WO2016195464A2 - Complex medical imaging system - Google Patents

Complex medical imaging system Download PDF

Info

Publication number
WO2016195464A2
WO2016195464A2 PCT/KR2016/008210 KR2016008210W WO2016195464A2 WO 2016195464 A2 WO2016195464 A2 WO 2016195464A2 KR 2016008210 W KR2016008210 W KR 2016008210W WO 2016195464 A2 WO2016195464 A2 WO 2016195464A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
light
visible light
reflected
radiation
Prior art date
Application number
PCT/KR2016/008210
Other languages
French (fr)
Korean (ko)
Other versions
WO2016195464A3 (en
Inventor
이학재
이기성
정영준
김현구
김법민
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2016195464A2 publication Critical patent/WO2016195464A2/en
Publication of WO2016195464A3 publication Critical patent/WO2016195464A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment

Definitions

  • the present invention relates to a medical complex imaging system, and more particularly, to a medical complex imaging system capable of acquiring and matching near infrared fluorescence images, radiographic images and visible light images through one optical system.
  • Sentinel lymph node is a lymph node in which cancer cells preferentially metastasize in the primary tumor and is an important indicator for determining lymph node metastasis. If no cancer cells are found through the biopsy of the monitored lymph nodes, other lymph nodes may be metastatic and no further surgery will be performed.
  • lymph node In-vivo examination of lymph node through accurate search of the lymph node, which is an important indicator in determining the metastasis of cancer, can reduce postoperative sequelae such as lymphedema and minimize scarring on the patient's body. .
  • surveillance lymph nodes using targeted drugs have been used as a standard technique in early breast cancer or melanoma surgery.
  • a method of obtaining a visible light image using a blue dye and a visible light camera, and a near infrared fluorescence image using a near infrared fluorescent dye and a near infrared camera A method of obtaining and a method of obtaining a radiographic image by photographing a radiopharmaceutical integrated in a surveillance lymph node with a gamma imaging device have been proposed.
  • FIG. 1 shows an example of an image of various monitoring lymph nodes in the body using a target drug
  • FIG. 1 (a) is an image obtained by dyeing the monitoring lymph nodes using a blue dye
  • b) is a fusion image of a near-infrared fluorescent dye image and an optical image
  • FIG. 1 (c) is an image of a radiopharmaceutical integrated in a monitoring lymph node, taken by a radiographic apparatus.
  • the dyeing method using blue dye has the advantage that the operator can visually distinguish it, but it can be used only to search for the monitoring lymph nodes where the surface is located, so in the case of deep organs, the Ex-vivo test should be performed.
  • the near-infrared fluorescent dye method is useful for detecting lymph nodes of about 1cm in permeability, but it is still difficult to detect lymph nodes located deep in the body.
  • the resolution is relatively high compared to the radiographic image, but unlike the visible light image, there is a disadvantage that it is insufficient to obtain anatomical information.
  • the method using radiopharmaceuticals is useful for detecting lymph nodes located at the deep part of the body because of high permeability, but it is difficult to accurately detect lymph nodes using only radiographic images, as shown in (c) of FIG. 1.
  • a near-infrared fluorescence emitted by a fluorescent material such as indocyanine green and excitation light is reproduced together with a visible light image.
  • a technique for implementing a composite image is disclosed.
  • the visible light image with excellent anatomical information the high signal-to-noise ratio and the near-infrared fluorescence image that provides excellent discrimination for the superficial lymph nodes located on the surface, but also the accurate position information of the superimposed lymph nodes located inside the body If the available gamma images can be used together, it is expected that the accuracy of the detection of the lymph node can be greatly improved.
  • an object of the present invention is to provide a medical complex imaging system capable of acquiring and matching a near infrared fluorescence image, a radiographic image, and a visible light image through one optical system. have.
  • a medical complex imaging system comprising: an electron multiplication CCD camera disposed on a first optical path; A visible light camera disposed on the second light path to photograph a visible light image; A radiation-photon conversion module for converting and radiating radiation emitted from the living body into photons; A first operating mode in which near infrared rays reflected from the living body and photons emitted from the radiation-photon conversion module are directed to the first optical path, and visible light reflected from the living body is directed to the second optical path; An optical path movably installed between a near infrared ray and a first operation mode in which photons of photons emitted from the radiation-photon conversion module are directed to the first optical path and visible light reflected from the living body is directed to the second optical path A conversion module; A first photographing mode in which a near infrared fluorescence image and a first visible light image are photographed by the electron multiplication CCD camera and the visible light camera while the optical path switching
  • the optical path switching module is disposed in an intersection area where the first optical path and the second optical path cross each other in the first operation mode, and divides the light reflected from the living body to respectively divide the first optical path and the first optical path.
  • a light splitting portion directed to a two light paths, the light splitting portion deviating from the crossing area in the second operation mode; Directing a light path of photons emitted from the radiation-photon conversion module in the second mode of operation to the first light path, and wherein the light path of photons emitted from the radiation-photon conversion module in the first mode of operation It may include a photon path control unit for blocking the entry to the first optical path.
  • the light splitter may include a dichroic light splitter that splits near infrared rays and visible light reflected from a living body to direct near infrared rays to the first light path and direct visible light to the second light path.
  • the photon path controller is arranged between the radiation-photon conversion module and the first light path in the second mode of operation to direct photons emitted from the radiation-photon conversion module to the first light path. It may include one reflective mirror.
  • the first optical path is located on the near-infrared light path reflected from the living body and transmitted through the dichroic light splitter;
  • the second optical path is located on the optical path of visible light reflected from the living body and reflected from the dichroic light splitter;
  • the reflection mirror comprises a first reflection mirror for reflecting photons emitted from the radiation-photon conversion module to the intersection area; And a second reflection mirror disposed at the crossing area to reflect photons reflected from the first reflection mirror in the direction of the first optical path to be directed to the electron multiplication CCD camera.
  • the second reflecting mirror comprises a first reflecting surface on which photons are reflected and a second reflecting surface formed on a rear surface of the first reflecting surface;
  • the first optical path is also located on the near-infrared light path reflected from the living body and reflected from the dichroic light splitter;
  • the second optical path is located on the optical path of visible light reflected from the living body and transmitted through the dichroic light splitter;
  • the reflection mirror may reflect the photons emitted from the radiation-photon conversion module in the direction of the first optical path to the electron multiplication CCD camera.
  • the radiation-photon conversion module is disposed between the living area and the intersection area where the first optical path and the second optical path intersect;
  • the optical path switching module may include: a first reflection mirror configured to reflect light reflected from the living body in the first operation mode and the second operation mode to an intersection area where the first optical path and the second optical path cross each other; Disposed at the intersection region in a first operating mode to direct light reflected by the first reflection mirror to the first optical path and the second optical path, respectively, and to deviate from the intersection region in the second operating mode It may include a light splitter.
  • the light splitter may include a dichroic light splitter that splits near-infrared light and visible light reflected from a living body to direct near-infrared light to the first light path and direct visible light to the second light path.
  • the first optical path is located on the near-infrared light path reflected by the first reflection mirror and reflected from the dichroic light splitter;
  • the second optical path is located on the optical path of visible light reflected by the first reflective mirror and transmitted through the dichroic light splitter;
  • the dichroic light splitter is separated from the crossing area in the second mode of operation such that light reflected by the first reflection mirror is directed to the visible light camera through the second light path, and the radiation-photon conversion module Photons emitted from the light beam may be directed to the electron multiplication CCD camera through the first optical path.
  • the first optical path is located on the near-infrared light path reflected by the first reflection mirror and transmitted through the dichroic light splitter;
  • the second optical path is located on the optical path of visible light reflected by the first reflective mirror and reflected from the dichroic light splitter;
  • the optical path switching module is disposed in the crossing area in the second operating mode, is separated from the crossing area in the first operating mode, and reflects light reflected by the first reflection mirror in the direction of the second optical path.
  • a second reflection surface having a first reflection surface directed toward the visible light camera and a second reflection surface that reflects photons emitted from the radiation-photon conversion module in the direction of the first light path to be directed toward the electron multiplication CCD camera. It may further include a mirror.
  • the photonic device may further include a photon blocking unit disposed between the radiation-photon conversion module and the dichroic light splitter in the first operation mode to block photons toward the dichroic light splitter.
  • the apparatus may further include a near-infrared cutoff filter for blocking entrance of the near-infrared rays reflected from the living body to the visible light camera.
  • the radiation-photon conversion module may further include a collimator for selectively passing the radiation according to the incident direction of the radiation; In response to the radiation passing through the collimator may include a scintillator for emitting photons at a position corresponding to the radiation reaction position.
  • the composite imaging controller compares the first visible light image with the second visible light image and extracts a deformation parameter when any one of the first visible light image and the second visible light image is matched with another one; One of the near infrared fluorescence image and the radiation image may be corrected based on the deformation parameter.
  • a medical complex imaging system that can acquire and match the near infrared fluorescence image, radiographic image and visible light image through one optical system.
  • 1 is a view showing an example of the image to search the various monitoring lymph nodes in the body using the target drug
  • FIG. 2 to 4 is a view showing the configuration of a medical complex imaging system according to a first embodiment of the present invention
  • FIG. 5 is a view for explaining a method of operating the optical path switching module according to a first embodiment of the present invention
  • FIG. 6 is a view for explaining the image registration method of the medical complex imaging system according to the first embodiment of the present invention.
  • FIG. 7 and 8 are views showing the configuration of a medical complex imaging system according to a second embodiment of the present invention.
  • FIG. 9 is a view for explaining a method of operating the optical path switching module according to a second embodiment of the present invention.
  • FIGS. 10 and 11 are views showing the configuration of a medical complex imaging system according to a third embodiment of the present invention.
  • FIG. 12 is a view for explaining a method of operating the optical path switching module according to a third embodiment of the present invention.
  • FIG. 13 and 14 are views showing the configuration of a medical complex imaging system according to a fourth embodiment of the present invention.
  • 15 is a view for explaining a method of operating the optical path switching module according to a fourth embodiment of the present invention.
  • the present invention relates to a medical complex imaging system, comprising: an electron multiplication CCD camera disposed on a first optical path; A visible light camera disposed on the second light path to photograph a visible light image; A radiation-photon conversion module for converting and radiating radiation emitted from the living body into photons; A first operating mode in which near infrared rays reflected from the living body and photons emitted from the radiation-photon conversion module are directed to the first optical path, and visible light reflected from the living body is directed to the second optical path; An optical path movably installed between a near infrared ray and a first operation mode in which photons of photons emitted from the radiation-photon conversion module are directed to the first optical path and visible light reflected from the living body is directed to the second optical path A conversion module; A first photographing mode in which a near infrared fluorescence image and a first visible light image are photographed by the electron multiplication CCD camera and the visible light camera while the optical path switching module is
  • FIGS. 2 and 3 are diagrams showing the configuration of the medical complex imaging system 100 according to the first embodiment of the present invention.
  • the thick solid line in FIGS. 2 and 3 shows photons
  • the thin solid line shows near infrared rays
  • the thin broken line shows the optical path of visible light.
  • the medical complex imaging system 100 includes an electron multiplication CCD camera 10, a visible light camera 20, and a radiation-photon conversion module 30. , The optical path switching module 40, 50, and the composite imaging controller 200.
  • the electron multiplication CCD camera 10 uses an electron multiplication CCD (Electron Multiplying Charge-Coupled Device, EMCCD) device as a photographing device.
  • EMCCD Electron Multiplying Charge-Coupled Device
  • EMCCD Electron Multiplying Charge-Coupled Device
  • EMCCD Electron Multiplying Charge-Coupled Device
  • EMCCD Electron Multiplying Charge-Coupled Device
  • EMCCD Electron Multiplying Charge-Coupled Device
  • the electron multiplying charge-coupled device (EMCCD) device amplifies and photographs photons emitted from the radiation-photon conversion module 30 through the electron multiplication module, thereby enabling radiographic imaging.
  • EMCD electron multiplying charge-coupled device
  • the visible light camera 20 photographs a visible light image.
  • a visible light image is provided in the form of a CCD camera.
  • the electron multiplication CCD camera 10 is disposed on the first optical path, and the visible light camera 20 is disposed on the second optical path.
  • the first optical path and the second optical path are formed to be substantially perpendicular to each other.
  • the first light path and the second light path are disposed vertically, and the visible light camera 20 is disposed on the side.
  • the radiation-photon conversion module 30 converts the radiation emitted from the living body into photons and emits them.
  • the radiation-photon conversion module 30 as shown in Figures 2 and 3, the collimator 31 (Collimator) for selectively passing the radiation in accordance with the direction of incidence of the radiation line and the collimator 31
  • An example includes a scintillator 32 that emits photons at positions corresponding to the radiation-responsive positions in response to the radiation passing through.
  • the pin-hole type collimator 31 is applied as the collimator 31, but porous parallel collimator, a diverging type collimator, and a converging type collimator.
  • Various collimators can be applied.
  • the optical path switching modules 40 and 50 are installed to be movable between the first operation mode and the second operation mode.
  • 2 is a diagram illustrating a state in which the optical path switching modules 40 and 50 are moved to the first operation mode
  • FIG. 3 is a diagram illustrating a state in which the optical path switching modules 40 and 50 are moved to the second operation mode.
  • the optical path switching modules 40 and 50 In the state where the optical path switching modules 40 and 50 are moved to the first operation mode, as shown in FIG. 2, the near infrared light reflected from the living body and the photon output from the radiation-photon conversion module 30 are removed. You will be directed to 1 path.
  • the optical path switching modules 40 and 50 are moved to the second operation mode, as shown in FIG. 3, photons among photons output from the near-infrared rays reflected from the living body and the radiation-photon conversion module 30 are shown. Is directed to the first optical path.
  • the optical path switching modules 40 and 50 direct visible light reflected from the living body to the second optical path in both the first operation mode and the second operation mode.
  • the composite imaging controller 200 is a near-infrared fluorescent image and the first visible light by the electron multiplication CCD camera 10 and the visible light camera 20, respectively, with the optical path switching module 40, 50 in the first operating mode.
  • the first operation mode is to capture an image.
  • the composite imaging control unit 200 is a radiation image and a second visible light image by the electron multiplication CCD camera 10 and the visible light camera 20, respectively, with the optical path switching modules 40 and 50 in the second operation mode.
  • the second mode of shooting is performed.
  • the composite imaging controller 200 may control on / off of the near-infrared light source 61 and the infrared light source so that the near-infrared fluorescent image and the visible light image can be captured.
  • the visible light source 62 for example, a white light source
  • the visible light source 62 may be controlled to be always in the first photographing mode and the second photographing mode
  • the near-infrared light source 61 may be controlled to be turned on only in the first photographing mode. .
  • the optical path switching module 40, 50 selectively moves to the first operation mode or the second operation mode, the near-infrared fluorescence image and the first visible light image are simultaneously captured (first imaging mode).
  • the radiographic image and the second visible light image are simultaneously photographed (second photographing mode), so that the near infrared fluorescence image, the visible light image, and the radiographic image can be obtained through one optical system.
  • reference numerals 81, 82, 83, and 84 of FIGS. 2 and 3 are lenses disposed on respective light paths, and lenses of various types, such as distance from a living body or parallel light formation, may be used. It can be installed according to the needs, and those skilled in the art having the ordinary skill in the art will be able to apply the appropriate lens configuration as necessary bar detailed description thereof will be omitted.
  • optical path switching modules 40 and 50 according to the first embodiment of the present invention will be described in detail with reference to FIGS. 2, 3 and 5.
  • the optical path switching modules 40 and 50 may include a light splitter 40 and a photon path adjuster 50.
  • the spirituality processing unit as shown in Figure 5, by driving the module driving unit 70, such as a linear motor, the optical splitting unit 40 and the photon path control unit (constituting the optical path switching module (40, 50) ( 50) can be disposed in the corresponding position in the first operation mode and the second operation mode.
  • the light splitter 40 is disposed in an intersection area where the first optical path and the second optical path intersect in the first operation mode. As shown in FIGS. 2 and 5A, the light splitter 40 splits the light reflected from the living body in a state in which the light splitter 40 is disposed in the intersection area in the first operation mode and the first light path. Direct to the second optical path. Here, the light splitter 40 is separated from the crossing area in the second operation mode, as shown in FIGS. 3 and 5B.
  • the light splitter 40 is provided in the form of a dichroic beam splitter. Accordingly, the dichroic light splitter divides the near-infrared and visible light reflected from the living body according to its wavelength, directing the near-infrared light to the first light path and directing the visible light to the second light path, thereby reducing the near-infrared light by the electron multiplication CCE camera. The visible light is photographed by the knight camera.
  • the photon path adjusting unit 50 converts the optical path of photons emitted from the radiation-photon conversion module 30 into the first optical path in the second operation mode, as shown in FIGS. 3 and 5 (b). And block in the first mode of operation the entry of the light path of the photon emitted from the radiation-photon conversion module 30 into the first light path, as shown in FIGS. 2 and 5 (a). .
  • the photon path adjusting unit 50 includes at least one reflective mirror disposed between the radiation-photon conversion module 30 and the first light path in the second operation mode.
  • the photon path adjusting unit 50 includes the first reflecting mirror 51 and the second reflecting mirror 52.
  • the first light path is located on the light path of the near infrared light reflected from the living body and transmitted through the dichroic light splitter
  • the second optical path is located on the optical path of the visible light reflected from the living body and reflected from the dichroic light splitter. That is, the near-infrared rays reflected from the living body pass through the dichroic light splitter and are directed to the electron multiplication CCD camera 10 through the first optical path, and the visible light reflected from the living body is reflected from the dichroic light splitter and then the second light. The path is directed to the visible light camera 20.
  • the first reflection mirror 51 reflects the photons emitted from the radiation-photon conversion module 30 to the cross region, as shown in FIGS. 3 and 5 (b).
  • the second reflection mirror 52 is disposed in the cross region and reflects the photons reflected from the first reflection mirror 51 in the direction of the first light path to be directed to the electron multiplication CCD camera 10, thereby causing the electron multiplication CCD camera. 10 makes it possible to take a radiographic image.
  • the second reflecting mirror 52 may include a first reflecting surface on which photons are reflected and a second reflecting surface formed on a rear surface of the first reflecting surface. This allows the visible light reflected from the living body to be reflected from the second reflecting surface in the direction of the second light path when the second reflecting mirror 52 is disposed in the intersection area in the second operation mode, and then directed to the visible light camera 20. do.
  • the near-infrared fluorescence image, the complex imaging control unit 200 of the medical complex imaging system 100 according to the first embodiment of the present invention through the operation in the first imaging mode and the second imaging mode, A process of photographing a visible light image and a radiographic image will be described.
  • the complex imaging controller 200 moves the optical path switching modules 40 and 50 to the first operation mode in the first photographing mode.
  • the optical path switching module 40, 50 moves to the first operation mode
  • the light splitter 40 is disposed in the crossing area and the photon path adjusting unit 50 is separated from the optical path of the photon. do.
  • the near-infrared light source 61 and the visible light source 62 are turned on, the near-infrared light reflected from the living body passes through the light splitter 40, that is, the dichroic light splitter, and passes through the first optical path to form an electron multiplication CCD camera ( 10) is taken by.
  • the visible light reflected from the living body is reflected by the light splitter 40, that is, the dichroic light splitter, and is captured by the visible light camera 20 through the second optical path.
  • the photon path adjusting unit 50 composed of the first mirror and the second mirror is separated from the radiation-photon conversion module 30 on the optical path of the photons emitted from the radiation-photon conversion module 30.
  • the emitted photons are not directed to the electron multiplication CCD camera 10.
  • the near infrared fluorescence image and the first visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
  • the composite imaging controller 200 moves the optical path switching modules 40 and 50 to the second operation mode in the second photographing mode.
  • the optical path switching module 40, 50 moves to the second operation mode
  • the optical splitter 40 is separated from the crossing area, and the photon path adjusting unit 50 is on the optical path of the photon.
  • the photon path adjusting unit 50 is on the optical path of the photon.
  • the visible light source 62 when the visible light source 62 is turned on, the visible light reflected from the living body is reflected from the second reflecting surface of the second reflecting mirror 52 to face the visible light camera 20. Further, photons emitted from the radiation-photon conversion module 30 are reflected by the first reflection mirror 51 and directed to the crossing area, that is, the second reflection mirror 52, and again from the second reflection mirror 52. It is reflected and directed to the electron multiplication CCD camera 10 through the first optical path.
  • the radiation image and the second visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
  • the complex imaging controller 200 may turn off the NIR light source 61 to remove the NIR reflected from the living body in the second imaging mode.
  • the near-infrared light source 61 of the near-infrared light reflected from the living body in order to block the near-infrared light that may be introduced into the visible light camera 20 due to other reasons, such as to maintain the on-infrared light source 61 in the second photographing mode.
  • a near infrared cut filter 90 may be disposed to block entry to the c).
  • the near-infrared cut filter 90 is installed at the front end of the visible light camera 20, but does not affect the near-infrared toward the electron multiplication CCD camera 10.
  • the near-infrared cut filter 90 may be installed at another position, and may be provided to block near-infrared rays flowing into the visible light camera 20 by moving together with the movement of the optical path switching modules 40 and 50. .
  • the composite imaging controller 200 may match the near infrared fluorescence image photographed in the first photographing mode with the first visible light image, and the radiation image photographed with the second visible light image in the second photographing mode.
  • the medical complex imaging system 100 is radiation-photon conversion so that the near-infrared fluorescence image photographed by the electron multiplication CCD camera 10 and the visible image captured by the visible light camera 20 match each other.
  • the positions of the module 30, the light path switching modules 40 and 50, the electron multiplication CCD camera 10 and the visible light camera 20 are determined.
  • the radiation-photon conversion module 30 may be matched with a visible light image or a near infrared fluorescence image by adjusting an angle of view of the pinhole collimator 31. Since it starts through the optical path, it can be matched by matching the distance between the electron multiplication CCD camera 10 and the visible light camera 20 from the crossing area.
  • a mismatch may occur between the image photographed in the first photographing mode and the second photographing mode due to a difference in photographing time between the first photographing mode and the second photographing mode.
  • a mismatch may occur due to a time difference between the two modes.
  • FIG. 6A illustrates a second visible light image (left image) and a radiation image (right image) captured in the second photographing mode
  • FIG. 6B illustrates a second image.
  • 1 is a view showing a first visible light image (left image) and a near infrared fluorescence image (right image) photographed in a photographing mode.
  • the complex imaging controller 200 may be used. Compares the first visible light image with the second visible light image and extracts a deformation parameter when any one of the first visible light image and the second visible light image is matched with the other.
  • FIG. 6D illustrates a mismatch generated when the second visible light image and the radiation image are merged without correcting the near infrared fluorescence image, and the right image of FIG.
  • (c) of FIG. 6 a composite image generated by merging a near-infrared fluorescence image using deformation parameters and merging with a second visible light image and a radiation image is illustrated.
  • a medical complex imaging system 100a according to a second exemplary embodiment of the present invention will be described in detail with reference to FIGS. 7 to 9.
  • the medical complex imaging system 100a according to the second exemplary embodiment of the present invention will be described with reference to a modification of the first exemplary embodiment, which is different from the first exemplary embodiment.
  • the configuration of the control block diagram shown in FIG. 4 is also applied to the description of the second embodiment, and as in the first embodiment, the thick solid lines in FIGS. 7 and 8 are photons, the thin solid lines are near infrared rays, and the thin dashed lines. Shows the optical path of visible light.
  • the medical complex imaging system 100a includes an electron multiplication CCD camera 10, a visible light camera 20, and a radiation-photon conversion module 30. And optical path switching modules 40a and 50a and composite imaging controller 200.
  • the visible light camera 20 is disposed on the upper part of the living body, and the electron multiplication CCD camera 10 is disposed on the side so that the first optical path and the second As an example, the optical path is formed in a vertical state.
  • FIG. 7 is a diagram illustrating a state in which the optical path switching modules 40a and 50a are moved to the first operation mode
  • FIG. 8 is a diagram illustrating a state in which the optical path switching modules 40a and 50a are moved to the second operation mode. to be.
  • the optical path switching modules 40a and 50a In the state where the optical path switching modules 40a and 50a are moved to the first operation mode, as shown in FIG. 7, the near infrared rays among the near infrared rays reflected from the living body and the photons output from the radiation-photon conversion module 30 are removed. You will be directed to 1 path
  • the optical path switching modules 40a and 50a are moved to the second operation mode, as shown in FIG. 8
  • photons of the near infrared rays reflected from the living body and the photons output from the radiation-photon conversion module 30 are shown. Is directed to the first optical path.
  • the optical path switching modules 40a and 50a direct visible light reflected from the living body to the second optical path in both the first operation mode and the second operation mode.
  • the optical path switching module 40a or 50a may include a light splitter 40a and a photon path adjuster.
  • the light splitter 40a is disposed in an intersection area where the first light path and the second light path intersect in the first operation mode. As illustrated in FIGS. 7 and 9A, the light splitter 40a divides the light reflected from the living body in a state in which the light splitter 40a is disposed at the intersection area in the first operation mode, and the first optical path and the first light path. Direct to the second optical path. Here, the light splitter 40a is separated from the crossing area in the second operation mode, as shown in FIGS. 8 and 9B.
  • the light splitter 40a is provided in the form of a dichroic beam splitter. Accordingly, the dichroic light splitter divides the near-infrared and visible light reflected from the living body according to its wavelength, directing the near-infrared light to the first light path and directing the visible light to the second light path, thereby reducing the near-infrared light by the electron multiplication CCE camera. The visible light is photographed by the knight camera.
  • the photon path controller directs the optical path of the photons emitted from the radiation-photon conversion module 30 to the first optical path in the second mode of operation, as shown in FIGS. 8 and 9 (b).
  • the photon emitted from the radiation-photon conversion module 30 blocks the optical path from entering the first optical path.
  • the photon path control unit according to the second embodiment of the present invention is implemented by way of one reflective mirror 50a. More specifically, in the second embodiment of the present invention, as in the arrangement of the electron multiplication CCD camera 10 and the visible light camera 20 described above, the first light path is reflected from the living body and is separated from the dichroic light splitter. For example, it is located on the reflected light path of near infrared rays, and the second light path is located on the light path of visible light reflected from the living body and transmitted through the dichroic light splitter.
  • the near infrared rays reflected from the living body are reflected from the dichroic light splitter and then directed to the electron multiplication CCD camera 10 through the first optical path, and the visible light reflected from the living body passes through the dichroic light splitter and then the second light.
  • the path is directed to the visible light camera 20.
  • the reflection mirror 50a reflects the photons emitted from the radiation-photon conversion module 30 in the direction of the first optical path, as shown in FIGS. 8 and 9 (b), to form an electron multiplication CCD camera.
  • the electron multiplication CCD camera 10 makes it possible to take a radiographic image.
  • the near-infrared fluorescence image, the complex imaging control unit 200 of the medical complex imaging system 100a according to the second embodiment of the present invention through the operation in the first and second imaging mode, A process of photographing a visible light image and a radiographic image will be described.
  • the complex imaging controller 200 moves the optical path switching modules 40a and 50a to the first operation mode in the first photographing mode.
  • the light splitter 40a is disposed in the crossing area and the photon path adjusting part is separated on the optical path of the photons.
  • the near-infrared light source 61 and the visible light source 62 are turned on, the near-infrared light reflected from the living body is reflected from the light splitter 40a, that is, the dichroic light splitter, and is subjected to the electron multiplication CCD camera through the first optical path. 10) is taken by.
  • the visible light reflected from the living body is photographed by the visible light camera 20 through the light splitter 40a, that is, the dichroic light splitter, through the second light path.
  • the photon path control unit that is, the reflection mirror 50a is separated from the photon path of the photons emitted from the radiation-photon conversion module 30, the photons emitted from the radiation-photon conversion module 30 are electrons. It cannot be directed to the multiplication CCD camera 10. Accordingly, in the first photographing mode, the near infrared fluorescence image and the first visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
  • the composite imaging controller 200 moves the optical path switching modules 40a and 50a to the second operation mode in the second photographing mode.
  • the optical path switching modules 40a and 50a move to the second operation mode, the light splitter 40a is separated from the crossing area, and the reflection mirror 50a constituting the photon path adjusting unit is a photon.
  • the optical path of as shown in FIG. 8.
  • the visible light source 62 when the visible light source 62 is turned on, the visible light reflected from the living body is directed toward the visible light camera 20 through the second light path. Further, photons emitted from the radiation-photon conversion module 30 are reflected by the reflection mirror 50a and directed to the electron multiplication CCD camera 10 through the first optical path. Accordingly, in the second photographing mode, the radiation image and the second visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
  • the complex imaging controller 200 may turn off the NIR light source 61 in the second photographing mode. Also, as in the first embodiment, a near infrared cut filter 90 may be disposed.
  • a medical complex imaging system 100b according to a third exemplary embodiment of the present invention will be described in detail with reference to FIGS. 10 to 12.
  • the medical complex imaging system 100b according to the third exemplary embodiment of the present invention will be described with a modification of the first exemplary embodiment, focusing on a different part from the first exemplary embodiment.
  • the configuration of the control block diagram shown in FIG. 4 is also applied to the description of the third embodiment, and as in the first embodiment, the thick solid lines in FIGS. 10 and 11 are photons, the thin solid lines are near infrared rays, and the thin dashed lines. Shows the optical path of visible light.
  • the medical complex imaging system 100b includes an electron multiplication CCD camera 10, a visible light camera 20, and a radiation-photon conversion module 30. And optical path switching modules 41b and 42b and composite imaging controller 200.
  • the electron multiplication CCD camera 10 is disposed on the upper part of the living body, and the visible light camera 20 is disposed on the side surface so that the first optical path and the second As an example, the optical path is formed in a vertical state.
  • the electron multiplication CCD camera 10 and the radiation-photon conversion module 30 are disposed on the same optical axis. That is, the radiation-photon conversion module 30 is disposed between the living body and the intersection area where the first light path and the second light path intersect.
  • FIG. 10 is a view illustrating a state in which the optical path switching modules 41b and 42b are moved to the first operation mode
  • FIG. 11 is a view illustrating a state in which the optical path switching modules 41b and 42b are moved to the second operation mode. to be.
  • the optical path switching modules 41b and 42b according to the third exemplary embodiment of the present invention may include the first reflection mirror 41b and the light splitter 42b.
  • the first reflection mirror 41b reflects the light reflected from the living body, that is, the visible light and the near infrared ray, to the intersection area where the first light path and the second light path cross each other in the first and second operating modes.
  • the light splitter 42b is disposed at an intersection area in the first operation mode to direct the light reflected by the first reflection mirror 41b to the first light path and the second light path, respectively, and in the second operation mode. Deviates from the intersection region at.
  • the light splitter 42b according to the third exemplary embodiment of the present invention is provided in the form of a dichroic beam splitter similarly to the first and second embodiments. Accordingly, the dichroic light splitter splits the near infrared rays and the visible light reflected by the first reflection mirror 41b according to their wavelengths after being reflected from the living body, directing the near infrared rays to the first optical path and directing the visible light to the second optical path. By directing to, the near infrared ray is photographed by the electron multiplication CCE camera and the visible light is photographed by the knight light camera.
  • the first optical path is half-visible by the first reflection mirror 41b to be dichroic.
  • An example is located on the light path of the near infrared rays reflected from the light splitter, and the second light path is located on the light path of the visible light reflected from the first reflection mirror 41b and transmitted through the dichroic light splitter. That is, the near infrared rays reflected from the first reflection mirror 41b are reflected from the dichroic light splitter and then directed to the electron multiplication CCD camera 10 through the first optical path, and the visible light reflected from the first reflection mirror 41b. After passing through the dichroic light splitter, it is directed to the visible light camera 20 through the second light path.
  • the photon blocking part 43b is installed between the radiation-photon conversion module 30 and the dichroic light splitter in the first mode of operation. This prevents photons emitted from the radiation-photon conversion module 30 in the first operation mode from being directed to the dichroic light splitter, thereby radiating the photons in the first visible light image and the near-infrared fluorescent image captured in the first imaging mode. Photons emitted from the conversion module 30 can be blocked from affecting.
  • the near-infrared fluorescence image, the complex imaging control unit 200 of the medical complex imaging system 100b according to the third embodiment of the present invention through the operation in the first imaging mode and the second imaging mode, A process of photographing a visible light image and a radiographic image will be described.
  • the complex imaging controller 200 moves the optical path switching modules 41b and 42b to the first operation mode in the first photographing mode. As described above, when the optical path switching modules 41b and 42b move to the first operation mode, the light splitting section 42b is disposed in the crossing area.
  • the near-infrared light source 61 and the visible light source 62 are turned on, the near-infrared light reflected from the living body is reflected from the first reflection mirror 41b and directed to the light splitting section 42b, and thus, the light splitting section, that is, the dichroic color. It is reflected from the sex light splitter and taken by the electron multiplication CCD camera 10 through the first light path. Then, the visible light reflected from the living body is reflected by the first reflection mirror 41b, is transmitted by the light splitter 42b, that is, the dichroic light splitter, and photographed by the visible light camera 20 through the second light path.
  • the photons emitted from the radiation-photon conversion module 30 are blocked by the photon blocking part 43b and are not directed to the electron multiplication CCD camera 10. Accordingly, in the first photographing mode, the near infrared fluorescence image and the first visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
  • the composite imaging controller 200 moves the optical path switching modules 41b and 42b to the second operation mode in the second photographing mode.
  • the optical path switching modules 41b and 42b move to the second operation mode
  • the light splitting section 42b is separated from the crossing area, as shown in FIGS. 11 and 12 (b). Are arranged together.
  • the visible light source 62 when the visible light source 62 is turned on, visible light reflected from the living body is reflected from the first reflection mirror 41b to face the visible light camera 20 through the second light path. Further, photons emitted from the radiation-photon conversion module 30 are directed to the electron multiplication CCD camera 10 through the first optical path. Accordingly, in the second photographing mode, the radiation image and the second visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
  • the complex imaging controller 200 may turn off the NIR light source 61 in the second photographing mode. Also, as in the first and second embodiments, the near infrared cut filter 90 may be disposed.
  • a medical complex imaging system 100c according to a fourth exemplary embodiment of the present invention will be described in detail with reference to FIGS. 13 to 15.
  • the medical complex imaging system 100c according to the fourth exemplary embodiment of the present invention will be described with reference to modifications of the first and third exemplary embodiments, which are different from those of the first and third exemplary embodiments.
  • the configuration of the control block diagram shown in FIG. 4 is also applied to the description of the third embodiment, and as in the first embodiment, the thick solid lines in FIGS. 13 and 14 are photons, the thin solid lines are near infrared rays, and the thin dashed lines. Shows the optical path of visible light.
  • the medical complex imaging system 100c may include an electron multiplication CCD camera 10, a visible light camera 20, and a radiation-photon conversion module 30. , Optical path switching modules 41c, 42c, 52c, and composite imaging controller 200.
  • the visible light camera 20 is disposed above the living body, and the electron multiplication CCD camera 10 is disposed on the side, so that the first optical path and the second As an example, the optical path is formed in a vertical state.
  • the visible light camera 20 and the radiation-photon conversion module 30 are disposed on the same optical axis. That is, the radiation-photon conversion module 30 is disposed between the living body and the intersection area where the first light path and the second light path intersect.
  • the optical path switching modules 41c, 42c, and 52c are installed to be movable between the first operation mode and the second operation mode.
  • FIG. 13 is a view illustrating a state in which the optical path switching modules 41c, 42c, and 52c move to the first operation mode
  • FIG. 14 is a view illustrating a state in which the optical path switching modules 41c, 42c, and 52c move to the second operation mode. It is a figure which shows the state.
  • the optical path switching modules 41c, 42c, and 52c may include a first reflection mirror 41c, a light splitter 42c, and a second reflection mirror 52c.
  • the first reflection mirror 41c reflects the light reflected from the living body, that is, the visible light and the near infrared ray, to the intersection area where the first light path and the second light path cross each other in the first and second operating modes.
  • the light splitter 42c is disposed at an intersection area in the first operation mode to direct the light reflected by the first reflection mirror 41c to the first light path and the second light path, respectively, and in the second operation mode. Deviates from the intersection region at.
  • the light splitter 42c according to the fourth exemplary embodiment of the present invention is provided in the form of a dichroic beam splitter similarly to the first and second embodiments. Accordingly, the dichroic light splitter splits the near-infrared and visible light reflected by the first reflection mirror 41c according to its wavelength after being reflected from the living body, directing the near-infrared light to the first optical path and directing the visible light to the second optical path. By directing to, the near infrared ray is photographed by the electron multiplication CCE camera and the visible light is photographed by the knight light camera.
  • the first optical path is half-visible by the first reflection mirror 41c and is dichroic.
  • An example is located on the light path of the near infrared ray passing through the light splitter, and the second light path is located on the light path of visible light reflected from the dichroic light splitter reflected from the first reflection mirror 41c. That is, the near infrared rays reflected from the first reflection mirror 41c are directed to the electron multiplication CCD camera 10 through the first optical path after passing through the dichroic light splitter, and the visible light reflected from the first reflection mirror 41c. Is reflected from the dichroic light splitter and then directed to the visible light camera 20 through the second optical path.
  • the photon blocking unit 43c is installed between the radiation-photon conversion module 30 and the dichroic light splitter in the first operation mode. This prevents photons emitted from the radiation-photon conversion module 30 in the first operation mode from being directed to the dichroic light splitter, thereby radiating the photons in the first visible light image and the near-infrared fluorescent image captured in the first imaging mode. Photons emitted from the conversion module 30 can be blocked from affecting.
  • the second reflecting mirror 52c is disposed in the intersection area in the second operation mode and is separated from the intersection area in the first operation mode.
  • the second reflecting mirror 52c may include a first reflecting surface reflecting the visible light reflected by the first reflecting mirror 41c in the second operation mode to the visible light camera 20 by reflecting it to the visible light camera 20, and the radiation.
  • a second reflecting surface which reflects the photons emitted from the photon conversion module 30 in the direction of the first optical path and is directed towards the electron multiplication CCD camera 10.
  • the near-infrared fluorescence image of the complex imaging controller 200 of the medical complex imaging system 100c according to the fourth exemplary embodiment of the present invention is operated through the first imaging mode and the second imaging mode. A process of photographing a visible light image and a radiographic image will be described.
  • the complex imaging controller 200 moves the optical path switching modules 41c, 42c, and 52c to the first operation mode in the first photographing mode. As described above, when the optical path switching modules 41c, 42c, 52c move to the first operation mode, the light splitting section 42c is disposed in the intersection area.
  • the near-infrared light source 61 and the visible light source 62 are turned on, the near-infrared light reflected from the living body is reflected from the first reflection mirror 41c and directed to the light splitting section 42c, and thus, the light splitting section, that is, the dichroic color. It is taken by the electron multiplication CCD camera 10 through the first light path through the sex light splitter. Then, the visible light reflected from the living body is reflected from the first reflection mirror 41c, reflected from the light splitter 42c, that is, the dichroic light splitter, and photographed by the visible light camera 20 through the second light path.
  • the photons emitted from the radiation-photon conversion module 30 are blocked by the photon blocking part 43c and are not directed to the electron multiplication CCD camera 10. Accordingly, in the first photographing mode, the near infrared fluorescence image and the first visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
  • the composite imaging controller 200 moves the optical path switching modules 41c, 42c, and 52c to the second operation mode in the second photographing mode.
  • the optical path switching modules 41c, 42c, and 52c move to the second operation mode, the light splitter 42c is separated from the intersection area, and the second reflection mirror 52c is located at the intersection area. And as shown in Figs. 14 and 15 (b).
  • the visible light source 62 when the visible light source 62 is turned on, the visible light reflected from the living body is reflected from the first reflecting mirror 41c and then reflected from the first reflecting surface of the second reflecting mirror 52c to the second light path. To face the visible light camera 20 through. Further, photons emitted from the radiation-photon conversion module 30 are reflected from the second reflecting surface of the second reflecting mirror 52c and directed to the electron multiplication CCD camera 10 through the first optical path. Accordingly, in the second photographing mode, the radiation image and the second visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
  • the complex imaging controller 200 may turn off the NIR light source 61 in the second photographing mode.
  • the near-infrared cut filter 90 may be disposed as in the above-described embodiment.
  • the image correction and registration of the composite imaging controller 200 described through the first embodiment may be applicable to the second to fourth embodiments, of course.
  • the light splitter 42c is provided in the form of a dichroic light splitter.
  • a conventional light splitter that splits and transmits and reflects incident light by approximately 50 to 50 may be applied. Of course.
  • scintillator 40, 40a, 42b, 42c light splitting part
  • module driving unit 90 near infrared cut filter
  • the present invention can be applied to medical imaging equipment, such as to check whether the lymph nodes of the lymph nodes metastasis.

Abstract

The present invention relates to a complex medical imaging system comprising: an electron multiplying CCD camera disposed on a first optical path; a visible light camera which is disposed on a second optical path and photographs a visible light image; a radiation-photon conversion module for converting a radiation emitted from a living body into photons and emitting the same; an optical path switching module installed so as to be switched between a first operation mode where, among near-infrared rays reflected from a living body and photons emitted from the radiation-photon conversion module, the photons are directed to the first optical path and visible light reflected from the living body is directed to the second optical path, and a first operation mode where, among near-infrared rays reflected from a living body and photons emitted from the radiation-photon conversion module, the near-infrared rays are directed to the first optical path and visible light reflected from the living body is directed to the second optical path; and a complex imaging control unit which operates in a first photographing mode where a near-infrared fluorescence image and a first visible light image are photographed by the electron multiplying CCD camera and the visible light camera, respectively, in a state where the optical path conversion module is placed in the first operation mode, and a second photographing mode where a radiographic image and a second visible light image are photographed by the electron multiplying CCD camera and the visible light camera, respectively, in a state where the optical path conversion module is placed in the second operation mode. Accordingly, the present invention can acquire and match a near-infrared fluorescence image, a radiographic image, and a visible light image through one optical system.

Description

의료용 복합 이미징 시스템Medical Complex Imaging System
본 발명은 의료용 복합 이미징 시스템에 관한 것으로서, 보다 상세하게는 하나의 광학 시스템을 통해 근적외선 형광 영상, 방사선 영상 및 가시광 영상을 취득하여 이를 정합할 수 있는 의료용 복합 이미징 시스템에 관한 것이다.The present invention relates to a medical complex imaging system, and more particularly, to a medical complex imaging system capable of acquiring and matching near infrared fluorescence images, radiographic images and visible light images through one optical system.
감시림프절(Sentinel lymph node, SLN)은 원발 종양에서 암세포의 전이가 우선적으로 이루어지는 림프절로, 림프절로의 전이 여부를 판단할 수 있는 중요한 지표이다. 이에 감시림프절에 대한 조직검사를 통해 암세포가 발견되지 않는다면 다른 림프절에도 전이가 없다고 판단하고 더 이상의 수술을 진행하지 않게 된다.Sentinel lymph node (SLN) is a lymph node in which cancer cells preferentially metastasize in the primary tumor and is an important indicator for determining lymph node metastasis. If no cancer cells are found through the biopsy of the monitored lymph nodes, other lymph nodes may be metastatic and no further surgery will be performed.
이와 같이 암 전이 여부를 판단하는데 있어 중요한 지표로 작용하는 감시림프절의 정확한 탐색을 통하여 감시림프절 In-vivo 검사를 수행하면 림프부종과 같은 수술 후유증을 줄여주고 환자의 몸에 남는 흉터를 최소화 할 수 있다. 이로 인해 초기 유방암이나 흑색종 수술에서는 표적의약품을 이용한 감시림프절 탐색방법이 표준기법으로 활용되고 있다.In-vivo examination of lymph node through accurate search of the lymph node, which is an important indicator in determining the metastasis of cancer, can reduce postoperative sequelae such as lymphedema and minimize scarring on the patient's body. . As a result, surveillance lymph nodes using targeted drugs have been used as a standard technique in early breast cancer or melanoma surgery.
표적의약품을 이용하여 체내에 감시림프절을 탐색하는 방법으로는 청색염료(Blue dye)와 가시광 카메라를 이용하여 가시광 영상을 얻는 방법, 근적외선 형광염료(Fluorescent dye)와 근적외선 카메라를 이용하여 근적외선 형광 영상을 얻는 방법, 그리고 감시림프절에 집적된 방사성 의약품을 감마영상 장치로 촬영하여 방사선 영상을 얻는 방법 등이 제안되고 있다.In order to detect the lymph nodes in the body by using a target drug, a method of obtaining a visible light image using a blue dye and a visible light camera, and a near infrared fluorescence image using a near infrared fluorescent dye and a near infrared camera A method of obtaining and a method of obtaining a radiographic image by photographing a radiopharmaceutical integrated in a surveillance lymph node with a gamma imaging device have been proposed.
도 1은 표적의약품을 이용한 체내의 여러 감시림프절을 탐색한 영상의 예를 나타낸 것으로, 도 1의 (a)는 청색염료(blue dye)를 사용하여 감시림프절을 염색한 영상이고, 도 1의 (b)는 근적외선 형광염료(fluorescent dye) 영상과 광학 영상의 융합한 영상이고, 도 1의 (c)는 감시림프절에 집적된 방사성 의약품을 방사선 영상 장치로 촬영한 영상이다.FIG. 1 shows an example of an image of various monitoring lymph nodes in the body using a target drug, and FIG. 1 (a) is an image obtained by dyeing the monitoring lymph nodes using a blue dye. b) is a fusion image of a near-infrared fluorescent dye image and an optical image, and FIG. 1 (c) is an image of a radiopharmaceutical integrated in a monitoring lymph node, taken by a radiographic apparatus.
청색염료에 의한 염색방법은 시술자가 육안으로 판별이 가능하여 편리한 장점이 있으나, 표면이 위치한 감시림프절의 탐색에만 사용할 수 있어 심부 장기의 경우 Ex-vivo 검사를 수행하여야 하고, 실제 수술 시 감시림프절 이외에도 염료에 의해 염색되는 등 다양한 문제가 존재한다.The dyeing method using blue dye has the advantage that the operator can visually distinguish it, but it can be used only to search for the monitoring lymph nodes where the surface is located, so in the case of deep organs, the Ex-vivo test should be performed. Various problems exist, including dyeing with dyes.
근적외선 형광염료를 이용한 방법은 투과도가 1cm 정도로 감시림프절 탐색에 있어 유용하나 체내 심부에 위치한 림프절 탐색은 여전히 어려운 단점이 있다. 또한, 방사선 영상와 비교할 때에는 상대적으로 해상도가 높으나 가시광 영상과 달리 해부학적 정보를 얻기에는 부족한 단점이 있다.The near-infrared fluorescent dye method is useful for detecting lymph nodes of about 1cm in permeability, but it is still difficult to detect lymph nodes located deep in the body. In addition, the resolution is relatively high compared to the radiographic image, but unlike the visible light image, there is a disadvantage that it is insufficient to obtain anatomical information.
방사선 의약품을 이용한 방법은 투과도가 높아 체내 심부에 위치한 감시림프절 탐색에 유용하나, 해상도와 민감도가 낮아 도 1의 (c)에 도시된 바와 같이 방사선 영상 만으로는 정확한 림프절의 탐색이 어려운 단점이 있다.The method using radiopharmaceuticals is useful for detecting lymph nodes located at the deep part of the body because of high permeability, but it is difficult to accurately detect lymph nodes using only radiographic images, as shown in (c) of FIG. 1.
상기와 같이, 각각의 영상이 갖는 장단점을 보완하기 위해 두 가지 이상의 영상을 동시에 촬영하고, 이 영상들을 융합한 영상을 통해 감시림프절을 탐색하고자 하는 방법들이 근래에 제안되고 있다.As described above, in order to compensate for the advantages and disadvantages of each image, a method of simultaneously photographing two or more images and searching for a surveillance lymph node using the images fused is recently proposed.
일 예로, 한국등록특허공보 제10-1514204호에 개시된 '감시림프절의 근적외선 형광 검출 장치 및 방법'에서는 인도시아닌 그린과 같은 형광물질 및 여기광에 의하여 방출되는 근적외선 형광을 가시광 영상과 함께 재현하는 복합 영상을 구현하는 기술을 개시하고 있다.For example, in the apparatus and method for detecting near-infrared fluorescence of surveillance lymph nodes disclosed in Korean Patent Publication No. 10-1514204, a near-infrared fluorescence emitted by a fluorescent material such as indocyanine green and excitation light is reproduced together with a visible light image. A technique for implementing a composite image is disclosed.
이에, 뛰어난 해부학적 정보를 갖고 있는 가시광 영상과, 높은 신호 대 잡음비와 표면에 위치하고 있는 감시림프절에 대해 뛰어난 판별력을 제공하는 근적외선 형광 영상뿐 만 아니라, 체내 심부에 위치하고 있는 감시림프절의 정확한 위치정보를 제공할 수 있는 감마 영상을 함께 활용할 수 있다면 감시림프절의 탐색시 그 정확도를 비약적으로 향상시킬 수 있을 것으로 예상되고 있다.Therefore, not only the visible light image with excellent anatomical information, the high signal-to-noise ratio and the near-infrared fluorescence image that provides excellent discrimination for the superficial lymph nodes located on the surface, but also the accurate position information of the superimposed lymph nodes located inside the body If the available gamma images can be used together, it is expected that the accuracy of the detection of the lymph node can be greatly improved.
이에, 본 발명은 상기와 같은 문제점을 해소하기 위해 안출된 것으로서, 하나의 광학 시스템을 통해 근적외선 형광 영상, 방사선 영상 및 가시광 영상을 취득하여 이를 정합할 수 있는 의료용 복합 이미징 시스템을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a medical complex imaging system capable of acquiring and matching a near infrared fluorescence image, a radiographic image, and a visible light image through one optical system. have.
상기 목적은 본 발명에 따라, 의료용 복합 이미징 시스템에 있어서, 제1 광 경로 상에 배치되는 전자증배 CCD 카메라와; 제2 광 경로 상에 배치되어 가시광 영상을 촬영하는 가시광 카메라와; 생체로부터 방출되는 방사선을 광자로 변환하여 방출하는 방사선-광자 변환 모듈과; 생체로부터 반사되는 근적외선과 상기 방사선-광자 변환 모듈로부터 방출되는 광자 중 근적외선이 상기 제1 광 경로 향하게 하고 생체로부터 반사되는 가시광이 상기 제2 광 경로로 향하게 하는 제1 동작 모드와, 생체로부터 반사되는 근적외선과 상기 방사선-광자 변환 모듈로부터 방출되는 광자 중 광자가 상기 제1 광 경로로 향하게 하고 생체로부터 반사되는 가시광이 상기 제2 광 경로로 향하게 하는 제1 동작 모드 간을 이동 가능하게 설치되는 광 경로 전환 모듈과; 상기 광 경로 전환 모듈이 상기 제1 동작 모드에 위치한 상태에서 상기 전자증배 CCD 카메라와 상기 가시광 카메라에 의해 각각 근적외선 형광 영상과 제1 가시광 영상이 촬영되는 제1 촬영 모드와, 상기 광 경로 전환 모듈이 상기 제2 동작 모드에 위치한 상태에서 상기 전자증배 CCD 카메라와 상기 가시광 카메라의 의해 각각 방사선 영상과 제2 가시광 영상이 촬영되는 제2 촬영 모드로 동작하는 복합 영상화 제어부를 포함하는 것을 특징으로 하는 의료용 복합 이미징 시스템에 의해서 달성된다.According to the present invention, there is provided a medical complex imaging system, comprising: an electron multiplication CCD camera disposed on a first optical path; A visible light camera disposed on the second light path to photograph a visible light image; A radiation-photon conversion module for converting and radiating radiation emitted from the living body into photons; A first operating mode in which near infrared rays reflected from the living body and photons emitted from the radiation-photon conversion module are directed to the first optical path, and visible light reflected from the living body is directed to the second optical path; An optical path movably installed between a near infrared ray and a first operation mode in which photons of photons emitted from the radiation-photon conversion module are directed to the first optical path and visible light reflected from the living body is directed to the second optical path A conversion module; A first photographing mode in which a near infrared fluorescence image and a first visible light image are photographed by the electron multiplication CCD camera and the visible light camera while the optical path switching module is in the first operation mode, and the optical path switching module is And a composite imaging controller configured to operate in a second photographing mode in which a radiographic image and a second visible light image are respectively photographed by the electron multiplying CCD camera and the visible light camera in the second operating mode. Achieved by an imaging system.
여기서, 상기 광 경로 전환 모듈은 상기 제1 동작 모드에서 상기 제1 광 경로와 상기 제2 광 경로가 교차하는 교차 영역에 배치되어 생체로부터 반사되는 광을 분할하여 각각 상기 제1 광 경로와 상기 제2 광 경로로 향하게 하고, 상기 제2 동작 모드에서 상기 교차 영역으로부터 이탈되는 광 분할부와; 상기 제2 동작 모드에서 상기 방사선-광자 변환 모듈로부터 방출되는 광자의 광 경로를 상기 제1 광 경로로 향하게 하고, 상기 제1 동작 모드에서 상기 방사선-광자 변환 모듈로부터 방출되는 광자의 광 경로의 상기 제1 광 경로로의 진입을 차단하는 광자 경로 조절부를 포함할 수 있다.Here, the optical path switching module is disposed in an intersection area where the first optical path and the second optical path cross each other in the first operation mode, and divides the light reflected from the living body to respectively divide the first optical path and the first optical path. A light splitting portion directed to a two light paths, the light splitting portion deviating from the crossing area in the second operation mode; Directing a light path of photons emitted from the radiation-photon conversion module in the second mode of operation to the first light path, and wherein the light path of photons emitted from the radiation-photon conversion module in the first mode of operation It may include a photon path control unit for blocking the entry to the first optical path.
그리고, 상기 광 분할부는 생체에서 반사되는 근적외선과 가시광을 분할하여, 근적외선을 상기 제1 광 경로로 향하게 하고 가시광을 상기 제2 광 경로로 향하게 하는 이색성 광 분할기를 포함할 수 있다.The light splitter may include a dichroic light splitter that splits near infrared rays and visible light reflected from a living body to direct near infrared rays to the first light path and direct visible light to the second light path.
*또한, 상기 광자 경로 조절부는 상기 제2 동작 모드에서 상기 방사선-광자 변환 모듈과 상기 제1 광 경로 사이에 배치되어 상기 방사선-광자 변환 모듈로부터 방출되는 광자를 상기 제1 광 경로로 향하게 하는 적어도 하나의 반사 미러를 포함할 수 있다.And wherein the photon path controller is arranged between the radiation-photon conversion module and the first light path in the second mode of operation to direct photons emitted from the radiation-photon conversion module to the first light path. It may include one reflective mirror.
그리고, 상기 제1 광 경로는 생체로부터 반사되어 상기 이색성 광 분할기를 투과한 근적외선의 광 경로 상에 위치하고; 상기 제2 광 경로는 생체로부터 반사되어 상기 이색성 광 분할기로부터 반사된 가시광의 광 경로 상에 위치하며; 상기 반사 미러는 상기 방사선-광자 변환 모듈로부터 방출된 광자를 상기 교차 영역으로 반사시키는 제1 반사 미러와; 상기 교차 영역에 배치되어 상기 제1 반사 미러로부터 반사된 광자를 상기 제1 광 경로 방향으로 반사시켜 상기 전자증배 CCD 카메라로 향하게 하는 제2 반사 미러를 포함할 수 있다.And wherein the first optical path is located on the near-infrared light path reflected from the living body and transmitted through the dichroic light splitter; The second optical path is located on the optical path of visible light reflected from the living body and reflected from the dichroic light splitter; The reflection mirror comprises a first reflection mirror for reflecting photons emitted from the radiation-photon conversion module to the intersection area; And a second reflection mirror disposed at the crossing area to reflect photons reflected from the first reflection mirror in the direction of the first optical path to be directed to the electron multiplication CCD camera.
여기서, 상기 제2 반사 미러는 광자가 반사되는 제1 반사면과, 상기 제1 반사면의 배면에 형성된 제2 반사면을 포함하며; 상기 제2 반사 미러가 상기 제2 동작 모드에서 상기 교차 영역에 배치될 때 생체로부터 반사되는 가시광이 상기 제2 반사면으로부터 상기 제2 광 경로 방향으로 반사되어 상기 가시광 카메라로 향할 수 있다.Wherein the second reflecting mirror comprises a first reflecting surface on which photons are reflected and a second reflecting surface formed on a rear surface of the first reflecting surface; When the second reflection mirror is disposed at the intersection area in the second operation mode, visible light reflected from the living body may be reflected from the second reflection surface in the direction of the second light path to the visible light camera.
또한, 상기 제1 광 경로는 생체로부터 반사되어 상기 이색성 광 분할기로부터 반사된 근적외선의 광 경로 상에 위치하고; 상기 제2 광 경로는 생체로부터 반사되어 상기 이색성 광 분할기를 투과한 가시광의 광 경로 상에 위치하며; 상기 반사 미러는 상기 방사선-광자 변환 모듈로부터 방출된 광자를 상기 제1 광 경로 방향으로 반사시켜 상기 전자증배 CCD 카메라로 향하게 할 수 있다.The first optical path is also located on the near-infrared light path reflected from the living body and reflected from the dichroic light splitter; The second optical path is located on the optical path of visible light reflected from the living body and transmitted through the dichroic light splitter; The reflection mirror may reflect the photons emitted from the radiation-photon conversion module in the direction of the first optical path to the electron multiplication CCD camera.
또한, 상기 방사선-광자 변환 모듈은 상기 제1 광 경로와 상기 제2 광 경로가 교차하는 교차 영역과 생체 사이에 배치되고; 상기 광 경로 전환 모듈은 상기 제1 동작 모드 및 상기 제2 동작 모드에서 생체로부터 반사되는 광을 상기 제1 광 경로와 상기 제2 광 경로가 교차하는 교차 영역으로 반사시키는 제1 반사 미러와, 상기 제1 동작 모드에서 상기 교차 영역에 배치되어 상기 제1 반사 미러에 의해 반사된 광을 각각 상기 제1 광 경로와 상기 제2 광 경로로 향하게 하고, 상기 제2 동작 모드에서 상기 교차 영역으로부터 이탈되는 광 분할부를 포함할 수 있다.In addition, the radiation-photon conversion module is disposed between the living area and the intersection area where the first optical path and the second optical path intersect; The optical path switching module may include: a first reflection mirror configured to reflect light reflected from the living body in the first operation mode and the second operation mode to an intersection area where the first optical path and the second optical path cross each other; Disposed at the intersection region in a first operating mode to direct light reflected by the first reflection mirror to the first optical path and the second optical path, respectively, and to deviate from the intersection region in the second operating mode It may include a light splitter.
여기서, 상기 광 분할부는 생체에서 반사되는 근적외선과 가시광을 분할하여, 근적외선을 상기 제1 광 경로로 향하게 하고 가시광을 상기 제2 광 경로로 향하게 하는 이색성 광 분할기를 포함할 수 있다.The light splitter may include a dichroic light splitter that splits near-infrared light and visible light reflected from a living body to direct near-infrared light to the first light path and direct visible light to the second light path.
그리고, 상기 제1 광 경로는 상기 제1 반사 미러에 의해 반사되어 상기 이색성 광 분할기로부터 반사된 근적외선의 광 경로 상에 위치하고; 상기 제2 광 경로는 상기 제1 반사 미러에 의해 반사되어 상기 이색성 광 분할기를 투과한 가시광의 광 경로 상에 위치하며; 상기 제2 동작 모드에서 상기 이색성 광 분할기가 상기 교차 영역으로부터 이탈되어, 상기 제1 반사 미러에 의해 반사된 광이 상기 제2 광 경로를 통해 상기 가시광 카메라로 향하게 되고, 상기 방사선-광자 변환 모듈로부터 방출된 광자가 상기 제1 광 경로를 통해 상기 전자증배 CCD 카메라로 향할 수 있다.The first optical path is located on the near-infrared light path reflected by the first reflection mirror and reflected from the dichroic light splitter; The second optical path is located on the optical path of visible light reflected by the first reflective mirror and transmitted through the dichroic light splitter; The dichroic light splitter is separated from the crossing area in the second mode of operation such that light reflected by the first reflection mirror is directed to the visible light camera through the second light path, and the radiation-photon conversion module Photons emitted from the light beam may be directed to the electron multiplication CCD camera through the first optical path.
또한, 상기 제1 광 경로는 상기 제1 반사 미러에 의해 반사되어 상기 이색성 광 분할기를 투과한 근적외선의 광 경로 상에 위치하고; 상기 제2 광 경로는 상기 제1 반사 미러에 의해 반사되어 상기 이색성 광 분할기로부터 반사된 가시광의 광 경로 상에 위치하며; 상기 광 경로 전환 모듈은 상기 제2 동작 모드에서 상기 교차 영역에 배치되고 상기 제1 동작 모드에서 상기 교차 영역으로부터 이탈되며, 상기 제1 반사 미러에 의해 반사된 광을 상기 제2 광 경로 방향으로 반사시켜 상기 가시광 카메라로 향하게 하는 제1 반사면과, 상기 방사선-광자 변환 모듈로부터 방출된 광자를 상기 제1 광 경로 방향으로 반사시켜 상기 전자증배 CCD 카메라로 향하게 하는 제2 반사면을 갖는 제2 반사 미러를 더 포함할 수 있다.The first optical path is located on the near-infrared light path reflected by the first reflection mirror and transmitted through the dichroic light splitter; The second optical path is located on the optical path of visible light reflected by the first reflective mirror and reflected from the dichroic light splitter; The optical path switching module is disposed in the crossing area in the second operating mode, is separated from the crossing area in the first operating mode, and reflects light reflected by the first reflection mirror in the direction of the second optical path. A second reflection surface having a first reflection surface directed toward the visible light camera and a second reflection surface that reflects photons emitted from the radiation-photon conversion module in the direction of the first light path to be directed toward the electron multiplication CCD camera. It may further include a mirror.
여기서, 상기 제1 동작 모드에서 상기 방사선-광자 변환 모듈과 상기 이색성 광 분할기 사이에 배치되어 상기 이색성 광 분할기로 향하는 광자를 차단하는 광자 차단부를 더 포함할 수 있다.The photonic device may further include a photon blocking unit disposed between the radiation-photon conversion module and the dichroic light splitter in the first operation mode to block photons toward the dichroic light splitter.
또한, 생체로부터 반사되는 근적외선의 상기 가시광 카메라로의 진입을 차단하는 근적외선 차단 필터를 더 포함할 수 있다.The apparatus may further include a near-infrared cutoff filter for blocking entrance of the near-infrared rays reflected from the living body to the visible light camera.
그리고, 상기 방사선-광자 변환 모듈은 방사선의 입사 방향에 따라 방사선을 선택적으로 통과시키는 콜리메이터와; 상기 콜리메이터를 통과한 방사선에 반응하여 방사선 반응 위치에 대응하는 위치의 광자를 방출하는 신틸레이터를 포함할 수 있다.The radiation-photon conversion module may further include a collimator for selectively passing the radiation according to the incident direction of the radiation; In response to the radiation passing through the collimator may include a scintillator for emitting photons at a position corresponding to the radiation reaction position.
그리고, 상기 복합 영상화 제어부는 상기 제1 가시광 영상과 상기 제2 가시광 영상을 비교하여, 상기 제1 가시광 영상과 상기 제2 가시광 영상 중 어느 하나가 다른 하나에 정합될 때 변형 파라미터를 추출하며; 상기 변형 파라미터에 기초하여 상기 근적외선 형광 영상과 상기 방사선 영상 중 어느 하나를 보정할 수 있다.And the composite imaging controller compares the first visible light image with the second visible light image and extracts a deformation parameter when any one of the first visible light image and the second visible light image is matched with another one; One of the near infrared fluorescence image and the radiation image may be corrected based on the deformation parameter.
상기와 같은 구성에 따라 본 발명에 따르면, 하나의 광학 시스템을 통해 근적외선 형광 영상, 방사선 영상 및 가시광 영상을 취득하여 이를 정합할 수 있는 의료용 복합 이미징 시스템이 제공된다.According to the present invention according to the configuration as described above, there is provided a medical complex imaging system that can acquire and match the near infrared fluorescence image, radiographic image and visible light image through one optical system.
또한, 전자증배 CCD 카메라를 이용하여 방사선 영상을 획득함으로써, 시스템의 무게와 크기를 최소화할 수 있을 뿐만 아니라 제작비용도 감소시킬 수 있게 된다.In addition, by obtaining a radiographic image using an electron multiplication CCD camera, not only can minimize the weight and size of the system, but also reduce the manufacturing cost.
도 1은 표적의약품을 이용한 체내의 여러 감시림프절을 탐색한 영상의 예를 나타낸 도면이고,1 is a view showing an example of the image to search the various monitoring lymph nodes in the body using the target drug,
도 2 내지 도 4는 본 발명의 제1 실시예에 따른 의료용 복합 이미징 시스템의 구성을 나타낸 도면이고,2 to 4 is a view showing the configuration of a medical complex imaging system according to a first embodiment of the present invention,
도 5는 본 발명의 제1 실시예에 따른 광 경로 전환 모듈의 작동 방법을 설명하기 위한 도면이고,5 is a view for explaining a method of operating the optical path switching module according to a first embodiment of the present invention,
도 6은 본 발명의 제1 실시예에 따른 의료용 복합 이미징 시스템의 이미지 정합 방법을 설명하기 위한 도면이고,6 is a view for explaining the image registration method of the medical complex imaging system according to the first embodiment of the present invention,
도 7 및 도 8은 본 발명의 제2 실시예에 따른 의료용 복합 이미징 시스템의 구성을 나타낸 도면이고,7 and 8 are views showing the configuration of a medical complex imaging system according to a second embodiment of the present invention,
도 9는 본 발명의 제2 실시예에 따른 광 경로 전환 모듈의 작동 방법을 설명하기 위한 도면이고,9 is a view for explaining a method of operating the optical path switching module according to a second embodiment of the present invention,
도 10 및 도 11은 본 발명의 제3 실시예에 따른 의료용 복합 이미징 시스템의 구성을 나타낸 도면이고,10 and 11 are views showing the configuration of a medical complex imaging system according to a third embodiment of the present invention,
도 12는 본 발명의 제3 실시예에 따른 광 경로 전환 모듈의 작동 방법을 설명하기 위한 도면이고,12 is a view for explaining a method of operating the optical path switching module according to a third embodiment of the present invention;
도 13 및 도 14는 본 발명의 제4 실시예에 따른 의료용 복합 이미징 시스템의 구성을 나타낸 도면이고,13 and 14 are views showing the configuration of a medical complex imaging system according to a fourth embodiment of the present invention,
도 15는 본 발명의 제4 실시예에 따른 광 경로 전환 모듈의 작동 방법을 설명하기 위한 도면이다.15 is a view for explaining a method of operating the optical path switching module according to a fourth embodiment of the present invention.
본 발명은 의료용 복합 이미징 시스템에 관한 것으로, 제1 광 경로 상에 배치되는 전자증배 CCD 카메라와; 제2 광 경로 상에 배치되어 가시광 영상을 촬영하는 가시광 카메라와; 생체로부터 방출되는 방사선을 광자로 변환하여 방출하는 방사선-광자 변환 모듈과; 생체로부터 반사되는 근적외선과 상기 방사선-광자 변환 모듈로부터 방출되는 광자 중 근적외선이 상기 제1 광 경로 향하게 하고 생체로부터 반사되는 가시광이 상기 제2 광 경로로 향하게 하는 제1 동작 모드와, 생체로부터 반사되는 근적외선과 상기 방사선-광자 변환 모듈로부터 방출되는 광자 중 광자가 상기 제1 광 경로로 향하게 하고 생체로부터 반사되는 가시광이 상기 제2 광 경로로 향하게 하는 제1 동작 모드 간을 이동 가능하게 설치되는 광 경로 전환 모듈과; 상기 광 경로 전환 모듈이 상기 제1 동작 모드에 위치한 상태에서 상기 전자증배 CCD 카메라와 상기 가시광 카메라에 의해 각각 근적외선 형광 영상과 제1 가시광 영상이 촬영되는 제1 촬영 모드와, 상기 광 경로 전환 모듈이 상기 제2 동작 모드에 위치한 상태에서 상기 전자증배 CCD 카메라와 상기 가시광 카메라의 의해 각각 방사선 영상과 제2 가시광 영상이 촬영되는 제2 촬영 모드로 동작하는 복합 영상화 제어부를 포함하는 것을 특징으로 한다.The present invention relates to a medical complex imaging system, comprising: an electron multiplication CCD camera disposed on a first optical path; A visible light camera disposed on the second light path to photograph a visible light image; A radiation-photon conversion module for converting and radiating radiation emitted from the living body into photons; A first operating mode in which near infrared rays reflected from the living body and photons emitted from the radiation-photon conversion module are directed to the first optical path, and visible light reflected from the living body is directed to the second optical path; An optical path movably installed between a near infrared ray and a first operation mode in which photons of photons emitted from the radiation-photon conversion module are directed to the first optical path and visible light reflected from the living body is directed to the second optical path A conversion module; A first photographing mode in which a near infrared fluorescence image and a first visible light image are photographed by the electron multiplication CCD camera and the visible light camera while the optical path switching module is in the first operation mode, and the optical path switching module is And a composite imaging controller configured to operate in a second photographing mode in which a radiographic image and a second visible light image are respectively photographed by the electron multiplication CCD camera and the visible light camera in the second operation mode.
이하에서는 첨부된 도면을 참조하여 본 발명에 따른 실시예들을 상세히 설명한다. 여기서, 본 발명에 따른 실시예들을 설명하는데 있어 상호 대응하는 구성에 대해서는 동일한 참조번호를 사용하며, 그 설명은 생략될 수 있다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; Here, in describing the embodiments according to the present invention, the same reference numerals are used for components corresponding to each other, and description thereof may be omitted.
[제1 실시예][First Embodiment]
도 2 내지 도 4는 본 발명의 제1 실시예에 따른 의료용 복합 이미징 시스템(100)의 구성을 나타낸 도면이다. 여기서, 도 2 및 도 3의 굵은 실선은 광자, 가는 실선은 근적외선, 가는 파선은 가시광의 광 경로를 나타낸 것이다.2 to 4 are diagrams showing the configuration of the medical complex imaging system 100 according to the first embodiment of the present invention. Here, the thick solid line in FIGS. 2 and 3 shows photons, the thin solid line shows near infrared rays, and the thin broken line shows the optical path of visible light.
도 2 내지 도 4를 참조하여 설명하면, 본 발명의 제1 실시예에 따른 의료용 복합 이미징 시스템(100)은 전자증배 CCD 카메라(10), 가시광 카메라(20), 방사선-광자 변환 모듈(30), 광 경로 전환 모듈(40,50) 및 복합 영상화 제어부(200)를 포함한다.2 to 4, the medical complex imaging system 100 according to the first embodiment of the present invention includes an electron multiplication CCD camera 10, a visible light camera 20, and a radiation-photon conversion module 30. , The optical path switching module 40, 50, and the composite imaging controller 200.
전자증배 CCD 카메라(10)는 전자증배 CCD(Electron Multiplying Charge-Coupled Device, EMCCD) 소자를 촬영 소자로 사용한다. 전자증배 CCD(Electron Multiplying Charge-Coupled Device, EMCCD) 소자는 고해상도의 CCD 소자 전방에 전자증배 모듈이 설치되어 신호 대 잡음비를 최소화하고, 근적외선 형광 영상을 촬영하는데 있어 CCD 소자 표면의 냉각을 통해 Thermal noise를 감소시킨다.The electron multiplication CCD camera 10 uses an electron multiplication CCD (Electron Multiplying Charge-Coupled Device, EMCCD) device as a photographing device. Electron Multiplying Charge-Coupled Device (EMCCD) devices are equipped with an electronic multiplication module installed in front of high-resolution CCD devices to minimize signal-to-noise ratios and to cool near-infrared fluorescence images. Decreases.
또한, 전자증배 CCD(Electron Multiplying Charge-Coupled Device, EMCCD) 소자는 방사선-광자 변환 모듈(30)로부터 방출되는 광자를 전자증배 모듈을 통해 증폭하여 촬영함으로써, 방사선 촬영이 가능하게 된다.In addition, the electron multiplying charge-coupled device (EMCCD) device amplifies and photographs photons emitted from the radiation-photon conversion module 30 through the electron multiplication module, thereby enabling radiographic imaging.
가시광 카메라(20)는 가시광 영상을 촬영하는데, 본 발명에서는 CCD 카메라 형태로 마련되어 가시광 영상을 촬영하는 것을 예로 한다.The visible light camera 20 photographs a visible light image. In the present invention, a visible light image is provided in the form of a CCD camera.
본 발명에서는 전자증배 CCD 카메라(10)가 제1 광 경로 상에 배치되고, 가시광 카메라(20)가 제2 광 경로 상에 배치된다. 여기서, 제1 광 경로와 제2 광 경로가 대략 수직인 상태로 형성되는데, 본 발명의 제1 실시예에서는, 도 2 및 도 3에 도시된 바와 같이, 전자증배 CCD 카메라(10)가 생체의 상부에 배치되고 가시광 카메라(20)가 측면에 배치되어 제1 광 경로 및 제2 광 경로가 수직인 상태로 형성되는 것을 예로 한다.In the present invention, the electron multiplication CCD camera 10 is disposed on the first optical path, and the visible light camera 20 is disposed on the second optical path. Here, the first optical path and the second optical path are formed to be substantially perpendicular to each other. In the first embodiment of the present invention, as shown in FIGS. For example, the first light path and the second light path are disposed vertically, and the visible light camera 20 is disposed on the side.
방사선-광자 변환 모듈(30)은 생체로부터 방출되는 방사선을 광자로 변환하여 방출한다. 본 발명에서는 방사선-광자 변환 모듈(30)이, 도 2 및 도 3에 도시된 바와 같이, 방시선의 입사 방향에 따라 방사선을 선택적으로 통과시키는 콜리메이터(31)(Collimator)와, 콜리메이터(31)를 통과한 방사선에 반응하여 방사선 방응 위치에 대응하는 위치의 광자를 방출하는 신틸레이터(32)(Scintillator)를 포함하는 것을 예로 한다.The radiation-photon conversion module 30 converts the radiation emitted from the living body into photons and emits them. In the present invention, the radiation-photon conversion module 30, as shown in Figures 2 and 3, the collimator 31 (Collimator) for selectively passing the radiation in accordance with the direction of incidence of the radiation line and the collimator 31 An example includes a scintillator 32 that emits photons at positions corresponding to the radiation-responsive positions in response to the radiation passing through.
여기서, 도 2 및 도 3에서는 콜리메이터(31)로 핀-홀 타입의 콜리메이터(31)가 적용되는 것을 예로 하고 있으나, 다공성의 병렬 콜리메이터, 디버징(Diverging) 타입 콜리메이터, 컨버징(Converging) 타입 콜리메이터 등 다양한 콜리메이터의 적용이 가능하다.2 and 3, the pin-hole type collimator 31 is applied as the collimator 31, but porous parallel collimator, a diverging type collimator, and a converging type collimator. Various collimators can be applied.
광 경로 전환 모듈(40,50)은 제1 동작 모드와 제2 동작 모드 간을 이동 가능하게 설치된다. 도 2는 광 경로 전환 모듈(40,50)이 제1 동작 모드로 이동한 상태를 나타낸 도면이고, 도 3은 광 경로 전환 모듈(40,50)이 제2 동작 모드로 이동한 상태를 나타낸 도면으로, 이에 대한 상세한 설명은 도 5를 참조하여 후술하기로 한다.The optical path switching modules 40 and 50 are installed to be movable between the first operation mode and the second operation mode. 2 is a diagram illustrating a state in which the optical path switching modules 40 and 50 are moved to the first operation mode, and FIG. 3 is a diagram illustrating a state in which the optical path switching modules 40 and 50 are moved to the second operation mode. As a detailed description thereof will be described later with reference to FIG. 5.
광 경로 전환 모듈(40,50)이 제1 동작 모드로 이동한 상태에서는, 도 2에 도시된 바와 같이, 생체로부터 반사되는 근적외선과 방사선-광자 변환 모듈(30)로부터 출력되는 광자 중 근적외선이 제1 경로로 향하게 된다. 반면, 광 경로 전환 모듈(40,50)이 제2 동작 모드로 이동한 상태에서는, 도 3에 도시된 바와 같이, 생체로부터 반사되는 근적외선과 방사선-광자 변환 모듈(30)로부터 출력되는 광자 중 광자가 제1 광 경로로 향하게 된다. 여기서, 광 경로 전환 모듈(40,50)은 생체로부터 반사되는 가시광은 제1 동작 모드와 제2 동작 모드에서 모두 제2 광 경로로 향하게 한다.In the state where the optical path switching modules 40 and 50 are moved to the first operation mode, as shown in FIG. 2, the near infrared light reflected from the living body and the photon output from the radiation-photon conversion module 30 are removed. You will be directed to 1 path. On the other hand, in the state where the optical path switching modules 40 and 50 are moved to the second operation mode, as shown in FIG. 3, photons among photons output from the near-infrared rays reflected from the living body and the radiation-photon conversion module 30 are shown. Is directed to the first optical path. Here, the optical path switching modules 40 and 50 direct visible light reflected from the living body to the second optical path in both the first operation mode and the second operation mode.
한편, 복합 영상화 제어부(200)는 광 경로 전환 모듈(40,50)이 제1 동작 모드에 위치한 상태에서 전자증배 CCD 카메라(10)와 가시광 카메라(20)에 의해 각각 근적외선 형광 영상과 제1 가시광 영상을 촬영하는 제1 촬영 모드로 동작하게 된다.On the other hand, the composite imaging controller 200 is a near-infrared fluorescent image and the first visible light by the electron multiplication CCD camera 10 and the visible light camera 20, respectively, with the optical path switching module 40, 50 in the first operating mode. The first operation mode is to capture an image.
또한, 복합 영상화 제어부(200)는 광 경로 전환 모듈(40,50)이 제2 동작 모드에 위치한 상태에서 전자증배 CCD 카메라(10)와 가시광 카메라(20)의 의해 각각 방사선 영상과 제2 가시광 영상이 촬영하는 제2 촬영 모드로 동작하게 된다.In addition, the composite imaging control unit 200 is a radiation image and a second visible light image by the electron multiplication CCD camera 10 and the visible light camera 20, respectively, with the optical path switching modules 40 and 50 in the second operation mode. The second mode of shooting is performed.
여기서, 복합 영상화 제어부(200)는 근적외선 형광 영상의 촬영과, 가시광 영상의 촬영이 가능하도록, 근적외선 광원(61)과 적외선 광원의 온/오프를 제어할 수 있다. 가시광 광원(62), 예를 들어 백색광원의 경우 제1 촬영 모드와 제2 촬영 모드에서 항상 온 상태를 유지하도록 제어하고, 근적외선 광원(61)의 경우 제1 촬영 모드에서만 온되도록 제어할 수 있다.Here, the composite imaging controller 200 may control on / off of the near-infrared light source 61 and the infrared light source so that the near-infrared fluorescent image and the visible light image can be captured. In the case of the visible light source 62, for example, a white light source, the visible light source 62 may be controlled to be always in the first photographing mode and the second photographing mode, and the near-infrared light source 61 may be controlled to be turned on only in the first photographing mode. .
상기와 같은 구성에 따라, 광 경로 전환 모듈(40,50)이 제1 동작 모드 또는 제2 동작 모드로 선택적으로 이동함에 따라, 근적외선 형광 영상과 제1 가시광 영상을 동시에 촬영(제1 촬영 모드)하거나, 방사선 영상과 제2 가시광 영상을 동시에 촬영(제2 촬영 모드)하게 됨으로써, 하나의 광학 시스템을 통해 근적외선 형광 영상, 가시광 영상 및 방사선 영상을 획득할 수 있게 된다.According to the above configuration, as the optical path switching module 40, 50 selectively moves to the first operation mode or the second operation mode, the near-infrared fluorescence image and the first visible light image are simultaneously captured (first imaging mode). Alternatively, the radiographic image and the second visible light image are simultaneously photographed (second photographing mode), so that the near infrared fluorescence image, the visible light image, and the radiographic image can be obtained through one optical system.
여기서, 도 2 및 도 3의 미설명 참조번호, 81, 82, 83, 84는 각각의 광 경로 상에 배치되는 렌즈들로 생체와의 거리나 평행광 형성 등과 같이 기 공지된 다양한 형태의 렌즈가 그 필요에 따라 설치될 수 있으며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 당업자라면 필요에 따라 적절한 렌즈 구성을 적용 가능할 것인 바 그 상세한 설명은 생략한다.Here, reference numerals 81, 82, 83, and 84 of FIGS. 2 and 3 are lenses disposed on respective light paths, and lenses of various types, such as distance from a living body or parallel light formation, may be used. It can be installed according to the needs, and those skilled in the art having the ordinary skill in the art will be able to apply the appropriate lens configuration as necessary bar detailed description thereof will be omitted.
이하에서는 도 2, 도 3 및 도 5를 참조하여 본 발명의 제1 실시예에 따른 광 경로 전환 모듈(40,50)에 대해 상세히 설명한다.Hereinafter, the optical path switching modules 40 and 50 according to the first embodiment of the present invention will be described in detail with reference to FIGS. 2, 3 and 5.
본 발명의 제1 실시예에 따른 광 경로 전환 모듈(40,50)은 광 분할부(40)와, 광자 경로 조절부(50)를 포함할 수 있다. 여기서, 영성 처리부는, 도 5에 도시된 바와 같이, 리니어 모터와 같은 모듈 구동부(70)를 구동시켜 광 경로 전환 모듈(40,50)을 구성하는 광 분할부(40) 및 광자 경로 조절부(50)가 제1 동작 모드와 제2 동작 모드에서 해당 위치에 배치될 수 있도록 제어한다.The optical path switching modules 40 and 50 according to the first exemplary embodiment of the present invention may include a light splitter 40 and a photon path adjuster 50. Here, the spirituality processing unit, as shown in Figure 5, by driving the module driving unit 70, such as a linear motor, the optical splitting unit 40 and the photon path control unit (constituting the optical path switching module (40, 50) ( 50) can be disposed in the corresponding position in the first operation mode and the second operation mode.
*광 분할부(40)는 제1 동작 모드에서 제1 광 경로와 제2 광 경로가 교차하는 교차 영역에 배치된다. 그리고, 광 분할부(40)는, 도 2와 도 5의 (a)에 도시된 바와 같이, 제1 동작 모드에서 교차 영역에 배치된 상태에서 생체로부터 반사되는 광을 분할하여 제1 광 경로와 제2 광 경로로 향하게 한다. 여기서, 광 분할부(40)는, 도 3과 도 5의 (b)에 도시된 바와 같이, 제2 동작 모드에서 교차 영역으로부터 이탈된다.The light splitter 40 is disposed in an intersection area where the first optical path and the second optical path intersect in the first operation mode. As shown in FIGS. 2 and 5A, the light splitter 40 splits the light reflected from the living body in a state in which the light splitter 40 is disposed in the intersection area in the first operation mode and the first light path. Direct to the second optical path. Here, the light splitter 40 is separated from the crossing area in the second operation mode, as shown in FIGS. 3 and 5B.
본 발명에서는 광 분할부(40)가 이색성 광 분할기(Dichroic beam splitter) 형태로 마련되는 것을 예로 한다. 이에 따라, 이색성 광 분할기는 생체로부터 반사되는 근적외선과 가시광을 그 파장에 따라 분할하여, 근적외선을 제1 광 경로로 향하게 하고 가시광을 제2 광 경로로 향하게 함으로써, 전자증배 CCE 카메라에 의해 근적외선이 촬영되고 기사광 카메라에 의해 가시광이 촬영되도록 한다.In the present invention, for example, the light splitter 40 is provided in the form of a dichroic beam splitter. Accordingly, the dichroic light splitter divides the near-infrared and visible light reflected from the living body according to its wavelength, directing the near-infrared light to the first light path and directing the visible light to the second light path, thereby reducing the near-infrared light by the electron multiplication CCE camera. The visible light is photographed by the knight camera.
광자 경로 조절부(50)는, 도 3 및 도 5의 (b)에 도시된 바와 같이, 제2 동작 모드에서 방사선-광자 변환 모듈(30)로부터 방출되는 광자의 광 경로를 제1 광 경로로 향하게 하고, 제1 동작 모드에서, 도 2 및 도 5의 (a)에 도시된 바와 같이, 방사선-광자 변환 모듈(30)로부터 방출되는 광자의 광 경로의 제1 광 경로로의 진입을 차단한다.The photon path adjusting unit 50 converts the optical path of photons emitted from the radiation-photon conversion module 30 into the first optical path in the second operation mode, as shown in FIGS. 3 and 5 (b). And block in the first mode of operation the entry of the light path of the photon emitted from the radiation-photon conversion module 30 into the first light path, as shown in FIGS. 2 and 5 (a). .
여기서, 본 발명에서는 광자 경로 조절부(50)가 제2 동작 모드에서 방사선-광자 변환 모듈(30)과 제1 광 경로 사이에 배치되는 적어도 하나의 반사 미러를 포함하는 것을 예로 한다. 그리고, 본 발명의 제1 실시예에서는 광자 경로 조절부(50)가 제1 반사 미러(51)와 제2 반사 미러(52)를 포함하는 것을 예로 한다.In the present invention, the photon path adjusting unit 50 includes at least one reflective mirror disposed between the radiation-photon conversion module 30 and the first light path in the second operation mode. In the first embodiment of the present invention, the photon path adjusting unit 50 includes the first reflecting mirror 51 and the second reflecting mirror 52.
보다 구체적으로 설명하면, 본 발명의 제1 실시예에서는, 도 2 및 도 3에 도시된 바와 같이, 제1 광 경로가 생체로부터 반사되어 이색성 광 분할기를 투과한 근적외선의 광 경로 상에 위치하고, 제2 광 경로는 생체로부터 반사되어 이색성 광 분할기로부터 반사된 가시광의 광 경로 상에 위치하는 것을 예로 한다. 즉, 생체로부터 반사되는 근적외선은 이색성 광 분할기를 투과한 후 제1 광 경로를 통해 전자증배 CCD 카메라(10)로 향하게 되고, 생체로부터 반사되는 가시광은 이색성 광 분할기로부터 반사된 후 제2 광 경로를 통해 가시광 카메라(20)로 향하게 된다.More specifically, in the first embodiment of the present invention, as shown in Figs. 2 and 3, the first light path is located on the light path of the near infrared light reflected from the living body and transmitted through the dichroic light splitter, As an example, the second optical path is located on the optical path of the visible light reflected from the living body and reflected from the dichroic light splitter. That is, the near-infrared rays reflected from the living body pass through the dichroic light splitter and are directed to the electron multiplication CCD camera 10 through the first optical path, and the visible light reflected from the living body is reflected from the dichroic light splitter and then the second light. The path is directed to the visible light camera 20.
이 때, 제1 반사 미러(51)는, 도 3 및 도 5의 (b)에 도시된 바와 같이, 방사선-광자 변환 모듈(30)로부터 방출된 광자를 교차 영역으로 반사시키게 된다. 그리고, 제2 반사 미러(52)는 교차 영역에 배치되어 제1 반사 미러(51)로부터 반사된 광자를 제1 광 경로 방향으로 반사시켜 전자증배 CCD 카메라(10)로 향하게 함으로써, 전자증배 CCD 카메라(10)가 방사선 영상을 촬영 가능하게 한다.At this time, the first reflection mirror 51 reflects the photons emitted from the radiation-photon conversion module 30 to the cross region, as shown in FIGS. 3 and 5 (b). Then, the second reflection mirror 52 is disposed in the cross region and reflects the photons reflected from the first reflection mirror 51 in the direction of the first light path to be directed to the electron multiplication CCD camera 10, thereby causing the electron multiplication CCD camera. 10 makes it possible to take a radiographic image.
여기서, 제2 반사 미러(52)는 광자가 반사되는 제1 반사면과, 제1 반사면의 배면에 형성되는 제2 반사면을 포함할 수 있다. 이를 통해, 제2 반사 미러(52)가 제2 동작 모드에서 교차 영역에 배치될 때 생체로부터 반사되는 가시광이 제2 반사면으로부터 제2 광 경로 방향으로 반사되어 가시광 카메라(20)로 향할 수 있게 된다.Here, the second reflecting mirror 52 may include a first reflecting surface on which photons are reflected and a second reflecting surface formed on a rear surface of the first reflecting surface. This allows the visible light reflected from the living body to be reflected from the second reflecting surface in the direction of the second light path when the second reflecting mirror 52 is disposed in the intersection area in the second operation mode, and then directed to the visible light camera 20. do.
상기와 같은 구성에 따라, 본 발명의 제1 실시예에 따른 의료용 복합 이미징 시스템(100)의 복합 영상화 제어부(200)가 제1 촬영 모드와 제2 촬영 모드로의 동작을 통해, 근적외선 형광 영상, 가시광 영상 및 방사선 영상을 촬영하는 과정에 대해 설명한다.According to the configuration as described above, the near-infrared fluorescence image, the complex imaging control unit 200 of the medical complex imaging system 100 according to the first embodiment of the present invention through the operation in the first imaging mode and the second imaging mode, A process of photographing a visible light image and a radiographic image will be described.
먼저, 복합 영상화 제어부(200)는 제1 촬영 모드에서, 광 경로 전환 모듈(40,50)을 제1 동작 모드로 이동시킨다. 상술한 바와 같이, 광 경로 전환 모듈(40,50)이 제1 동작 모드로 이동하는 경우, 광 분할부(40)가 교차 영역에 배치되고 광자 경로 조절부(50)는 광자의 광 경로 상에서 이탈된다.First, the complex imaging controller 200 moves the optical path switching modules 40 and 50 to the first operation mode in the first photographing mode. As described above, when the optical path switching module 40, 50 moves to the first operation mode, the light splitter 40 is disposed in the crossing area and the photon path adjusting unit 50 is separated from the optical path of the photon. do.
여기서, 근적외선 광원(61)과 가시광 광원(62)이 온된 상태이면, 생체로부터 반사되는 근적외선은 광 분할부(40), 즉 이색성 광 분할기를 투과하여 제1 광 경로를 통해 전자증배 CCD 카메라(10)에 의해 촬영된다. 그리고, 생체로부터 반사된 가시광은 광 분할부(40), 즉 이색성 광 분할기로부터 반사되어 제2 광 경로를 통해 가시광 카메라(20)에 의해 촬영된다.Here, when the near-infrared light source 61 and the visible light source 62 are turned on, the near-infrared light reflected from the living body passes through the light splitter 40, that is, the dichroic light splitter, and passes through the first optical path to form an electron multiplication CCD camera ( 10) is taken by. The visible light reflected from the living body is reflected by the light splitter 40, that is, the dichroic light splitter, and is captured by the visible light camera 20 through the second optical path.
이 때, 방사선-광자 변환 모듈(30)로부터 방출되는 광자의 광 경로 상에는 제1 미러 및 제2 미러로 구성된 광자 경로 조절부(50)가 이탈된 상태이므로, 방사선-광자 변환 모듈(30)로부터 방출되는 광자는 전자증배 CCD 카메라(10)로 향하기 못하게 된다.At this time, the photon path adjusting unit 50 composed of the first mirror and the second mirror is separated from the radiation-photon conversion module 30 on the optical path of the photons emitted from the radiation-photon conversion module 30. The emitted photons are not directed to the electron multiplication CCD camera 10.
이에 따라, 제1 촬영 모드에서는 전자증배 CCD 카메라(10)와 가시광 카메라(20)에 의해 근적외선 형광 영상과 제1 가시광 영상이 동시에 촬영된다.Accordingly, in the first photographing mode, the near infrared fluorescence image and the first visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
한편, 복합 영상화 제어부(200)는 제2 촬영 모드에서, 광 경로 전환 모듈(40,50)을 제2 동작 모드로 이동시킨다. 상술한 바와 같이, 광 경로 전환 모듈(40,50)이 제2 동작 모드로 이동하는 경우, 광 분할부(40)가 교차 영역으로부터 이탈되고, 광자 경로 조절부(50)가 광자의 광 경로 상에, 도 3에 도시된 바와 같이 배치된다.Meanwhile, the composite imaging controller 200 moves the optical path switching modules 40 and 50 to the second operation mode in the second photographing mode. As described above, when the optical path switching module 40, 50 moves to the second operation mode, the optical splitter 40 is separated from the crossing area, and the photon path adjusting unit 50 is on the optical path of the photon. Are arranged as shown in FIG. 3.
여기서, 가시광 광원(62)이 온된 상태이면, 생체로부터 반사되는 가시광은 제2 반사 미러(52)의 제2 반사면으로부터 반사되어 가시광 카메라(20)를 향하게 된다. 또한, 방사선-광자 변환 모듈(30)로부터 방출되는 광자는 제1 반사 미러(51)에 의해 반사되어 교차 영역, 즉 제2 반사 미러(52)로 향하게 되고, 다시 제2 반사 미러(52)로부터 반사되어 제1 광 경로를 통해 전자증배 CCD 카메라(10)로 향하게 된다.Here, when the visible light source 62 is turned on, the visible light reflected from the living body is reflected from the second reflecting surface of the second reflecting mirror 52 to face the visible light camera 20. Further, photons emitted from the radiation-photon conversion module 30 are reflected by the first reflection mirror 51 and directed to the crossing area, that is, the second reflection mirror 52, and again from the second reflection mirror 52. It is reflected and directed to the electron multiplication CCD camera 10 through the first optical path.
이에 따라, 제2 촬영 모드에서는 전자증배 CCD 카메라(10)와 가시광 카메라(20)에 의해 방사선 영상과 제2 가시광 영상이 동시에 촬영된다.Accordingly, in the second photographing mode, the radiation image and the second visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
여기서, 제2 촬영 모드에서 복합 영상화 제어부(200)는 상술한 바와 같이, 근적외선 광원(61)을 오프시켜 제2 촬영 모드에서 생체로부터 반사되는 근적외선을 제거할 수 있다. 반면, 제2 촬영 모드에서 근적외선 광원(61)이 온 상태를 유지하거나, 다른 원인 등으로 가시광 카메라(20)로 유입될 수 있는 근적외선을 차단하기 위해, 생체로부터 반사되는 근적외선의 상기 가시광 카메라(20)로의 진입을 차단하는 근적외선 차단 필터(90)가 배치될 수 있다.Here, as described above, the complex imaging controller 200 may turn off the NIR light source 61 to remove the NIR reflected from the living body in the second imaging mode. On the other hand, the near-infrared light source 61 of the near-infrared light reflected from the living body in order to block the near-infrared light that may be introduced into the visible light camera 20 due to other reasons, such as to maintain the on-infrared light source 61 in the second photographing mode. A near infrared cut filter 90 may be disposed to block entry to the c).
본 발명에서는 도 2 및 도 3에 도시된 바와 같이, 가시광 카메라(20)의 전단에 근적외선 차단 필터(90)가 설치되는 것을 예로 하였으나, 전자증배 CCD 카메라(10)로 향하는 근적외선에 영향을 미치지 않는 다른 위치에 근적외선 차단 필터(90)가 설치될 수 있으며, 광 경로 전환 모듈(40,50)의 이동에 따라 함께 이동하여 가시광 카메라(20)로 유입되는 근적외선을 차단하도록 마련될 수 있음은 물론이다.2 and 3, the near-infrared cut filter 90 is installed at the front end of the visible light camera 20, but does not affect the near-infrared toward the electron multiplication CCD camera 10. The near-infrared cut filter 90 may be installed at another position, and may be provided to block near-infrared rays flowing into the visible light camera 20 by moving together with the movement of the optical path switching modules 40 and 50. .
한편, 복합 영상화 제어부(200)는 제1 촬영 모드에서 촬영된 근적외선 형광 영상과 제1 가시광 영상, 그리고 제2 촬영 모드에서 촬영된 방사선 영상과 제2 가시광 영상을 정합할 수 있다.Meanwhile, the composite imaging controller 200 may match the near infrared fluorescence image photographed in the first photographing mode with the first visible light image, and the radiation image photographed with the second visible light image in the second photographing mode.
여기서, 본 발명에 따른 의료용 복합 이미징 시스템(100)은 전자증배 CCD 카메라(10)에서 촬영되는 근적외선 형광 영상과 방사선 영상, 가시광 카메라(20)에 의해 촬영되는 가시광 영상이 서로 매칭되도록 방사선-광자 변환 모듈(30), 광 경로 전환 모듈(40,50), 전자증배 CCD 카메라(10) 및 가시광 카메라(20)의 위치가 결정된다.Here, the medical complex imaging system 100 according to the present invention is radiation-photon conversion so that the near-infrared fluorescence image photographed by the electron multiplication CCD camera 10 and the visible image captured by the visible light camera 20 match each other. The positions of the module 30, the light path switching modules 40 and 50, the electron multiplication CCD camera 10 and the visible light camera 20 are determined.
예를 들어, 방사선-광자 변환 모듈(30)의 경우, 핀홀 콜리메이터(31)의 화각을 조절하는 등의 방법으로 가시광 영상이나 근적외선 형광 영상과 매칭시킬 수 있으며, 가시광 영상과 근적외선의 경우 생체로부터 동일한 광 경로를 통해 출발하므로 교차 영역으로부터 전자증배 CCD 카메라(10)와 가시광 카메라(20)의 거리를 일치시키는 방법을 통해 매칭시킬 수 있을 것이다.For example, the radiation-photon conversion module 30 may be matched with a visible light image or a near infrared fluorescence image by adjusting an angle of view of the pinhole collimator 31. Since it starts through the optical path, it can be matched by matching the distance between the electron multiplication CCD camera 10 and the visible light camera 20 from the crossing area.
상기와 같이 매칭된 상태에서, 제1 촬영 모드와 제2 촬영 모드 간의 촬영 시간의 차이로 인해 제1 촬영 모드와 제2 촬영 모드에서 촬영된 영상 간에는 미스매치가 발생할 수 있다. 특히, 방사선 영상의 촬영의 경우, 수초에서 수분의 시간이 소요되므로 두 모드 간의 시간 차에 따른 미스매치가 발생할 수 있다.In the matched state as described above, a mismatch may occur between the image photographed in the first photographing mode and the second photographing mode due to a difference in photographing time between the first photographing mode and the second photographing mode. In particular, in the case of taking a radiographic image, since it takes a few seconds to several minutes, a mismatch may occur due to a time difference between the two modes.
도 6을 참조하여 설명하면, 도 6의 (a)는 제2 촬영 모드에서 촬영된 제2 가시광 영상(좌측 영상)과 방사선 영상(우측 영상)을 나타낸 도면이고, 도 6의 (b)는 제1 촬영 모드에서 촬영된 제1 가시광 영상(좌측 영상)과 근적외선 형광 영상(우측 영상)을 나타낸 도면이다.Referring to FIG. 6, FIG. 6A illustrates a second visible light image (left image) and a radiation image (right image) captured in the second photographing mode, and FIG. 6B illustrates a second image. 1 is a view showing a first visible light image (left image) and a near infrared fluorescence image (right image) photographed in a photographing mode.
도 6의 (a) 및 (b)에 도시된 바와 같이, 제1 촬영 모드와 제2 촬영 모드 간의 시간 차이에 따라 환자가 움직이는 등의 원인으로 미스매치가 발생하는 경우, 복합 영상화 제어부(200)는 제1 가시광 영상과 제2 가시광 영상을 비교하여 제1 가시광 영상과 제2 가시광 영상 중 어느 하나가 다른 하나에 정합될 때 변형 파라미터를 추출한다.As shown in (a) and (b) of FIG. 6, when a mismatch occurs due to a movement of a patient according to a time difference between the first and second imaging modes, the complex imaging controller 200 may be used. Compares the first visible light image with the second visible light image and extracts a deformation parameter when any one of the first visible light image and the second visible light image is matched with the other.
도 6에서는 도 6의 (b)에 도시된 제1 가시광 영상을 일정 각도 회전시키는 경우 도 6의 (a)에 도시된 제2 가시광 영상에 정합되는 바, 도 6의 (c)에 도시된 바와 같이, 제1 가시광 영상의 회전 각도, 즉 변형 파라미터만큼 근적외선 형광 영상을 보정하게 된다.In FIG. 6, when the first visible light image shown in FIG. 6B is rotated by a predetermined angle, the second visible light image shown in FIG. 6A is matched with the second visible light image shown in FIG. 6C. Similarly, the near-infrared fluorescent image is corrected by the rotation angle of the first visible light image, that is, the deformation parameter.
도 6의 (d)의 좌측 영상은 근적외선 형광 영상을 보정하지 않은 상태로 제2 가시광 영상 및 방사선 영상을 병합한 경우 발생하는 미스매치를 나타낸 도면이고, 도 6의 (d)의 우측 영상은 도 6의 (c)에 도시된 바와 같이 근적외선 형광 영상을 변형 파라미터를 이용하여 보정한 후 제2 가시광 영상 및 방사선 영상과 병합하여 생성한 복합 영상을 나타낸 도면이다.FIG. 6D illustrates a mismatch generated when the second visible light image and the radiation image are merged without correcting the near infrared fluorescence image, and the right image of FIG. As shown in (c) of FIG. 6, a composite image generated by merging a near-infrared fluorescence image using deformation parameters and merging with a second visible light image and a radiation image is illustrated.
[제2 실시예]Second Embodiment
이하에서는 도 7 내지 도 9를 참조하여 본 발명의 제2 실시예에 따른 의료용 복합 이미징 시스템(100a)에 대해 상세히 설명한다. 여기서, 본 발명의 제2 실시예에 따른 의료용 복합 이미징 시스템(100a)은 상술한 제1 실시예의 변형 예로, 제1 실시예와 상이한 부분을 중심으로 설명한다. 또한, 도 4에 도시된 제어 블록도의 구성은 제2 실시예에 대한 설명에도 적용되며, 제1 실시예에서와 마찬가지로, 도 7 및 도 8의 굵은 실선은 광자, 가는 실선은 근적외선, 가는 파선은 가시광의 광 경로를 나타낸 것이다.Hereinafter, a medical complex imaging system 100a according to a second exemplary embodiment of the present invention will be described in detail with reference to FIGS. 7 to 9. Here, the medical complex imaging system 100a according to the second exemplary embodiment of the present invention will be described with reference to a modification of the first exemplary embodiment, which is different from the first exemplary embodiment. In addition, the configuration of the control block diagram shown in FIG. 4 is also applied to the description of the second embodiment, and as in the first embodiment, the thick solid lines in FIGS. 7 and 8 are photons, the thin solid lines are near infrared rays, and the thin dashed lines. Shows the optical path of visible light.
도 7 내지 도 9를 참조하여 설명하면, 본 발명의 제2 실시예에 따른 의료용 복합 이미징 시스템(100a)은 전자증배 CCD 카메라(10), 가시광 카메라(20), 방사선-광자 변환 모듈(30), 광 경로 전환 모듈(40a,50a) 및 복합 영상화 제어부(200)를 포함한다.7 to 9, the medical complex imaging system 100a according to the second exemplary embodiment of the present invention includes an electron multiplication CCD camera 10, a visible light camera 20, and a radiation-photon conversion module 30. And optical path switching modules 40a and 50a and composite imaging controller 200.
여기서, 본 발명의 제2 실시예에서는, 제1 실시예와 달리, 가시광 카메라(20)가 생체의 상부에 배치되고, 전자증배 CCD 카메라(10)가 측면에 배치되어 제1 광 경로와 제2 광 경로가 수직인 상태로 형성되는 것을 예로 한다.Here, in the second embodiment of the present invention, unlike the first embodiment, the visible light camera 20 is disposed on the upper part of the living body, and the electron multiplication CCD camera 10 is disposed on the side so that the first optical path and the second As an example, the optical path is formed in a vertical state.
제1 실시예와 마찬가지로, 광 경로 전환 모듈(40a,50a)은 제1 동작 모드와 제2 동작 모드 간을 이동 가능하게 설치된다. 도 7은 광 경로 전환 모듈(40a,50a)이 제1 동작 모드로 이동한 상태를 나타낸 도면이고, 도 8은 광 경로 전환 모듈(40a,50a)이 제2 동작 모드로 이동한 상태를 나타낸 도면이다.Similar to the first embodiment, the optical path switching modules 40a and 50a are installed to be movable between the first operation mode and the second operation mode. FIG. 7 is a diagram illustrating a state in which the optical path switching modules 40a and 50a are moved to the first operation mode, and FIG. 8 is a diagram illustrating a state in which the optical path switching modules 40a and 50a are moved to the second operation mode. to be.
광 경로 전환 모듈(40a,50a)이 제1 동작 모드로 이동한 상태에서는, 도 7에 도시된 바와 같이, 생체로부터 반사되는 근적외선과 방사선-광자 변환 모듈(30)로부터 출력되는 광자 중 근적외선이 제1 경로로 향하게 된다. 반면, 광 경로 전환 모듈(40a,50a)이 제2 동작 모드로 이동한 상태에서는, 도 8에 도시된 바와 같이, 생체로부터 반사되는 근적외선과 방사선-광자 변환 모듈(30)로부터 출력되는 광자 중 광자가 제1 광 경로로 향하게 된다. 여기서, 광 경로 전환 모듈(40a,50a)은 생체로부터 반사되는 가시광은 제1 동작 모드와 제2 동작 모드에서 모두 제2 광 경로로 향하게 한다.In the state where the optical path switching modules 40a and 50a are moved to the first operation mode, as shown in FIG. 7, the near infrared rays among the near infrared rays reflected from the living body and the photons output from the radiation-photon conversion module 30 are removed. You will be directed to 1 path On the other hand, in the state in which the optical path switching modules 40a and 50a are moved to the second operation mode, as shown in FIG. 8, photons of the near infrared rays reflected from the living body and the photons output from the radiation-photon conversion module 30 are shown. Is directed to the first optical path. Here, the optical path switching modules 40a and 50a direct visible light reflected from the living body to the second optical path in both the first operation mode and the second operation mode.
도 7 내지 도 9를 참조하여 보다 구체적으로 설명하면, 본 발명의 제2 실시예에 따른 광 경로 전환 모듈(40a,50a)은 광 분할부(40a)와, 광자 경로 조절부를 포함할 수 있다.7 to 9, the optical path switching module 40a or 50a according to the second embodiment of the present invention may include a light splitter 40a and a photon path adjuster.
광 분할부(40a)는 제1 실시예에서와 마찬가지로, 제1 동작 모드에서 제1 광 경로와 제2 광 경로가 교차하는 교차 영역에 배치된다. 그리고, 광 분할부(40a)는, 도 7과 도 9의 (a)에 도시된 바와 같이, 제1 동작 모드에서 교차 영역에 배치된 상태에서 생체로부터 반사되는 광을 분할하여 제1 광 경로와 제2 광 경로로 향하게 한다. 여기서, 광 분할부(40a)는, 도 8과 도 9의 (b)에 도시된 바와 같이, 제2 동작 모드에서 교차 영역으로부터 이탈된다.As in the first embodiment, the light splitter 40a is disposed in an intersection area where the first light path and the second light path intersect in the first operation mode. As illustrated in FIGS. 7 and 9A, the light splitter 40a divides the light reflected from the living body in a state in which the light splitter 40a is disposed at the intersection area in the first operation mode, and the first optical path and the first light path. Direct to the second optical path. Here, the light splitter 40a is separated from the crossing area in the second operation mode, as shown in FIGS. 8 and 9B.
본 발명의 제2 실시예에 따른 광 분할부(40a)는 제1 실시예에서와 마찬가지로, 이색성 광 분할기(Dichroic beam splitter) 형태로 마련되는 것을 예로 한다. 이에 따라, 이색성 광 분할기는 생체로부터 반사되는 근적외선과 가시광을 그 파장에 따라 분할하여, 근적외선을 제1 광 경로로 향하게 하고 가시광을 제2 광 경로로 향하게 함으로써, 전자증배 CCE 카메라에 의해 근적외선이 촬영되고 기사광 카메라에 의해 가시광이 촬영되도록 한다.As in the first embodiment, the light splitter 40a according to the second embodiment of the present invention is provided in the form of a dichroic beam splitter. Accordingly, the dichroic light splitter divides the near-infrared and visible light reflected from the living body according to its wavelength, directing the near-infrared light to the first light path and directing the visible light to the second light path, thereby reducing the near-infrared light by the electron multiplication CCE camera. The visible light is photographed by the knight camera.
광자 경로 조절부는, 도 8 및 도 9의 (b)에 도시된 바와 같이, 제2 동작 모드에서 방사선-광자 변환 모듈(30)로부터 방출되는 광자의 광 경로를 제1 광 경로로 향하게 하고, 제1 동작 모드에서, 도 7 및 도 9의 (a)에 도시된 바와 같이, 방사선-광자 변환 모듈(30)로부터 방출되는 광자의 광 경로의 제1 광 경로로의 진입을 차단한다.The photon path controller directs the optical path of the photons emitted from the radiation-photon conversion module 30 to the first optical path in the second mode of operation, as shown in FIGS. 8 and 9 (b). In one mode of operation, as shown in FIGS. 7 and 9 (a), the photon emitted from the radiation-photon conversion module 30 blocks the optical path from entering the first optical path.
여기서, 본 발명의 제2 실시예에 따른 광자 경로 조절부는 하나의 반사 미러(50a)를 통해 구현되는 것을 예로 한다. 보다 구체적으로 설명하면, 본 발명의 제2 실시예에서는, 상술한 전자증배 CCD 카메라(10)와 가시광 카메라(20)의 배치에서와 같이, 제1 광 경로가 생체로부터 반사되어 이색성 광 분할기로부터 반사된 근적외선의 광 경로 상에 위치하고, 제2 광 경로가 생체로부터 반사되어 이색성 광 분할기를 투과한 가시광의 광 경로 상에 위치하는 것을 예로 한다. 즉, 생체로부터 반사되는 근적외선은 이색성 광 분할기로부터 반사된 후 제1 광 경로를 통해 전자증배 CCD 카메라(10)로 향하게 되고, 생체로부터 반사되는 가시광은 이색성 광 분할기를 투과한 후 제2 광 경로를 통해 가시광 카메라(20)로 향하게 된다.Here, the photon path control unit according to the second embodiment of the present invention is implemented by way of one reflective mirror 50a. More specifically, in the second embodiment of the present invention, as in the arrangement of the electron multiplication CCD camera 10 and the visible light camera 20 described above, the first light path is reflected from the living body and is separated from the dichroic light splitter. For example, it is located on the reflected light path of near infrared rays, and the second light path is located on the light path of visible light reflected from the living body and transmitted through the dichroic light splitter. That is, the near infrared rays reflected from the living body are reflected from the dichroic light splitter and then directed to the electron multiplication CCD camera 10 through the first optical path, and the visible light reflected from the living body passes through the dichroic light splitter and then the second light. The path is directed to the visible light camera 20.
이 때, 반사 미러(50a)는, 도 8 및 도 9의 (b)에 도시된 바와 같이, 방사선-광자 변환 모듈(30)로부터 방출된 광자를 제1 광 경로 방향으로 반사시켜 전자증배 CCD 카메라(10)로 향하게 함으로써, 전자증배 CCD 카메라(10)가 방사선 영상을 촬영 가능하게 한다.At this time, the reflection mirror 50a reflects the photons emitted from the radiation-photon conversion module 30 in the direction of the first optical path, as shown in FIGS. 8 and 9 (b), to form an electron multiplication CCD camera. By pointing to 10, the electron multiplication CCD camera 10 makes it possible to take a radiographic image.
상기와 같은 구성에 따라, 본 발명의 제2 실시예에 따른 의료용 복합 이미징 시스템(100a)의 복합 영상화 제어부(200)가 제1 촬영 모드와 제2 촬영 모드로의 동작을 통해, 근적외선 형광 영상, 가시광 영상 및 방사선 영상을 촬영하는 과정에 대해 설명한다.According to the configuration as described above, the near-infrared fluorescence image, the complex imaging control unit 200 of the medical complex imaging system 100a according to the second embodiment of the present invention through the operation in the first and second imaging mode, A process of photographing a visible light image and a radiographic image will be described.
먼저, 복합 영상화 제어부(200)는 제1 촬영 모드에서, 광 경로 전환 모듈(40a,50a)을 제1 동작 모드로 이동시킨다. 상술한 바와 같이, 광 경로 전환 모듈(40a,50a)이 제1 동작 모드로 이동하는 경우, 광 분할부(40a)가 교차 영역에 배치되고 광자 경로 조절부는 광자의 광 경로 상에서 이탈된다.First, the complex imaging controller 200 moves the optical path switching modules 40a and 50a to the first operation mode in the first photographing mode. As described above, when the optical path switching modules 40a and 50a move to the first operation mode, the light splitter 40a is disposed in the crossing area and the photon path adjusting part is separated on the optical path of the photons.
여기서, 근적외선 광원(61)과 가시광 광원(62)이 온된 상태이면, 생체로부터 반사되는 근적외선은 광 분할부(40a), 즉 이색성 광 분할기로부터 반사되어 제1 광 경로를 통해 전자증배 CCD 카메라(10)에 의해 촬영된다. 그리고, 생체로부터 반사된 가시광은 광 분할부(40a), 즉 이색성 광 분할기를 투과하여 제2 광 경로를 통해 가시광 카메라(20)에 의해 촬영된다.Here, when the near-infrared light source 61 and the visible light source 62 are turned on, the near-infrared light reflected from the living body is reflected from the light splitter 40a, that is, the dichroic light splitter, and is subjected to the electron multiplication CCD camera through the first optical path. 10) is taken by. The visible light reflected from the living body is photographed by the visible light camera 20 through the light splitter 40a, that is, the dichroic light splitter, through the second light path.
이 때, 방사선-광자 변환 모듈(30)로부터 방출되는 광자의 광 경로 상에는 광자 경로 조절부, 즉 반사 미러(50a)가 이탈된 상태이므로, 방사선-광자 변환 모듈(30)로부터 방출되는 광자는 전자증배 CCD 카메라(10)로 향하기 못하게 된다. 이에 따라, 제1 촬영 모드에서는 전자증배 CCD 카메라(10)와 가시광 카메라(20)에 의해 근적외선 형광 영상과 제1 가시광 영상이 동시에 촬영된다.At this time, since the photon path control unit, that is, the reflection mirror 50a is separated from the photon path of the photons emitted from the radiation-photon conversion module 30, the photons emitted from the radiation-photon conversion module 30 are electrons. It cannot be directed to the multiplication CCD camera 10. Accordingly, in the first photographing mode, the near infrared fluorescence image and the first visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
한편, 복합 영상화 제어부(200)는 제2 촬영 모드에서, 광 경로 전환 모듈(40a,50a)을 제2 동작 모드로 이동시킨다. 상술한 바와 같이, 광 경로 전환 모듈(40a,50a)이 제2 동작 모드로 이동하는 경우, 광 분할부(40a)가 교차 영역으로부터 이탈되고, 광자 경로 조절부를 구성하는 반사 미러(50a)가 광자의 광 경로 상에, 도 8에 도시된 바와 같이 배치된다.Meanwhile, the composite imaging controller 200 moves the optical path switching modules 40a and 50a to the second operation mode in the second photographing mode. As described above, when the optical path switching modules 40a and 50a move to the second operation mode, the light splitter 40a is separated from the crossing area, and the reflection mirror 50a constituting the photon path adjusting unit is a photon. On the optical path of, as shown in FIG. 8.
여기서, 가시광 광원(62)이 온된 상태이면, 생체로부터 반사되는 가시광은 제2 광 경로를 통해 가시광 카메라(20)를 향하게 된다. 또한, 방사선-광자 변환 모듈(30)로부터 방출되는 광자는 반사 미러(50a)에 의해 반사되어 제1 광 경로를 통해 전자증배 CCD 카메라(10)로 향하게 된다. 이에 따라, 제2 촬영 모드에서는 전자증배 CCD 카메라(10)와 가시광 카메라(20)에 의해 방사선 영상과 제2 가시광 영상이 동시에 촬영된다.Here, when the visible light source 62 is turned on, the visible light reflected from the living body is directed toward the visible light camera 20 through the second light path. Further, photons emitted from the radiation-photon conversion module 30 are reflected by the reflection mirror 50a and directed to the electron multiplication CCD camera 10 through the first optical path. Accordingly, in the second photographing mode, the radiation image and the second visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
제1 실시예에서와 마찬가지로, 복합 영상화 제어부(200)는 제2 촬영 모드에서 근적외선 광원(61)을 오프시킬 수 있다. 또한, 제1 실시예에서와 마찬가지로 근적외선 차단 필터(90)가 배치될 수 있다.As in the first exemplary embodiment, the complex imaging controller 200 may turn off the NIR light source 61 in the second photographing mode. Also, as in the first embodiment, a near infrared cut filter 90 may be disposed.
[제3 실시예]Third Embodiment
이하에서는 도 10 내지 도 12를 참조하여 본 발명의 제3 실시예에 따른 의료용 복합 이미징 시스템(100b)에 대해 상세히 설명한다. 여기서, 본 발명의 제3 실시예에 따른 의료용 복합 이미징 시스템(100b)은 상술한 제1 실시예의 변형 예로, 제1 실시예와 상이한 부분을 중심으로 설명한다. 또한, 도 4에 도시된 제어 블록도의 구성은 제3 실시예에 대한 설명에도 적용되며, 제1 실시예에서와 마찬가지로, 도 10 및 도 11의 굵은 실선은 광자, 가는 실선은 근적외선, 가는 파선은 가시광의 광 경로를 나타낸 것이다.Hereinafter, a medical complex imaging system 100b according to a third exemplary embodiment of the present invention will be described in detail with reference to FIGS. 10 to 12. Here, the medical complex imaging system 100b according to the third exemplary embodiment of the present invention will be described with a modification of the first exemplary embodiment, focusing on a different part from the first exemplary embodiment. In addition, the configuration of the control block diagram shown in FIG. 4 is also applied to the description of the third embodiment, and as in the first embodiment, the thick solid lines in FIGS. 10 and 11 are photons, the thin solid lines are near infrared rays, and the thin dashed lines. Shows the optical path of visible light.
도 10 내지 도 12를 참조하여 설명하면, 본 발명의 제3 실시예에 따른 의료용 복합 이미징 시스템(100b)은 전자증배 CCD 카메라(10), 가시광 카메라(20), 방사선-광자 변환 모듈(30), 광 경로 전환 모듈(41b,42b) 및 복합 영상화 제어부(200)를 포함한다.10 to 12, the medical complex imaging system 100b according to the third exemplary embodiment of the present invention includes an electron multiplication CCD camera 10, a visible light camera 20, and a radiation-photon conversion module 30. And optical path switching modules 41b and 42b and composite imaging controller 200.
여기서, 본 발명의 제3 실시예에서는, 제1 실시예와 마찬가지로, 전자증배 CCD 카메라(10)가 생체의 상부에 배치되고, 가시광 카메라(20)가 측면에 배치되어 제1 광 경로와 제2 광 경로가 수직인 상태로 형성되는 것을 예로 한다.Here, in the third embodiment of the present invention, as in the first embodiment, the electron multiplication CCD camera 10 is disposed on the upper part of the living body, and the visible light camera 20 is disposed on the side surface so that the first optical path and the second As an example, the optical path is formed in a vertical state.
또한, 도 10 및 도 11에 도시된 바와 같이, 전자증배 CCD 카메라(10)와 방사선-광자 변환 모듈(30)이 동일한 광축 상에 배치되는 것을 예로 한다. 즉, 제1 광 경로와 제2 광 경로가 교차하는 교차 영역과 생체 사이에 방사선-광자 변환 모듈(30)이 배치된다.10 and 11, the electron multiplication CCD camera 10 and the radiation-photon conversion module 30 are disposed on the same optical axis. That is, the radiation-photon conversion module 30 is disposed between the living body and the intersection area where the first light path and the second light path intersect.
제1 실시예와 마찬가지로, 광 경로 전환 모듈(41b,42b)은 제1 동작 모드와 제2 동작 모드 간을 이동 가능하게 설치된다. 도 10은 광 경로 전환 모듈(41b,42b)이 제1 동작 모드로 이동한 상태를 나타낸 도면이고, 도 11은 광 경로 전환 모듈(41b,42b)이 제2 동작 모드로 이동한 상태를 나타낸 도면이다.Similar to the first embodiment, the optical path switching modules 41b and 42b are installed to be movable between the first operation mode and the second operation mode. FIG. 10 is a view illustrating a state in which the optical path switching modules 41b and 42b are moved to the first operation mode, and FIG. 11 is a view illustrating a state in which the optical path switching modules 41b and 42b are moved to the second operation mode. to be.
본 발명의 제3 실시예에 따른 광 경로 전환 모듈(41b,42b)은, 제1 반사 미러(41b)와 광 분할부(42b)를 포함할 수 있다.The optical path switching modules 41b and 42b according to the third exemplary embodiment of the present invention may include the first reflection mirror 41b and the light splitter 42b.
제1 반사 미러(41b)는 제1 동작 모드와 제2 동작 모드에서 생체로부터 반사되는 광, 즉 가시광과 근적외선을 제1 광 경로와 제2 광 경로가 교차하는 교차 영역으로 반사시킨다.The first reflection mirror 41b reflects the light reflected from the living body, that is, the visible light and the near infrared ray, to the intersection area where the first light path and the second light path cross each other in the first and second operating modes.
그리고, 광 분할부(42b)는 제1 동작 모드에서 교차 영역에 배치되어 제1 반사 미러(41b)에 의해 반사된 광을 각각 제1 광 경로와 제2 광 경로로 향하게 하고, 제2 동작 모드에서 교차 영역으로부터 이탈된다.In addition, the light splitter 42b is disposed at an intersection area in the first operation mode to direct the light reflected by the first reflection mirror 41b to the first light path and the second light path, respectively, and in the second operation mode. Deviates from the intersection region at.
본 발명의 제3 실시예에 따른 광 분할부(42b)는 제1 실시예 및 제2 실시예와 마찬가지로, 이색성 광 분할기(Dichroic beam splitter) 형태로 마련되는 것을 예로 한다. 이에 따라, 이색성 광 분할기는 생체로부터 반사된 후 제1 반사 미러(41b)에 의해 반사된 근적외선과 가시광을 그 파장에 따라 분할하여, 근적외선을 제1 광 경로로 향하게 하고 가시광을 제2 광 경로로 향하게 함으로써, 전자증배 CCE 카메라에 의해 근적외선이 촬영되고 기사광 카메라에 의해 가시광이 촬영되도록 한다.The light splitter 42b according to the third exemplary embodiment of the present invention is provided in the form of a dichroic beam splitter similarly to the first and second embodiments. Accordingly, the dichroic light splitter splits the near infrared rays and the visible light reflected by the first reflection mirror 41b according to their wavelengths after being reflected from the living body, directing the near infrared rays to the first optical path and directing the visible light to the second optical path. By directing to, the near infrared ray is photographed by the electron multiplication CCE camera and the visible light is photographed by the knight light camera.
여기서, 본 발명의 제3 실시예에서는, 상술한 전자증배 CCD 카메라(10)와 가시광 카메라(20)의 배치에서와 같이, 제1 광 경로가 제1 반사 미러(41b)에 의해 반시되어 이색성 광 분할기로부터 반사된 근적외선의 광 경로 상에 위치하고, 제2 광 경로가 제1 반사 미러(41b)로부터 반사되어 이색성 광 분할기를 투과한 가시광의 광 경로 상에 위치하는 것을 예로 한다. 즉, 제1 반사 미러(41b)로부터 반사되는 근적외선은 이색성 광 분할기로부터 반사된 후 제1 광 경로를 통해 전자증배 CCD 카메라(10)로 향하게 되고, 제1 반사 미러(41b)로부터 반사되는 가시광은 이색성 광 분할기를 투과한 후 제2 광 경로를 통해 가시광 카메라(20)로 향하게 된다.Here, in the third embodiment of the present invention, as in the arrangement of the electron multiplying CCD camera 10 and the visible light camera 20 described above, the first optical path is half-visible by the first reflection mirror 41b to be dichroic. An example is located on the light path of the near infrared rays reflected from the light splitter, and the second light path is located on the light path of the visible light reflected from the first reflection mirror 41b and transmitted through the dichroic light splitter. That is, the near infrared rays reflected from the first reflection mirror 41b are reflected from the dichroic light splitter and then directed to the electron multiplication CCD camera 10 through the first optical path, and the visible light reflected from the first reflection mirror 41b. After passing through the dichroic light splitter, it is directed to the visible light camera 20 through the second light path.
본 발명의 제3 실시예에서는 제1 동작 모드에서 방사선-광자 변환 모듈(30)과 이색성 광 분할기 사이에 광자 차단부(43b)가 설치되는 것을 예로 한다. 이를 통해, 제1 작동 모드에서 방사선-광자 변환 모듈(30)로부터 방출되는 광자가 이색성 광 분할기로 향하는 것을 차단하여, 제1 촬영 모드에서 촬영되는 제1 가시광 영상과 근적외선 형광 영상에 방사선-광자 변환 모듈(30)로부터 방출되는 광자가 영향을 미치는 것을 차단할 수 있다.In the third embodiment of the present invention, the photon blocking part 43b is installed between the radiation-photon conversion module 30 and the dichroic light splitter in the first mode of operation. This prevents photons emitted from the radiation-photon conversion module 30 in the first operation mode from being directed to the dichroic light splitter, thereby radiating the photons in the first visible light image and the near-infrared fluorescent image captured in the first imaging mode. Photons emitted from the conversion module 30 can be blocked from affecting.
상기와 같은 구성에 따라, 본 발명의 제3 실시예에 따른 의료용 복합 이미징 시스템(100b)의 복합 영상화 제어부(200)가 제1 촬영 모드와 제2 촬영 모드로의 동작을 통해, 근적외선 형광 영상, 가시광 영상 및 방사선 영상을 촬영하는 과정에 대해 설명한다.According to the configuration as described above, the near-infrared fluorescence image, the complex imaging control unit 200 of the medical complex imaging system 100b according to the third embodiment of the present invention through the operation in the first imaging mode and the second imaging mode, A process of photographing a visible light image and a radiographic image will be described.
먼저, 복합 영상화 제어부(200)는 제1 촬영 모드에서, 광 경로 전환 모듈(41b,42b)을 제1 동작 모드로 이동시킨다. 상술한 바와 같이, 광 경로 전환 모듈(41b,42b)이 제1 동작 모드로 이동하는 경우, 광 분할부(42b)가 교차 영역에 배치된다.First, the complex imaging controller 200 moves the optical path switching modules 41b and 42b to the first operation mode in the first photographing mode. As described above, when the optical path switching modules 41b and 42b move to the first operation mode, the light splitting section 42b is disposed in the crossing area.
여기서, 근적외선 광원(61)과 가시광 광원(62)이 온된 상태이면, 생체로부터 반사되는 근적외선은 제1 반사 미러(41b)로부터 반사되어 광 분할부(42b)로 향하게 되고, 광 분할 부, 즉 이색성 광 분할기로부터 반사되어 제1 광 경로를 통해 전자증배 CCD 카메라(10)에 의해 촬영된다. 그리고, 생체로부터 반사된 가시광은 제1 반사 미러(41b)로부터 반사되어 광 분할부(42b), 즉 이색성 광 분할기를 투과하여 제2 광 경로를 통해 가시광 카메라(20)에 의해 촬영된다.Here, when the near-infrared light source 61 and the visible light source 62 are turned on, the near-infrared light reflected from the living body is reflected from the first reflection mirror 41b and directed to the light splitting section 42b, and thus, the light splitting section, that is, the dichroic color. It is reflected from the sex light splitter and taken by the electron multiplication CCD camera 10 through the first light path. Then, the visible light reflected from the living body is reflected by the first reflection mirror 41b, is transmitted by the light splitter 42b, that is, the dichroic light splitter, and photographed by the visible light camera 20 through the second light path.
이 때, 방사선-광자 변환 모듈(30)로부터 방출되는 광자는 광자 차단부(43b)에 의해 차단되어 전자증배 CCD 카메라(10)로 향하기 못하게 된다. 이에 따라, 제1 촬영 모드에서는 전자증배 CCD 카메라(10)와 가시광 카메라(20)에 의해 근적외선 형광 영상과 제1 가시광 영상이 동시에 촬영된다.At this time, the photons emitted from the radiation-photon conversion module 30 are blocked by the photon blocking part 43b and are not directed to the electron multiplication CCD camera 10. Accordingly, in the first photographing mode, the near infrared fluorescence image and the first visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
한편, 복합 영상화 제어부(200)는 제2 촬영 모드에서, 광 경로 전환 모듈(41b,42b)을 제2 동작 모드로 이동시킨다. 상술한 바와 같이, 광 경로 전환 모듈(41b,42b)이 제2 동작 모드로 이동하는 경우, 광 분할부(42b)가 교차 영역으로부터 이탈되어, 도 11 및 도 12의 (b)에 도시된 바와 같이 배치된다.Meanwhile, the composite imaging controller 200 moves the optical path switching modules 41b and 42b to the second operation mode in the second photographing mode. As described above, when the optical path switching modules 41b and 42b move to the second operation mode, the light splitting section 42b is separated from the crossing area, as shown in FIGS. 11 and 12 (b). Are arranged together.
여기서, 가시광 광원(62)이 온된 상태이면, 생체로부터 반사되는 가시광은 제1 반사 미러(41b)로부터 반사되어 제2 광 경로를 통해 가시광 카메라(20)를 향하게 된다. 또한, 방사선-광자 변환 모듈(30)로부터 방출되는 광자는 제1 광 경로를 통해 전자증배 CCD 카메라(10)로 향하게 된다. 이에 따라, 제2 촬영 모드에서는 전자증배 CCD 카메라(10)와 가시광 카메라(20)에 의해 방사선 영상과 제2 가시광 영상이 동시에 촬영된다.Here, when the visible light source 62 is turned on, visible light reflected from the living body is reflected from the first reflection mirror 41b to face the visible light camera 20 through the second light path. Further, photons emitted from the radiation-photon conversion module 30 are directed to the electron multiplication CCD camera 10 through the first optical path. Accordingly, in the second photographing mode, the radiation image and the second visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
제1 실시예 및 제2 실시예에서와 마찬가지로, 복합 영상화 제어부(200)는 제2 촬영 모드에서 근적외선 광원(61)을 오프시킬 수 있다. 또한, 제1 실시예 및 제2 실시예에서와 마찬가지로 근적외선 차단 필터(90)가 배치될 수 있다.As in the first and second embodiments, the complex imaging controller 200 may turn off the NIR light source 61 in the second photographing mode. Also, as in the first and second embodiments, the near infrared cut filter 90 may be disposed.
[제4 실시예][Example 4]
이하에서는 도 13 내지 도 15를 참조하여 본 발명의 제4 실시예에 따른 의료용 복합 이미징 시스템(100c)에 대해 상세히 설명한다. 여기서, 본 발명의 제4 실시예에 따른 의료용 복합 이미징 시스템(100c)은 상술한 제1 실시예 및 제3 실시예의 변형 예로, 제1 실시예 및 제3 실시예와 상이한 부분을 중심으로 설명한다. 또한, 도 4에 도시된 제어 블록도의 구성은 제3 실시예에 대한 설명에도 적용되며, 제1 실시예에서와 마찬가지로, 도 13 및 도 14의 굵은 실선은 광자, 가는 실선은 근적외선, 가는 파선은 가시광의 광 경로를 나타낸 것이다.Hereinafter, a medical complex imaging system 100c according to a fourth exemplary embodiment of the present invention will be described in detail with reference to FIGS. 13 to 15. Here, the medical complex imaging system 100c according to the fourth exemplary embodiment of the present invention will be described with reference to modifications of the first and third exemplary embodiments, which are different from those of the first and third exemplary embodiments. . In addition, the configuration of the control block diagram shown in FIG. 4 is also applied to the description of the third embodiment, and as in the first embodiment, the thick solid lines in FIGS. 13 and 14 are photons, the thin solid lines are near infrared rays, and the thin dashed lines. Shows the optical path of visible light.
도 13 내지 도 15를 참조하여 설명하면, 본 발명의 제4 실시예에 따른 의료용 복합 이미징 시스템(100c)은 전자증배 CCD 카메라(10), 가시광 카메라(20), 방사선-광자 변환 모듈(30), 광 경로 전환 모듈(41c,42c,52c) 및 복합 영상화 제어부(200)를 포함한다.Referring to FIGS. 13 to 15, the medical complex imaging system 100c according to the fourth exemplary embodiment of the present invention may include an electron multiplication CCD camera 10, a visible light camera 20, and a radiation-photon conversion module 30. , Optical path switching modules 41c, 42c, 52c, and composite imaging controller 200.
여기서, 본 발명의 제4 실시예에서는, 제2 실시예와 마찬가지로, 가시광 카메라(20)가 생체의 상부에 배치되고, 전자증배 CCD 카메라(10)가 측면에 배치되어 제1 광 경로와 제2 광 경로가 수직인 상태로 형성되는 것을 예로 한다.Here, in the fourth embodiment of the present invention, similarly to the second embodiment, the visible light camera 20 is disposed above the living body, and the electron multiplication CCD camera 10 is disposed on the side, so that the first optical path and the second As an example, the optical path is formed in a vertical state.
또한, 도 13 및 도 14에 도시된 바와 같이, 가시광 카메라(20)와 방사선-광자 변환 모듈(30)이 동일한 광축 상에 배치되는 것을 예로 한다. 즉, 제1 광 경로와 제2 광 경로가 교차하는 교차 영역과 생체 사이에 방사선-광자 변환 모듈(30)이 배치된다.13 and 14, the visible light camera 20 and the radiation-photon conversion module 30 are disposed on the same optical axis. That is, the radiation-photon conversion module 30 is disposed between the living body and the intersection area where the first light path and the second light path intersect.
전술한 실시예들과 마찬가지로, 광 경로 전환 모듈(41c,42c,52c)은 제1 동작 모드와 제2 동작 모드 간을 이동 가능하게 설치된다. 도 13은 광 경로 전환 모듈(41c,42c,52c)이 제1 동작 모드로 이동한 상태를 나타낸 도면이고, 도 14는 광 경로 전환 모듈(41c,42c,52c)이 제2 동작 모드로 이동한 상태를 나타낸 도면이다.As in the above-described embodiments, the optical path switching modules 41c, 42c, and 52c are installed to be movable between the first operation mode and the second operation mode. FIG. 13 is a view illustrating a state in which the optical path switching modules 41c, 42c, and 52c move to the first operation mode, and FIG. 14 is a view illustrating a state in which the optical path switching modules 41c, 42c, and 52c move to the second operation mode. It is a figure which shows the state.
본 발명의 제4 실시예에 따른 광 경로 전환 모듈(41c,42c,52c)은, 제1 반사 미러(41c), 광 분할부(42c) 및 제2 반사 미러(52c)를 포함할 수 있다.The optical path switching modules 41c, 42c, and 52c according to the fourth embodiment of the present invention may include a first reflection mirror 41c, a light splitter 42c, and a second reflection mirror 52c.
제1 반사 미러(41c)는 제1 동작 모드와 제2 동작 모드에서 생체로부터 반사되는 광, 즉 가시광과 근적외선을 제1 광 경로와 제2 광 경로가 교차하는 교차 영역으로 반사시킨다.The first reflection mirror 41c reflects the light reflected from the living body, that is, the visible light and the near infrared ray, to the intersection area where the first light path and the second light path cross each other in the first and second operating modes.
그리고, 광 분할부(42c)는 제1 동작 모드에서 교차 영역에 배치되어 제1 반사 미러(41c)에 의해 반사된 광을 각각 제1 광 경로와 제2 광 경로로 향하게 하고, 제2 동작 모드에서 교차 영역으로부터 이탈된다.In addition, the light splitter 42c is disposed at an intersection area in the first operation mode to direct the light reflected by the first reflection mirror 41c to the first light path and the second light path, respectively, and in the second operation mode. Deviates from the intersection region at.
본 발명의 제4 실시예에 따른 광 분할부(42c)는 제1 실시예 및 제2 실시예와 마찬가지로, 이색성 광 분할기(Dichroic beam splitter) 형태로 마련되는 것을 예로 한다. 이에 따라, 이색성 광 분할기는 생체로부터 반사된 후 제1 반사 미러(41c)에 의해 반사된 근적외선과 가시광을 그 파장에 따라 분할하여, 근적외선을 제1 광 경로로 향하게 하고 가시광을 제2 광 경로로 향하게 함으로써, 전자증배 CCE 카메라에 의해 근적외선이 촬영되고 기사광 카메라에 의해 가시광이 촬영되도록 한다.The light splitter 42c according to the fourth exemplary embodiment of the present invention is provided in the form of a dichroic beam splitter similarly to the first and second embodiments. Accordingly, the dichroic light splitter splits the near-infrared and visible light reflected by the first reflection mirror 41c according to its wavelength after being reflected from the living body, directing the near-infrared light to the first optical path and directing the visible light to the second optical path. By directing to, the near infrared ray is photographed by the electron multiplication CCE camera and the visible light is photographed by the knight light camera.
여기서, 본 발명의 제4 실시예에서는, 상술한 전자증배 CCD 카메라(10)와 가시광 카메라(20)의 배치에서와 같이, 제1 광 경로가 제1 반사 미러(41c)에 의해 반시되어 이색성 광 분할기를 투과한 근적외선의 광 경로 상에 위치하고, 제2 광 경로가 제1 반사 미러(41c)로부터 반사되어 이색성 광 분할기로부터 반사된 가시광의 광 경로 상에 위치하는 것을 예로 한다. 즉, 제1 반사 미러(41c)로부터 반사되는 근적외선은 이색성 광 분할기를 투과한 후 제1 광 경로를 통해 전자증배 CCD 카메라(10)로 향하게 되고, 제1 반사 미러(41c)로부터 반사되는 가시광은 이색성 광 분할기로부터 반사된 후 제2 광 경로를 통해 가시광 카메라(20)로 향하게 된다.Here, in the fourth embodiment of the present invention, as in the arrangement of the electron multiplication CCD camera 10 and the visible light camera 20 described above, the first optical path is half-visible by the first reflection mirror 41c and is dichroic. An example is located on the light path of the near infrared ray passing through the light splitter, and the second light path is located on the light path of visible light reflected from the dichroic light splitter reflected from the first reflection mirror 41c. That is, the near infrared rays reflected from the first reflection mirror 41c are directed to the electron multiplication CCD camera 10 through the first optical path after passing through the dichroic light splitter, and the visible light reflected from the first reflection mirror 41c. Is reflected from the dichroic light splitter and then directed to the visible light camera 20 through the second optical path.
본 발명의 제4 실시예에서는 제1 동작 모드에서 방사선-광자 변환 모듈(30)과 이색성 광 분할기 사이에 광자 차단부(43c)가 설치되는 것을 예로 한다. 이를 통해, 제1 작동 모드에서 방사선-광자 변환 모듈(30)로부터 방출되는 광자가 이색성 광 분할기로 향하는 것을 차단하여, 제1 촬영 모드에서 촬영되는 제1 가시광 영상과 근적외선 형광 영상에 방사선-광자 변환 모듈(30)로부터 방출되는 광자가 영향을 미치는 것을 차단할 수 있다.In the fourth embodiment of the present invention, the photon blocking unit 43c is installed between the radiation-photon conversion module 30 and the dichroic light splitter in the first operation mode. This prevents photons emitted from the radiation-photon conversion module 30 in the first operation mode from being directed to the dichroic light splitter, thereby radiating the photons in the first visible light image and the near-infrared fluorescent image captured in the first imaging mode. Photons emitted from the conversion module 30 can be blocked from affecting.
한편, 제2 반사 미러(52c)는 제2 동작 모드에서 교차 영역에 배치되고, 제1 동작 모드에서 교차 영역으로부터 이탈된다. 여기서, 제2 반사 미러(52c)는 제2 동작 모드에서 제1 반사 미러(41c)에 의해 반사된 가시광을 제2 광 경로로 반사시켜 가시광 카메라(20)로 향하게 하는 제1 반사면과, 방사선-광자 변환 모듈(30)로부터 방출된 광자를 제1 광 경로 방향으로 반사시켜 전자증배 CCD 카메라(10)로 향하게 하는 제2 반사면으로 구성된다.On the other hand, the second reflecting mirror 52c is disposed in the intersection area in the second operation mode and is separated from the intersection area in the first operation mode. Here, the second reflecting mirror 52c may include a first reflecting surface reflecting the visible light reflected by the first reflecting mirror 41c in the second operation mode to the visible light camera 20 by reflecting it to the visible light camera 20, and the radiation. A second reflecting surface which reflects the photons emitted from the photon conversion module 30 in the direction of the first optical path and is directed towards the electron multiplication CCD camera 10.
상기와 같은 구성에 따라, 본 발명의 제4 실시예에 따른 의료용 복합 이미징 시스템(100c)의 복합 영상화 제어부(200)가 제1 촬영 모드와 제2 촬영 모드로의 동작을 통해, 근적외선 형광 영상, 가시광 영상 및 방사선 영상을 촬영하는 과정에 대해 설명한다.According to the above configuration, the near-infrared fluorescence image of the complex imaging controller 200 of the medical complex imaging system 100c according to the fourth exemplary embodiment of the present invention is operated through the first imaging mode and the second imaging mode. A process of photographing a visible light image and a radiographic image will be described.
먼저, 복합 영상화 제어부(200)는 제1 촬영 모드에서, 광 경로 전환 모듈(41c,42c,52c)을 제1 동작 모드로 이동시킨다. 상술한 바와 같이, 광 경로 전환 모듈(41c,42c,52c)이 제1 동작 모드로 이동하는 경우, 광 분할부(42c)가 교차 영역에 배치된다.First, the complex imaging controller 200 moves the optical path switching modules 41c, 42c, and 52c to the first operation mode in the first photographing mode. As described above, when the optical path switching modules 41c, 42c, 52c move to the first operation mode, the light splitting section 42c is disposed in the intersection area.
여기서, 근적외선 광원(61)과 가시광 광원(62)이 온된 상태이면, 생체로부터 반사되는 근적외선은 제1 반사 미러(41c)로부터 반사되어 광 분할부(42c)로 향하게 되고, 광 분할 부, 즉 이색성 광 분할기를 투과하여 제1 광 경로를 통해 전자증배 CCD 카메라(10)에 의해 촬영된다. 그리고, 생체로부터 반사된 가시광은 제1 반사 미러(41c)로부터 반사되어 광 분할부(42c), 즉 이색성 광 분할기로부터 반사되어 제2 광 경로를 통해 가시광 카메라(20)에 의해 촬영된다.Here, when the near-infrared light source 61 and the visible light source 62 are turned on, the near-infrared light reflected from the living body is reflected from the first reflection mirror 41c and directed to the light splitting section 42c, and thus, the light splitting section, that is, the dichroic color. It is taken by the electron multiplication CCD camera 10 through the first light path through the sex light splitter. Then, the visible light reflected from the living body is reflected from the first reflection mirror 41c, reflected from the light splitter 42c, that is, the dichroic light splitter, and photographed by the visible light camera 20 through the second light path.
이 때, 방사선-광자 변환 모듈(30)로부터 방출되는 광자는 광자 차단부(43c)에 의해 차단되어 전자증배 CCD 카메라(10)로 향하기 못하게 된다. 이에 따라, 제1 촬영 모드에서는 전자증배 CCD 카메라(10)와 가시광 카메라(20)에 의해 근적외선 형광 영상과 제1 가시광 영상이 동시에 촬영된다.At this time, the photons emitted from the radiation-photon conversion module 30 are blocked by the photon blocking part 43c and are not directed to the electron multiplication CCD camera 10. Accordingly, in the first photographing mode, the near infrared fluorescence image and the first visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
*한편, 복합 영상화 제어부(200)는 제2 촬영 모드에서, 광 경로 전환 모듈(41c,42c,52c)을 제2 동작 모드로 이동시킨다. 상술한 바와 같이, 광 경로 전환 모듈(41c,42c,52c)이 제2 동작 모드로 이동하는 경우, 광 분할부(42c)가 교차 영역으로부터 이탈되고, 제2 반사 미러(52c)가 교차 영역에 배치되어, 도 14 및 도 15의 (b)에 도시된 바와 같이 배치된다.Meanwhile, the composite imaging controller 200 moves the optical path switching modules 41c, 42c, and 52c to the second operation mode in the second photographing mode. As described above, when the optical path switching modules 41c, 42c, and 52c move to the second operation mode, the light splitter 42c is separated from the intersection area, and the second reflection mirror 52c is located at the intersection area. And as shown in Figs. 14 and 15 (b).
여기서, 가시광 광원(62)이 온된 상태이면, 생체로부터 반사되는 가시광은 제1 반사 미러(41c)로부터 반사된 후, 다시 제2 반사 미러(52c)의 제1 반사면으로부터 반사되어 제2 광 경로를 통해 가시광 카메라(20)를 향하게 된다. 또한, 방사선-광자 변환 모듈(30)로부터 방출되는 광자는 제2 반사 미러(52c)의 제2 반사면으로부터 반사되어 제1 광 경로를 통해 전자증배 CCD 카메라(10)로 향하게 된다. 이에 따라, 제2 촬영 모드에서는 전자증배 CCD 카메라(10)와 가시광 카메라(20)에 의해 방사선 영상과 제2 가시광 영상이 동시에 촬영된다.Here, when the visible light source 62 is turned on, the visible light reflected from the living body is reflected from the first reflecting mirror 41c and then reflected from the first reflecting surface of the second reflecting mirror 52c to the second light path. To face the visible light camera 20 through. Further, photons emitted from the radiation-photon conversion module 30 are reflected from the second reflecting surface of the second reflecting mirror 52c and directed to the electron multiplication CCD camera 10 through the first optical path. Accordingly, in the second photographing mode, the radiation image and the second visible light image are simultaneously photographed by the electron multiplication CCD camera 10 and the visible light camera 20.
전술한 실시예들에서와 마찬가지로, 복합 영상화 제어부(200)는 제2 촬영 모드에서 근적외선 광원(61)을 오프시킬 수 있다. 또한, 전술한 실시예서와 마찬가지로 근적외선 차단 필터(90)가 배치될 수 있다.As in the above-described embodiments, the complex imaging controller 200 may turn off the NIR light source 61 in the second photographing mode. In addition, the near-infrared cut filter 90 may be disposed as in the above-described embodiment.
여기서, 제1 실시예를 통해 설명한 복합 영상화 제어부(200)의 영상 보정 및 정합은 제2 내지 제4 실시예에서도 적용 가능함은 물론이다. 또한, 전술한 실시예에서는 광 분할부(42c)가 이색성 광 분할기 형태로 마련되는 것을 예로 하였으나, 입사되는 광을 대략 50대 50으로 분할하여 투과 및 반사시키는 통상적인 광 분할기도 적용될 수 있음은 물론이다.Here, the image correction and registration of the composite imaging controller 200 described through the first embodiment may be applicable to the second to fourth embodiments, of course. In addition, in the above-described embodiment, the light splitter 42c is provided in the form of a dichroic light splitter. However, a conventional light splitter that splits and transmits and reflects incident light by approximately 50 to 50 may be applied. Of course.
비록 본 발명의 몇몇 실시예들이 도시되고 설명되었지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 당업자라면 본 발명의 원칙이나 정신에서 벗어나지 않으면서 본 실시예를 변형할 수 있음을 알 수 있을 것이다. 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정해질 것이다.Although some embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that modifications may be made to the embodiment without departing from the spirit or spirit of the invention. . It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
[부호의 설명][Description of the code]
100,100a,100b,100c : 의료용 복합 이미징 시스템100,100a, 100b, 100c: Medical Complex Imaging System
10 : 전자증배 CCD 카메라 20 : 가시광 카메라10: electron multiplication CCD camera 20: visible light camera
30 : 방사선-광자 변환 모듈 31 : 콜리메이터30: radiation-photon conversion module 31: collimator
32 : 신틸레이터 40,40a,42b,42c : 광 분할부32: scintillator 40, 40a, 42b, 42c: light splitting part
43b,43c : 광자 차단부 41b,41c,50a,51,52c : 반사 미러43b, 43c: Photon blocking part 41b, 41c, 50a, 51, 52c: Reflective mirror
61 : 근적외선 광원 62 : 가시광 광원61: near infrared light source 62: visible light source
70 : 모듈 구동부 90 : 근적외선 차단 필터70: module driving unit 90: near infrared cut filter
200 : 복합 영상화 제어부200: composite imaging control unit
본 발명은 감시림프절의 암 전이 여부를 검사하는 등의 의료용 영상 장비에 적용될 수 있다.The present invention can be applied to medical imaging equipment, such as to check whether the lymph nodes of the lymph nodes metastasis.

Claims (15)

  1. 의료용 복합 이미징 시스템에 있어서,In a medical complex imaging system,
    제1 광 경로 상에 배치되는 전자증배 CCD 카메라와;An electron multiplication CCD camera disposed on the first optical path;
    제2 광 경로 상에 배치되어 가시광 영상을 촬영하는 가시광 카메라와;A visible light camera disposed on the second light path to photograph a visible light image;
    생체로부터 방출되는 방사선을 광자로 변환하여 방출하는 방사선-광자 변환 모듈과;A radiation-photon conversion module for converting and radiating radiation emitted from the living body into photons;
    생체로부터 반사되는 근적외선과 상기 방사선-광자 변환 모듈로부터 방출되는 광자 중 근적외선이 상기 제1 광 경로 향하게 하고 생체로부터 반사되는 가시광이 상기 제2 광 경로로 향하게 하는 제1 동작 모드와, 생체로부터 반사되는 근적외선과 상기 방사선-광자 변환 모듈로부터 방출되는 광자 중 광자가 상기 제1 광 경로로 향하게 하고 생체로부터 반사되는 가시광이 상기 제2 광 경로로 향하게 하는 제1 동작 모드 간을 이동 가능하게 설치되는 광 경로 전환 모듈과;A first operating mode in which near infrared rays reflected from the living body and photons emitted from the radiation-photon conversion module are directed to the first optical path, and visible light reflected from the living body is directed to the second optical path; An optical path movably installed between a near infrared ray and a first operation mode in which photons of photons emitted from the radiation-photon conversion module are directed to the first optical path and visible light reflected from the living body is directed to the second optical path A conversion module;
    상기 광 경로 전환 모듈이 상기 제1 동작 모드에 위치한 상태에서 상기 전자증배 CCD 카메라와 상기 가시광 카메라에 의해 각각 근적외선 형광 영상과 제1 가시광 영상이 촬영되는 제1 촬영 모드와, 상기 광 경로 전환 모듈이 상기 제2 동작 모드에 위치한 상태에서 상기 전자증배 CCD 카메라와 상기 가시광 카메라의 의해 각각 방사선 영상과 제2 가시광 영상이 촬영되는 제2 촬영 모드로 동작하는 복합 영상화 제어부를 포함하는 것을 특징으로 하는 의료용 복합 이미징 시스템.A first photographing mode in which a near infrared fluorescence image and a first visible light image are photographed by the electron multiplication CCD camera and the visible light camera while the optical path switching module is in the first operation mode, and the optical path switching module is And a composite imaging controller configured to operate in a second photographing mode in which a radiographic image and a second visible light image are respectively photographed by the electron multiplying CCD camera and the visible light camera in the second operating mode. Imaging system.
  2. 제1항에 있어서,The method of claim 1,
    상기 광 경로 전환 모듈은The optical path switching module
    상기 제1 동작 모드에서 상기 제1 광 경로와 상기 제2 광 경로가 교차하는 교차 영역에 배치되어 생체로부터 반사되는 광을 분할하여 각각 상기 제1 광 경로와 상기 제2 광 경로로 향하게 하고, 상기 제2 동작 모드에서 상기 교차 영역으로부터 이탈되는 광 분할부와;In the first mode of operation, the first light path and the second light path are disposed in an intersection area where the second light path intersects, and splits the light reflected from the living body to direct the first light path and the second light path, respectively, A light splitter that is separated from the crossing area in a second operation mode;
    상기 제2 동작 모드에서 상기 방사선-광자 변환 모듈로부터 방출되는 광자의 광 경로를 상기 제1 광 경로로 향하게 하고, 상기 제1 동작 모드에서 상기 방사선-광자 변환 모듈로부터 방출되는 광자의 광 경로의 상기 제1 광 경로로의 진입을 차단하는 광자 경로 조절부를 포함하는 것을 특징으로 하는 의료용 복합 이미징 시스템.Directing a light path of photons emitted from the radiation-photon conversion module in the second mode of operation to the first light path, and wherein the light path of photons emitted from the radiation-photon conversion module in the first mode of operation And a photon path controller for blocking entry to the first optical path.
  3. 제2항에 있어서,The method of claim 2,
    상기 광 분할부는 생체에서 반사되는 근적외선과 가시광을 분할하여, 근적외선을 상기 제1 광 경로로 향하게 하고 가시광을 상기 제2 광 경로로 향하게 하는 이색성 광 분할기를 포함하는 것을 특징으로 하는 의료용 복합 이미징 시스템.The optical splitter includes a dichroic light splitter that splits near-infrared light and visible light reflected from a living body to direct near-infrared light to the first optical path and direct visible light to the second light path. .
  4. 제3항에 있어서,The method of claim 3,
    상기 광자 경로 조절부는The photon path control unit
    상기 제2 동작 모드에서 상기 방사선-광자 변환 모듈과 상기 제1 광 경로 사이에 배치되어 상기 방사선-광자 변환 모듈로부터 방출되는 광자를 상기 제1 광 경로로 향하게 하는 적어도 하나의 반사 미러를 포함하는 것을 특징으로 하는 의료용 복합 이미징 시스템.At least one reflective mirror disposed between the radiation-photon conversion module and the first light path in the second mode of operation to direct photons emitted from the radiation-photon conversion module to the first light path. A medical complex imaging system.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 광 경로는 생체로부터 반사되어 상기 이색성 광 분할기를 투과한 근적외선의 광 경로 상에 위치하고;The first optical path is located on a near-infrared light path reflected from a living body and transmitted through the dichroic light splitter;
    상기 제2 광 경로는 생체로부터 반사되어 상기 이색성 광 분할기로부터 반사된 가시광의 광 경로 상에 위치하며;The second optical path is located on the optical path of visible light reflected from the living body and reflected from the dichroic light splitter;
    상기 반사 미러는The reflection mirror is
    상기 방사선-광자 변환 모듈로부터 방출된 광자를 상기 교차 영역으로 반사시키는 제1 반사 미러와;A first reflection mirror for reflecting photons emitted from said radiation-photon conversion module to said intersection area;
    상기 교차 영역에 배치되어 상기 제1 반사 미러로부터 반사된 광자를 상기 제1 광 경로 방향으로 반사시켜 상기 전자증배 CCD 카메라로 향하게 하는 제2 반사 미러를 포함하는 것을 특징으로 하는 의료용 복합 이미징 시스템.And a second reflection mirror disposed at the intersection area to reflect photons reflected from the first reflection mirror in the direction of the first optical path to be directed to the electron multiplication CCD camera.
  6. 제5항에 있어서,The method of claim 5,
    상기 제2 반사 미러는 광자가 반사되는 제1 반사면과, 상기 제1 반사면의 배면에 형성된 제2 반사면을 포함하며;The second reflecting mirror includes a first reflecting surface on which photons are reflected and a second reflecting surface formed on a rear surface of the first reflecting surface;
    상기 제2 반사 미러가 상기 제2 동작 모드에서 상기 교차 영역에 배치될 때 생체로부터 반사되는 가시광이 상기 제2 반사면으로부터 상기 제2 광 경로 방향으로 반사되어 상기 가시광 카메라로 향하는 것을 특징으로 하는 의료용 복합 이미징 시스템.When the second reflection mirror is disposed in the cross region in the second mode of operation, visible light reflected from the living body is reflected in the direction of the second light path from the second reflecting surface to the visible light camera Complex Imaging System.
  7. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 광 경로는 생체로부터 반사되어 상기 이색성 광 분할기로부터 반사된 근적외선의 광 경로 상에 위치하고;The first optical path is located on a near infrared light path reflected from the living body and reflected from the dichroic light splitter;
    상기 제2 광 경로는 생체로부터 반사되어 상기 이색성 광 분할기를 투과한 가시광의 광 경로 상에 위치하며;The second optical path is located on the optical path of visible light reflected from the living body and transmitted through the dichroic light splitter;
    상기 반사 미러는 상기 방사선-광자 변환 모듈로부터 방출된 광자를 상기 제1 광 경로 방향으로 반사시켜 상기 전자증배 CCD 카메라로 향하게 하게 하는 것을 특징으로 하는 의료용 복합 이미징 시스템.And the reflective mirror reflects the photons emitted from the radiation-photon conversion module in the direction of the first optical path to the electron multiplication CCD camera.
  8. 제1항에 있어서,The method of claim 1,
    상기 방사선-광자 변환 모듈은 상기 제1 광 경로와 상기 제2 광 경로가 교차하는 교차 영역과 생체 사이에 배치되고;The radiation-photon conversion module is disposed between the living body and the intersection area where the first optical path and the second optical path intersect;
    상기 광 경로 전환 모듈은The optical path switching module
    상기 제1 동작 모드 및 상기 제2 동작 모드에서 생체로부터 반사되는 광을 상기 제1 광 경로와 상기 제2 광 경로가 교차하는 교차 영역으로 반사시키는 제1 반사 미러와,A first reflection mirror for reflecting light reflected from the living body in the first and second operating modes to an intersection area where the first optical path and the second optical path cross each other;
    상기 제1 동작 모드에서 상기 교차 영역에 배치되어 상기 제1 반사 미러에 의해 반사된 광을 각각 상기 제1 광 경로와 상기 제2 광 경로로 향하게 하고, 상기 제2 동작 모드에서 상기 교차 영역으로부터 이탈되는 광 분할부를 포함하는 것을 특징으로 하는 의료용 복합 이미징 시스템.Disposed at the intersection region in the first operating mode to direct light reflected by the first reflection mirror to the first optical path and the second optical path, respectively, and to deviate from the intersection region in the second operating mode Medical composite imaging system comprising a light splitting.
  9. 제8항에 있어서,The method of claim 8,
    상기 광 분할부는 생체에서 반사되는 근적외선과 가시광을 분할하여, 근적외선을 상기 제1 광 경로로 향하게 하고 가시광을 상기 제2 광 경로로 향하게 하는 이색성 광 분할기를 포함하는 것을 특징으로 하는 의료용 복합 이미징 시스템.The optical splitter includes a dichroic light splitter that splits near-infrared light and visible light reflected from a living body to direct near-infrared light to the first optical path and direct visible light to the second light path. .
  10. 제9항에 있어서,The method of claim 9,
    상기 제1 광 경로는 상기 제1 반사 미러에 의해 반사되어 상기 이색성 광 분할기로부터 반사된 근적외선의 광 경로 상에 위치하고;The first optical path is located on the near-infrared light path reflected by the first reflection mirror and reflected from the dichroic light splitter;
    상기 제2 광 경로는 상기 제1 반사 미러에 의해 반사되어 상기 이색성 광 분할기를 투과한 가시광의 광 경로 상에 위치하며;The second optical path is located on the optical path of visible light reflected by the first reflective mirror and transmitted through the dichroic light splitter;
    상기 제2 동작 모드에서 상기 이색성 광 분할기가 상기 교차 영역으로부터 이탈되어, 상기 제1 반사 미러에 의해 반사된 광이 상기 제2 광 경로를 통해 상기 가시광 카메라로 향하게 되고, 상기 방사선-광자 변환 모듈로부터 방출된 광자가 상기 제1 광 경로를 통해 상기 전자증배 CCD 카메라로 향하게 되는 것을 특징으로 하는 의료용 복합 이미징 시스템.The dichroic light splitter is separated from the crossing area in the second mode of operation such that light reflected by the first reflection mirror is directed to the visible light camera through the second light path, and the radiation-photon conversion module And the photons emitted from the photomultiplier are directed to the electron multiplication CCD camera through the first optical path.
  11. 제9항에 있어서,The method of claim 9,
    상기 제1 광 경로는 상기 제1 반사 미러에 의해 반사되어 상기 이색성 광 분할기를 투과한 근적외선의 광 경로 상에 위치하고;The first optical path is located on a near infrared light path reflected by the first reflection mirror and transmitted through the dichroic light splitter;
    상기 제2 광 경로는 상기 제1 반사 미러에 의해 반사되어 상기 이색성 광 분할기로부터 반사된 가시광의 광 경로 상에 위치하며;The second optical path is located on the optical path of visible light reflected by the first reflective mirror and reflected from the dichroic light splitter;
    상기 광 경로 전환 모듈은The optical path switching module
    상기 제2 동작 모드에서 상기 교차 영역에 배치되고 상기 제1 동작 모드에서 상기 교차 영역으로부터 이탈되며, 상기 제1 반사 미러에 의해 반사된 광을 상기 제2 광 경로 방향으로 반사시켜 상기 가시광 카메라로 향하게 하는 제1 반사면과, 상기 방사선-광자 변환 모듈로부터 방출된 광자를 상기 제1 광 경로 방향으로 반사시켜 상기 전자증배 CCD 카메라로 향하게 하는 제2 반사면을 갖는 제2 반사 미러를 더 포함하는 것을 특징으로 하는 의료용 복합 이미징 시스템.Disposed at the intersection area in the second operation mode and separated from the intersection area in the first operation mode, reflecting light reflected by the first reflection mirror in the direction of the second light path to the visible light camera And a second reflecting mirror having a first reflecting surface and a second reflecting surface for reflecting photons emitted from the radiation-photon conversion module in the direction of the first light path to the electron multiplication CCD camera. A medical complex imaging system.
  12. 제10항 또는 제11항에 있어서,The method according to claim 10 or 11, wherein
    상기 제1 동작 모드에서 상기 방사선-광자 변환 모듈과 상기 이색성 광 분할기 사이에 배치되어 상기 이색성 광 분할기로 향하는 광자를 차단하는 광자 차단부를 더 포함하는 것을 특징으로 하는 의료용 복합 이미징 시스템.And a photon blocker disposed between the radiation-photon conversion module and the dichroic light splitter in the first mode of operation to block photons directed to the dichroic light splitter.
  13. 제5항, 제7항, 제10항, 또는 제11항에 있어서,The method according to claim 5, 7, 10, or 11,
    생체로부터 반사되는 근적외선의 상기 가시광 카메라로의 진입을 차단하는 근적외선 차단 필터를 더 포함하는 것을 특징으로 하는 의료용 복합 이미징 시스템.And a near-infrared cut-off filter for blocking entry of the near-infrared reflected from the living body into the visible light camera.
  14. 제1항에 있어서,The method of claim 1,
    상기 방사선-광자 변환 모듈은The radiation-photon conversion module
    방사선의 입사 방향에 따라 방사선을 선택적으로 통과시키는 콜리메이터와;A collimator for selectively passing the radiation according to the incident direction of the radiation;
    상기 콜리메이터를 통과한 방사선에 반응하여 방사선 반응 위치에 대응하는 위치의 광자를 방출하는 신틸레이터를 포함하는 것을 특징으로 하는 의료용 복합 이미징 시스템.And a scintillator for emitting photons at positions corresponding to the radiation response positions in response to radiation passing through the collimator.
  15. 제1항에 있어서,The method of claim 1,
    상기 복합 영상화 제어부는The composite imaging controller
    상기 제1 가시광 영상과 상기 제2 가시광 영상을 비교하여, 상기 제1 가시광 영상과 상기 제2 가시광 영상 중 어느 하나가 다른 하나에 정합될 때 변형 파라미터를 추출하며;Comparing the first visible light image with the second visible light image and extracting a deformation parameter when either one of the first visible light image and the second visible light image is matched to the other;
    상기 변형 파라미터에 기초하여 상기 근적외선 형광 영상과 상기 방사선 영상 중 어느 하나를 보정하는 것을 특징으로 하는 의료용 복합 이미징 시스템.The medical complex imaging system, characterized in that for correcting any one of the near infrared fluorescence image and the radiation image based on the deformation parameter.
PCT/KR2016/008210 2015-05-29 2016-07-27 Complex medical imaging system WO2016195464A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150075862A KR101709398B1 (en) 2015-05-29 2015-05-29 Medical multi-modal imaging system
KR10-2015-0075862 2015-05-29

Publications (2)

Publication Number Publication Date
WO2016195464A2 true WO2016195464A2 (en) 2016-12-08
WO2016195464A3 WO2016195464A3 (en) 2017-01-26

Family

ID=57442231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008210 WO2016195464A2 (en) 2015-05-29 2016-07-27 Complex medical imaging system

Country Status (2)

Country Link
KR (1) KR101709398B1 (en)
WO (1) WO2016195464A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213512A (en) * 2019-04-30 2019-09-06 中国电子科技集团公司第四十四研究所 A kind of cambered design structure of multi-tap electron multiplying charge coupled apparatus multiplication region

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102395600B1 (en) * 2020-02-28 2022-05-06 (주)에스원바이오 C-arm photographing apparatus for providing diagnosis about lymphedema

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290128A (en) * 2002-03-29 2003-10-14 Olympus Optical Co Ltd Sentinel lymph node-detecting method
KR101022803B1 (en) * 2009-02-26 2011-03-17 전남대학교산학협력단 Dual-functional image device for fluoresence imaging and gamma ray imaging in small animal
KR101180384B1 (en) * 2010-11-29 2012-09-10 한국화학연구원 A dual imaging device for in vivo optical imaging of upconverting nanoparticles
JP5628062B2 (en) * 2011-02-01 2014-11-19 富士フイルム株式会社 Electronic endoscope system
KR101514204B1 (en) * 2013-07-12 2015-04-23 한국전기연구원 Apparatus and method for detecting NIR fluorescence at Sentinel Lymph Node
KR102076527B1 (en) * 2014-08-27 2020-04-02 삼성전자주식회사 A radiographic imaging apparatus and a method for controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213512A (en) * 2019-04-30 2019-09-06 中国电子科技集团公司第四十四研究所 A kind of cambered design structure of multi-tap electron multiplying charge coupled apparatus multiplication region

Also Published As

Publication number Publication date
KR101709398B1 (en) 2017-02-22
KR20160139927A (en) 2016-12-07
WO2016195464A3 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
WO2012023816A9 (en) Fluorescence microscope for multi-fluorescence image observation, fluorescence image observation method using the same, and multi-fluorescence image observation system
WO2017155265A1 (en) Multispectral imaging device
WO2020159165A1 (en) Infrared stereo camera
KR100777428B1 (en) Image processing device and method
WO2019230878A1 (en) Fluorescence observation device and fluorescence observation method
WO2015080480A1 (en) Wafer image inspection apparatus
WO2014163375A1 (en) Method for inspecting for foreign substance on substrate
US9759662B2 (en) Examination device and examination method
WO2020130598A1 (en) Three-dimensional intraoral scanner and intraoral scanning method using same
WO2016195464A2 (en) Complex medical imaging system
WO2016080716A1 (en) Iris recognition camera system, terminal comprising same, and iris recognition method of system
WO2013012106A1 (en) Camera for detecting metal surface defects, device for detecting metal surface defects including the camera, and method for detecting metal surface defects
JPH11211668A (en) Method and apparatus for detection of defect
WO2022045497A1 (en) User authentication device and control method therefor
WO2014148781A1 (en) Three-dimensional shape measuring device capable of measuring color information
WO2015115770A1 (en) Calibration device and camera system
KR20040035553A (en) Failure analysis method
WO2020230930A1 (en) Thermal imaging camera and control method thereof
WO2020101157A1 (en) Compound microscope system
WO2014126401A1 (en) Optical interference tomographic method and apparatus
WO2018101623A1 (en) Method and device for correcting defocused photoacoustic image distortion using optical coherence tomography image
US6410930B1 (en) Method and apparatus for aligning a color scannerless range imaging system
WO2019124739A1 (en) Multi-image endoscope system
WO2019146904A1 (en) Head mount system for providing surgery support image
WO2019177350A1 (en) Fluorescein fluorescent fundus angiography device employing polarizing beam splitter and linear polarizing filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803817

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803817

Country of ref document: EP

Kind code of ref document: A2