from about 0.5%to about 30%or from about 0.5%to about 15%by weight of the composition, more preferably from about 0.5%to about 10%by weight of the composition. In some embodiments, azoxystrobin is present  in an amount of from about 6%by weight of the composition. In certain embodiments, azoxystrobin present in an amount of from about 0.6%by weight of the composition.
Thiophanate-methyl may be present in the composition of the present invention in any suitable amount, and is generally present in an amount of from about 0%to about 50%by weight of the composition, preferably from about 0.5%to about 30%or from about 0.5%to about 15%by weight of the composition, more preferably from about 5%to about 10%by weight of the composition. In some embodiments, thiophanate-methyl present in an amount of from about 7.4%by weight of the composition.
In some embodiments, the weight percentages of the components in the composition are independently: from about 5%to about 12%of fipronil; from about 40%to about 50%of thiodicarb; and from about 5%to about 10%of azoxystrobin by weight of the composition.
In certain embodiments, the weight percentages of components in the composition are independently: from about 5%to about 10%of fipronil; from about 30%to about 40%of thiodicarb; from about 0.5%to about 1%of azoxystrobin; and from about 5%to about 10%of thiophanate-methyl by weight of the composition.
The components (A) and (B) may be present in the composition or applied in any amounts relative to each other, to provide the enhanced or synergistic effect of the mixture. In particular, the weight ratio of the components (A) and (B) in the composition independently is preferably in the range of from about 50: 1 to about 1: 50 or from about 15: 1 to about 1: 15, more preferably from about 12: 1 to about 1: 12, even more preferred from about 9: 1 to about 1: 9. In some embodiments, the weight ratio of the components (A) to (B) in the composition is about 9: 1, or 8: 1 or 7: 1 or 6: 1 or 5: 1 or 4: 1 or 3: 1 or 2: 1 or 1: 1. In some embodiments, for seed treatment, the weight ratio of the components (A) to (B) in the composition is about 5: 1.
The components (A) and (B) together may be present in the composition in any suitable amount, and is generally present in an amount of from about 2%to about 95%by weight of the composition, preferably from about 25%to about 80%by weight of the  composition more preferably from about 35%to about 70%, even more preferred from about 45%to about 65%by weight of the composition.
In a preferred embodiment of the invention, each combination is a composition comprising, components (A) and (B) , and optionally one or more auxiliaries. The auxiliaries employed in the composition will depend upon the type of formulation and/or the manner in which the formulation is to be applied by the end user. Formulations incorporating the composition of the present invention are described hereinafter. Suitable auxiliaries which may be comprised in the composition according to the invention are all customary formulation adjuvants or components, such as extender, carriers, solvents, surfactants, stabilizers, anti-foaming agents, anti-freezing agents, preservatives, antioxidants, colorants, thickeners, solid adherents and inert fillers. Such auxiliaries are known in the art and are commercially available. Their use in the formulation of the compositions of the present invention will be apparent to the person skilled in the art.
The composition may further comprise one or more inert fillers. Such inert fillers are known in the art and available commercially. Suitable fillers in a form of a solid include, for example, natural ground minerals, such as kaolins, aluminas, talc, chalk, quartz, attapulgite, montmorillonite, and diatomaceous earth, or synthetic ground minerals, such as highly dispersed silicic acid, aluminum oxide, silicates, and calcium phosphates and calcium hydrogen phosphates. Suitable inert fillers for granules include, for example, crushed and fractionated natural minerals, such as calcite, marble, pumice, sepiolite, and dolomite, or synthetic granules of inorganic and organic ground materials, as well as granules of organic material, such as sawdust, coconut husks, corn cobs, and tobacco stalks.
The composition optionally includes one or more surfactants which are preferably non-ionic, cationic and/or anionic in nature and surfactant mixtures which have good emulsifying, dispersing and wetting properties, depending on the nature of the active compound to be formulated. Suitable surfactants are known in the art and are commercially available. Suitable anionic surfactants can be both so-called water-soluble soaps and water-soluble synthetic surface-active compounds. Soaps which may be  used are the alkali metal, alkaline earth metal or substituted or unsubstituted ammonium salts of higher fatty acid (C10-C22) , for example the sodium or potassium salt of oleic or stearic acid, or of natural fatty acid mixtures. The surfactant can be an emulsifier, dispersant or wetting agent of ionic or nonionic type. Examples which may be used are salts of polyacrylic acids, salts of lignosulphonic acid, salts of phenylsulphonic or naphthalenesulphonic acids, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols, especially alkylphenols, sulphosuccinic ester salts, taurine derivatives, especially alkyltaurates, or phosphoric esters of polyethoxylated phenols or alcohols. The presence of at least one surfactant is generally required when the active compound and/or the inert carrier and/or auxiliary/adjuvant are insoluble in water and the vehicle for the final application of the composition is water.
The composition optionally further comprises one or more polymeric stabilizer. The suitable polymeric stabilizers that may be used in the present invention include, but are not limited to, polypropylene, polyisobutylene, polyisoprene, copolymers of monoolefins and diolefins, polyacrylates, polystyrene, polyvinyl acetate, polyurethanes or polyamides. Suitable stabilizers are known in the art and commercially available.
The surfactants and polymeric stabilizers mentioned above are generally believed to impart stability to the composition, in turn allowing the composition to be formulated, stored, transported and applied.
Suitable anti-foams include all substances which can normally be used for this purpose in agrochemical compositions. Suitable anti-foam agents are known in the art and are available commercially. Particularly preferred antifoam agents are mixtures of polydimethylsiloxanes and perfluroalkylphosphonic acids, such as the silicone anti-foam agents available from GE or Compton.
Suitable organic solvents are selected from all customary organic solvents which thoroughly dissolve the active compounds employed. Again, suitable organic solvents for the active components (A) and (B) are known in the art. The following may be mentioned as being preferred: N-methyl pyrrolidone, N-octyl pyrrolidone, cyclohexyl-1- pyrrolidone; or SOLVESSOTM200, a mixture of paraffinic, isoparaffinic, cycloparaffinic and aromatic hydrocarbons. Suitable solvents are commercially available.
Suitable preservatives include all substances which can normally be used for this purpose in agrochemical compositions of this type and again are well known in the art. Suitable examples that may be mentioned include 
Figure PCTCN2015087326-appb-000001
 (from Bayer AG) and 
Figure PCTCN2015087326-appb-000002
 (from Bayer AG) .
Suitable antioxidants are all substances which can normally be used for this purpose in agrochemical compositions, as is known in the art. Preference is given to butylated hydroxytoluene.
Suitable thickeners include all substances which can normally be used for this purpose in agrochemical compositions. For example xanthan gum, PVOH, cellulose and its derivatives, clay hydrated silicates, magnesium aluminum silicates or a mixture thereof. Again, such thickeners are known in the art and available commercially.
The composition may further comprise one or more solid adherents. Such adherents are known in the art and available commercially. They include organic adhesives, including tackifiers, such as celluloses of substituted celluloses, natural and synthetic polymers in the form of powders, granules, or lattices, and inorganic adhesives such as gypsum, silica or cement.
In addition, depending upon the formulation, the composition according to the invention may also comprise water.
In some embodiments, the compositions according to the present invention comprise the following combinations of components:
(A) fipronil and thiodicarb; and (B) azoxystrobin;
(A) fipronil and thiodicarb; and (B) thiophanate-methyl; and
(A) fipronil and thiodicarb; and (B) azoxystrobin and thiophanate-methyl.
Each composition of the present invention can be used in the agricultural sector and related fields of use for control insects, including termite, beetle, moth, weevils, millipedes; nematodes; and fungi, for example, but not limited to:
Wheat:
Nematodes: Meloidogyne javanica; Pratylenchus brachyurus;
Ant: Acromyrmex landolti landolti, Atta capiguara, Atta sexdens rubropilosa
Beetle: Migdolus fryanus; Diloboderus abderus
Termite: Cornitermes cumulans; Heterotermes tenuis; Neocapritermes opacus;
Procornitermes triacifer
Fungi: Bipolaris oryzae, Bipolaris sorokiniana, Drechslera teres, Drechslera tritici-repentis,
Puccinia coronata var. avenae, Puccinia triticina, Pyricularia grisea
Moth: Elasmopalpus lignosellus; Spodoptera frugiperda; Agrotis ipsilon; Diatraea saccharalis
Cotton:
Nematodes: Meloidogyne javanica; Pratylenchus brachyurus;
Moth: Elasmopalpus lignosellus; Spodoptera frugiperda; Agrotis ipsilon; Heliothis virescens
Ant: Acromyrmex landolti landolti, Atta sexdens rubropilosa
Beetle: Anthonomus grandis
Fungi: Ramularia areola
Thrip: Frankliniella schultzeI
Worm: Alabama argillacea
Sugarcane:
Nematodes: Meloidogyne javanica; Pratylenchus brachyurus;
Termite: Heterotermes tenuis; Cornitermes cumulan;
Beetle: Migdolus fryanus; Sphenophorus levi;
Fungi: Pineapple diseases (fungus complex, the major one is: Ceratocystis paradoxa) ;
Root rots (Pythium spp) ; Phytophthora rot of cuttings (Phytophthora spp. ) ; fusariose (Fusarium semitectum)
Soybean:
Nematodes: Meloidogyne javanica; Pratylenchus brachyurus;
Beetles: Phyllophaga cuyabana; Diabrotica speciosa; Megascelis aeruginosa;
Moth: Elasmopalpus lignosellus; Spodoptera frugiperda; Agrotis ipsilon;
Weevils: Sternechus subsignatus;
Millipedes: Julus Hesperus;
Fungi: Purple seed stain (Cercospora kikuchii) ; stem anthracnose (Colletotrichum dematium f. sp. Truncatum) ; fusariose (Fusarium semitectum) ; Pod and stem blight, Stem canker, seed decay (Diaporthe phaseolorum var. sojae) ; stem rot (Sclerotinia sclerotiorum) ; Damping-off, Pythium rot (Pythium spp) ; Phytophthora rot of cuttings (Phytophthora spp. )
The composition according to the present invention is suitable for plants of the crops: cereals (wheat, barley, rye, oats, maize, rice, sorghum, triticale and related crops) ; beet (such as sugar beet and fodder beet) ; fruit, such as pomes, stone fruit and soft fruit, such as apples, grapes, pears, plums, peaches, almonds, cherries, and berries, for example strawberries, raspberries and blackberries; leguminous plants (drybeans, lentils, peas, soybeans) ; oil plants (rape, mustard, sunflowers) ; cucurbitaceae (marrows, cucumbers, melons) ; fibre plants (cotton, flax, hemp, jute) ; citrus, such as oranges, lemons, grapefruit and mandarins; vegetables (spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, paprika) ; coffee; sugarcane; as well as ornamentals (flowers, such as rose, shrubs, broad-leaved trees and evergreens, such as conifers) . In certain embodiments, the composition of the present invention is applied on cereals, fibre plants, leguminous plants and sugarcane. In some embodiments, the composition of the present invention is applied on wheat, soybean, cotton and sugarcane.
The synergistic composition comprising (A) an insecticidal component comprising fipronil and thiodicarb; and (B) a fungicidal component comprising azoxystrobin and/or thiophanate-methyl, is particularly effective in preventing, controlling and/or treating of insect, nematode and fungal infestations as mentioned above in wheat, soybean, cotton and sugarcane, their plant parts and/or surroundings.
The rates of application (use) of the composition of the present invention may vary, for example, according to the degree of control required, type of use, type of crop,  the specific active compounds in the combination, type of plants, but is such that the active compounds in the combination in an effective amount to provide the desired action (such as insects, nematode or fungal control) . The application rate of the composition for a given set of conditions can readily be determined by trials. In general the composition of the invention can be applied at an application rate of between about 0.1 kilograms/hectare (kg/ha) and about 4 kg/ha, based on the total amount of active ingredient (component (A) + component (B) ) in the composition. An application rate of between about 1 kg of active ingredient (a.i. ) /ha and 1.5 kg a.i. /ha is preferred. For seed treatment, the application rate may be between about 10 g a.i. /ha and about 500 g a.i. /ha preferably about 150 g a.i. /ha and about 250 g a.i. /ha, based on the total amount of active ingredient (component (A) + component (B) ) in the composition.
The compositions of this invention are useful as insecticides, nematicides and fungicides, demonstrating synergistic activity for preventing, controlling and/or treating insect, nematode and fungal infestations. The compositions can be formulated in the same manner in which insecticides, nematicides and fungicides are generally formulated. The compounds may be applied either separately or combined as part of a two-part system, three-part or four-part. The components (A) and (B) or active ingredients may be applied in any desired sequence, any combination, consecutively or simultaneously. In the event components (A) and (B) or active ingredients are applied simultaneously in the present invention, they may be applied as a composition containing components (A) and (B) or active ingredients, in which case components (A) and (B) or active ingredients can be obtained from a separate formulation source and mixed together (known as a tank-mix, ready-to-apply, spray broth, or slurry) , optionally with other pesticides, or components (A) and (B) or active ingredients can be obtained as a single formulation mixture source (known as a pre-mix, concentrate, formulated compound (or product) ) , and optionally mixed together with other pesticides.
The compositions of the present invention can be applied in a variety of ways known to those skilled in the art, at various concentrations. The compositions are useful in preventing, controlling and/or treating insect, nematode and fungal infestations in plants, plant parts and/or surroundings by preemergence or postemergence application to plants, plant parts and/or surroundings is desired.
The synergistic compositions of this invention preferably also comprise an agriculturally acceptable carrier therefor. In practice, the composition is the industry for facilitating dispersion. The choice of formulation and mode of application for any given compound may affect its activity, and selection will be made accordingly. The compositions of the invention may thus be formulated as:
a water-soluble concentrate (SL) , an emulstifiable concentrate (EC) , an emulsion (EW) , a micro-emulsion (ME) , a suspension concentrates (SC) , an oil-based suspension concentrates (OD) , a flowable suspension (FS) , a water-dispersible granule (WG) , a water-soluble granule (SG) , a water-dispersible powder (WP) , a water soluble powder (SP) , a granule (GR) , an encapsulated granule (CG) , a fine granule (FG) , a macrogranule (GG) , an aqueous suspo-emulsion (SE) , a microencapsuleated suspension (CS) , and a microgranule (MG) , or preferably a suspension concentrates (SC) and a flowable suspension (FS) .
Using such formulations, either straight (that is undiluted) or diluted with a suitable solvent, especially water, plants, plant parts and/or the surroundings can be treated and protected against insect, nematode and fungi by spraying, pouring immersing or treating. Generally, formulation can be diluted with water having the rate of about 100 mL -5L of composition in 100 L of water. In some embodiments, the composition is formulated as suspension concentrate. For SC formulation, the composition can be diluted with water having the rate of 2 L of composition in 100 L of water. For FS formulation, the composition can be diluted with water having a concentration of 360 mL of composition in 100 L of water.
The composition can be applied with the methods known in the art. These methods include coating, spraying, dipping, soaking, injection, irrigation etc.
Further, other biocidally active ingredients or compositions may be combined with the synergistic composition of this invention. For example, the compositions may contain, in addition to components (A) and (B) , herbicides, insecticides, fungicides, bactericides, acaracides or nematicides, in order to broaden the spectrum of activity. The compositions according to the invention are distinguished by the fact that they are especially well tolerated by plants and are environmentally friendly.
As one skilled in the art is aware, in insect, nematode and fungal testing, a significant number of factors that are not readily controllable can affect the results of individual tests and render them non-reproducible. For example, the results may vary depending on environmental factors, such as amount of sunlight and water, soil type, pH of the soil, temperature, and humidity, among other factors. Also, the depth of planting, the application rate of individual and combined insecticides and fungicides, and the ratio of each insecticide and fungicide, as well as the nature of crops or weeds being tested, can affect the results of the test. Results may vary from crop to crop within the crop varieties.
The following examples are given by way of illustration and not by way of limitation of the invention.
FORMULATION EXAMPLES
Example 1 -10%Fipronil + 44%Thiodicarb SC
Fipronil 10%
Thiodicarb 44%
Propylene glycol 10%
Tristyrylphenol ethoxylates 5%
Sodium lignosulfonate 1%
Carboxymethylcellulose 1%
Silicone oil (in the form of a 75%emulsion in water) 1%
Xanthan gum 0.1%
NIPACIDE BIT 20 0.1%
Water Balance to 1L
Example 2 -15%Fipronil + 25%Thiodicarb SC
Fipronil 15%
Thiodicarb 25%
Propylene glycol 10%
Tristyrylphenol ethoxylates 5%
Sodium lignosulfonate 1%
Carboxymethylcellulose 1%
Silicone oil (in the form of a 75%emulsion in water) 1%
Xanthan gum 0.1%
NIPACIDE BIT 20 0.1%
Water Balance to 1L
Example 3 -7%Fipronil + 35%Thiodicarb FS
Fipronil 7%
Thiodicarb 35%
Propylene glycol 10%
Tristyrylphenol ethoxylates 5%
Sodium lignosulfonate 1%
Carboxymethylcellulose 1%
Silicone oil (in the form of a 75%emulsion in water) 1%
PVP K-30 1%
Pigment 2%
Xanthan gum 0.2%
NIPACIDE BIT 20 0.2%
Water Balance to 1L
Example 4 -6%Azoxystrobin SC
Azoxystrobin 6%
Propylene glycol 10%
Tristyrylphenol ethoxylates 5%
Sodium lignosulfonate 1%
Carboxymethylcellulose 1%
Silicone oil (in the form of a 75%emulsion in water) 1%
Xanthan gum 0.2%
NIPACIDE BIT 20 0.2%
Water Balance to 1L
Example 5 -0.6%Azoxystrobin + 7.4%Thiophanate-methyl FS
Azoxystrobin 0.6%
Thiophanate-methyl 7.4%
Propylene glycol 10%
Tristyrylphenol ethoxylates 5%
Sodium lignosulfonate 1%
Carboxymethylcellulose 1%
Silicone oil (in the form of a 75%emulsion in water) 1%
PVP K-30 1%
Pigment 2%
Xanthan gum 0.2%
NIPACIDE BIT 20 0.2%
Water Balance to 1L
Example 6 -15%Thiophanate-methyl SC
Thiophanate-methyl 15%
Propylene glycol 10%
Tristyrylphenol ethoxylates 5%
Sodium lignosulfonate 1%
Carboxymethylcellulose 1%
Silicone oil (in the form of a 75%emulsion in water) 1%
Xanthan gum 0.2%
NIPACIDE BIT 20 0.2%
Water Balance to 1L
Example 7 -10%Fipronil + 44%Thiodicarb + 6%Azoxystrobin SC
Fipronil 10%
Thiodicarb 44%
Azoxystrobin 6%
Propylene glycol 10%
Tristyrylphenol ethoxylates 5%
Sodium lignosulfonate 1%
Carboxymethylcellulose 1%
Silicone oil (in the form of a 75%emulsion in water) 1%
Xanthan gum 0.1%
NIPACIDE BIT 20 0.1%
Water Balance to 1L
Example 8 –15%Fipronil + 25%Thiodicarb + 15%Thiophanate-methyl SC
Fipronil 15%
Thiodicarb 25%
Thiophanate-methyl 15%
Propylene glycol 10%
Tristyrylphenol ethoxylates 5%
Sodium lignosulfonate 1%
Carboxymethylcellulose 1%
Silicone oil (in the form of a 75%emulsion in water) 1%
Xanthan gum 0.1%
NIPACIDE BIT 20 0.1%
Water Balance to 1L
Example 9 -5%Fipronil + 55%Thiodicarb + 1%Azoxystrobin + 2.5%Thiophanate-methyl SC
Fipronil 5%
Thiodicarb 55%
Azoxystrobin 1%
Thiophanate methyl 2.5%
Propylene glycol 10%
Tristyrylphenol ethoxylates 5%
Sodium lignosulfonate 1%
Carboxymethylcellulose 1%
Silicone oil (in the form of a 75%emulsion in water) 1%
Xanthan gum 0.1%
NIPACIDE BIT 20 0.1%
Water Balance to 1L
Example 10 -7%Fipronil + 35%Thiodicarb + 0.6%Azoxystrobin + 7.4%Thiophanate-methyl FS
Fipronil 7%
Thiodicarb 35%
Azoxystrobin 0.6%
Thiophanate methyl 7.4%
Propylene glycol 10%
Tristyrylphenol ethoxylates 5%
Sodium lignosulfonate 1%
Carboxymethylcellulose 1%
Silicone oil (in the form of a 75%emulsion in water) 1%
Xanthan gum 0.1%
NIPACIDE BIT 20 0.1%
Water Balance to 1L
BIOLOGICAL EXAMPLES
FIELD TEST 1 –SOYBEAN -CERCOSPORA KIKUCHII (FUNGI)
Soybean seeds were treated with Formulations Examples 3, 5 and 10 and then sprayed with a conidial suspension of Cercospora kikuchii, and incubated at 20 ℃ and 100 %relative atmospheric humidity for 48 hours. The soybean seeds were planted. After staying in a greenhouse at 15 ℃ and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 1) .
Table 1.
Figure PCTCN2015087326-appb-000003
FIELD TEST 2 –SOYBEAN -COLLETOTRICHUM DEMATIUM F. SP. TRUNCATUM
Soybean seeds were treated with Formulations Examples 3, 5 and 10 and then sprayed with a conidial suspension of Colletotrichum dematium f. sp. Truncatum, and incubated at 20 ℃ and 100 %relative atmospheric humidity for 48 hours. The soybean seeds were planted. After staying in a greenhouse at 15 ℃ and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 2) .
Table 2.
Figure PCTCN2015087326-appb-000004
Figure PCTCN2015087326-appb-000005
FIELD TEST 3 -SOYBEAN -MELOIDOGYNE JAVANICA -NEMATODE
A nematode inoculum was prepared from a pure subpopulation of Meloidogyne javanica kept from tomato (Solanum lycopersicom L. ) in clay recipients in a greenhouse. The subpopulation was previously identified based on morphological characters of perineal patterns prepared as per TAYLOR &NETSCHER (1974) , on the morphology of the mouth region of males (EISENBACK et al., 1981) , and on the isoenzymatic phenotype for esterasis obtained by the technique by ESBENSHADE &TRIANTAPHYLLOU (1990) , using a traditional vertical electropheresis system, namely Mini Protean II by BIO-RAD.
A suspension containg eggs and second stage jveniles (J2) was prepared from the tomato roots. 10mL of the suspension was inoculated with eggplant for 22 days. Thereafter, the eggplant was transplanted to pots and kept in the greenhouse. After 100 days, the roots of the eggplant were washed and ground in a blender with a solution of 0.5%sodium hypochlorite. The suspension was then passed through a sieve of 200 mesh (0.074 mm openings) on 500 (0.025 mm openings) . The eggs and juveniles retained on the 500 mesh sieve were collected and washed.
Soybean seeds were treated with the Formulations Examples 3, 5 and 10. The seeds were then inoculated with 3 mL of a suspension containing 3, 000 eggs and second stage juveniles of Meloidogyne javanica.
The number of galls on 10 grams of roots of the soybean plants was counted 50 days after sowing. The results are set out in Table 3 below.
Table 3.
Figure PCTCN2015087326-appb-000006
Figure PCTCN2015087326-appb-000007
FIELD TEST 4 -SOYBEAN -PRATYLENCHUS BRACHYURUS -NEMATODE
A nematode inoculum was prepared from a pure subpopulation of Pratylenchus Brachyurus recovered from sugarcane crops. The subpopulation was multiplied from corn plants in clay recipients in a greenhouse. The subpopulation was previously identified based on morphological characters of adult females mounted in temporary slides by using a dicotomic key created by SANTOS et al. (2005) .
Soybean seeds were treated with the Formulations Examples 3, 5 and 10. The seeds were then inoculated with 3 mL of a suspension containing Pratylenchus Brachyurus in various developmental stages, after which the roots were covered with soil.
The number of nematode eggs in the roots of the plants was counted 100 days after sowing. The results are set out in Table 4 below.
Table 4.
Figure PCTCN2015087326-appb-000008
FIELD TEST 5 -SOYBEAN -PHYLLOPHAGA CUYABANA (BEETLES)
Soybean seeds were treated with the Formulations Examples 3, 5 and 10 and planted. Beetles (Phyllophaga cuyabana) were reared in the laboratory. The number of  beetles were counted, collected and then put on the planting area. The remaining population of beetle was examined after sowing of 10 days. (Table 5)
Table 5.
Figure PCTCN2015087326-appb-000009
FIELD TEST 6 -SOYBEAN -ELASMOPALPUS LIGNOSELLUS (SNOUT MOTH)
Soybean seeds were treated with Formulations Examples 3, 5 and 10 and then planted. Moths (larvae) (Elasmopalpus lignosellus) were reared in the laboratory. The number of larvae were counted, collected and then put on the planting area. The remaining population of larvae was examined after sowing of 15 days. (Table 6)
Table 6.
Figure PCTCN2015087326-appb-000010
Figure PCTCN2015087326-appb-000011
FIELD TEST 7 -SOYBEAN -SPODOPTERA FRUGIPERDA (MOTH)
Moths (larvae) (Spodoptera frugiperda) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young soybean plants. The Formulations Examples 1, 2, 4, 6 -9 were diluted with water and then sprayed on the plants. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 7)
Table 7.
Figure PCTCN2015087326-appb-000012
FIELD TEST 8 -SOYBEAN -STERNECHUS SUBSIGNATUS -WEEVIL
Weevil (Sternechus subsignatus) were reared in the laboratory. The number of weevils were counted, collected and then put on healthy young soybean plants. The  Formulations Examples 1, 2, 4, 6 -9 were diluted with water and then sprayed on the plants. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of weevils was examined. (Table 8)
Table 8.
Figure PCTCN2015087326-appb-000013
FIELD TEST 9 -SOYBEAN -JULUS HESPERUS -MILLIPEDES
Soybean seeds were treated with Formulations Examples 3, 5 and 10 and then planted. Millipedes (Julus Hesperus) were reared in the laboratory. The number of millipedes were counted, collected and then put on the planting area. The remaining population of millipedes was examined after sowing of 10 days. (Table 9)
Table 9
Figure PCTCN2015087326-appb-000014
Figure PCTCN2015087326-appb-000015
FIELD TEST 10 –SOYBEAN -FUSARIOSE (FUSARIUM SEMITECTUM)
Young soybean plants were treated with Formulations Examples 1, 2, 4, 6 –9 and then sprayed with a conidial suspension of Fusarium semitectum) , and incubated at 20 ℃ and 100 %relative atmospheric humidity for 48 hours. After staying in a greenhouse at 15 ℃ and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 10) .
Table 10.
Figure PCTCN2015087326-appb-000016
FIELD TEST 11 –SOYBEAN -STEM ROT (SCLEROTINIA SCLEROTIORUM)
Young soybean plants were treated with Formulations Examples 1, 2, 4, 6 –9 and then sprayed with a conidial suspension of Sclerotinia sclerotiorum, and incubated at 20 ℃ and 100 %relative atmospheric humidity for 48 hours. After staying in a greenhouse at 15 ℃ and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 11) .
Table 11.
Figure PCTCN2015087326-appb-000017
FIELD TEST 12 –SOYBEAN -PYTHIUM ROT (PYTHIUM SPP)
Young soybean plants were treated with Formulations Examples 1, 2, 4, 6 –9 and then sprayed with a conidial suspension of Pythium spp, and incubated at 20 ℃and 100 %relative atmospheric humidity for 48 hours. After staying in a greenhouse at 15 ℃ and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 12) .
Table 12.
Figure PCTCN2015087326-appb-000018
Figure PCTCN2015087326-appb-000019
FIELD TEST 13 –SOYBEAN -PHYTOPHTHORA ROT OF CUTTINGS (PHYTOPHTHORA SPP. )
Young soybean plants were treated with Formulations Examples 1, 2, 4, 6 –9 and then sprayed with a conidial suspension of Phytophthora spp., and incubated at 20 ℃ and 100 %relative atmospheric humidity for 48 hours. After staying in a greenhouse at 15 ℃ and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 13) .
Table 13.
Figure PCTCN2015087326-appb-000020
FIELD TEST 14 –SUGARCANE -MELOIDOGYNE JAVANICA -NEMATODE
A nematode inoculum was prepared from a pure subpopulation of Meloidogyne javanica kept in soybean plants (Glycine max L. ) in clay recipients in a greenhouse. The subpopulation was previously identified based on morphological characters of perineal patterns prepared as per TAYLOR &NETSCHER (1974) , on the morphology of the mouth region of males (EISENBACK et al., 1981) , and on the isoenzymatic phenotype for esterasis obtained by the technique by ESBENSHADE &TRIANTAPHYLLOU (1990) , using a traditional vertical electropheresis system, namely Mini Protean II by BIO-RAD.
3 mL samples of the Formulations Examples 1, 2, 4, 6 –9 were applied uniformly on the soil and around the roots at the rate indicated in the table. Thereafter, the roots of the sugarcane plants were inoculated with 10 mL of a suspension containing 3000 eggs (Meloidogyne javanica) and second-stage juveniles of Meloidogyne javanica, after which the roots were covered with soil.
The number of Meloidogyne javanica in various developmental stages in 10 grams of roots was counted 100 days after application. The results are set out in Table 14 below.
Table 14.
Figure PCTCN2015087326-appb-000021
FIELD TEST 15 –SUGARCANE -PRATYLENCHUS BRACHYURUS –NEMATODE
A nematode inoculum was prepared from a pure subpopulation of Pratylenchus Brachyurus recovered from sugarcane crops. The subpopulation was multiplied from corn plants in clay recipients in a greenhouse. The subpopulation was previously  identified based on morphological characters of adult females mounted in temporary slides by using a dicotomic key created by SANTOS et al. (2005) .
3 mL samples of the Formulations Examples 1, 2, 4, 6 –9 were applied uniformly on the soil and around the roots of the sugarcane plants. Thereafter, the roots of the sugarcane plants were inoculated with 10 mL of a suspension containing Pratylenchus Brachyurus in various developmental stages, after which the roots were covered with soil.
The number of Pratylenchus zeae in various developmental stages in 10 gram samples of the roots of the sugarcane plants were counted after 45 days. The results are set out in Table 15 below.
Table 15
Figure PCTCN2015087326-appb-000022
FIELD TEST 16 –SUGARCANE -HETEROTERMES TENUIS -TERMITE
Termites (Heterotermes tenuis) were reared in the laboratory. The number of termites were counted, collected and then put on healthy young sugarcane plants. Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then applied to the soil.  After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of termites was examined. (Table 16)
Table 16
Figure PCTCN2015087326-appb-000023
FIELD TEST 17 –SUGARCANE -CORNITERMES CUMULAN -TERMITE
Termite (Cornitermes cumulan) were reared in the laboratory. The number of termites were counted, collected and then put on healthy young sugarcane plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then applied on the soil. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of termites was examined. (Table 17)
Table 17
Figure PCTCN2015087326-appb-000024
FIELD TEST 18 -SUGARCANE -MIGDOLUS FRYANUS (BEETLES)
Beetle (Migdolus fryanus) were reared in the laboratory. The number of beetles were counted, collected and then put on healthy young sugarcane plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then applied to the soil. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of beetles was examined. (Table 18)
Table 18.
Figure PCTCN2015087326-appb-000025
Figure PCTCN2015087326-appb-000026
FIELD TEST 19 -SUGARCANE -SPHENOPHORUS LEVI (BEETLES)
Beetle (Sphenophorus Levi) were reared in the laboratory. The number of beetles were counted, collected and then put on healthy young sugarcane plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then applied to the soil. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of beetles was examined. (Table 19)
Table 19.
Figure PCTCN2015087326-appb-000027
FIELD TEST 20 –SUGARCANE -PINEAPPLE DISEASES
Young sugarcane plants were treated with Formulations Examples 1, 2, 4, 6 –9 and then sprayed with a conidial suspension of fungus complex (the major one is: Ceratocystis paradoxa) (causing Pineapple diseases) , and incubated at 20 ℃ and 100 %relative atmospheric humidity for 48 hours. After staying in a greenhouse at 15 ℃and 80 %relative atmospheric humidity for 15 days. Severity of the young soybean plants were assessed (Table 20) .
Table 20.
Figure PCTCN2015087326-appb-000028
FIELD TEST 21 –WHEAT -MELOIDOGYNE JAVANICA -NEMATODE
A nematode inoculum was prepared from a pure subpopulation of Meloidogyne javanica in tomato (Solanum lycopersicom L. ) in clay recipients in a greenhouse. The subpopulation was previously identified based on morphological characters of perineal patterns, on the morphology of the mouth region, and on the isoenzymatic phenotype for esterasis.
3 mL samples of the Formulation examples 1, 2, 4, 6 –9 were applied uniformly on the soil and around the roots at the rate indicated in the table. Thereafter, the roots of the wheat plants were inoculated with 10 mL of a suspension containing Meloidogyne javanica in various developmental stages, after which the roots were covered with soil.
The number of galls on 10 grams of roots was measured 90 days after application. The results are set out in Table 21 below.
Table 21
Figure PCTCN2015087326-appb-000029
FIELD TEST 22 –WHEAT -PRATYLENCHUS BRACHYURUS -NEMATODE
A nematode inoculum was prepared from a pure subpopulation of Pratylenchus brachyurus in tomato (Solanum lycopersicom L. ) in clay recipients in a greenhouse. The subpopulation was previously identified based on morphological characters of perineal patterns, on the morphology of the mouth region, and on the isoenzymatic phenotype for esterasis.
3 mL samples of the Formulation examples 1, 2, 4, 6 -9 were applied uniformly on the soil and around the roots at the rate indicated in the table. Thereafter, the roots of the wheat plants were inoculated with 10 mL of a suspension containing Pratylenchus brachyurus in various developmental stages, after which the roots were covered with soil.
The number of Pratylenchus brachyurus in various development stages in the roots of the wheat plants were counted 90 days after application. The results are set out in Table 22 below.
Table 22
Figure PCTCN2015087326-appb-000030
FIELD TEST 23 –WHEAT -MIGDOLUS FRYANUS -BEETLES
Wheat seeds were treated with the Formulations Examples 3, 5 and 10 and planted. Beetles (Migdolus fryanus) were reared in the laboratory. The number of beetles were counted, collected and then put on the planting area. The remaining population of beetle was examined after sowing of 10 days. (Table 23)
Table 23.
Figure PCTCN2015087326-appb-000031
FIELD TEST 24 –WHEAT -HETEROTERMES TENUIS -TERMITE
Termite (Heterotermes tenuis) were reared in the laboratory. The number of termites were counted, collected and then put on healthy young wheat plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then applied to the soil. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of termites was examined. (Table 24)
Table 24
Figure PCTCN2015087326-appb-000032
FIELD TEST 25 –WHEAT -SPODOPTERA FRUGIPERDA -MOTH
Moths (larvae) (Spodoptera frugiperda) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young wheat plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then sprayed on the plants. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 25)
Table 25.
Figure PCTCN2015087326-appb-000033
FIELD TEST 26 –COTTON -MELOIDOGYNE JAVANICA -NEMATODE
A nematode inoculum was prepared from a pure subpopulation of Meloidogyne javanica in tomato (Solanum lycopersicom L. ) in clay recipients in a greenhouse. The subpopulation was previously identified based on morphological characters of perineal patterns, on the morphology of the mouth region, and on the isoenzymatic phenotype for esterasis.
3 mL samples of the Formulation examples 1, 2, 4, 6 -9 were applied uniformly on the soil and around the roots at the rate indicated in the table. Thereafter, the roots of the cotton plants were inoculated with 10 mL of a suspension containing Meloidogyne javanica in various developmental stages, after which the roots were covered with soil.
The number of galls on 10 grams of roots was measured 90 days after application. The results are set out in Table 26 below.
Table 26
Figure PCTCN2015087326-appb-000034
FIELD TEST 27 –COTTON -PRATYLENCHUS BRACHYURUS -NEMATODE
A nematode inoculum was prepared from a pure subpopulation of Pratylenchus brachyurus recovered from sugarcane crops. The subpopulation was multiplied from corn plants in clay recipients in a greenhouse. The subpopulation was previously identified based on morphological characters of adult females mounted in temporary slides by using a dicotomic key created by SANTOS et al. (2005) .
3 mL samples of the Formulation examples 1, 2, 4, 6 -9 were applied uniformly on the soil and around the roots of the cotton plants. Thereafter, the roots of the cotton plants were inoculated with 10 mL of a suspension containing Pratylenchus brachyurus in various developmental stages, after which the roots were covered with soil.
The number of Pratylenchus brachyurus in various developmental stages in 10 gram samples of the roots of the cotton plants were counted after 45 days. The results are set out in Table 27 below.
Table 27
Figure PCTCN2015087326-appb-000035
FIELD TEST 28 –COTTON -SPODOPTERA FRUGIPERDA (MOTH) 
Moths (larvae) (Spodoptera frugiperda) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young cotton plants. 200 mL of the Formulations Examples were diluted with water and then sprayed on the plants. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 28)
Table 28.
Figure PCTCN2015087326-appb-000036
FIELD TEST 29 -WHEAT -ELASMOPALPUS LIGNOSELLUS (SNOUT MOTH) 
Wheat seeds were treated with Formulations Examples 3, 5 and 10 and then planted. Moths (larvae) (Elasmopalpus lignosellus) were reared in the laboratory. The number of larvae were counted, collected and then put on the planting area. The remaining population of larvae was examined after sowing of 15 days. (Table 29)
Table 29.
Figure PCTCN2015087326-appb-000037
FIELD TEST 30 -WHEAT -AGROTIS IPSILON (MOTH) 
Wheat seeds were treated with Formulations Examples 3, 5 and 10 and then planted. Moths (larvae) (Agrotis ipsilon) were reared in the laboratory. The number of larvae were counted, collected and then put on the planting area. The remaining population of larvae was examined after sowing of 15 days. (Table 30)
Table 30.
Figure PCTCN2015087326-appb-000038
FIELD TEST 31 -COTTON -ELASMOPALPUS LIGNOSELLUS (SNOUT MOTH)
Cotton seeds were treated with Formulations Examples 3, 5 and 10 and then planted. Moths (larvae) (Elasmopalpus lignosellus) were reared in the laboratory. The number of larvae were counted, collected and then put on the planting area. The remaining population of larvae was examined after sowing of 15 days. (Table 31)
Table 31.
Figure PCTCN2015087326-appb-000039
FIELD TEST 32 -COTTON -AGROTIS IPSILON (MOTH)
Cotton seeds were treated with Formulations Examples 3, 5 and 10 and then planted. Moths (larvae) (Agrotis ipsilon) were reared in the laboratory. The number of larvae were counted, collected and then put on the planting area. The remaining population of larvae was examined after sowing of 15 days. (Table 32)
Table 32.
Figure PCTCN2015087326-appb-000040
FIELD TEST 33 -SOYBEAN-AGROTIS IPSILON (MOTH)
Soybean seeds were treated with Formulations Examples 3, 5 and 10 and then planted. Moths (larvae) (Agrotis ipsilon) were reared in the laboratory. The number of larvae were counted, collected and then put on the planting area. The remaining population of larvae was examined after sowing of 15 days. (Table 33)
Table 33.
Figure PCTCN2015087326-appb-000041
FIELD TEST 34 -COTTON -SPODOPTERA FRUGIPERDA (MOTH)
Cotton seeds were treated with Formulations Examples 3, 5 and 10 and then planted. Moths (larvae) (Spodoptera Frugiperda) were reared in the laboratory. The number of larvae were counted, collected and then put on the planting area. The remaining population of larvae was examined after sowing of 15 days. (Table 34)
Table 34.
Figure PCTCN2015087326-appb-000042
Figure PCTCN2015087326-appb-000043
FIELD TEST 35 -WHEAT -ELASMOPALPUS LIGNOSELLUS (MOTH)
Moths (larvae) (Elasmopalus Lignosellus) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young wheat plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then sprayed to the plants. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 35)
Table 35.
Figure PCTCN2015087326-appb-000044
FIELD TEST 36 -WHEAT -AGROTIS IPSILON (MOTH)
Moths (larvae) (Agrotis ipsilon) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young wheat plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then sprayed to the  plants. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 36)
Table 36.
Figure PCTCN2015087326-appb-000045
FIELD TEST 37 -COTTON -ELASMOPALPUS LIGNOSELLUS (MOTH)
Moths (larvae) (ELASMOPALPUS LIGNOSELLUS) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young cotton plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then sprayed to the plants. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 37)
Table 37.
Figure PCTCN2015087326-appb-000046
FIELD TEST 38 -COTTON -AGROTIS IPSILON (MOTH)
Moths (larvae) (Agrotis ipsilon) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young cotton plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then sprayed to the plants. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 38)
Table 38.
Figure PCTCN2015087326-appb-000047
FIELD TEST 39 -SOYBEAN -AGROTIS IPSILON (MOTH)
Moths (larvae) (Agrotis ipsilon) were reared in the laboratory. The number of larvae were counted, collected and then put on healthy young soybean plants. The Formulations Examples 1, 2, 4, 6 –9 were diluted with water and then sprayed to the plants. After staying in a greenhouse at 21-25 ℃ and 80 %relative atmospheric humidity for 10 days, the remaining population of larvae was examined. (Table 39)
Table 39.
Figure PCTCN2015087326-appb-000048
All publications, patents and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Throughout the specification and the claims that follow, unless the context requires otherwise, the words “comprise” and “include” and variations such as “comprising” and “including” will be understood to imply the inclusion of a stated integer or group of integers, but not the exclusion of any other integer or group of integers.
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement of any form of suggestion that such prior art forms part of the common general knowledge.

Claims (14)

  1. A synergistic composition comprising
    (A) an insecticidal component comprising fipronil and thiodicarb; and
    (B) a fungicidal component comprising azoxystrobin and/or thiophanate-methyl.
  2. The synergistic composition of claim 1, wherein the the insecticidal component (A) is present in an amount of from about 20%to about 80%by weight of the composition.
  3. The synergistic composition of claim 1, wherein the fungicidal component (B) is present in an amount of from about 0.5%to about 50%by weight of the composition.
  4. The synergistic composition of claim 1, wherein fipronil is present in an amount of from about 1%to about 50%by weight of the composition.
  5. The synergistic composition of claim 1, wherein thiodicarb is present in an amount of from about 1%to about 70%by weight of the composition.
  6. The synergistic composition of claim 1, wherein azoxystrobin is present in an amount of from about 0%to about 50%by weight of the composition.
  7. The synergistic composition of claim 1, wherein thiophanate-methyl is present in an amount of from about 0%to about 50%by weight of the composition.
  8. The synergistic composition of any one of the preceding claims, wherein the weight ratio of the components (A) and (B) in the composition is in the range of from about 50:1 to about 1:50.
  9. The synergistic composition of any of the preceding claims further comprising extenders, carriers, solvents, surfactants, stabilizers, anti-foaming agents, anti-freezing agents, preservatives, antioxidants, colorants, thickeners, solid adherents and inert fillers; and/or additional insecticides and/or nematicides and/or fungicides.
  10. The synergistic composition of any one of the preceding claims, wherein the synergistic composition is in a form of a water-soluble concentrate (SL) , an emulstifiable concentrate (EC) , an emulsion (EW) , a micro-emulsion (ME) , a suspension concentrates (SC) , an oil-based suspension concentrates (OD) , a flowable suspension (FS) , a water-dispersible granule (WG) , a water-soluble granule (SG) , a water- dispersible powder (WP) , a water soluble powder (SP) , a granule (GR) , an encapsulated granule (CG) , a fine granule (FG) , a macrogranule (GG) , an aqueous suspo-emulsion (SE) , a microencapsuleated suspension (CS) , or a microgranule (MG) .
  11. A method of preventing, controlling and/or treating insect, nematode and fungal infestations, comprising applying the synergistic composition of any one of the preceding claims to plants, plant parts and/or their surroundings.
  12. The method of claim 11, wherein the plants are selected from a group consisting of cereals, fibre plants, leguminous plants and sugarcane.
  13. The method of claim 11 or 12, wherein the infestations are:
    Wheat:
    Nematodes: Meloidogyne javanica, Pratylenchus brachyurus;
    Ant: Acromyrmex landolti landolti, Atta capiguara, Atta sexdens rubropilosa;
    Beetle: Migdolus fryanus, Diloboderus abderus;
    Termite: Cornitermes cumulans, Heterotermes tenuis, Neocapritermes opacus, Procornitermes triacifer;
    Fungi: Bipolaris oryzae, Bipolaris sorokiniana, Drechslera teres, Drechslera tritici-repentis, Puccinia coronata var. avenae, Puccinia triticina, Pyricularia grisea;
    Moth: Elasmopalpus lignosellus, Spodoptera frugiperda, Agrotis ipsilon, Diatraea saccharalis;
    Cotton:
    Nematodes: Meloidogyne javanica, Pratylenchus brachyurus;
    Moth: Elasmopalpus lignosellus, Spodoptera frugiperda, Agrotis ipsilon, Heliothis virescens;
    Ant: Acromyrmex landolti landolti, Atta sexdens rubropilosa;
    Beetle: Anthonomus grandis;
    Fungi: Ramularia areola;
    Thrip: Frankliniella schultzeI;
    Worm: Alabama argillacea;
    Sugarcane:
    Nematodes: Meloidogyne javanica, Pratylenchus brachyurus;
    Termite: Heterotermes tenuis, Cornitermes cumulan;
    Beetle: Migdolus fryanus, Sphenophorus levi;
    Fungi: Pineapple diseases (fungus complex, the major one is: Ceratocystis paradoxa) , Root rots (Pythium spp) , Phytophthora rot of cuttings (Phytophthora spp. ) , fusariose (Fusarium semitectum) ;
    Soybean:
    Nematodes: Meloidogyne javanica, Pratylenchus brachyurus;
    Beetles: Phyllophaga cuyabana, Diabrotica speciosa, Megascelis aeruginosa;
    Moth: Elasmopalpus lignosellus, Spodoptera frugiperda, Agrotis ipsilon;
    Weevils: Sternechus subsignatus;
    Millipedes: Julus Hesperus;
    Fungi:
    Purple seed stain (Cercospora kikuchii) ; stem anthracnose (Colletotrichum dematium f. sp. Truncatum) , fusariose (Fusarium semitectum) , Pod and stem blight, Stem canker, seed decay (Diaporthe phaseolorum var. sojae) , stem rot (Sclerotinia sclerotiorum) , Damping-off, Pythium rot (Pythium spp) ; Phytophthora rot of cuttings (Phytophthora spp. ) .
  14. Use of the composition of any one claims 1 to 10 for preventing, controlling and/or treating insect, nematode and fungal infestations in plants, plant parts and/or their surroundings.
PCT/CN2015/087326 2015-06-10 2015-08-18 A synergistic composition comprising insecticides and fungicides WO2016197457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2015203091 2015-06-10
AU2015203091A AU2015203091C1 (en) 2015-06-10 2015-06-10 A synergistic composition comprising insecticides and fungicides

Publications (1)

Publication Number Publication Date
WO2016197457A1 true WO2016197457A1 (en) 2016-12-15

Family

ID=53547786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087326 WO2016197457A1 (en) 2015-06-10 2015-08-18 A synergistic composition comprising insecticides and fungicides

Country Status (6)

Country Link
CN (1) CN106234396A (en)
AR (1) AR101585A1 (en)
AU (3) AU2015203091C1 (en)
BR (1) BR102015028219A2 (en)
TW (1) TWI662898B (en)
WO (1) WO2016197457A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018112563A1 (en) * 2016-12-21 2018-06-28 Helm Do Brasil Mercantil Ltda Agrochemical composition for treating seeds
WO2019142044A1 (en) * 2018-01-17 2019-07-25 Upl Ltd Novel agrochemical combinations

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102019004065A2 (en) * 2019-02-27 2020-09-29 Rotam Agrochem International Company Limited A SYNERGIC COMPOSITION UNDERSTANDING INSECTICIDES AND FUNGICIDES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171924A (en) * 2007-11-21 2008-05-07 张少武 Insecticidal composition containing fipronil and uses thereof
WO2010052129A2 (en) * 2008-11-06 2010-05-14 Syngenta Participations Ag Pesticidal combinations

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082906A1 (en) * 2001-04-11 2002-10-24 Janssen Pharmaceutica N.V. Pesticidal compositions comprising hydramethylnon and another insecticide
CN100376158C (en) * 2005-09-15 2008-03-26 南京第一农药有限公司 Germicide composition containing azoxystrobin and thiophanate-methyl and its application
CN101553121A (en) * 2006-10-09 2009-10-07 先正达参股股份有限公司 Pesticidal combinations
JP5449669B2 (en) * 2006-12-14 2014-03-19 石原産業株式会社 Pest control composition
JP2010047478A (en) * 2006-12-19 2010-03-04 Mitsui Chemicals Inc Pest control composition
WO2008095924A2 (en) * 2007-02-06 2008-08-14 Basf Se Insecticides as safener for fungicides with phytotoxic action
ES2694148T3 (en) * 2008-04-07 2018-12-18 Bayer Cropscience Ag Combinations of biological control agents and fungicides
CA2800369C (en) * 2010-05-31 2018-07-10 Basf Se Method for increasing the health of a plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171924A (en) * 2007-11-21 2008-05-07 张少武 Insecticidal composition containing fipronil and uses thereof
WO2010052129A2 (en) * 2008-11-06 2010-05-14 Syngenta Participations Ag Pesticidal combinations

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018112563A1 (en) * 2016-12-21 2018-06-28 Helm Do Brasil Mercantil Ltda Agrochemical composition for treating seeds
WO2019142044A1 (en) * 2018-01-17 2019-07-25 Upl Ltd Novel agrochemical combinations

Also Published As

Publication number Publication date
TWI662898B (en) 2019-06-21
AU2015203091B1 (en) 2015-12-10
AU2015100792A4 (en) 2015-07-09
AR101585A1 (en) 2016-12-28
BR102015028219A2 (en) 2016-12-27
CN106234396A (en) 2016-12-21
AU2015271898B2 (en) 2016-08-04
AU2015203091C1 (en) 2016-03-31
AU2015271898A1 (en) 2016-01-21
TW201642746A (en) 2016-12-16

Similar Documents

Publication Publication Date Title
UA120913C2 (en) Fungicidal compositions
EP3081086B1 (en) Synergistic insecticidal composition comprising imidacloprid, bifenthrin and abamectin
CN105638701B (en) Nematicidal composition and application thereof
WO2015192717A1 (en) Synergistic insecticidal composition comprising neonicotinoid insecticides and pyrethroid insecticides
AU2015271898B2 (en) A synergistic composition comprising insecticides and fungicides
GB2541374A (en) Synergistic insecticidal composition
US10568329B2 (en) Synergistic insecticidal composition
AU2015101421A4 (en) A synergistic insecticidal composition
GB2532218B (en) Herbicidal composition and method for controlling plant growth
AU2017101654A4 (en) A synergistic insecticidal composition comprising methomyl and fipronil
EA014916B1 (en) Pesticidal compositions comprising an azole, a phenylamide and azoxystrobin
WO2015154596A1 (en) Synergistic insecticidal composition comprising neonicotinoid insecticides and pyrethroid insecticides
WO2020173218A1 (en) A synergistic composition comprising insecticides and fungicides
GB2537606B (en) A synergistic insecticidal composition
WO2019179309A1 (en) Pesticidal compositions having emamectin benzoate and indoxacarb and methods for using such compositions
JP2022550849A (en) pesticidal mixture
WO2018201881A1 (en) A fungicidal composition and the use thereof
GB2576125A (en) Synergistic insecticidal composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894725

Country of ref document: EP

Kind code of ref document: A1