WO2018101623A1 - Method and device for correcting defocused photoacoustic image distortion using optical coherence tomography image - Google Patents

Method and device for correcting defocused photoacoustic image distortion using optical coherence tomography image Download PDF

Info

Publication number
WO2018101623A1
WO2018101623A1 PCT/KR2017/012442 KR2017012442W WO2018101623A1 WO 2018101623 A1 WO2018101623 A1 WO 2018101623A1 KR 2017012442 W KR2017012442 W KR 2017012442W WO 2018101623 A1 WO2018101623 A1 WO 2018101623A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
photoacoustic
optical interference
optoacoustic
optical
Prior art date
Application number
PCT/KR2017/012442
Other languages
French (fr)
Korean (ko)
Inventor
김철홍
이동현
이창호
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2018101623A1 publication Critical patent/WO2018101623A1/en

Links

Images

Classifications

    • G06T5/80
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20061Hough transform

Definitions

  • the present invention relates to a method and apparatus for correcting an out of focus optoacoustic image distortion using an optical tomography image. More specifically, the present invention relates to a fixed ultrasonic transducer and a light scanning apparatus for beam scanning using a galvano scanner. Non-focus using optical tomography to correct the distortion of the optoacoustic image based on the image obtained from the optical coherence tomography apparatus based on the image distortion generated by the distance between the irradiated sample and the ultrasonic transducer. The present invention relates to a photoacoustic image distortion correction method and apparatus.
  • the photoacoustic imaging technology is a technique that can measure the thermal ultrasonic signals generated by the light source to non-invasively image the microstructure of the inside of the biological tissue. to be.
  • the photoacoustic imaging technique is widely used in clinical and preclinical studies because it can obtain functional information such as structural information and oxygen saturation in the living body.
  • the photoacoustic imaging technique uses a non-focus transducer to detect an accurate position in the photoacoustic depth direction of the dust region due to the difference between the speed of light and the speed of the photoacoustic signal. There was a problem being issued.
  • the optical scanning method using focusing of the light source of the conventional photoacoustic microscope imaging apparatus includes a method of moving a light and an ultrasonic transducer using a step motor, a method of moving a sample using a step motor, and a galvanometer
  • the method of moving the beam by using is mainly used.
  • the beam is moved by using a galvanometer, because the beam is moved while the signal acquisition area of the ultrasonic transducer is fixed, so that the farther region is the signal distortion due to the speed difference between the light and the optoacoustic signal. Will be.
  • the time taken for the photoacoustic signal generated by the laser irradiated sample to reach the ultrasonic transducer is changed, which causes distortion of the image.
  • the optical coherence tomography device is a device capable of real-time imaging of the inside of the biological tissue by combining the interference phenomenon of the laser light source and the principle of confocal microscope, the optical coherence tomography device is reflected and scattered by irradiating light Since high-resolution tomography is obtained by detecting light signals, distortion of the image does not occur even if optical scanning is performed using a galvanometer.
  • the present applicant proposes a method for correcting a distortion phenomenon of an optoacoustic image generated when acquiring an optoacoustic signal by using a fixed nonfocus ultrasound transducer in the process of acquiring an optoacoustic image in an optoacoustic microscope imaging apparatus. I would like to.
  • the present invention has been proposed to solve the above problems of the conventionally proposed methods, which is caused by the distance between the position of the ultrasonic transducer of the optoacoustic microscope imaging device and the acquisition position of the optoacoustic signal which is changed by sample scanning.
  • the photoacoustic image distortion By configuring the photoacoustic image distortion to correct the distortion of the optoacoustic image based on the optical coherence tomography image, it is possible to effectively correct the distortion of the optoacoustic image in the depth direction generated by the conventional photoacoustic microscope imaging apparatus.
  • An object of the present invention is to provide a method and apparatus for correcting a non-focal photoacoustic image distortion using an optical tomography image, which enables a more accurate image acquisition of an optical acoustic tomography.
  • the present invention is a distortion phenomenon of the optoacoustic image by correcting the optoacoustic image based on the obtained optical coherence tomography image obtained by using the photoacoustic microscope imaging device and the optical interference tomography apparatus at the same time
  • Another object of the present invention is to provide a method and apparatus for correcting a non-focused optoacoustic image distortion using an optical tomography image, so as to continuously correct the PSA.
  • Non-focal photoacoustic image distortion correction method using an optical tomography image for achieving the above object
  • Non-focal photoacoustic image distortion correction method using optical tomography image
  • step (1) Preferably, in step (1),
  • the photoacoustic image capturing unit and the optical coherence tomography unit combine lasers in the same optical path and scan the same area of the same biological tissue sample to acquire the photoacoustic original image and the optical interference original image.
  • the photoacoustic image pickup unit Preferably, the photoacoustic image pickup unit,
  • It may be configured as a photoacoustic microscope imaging device for measuring the thermal ultrasonic signal generated by the light source irradiated to the biological tissue sample to non-invasive to image the microstructure inside the biological tissue sample.
  • the photoacoustic image pickup unit More preferably, the photoacoustic image pickup unit,
  • the biological tissue sample may be photographed and imaged to a depth of 10 cm at the resolution of the micro area.
  • the photoacoustic image pickup unit More preferably, the photoacoustic image pickup unit,
  • It can be configured to include a fixed ultrasound transducer and a galvano scanner.
  • the photoacoustic original image More preferably, the photoacoustic original image
  • step (3) the step (3)
  • (3-1) detecting, by the optoacoustic image distortion correction unit, edges of the received photoacoustic original image and the optical interference original image;
  • step (33-2) detecting a slope of a straight line in each image image of which edges are detected through step (3-1);
  • step (3-1) More preferably, in the step (3-1),
  • Edges of the photoacoustic original image and the optical interference original image are detected by applying an edge detection algorithm to the photoacoustic original image and the optical interference original image provided from the photoacoustic image capturing unit and the optical interference tomography unit. Processing can be performed.
  • step (3-2) More preferably, in the step (3-2),
  • step (3-1) the inclination of the straight line may be detected in each image image of which the edge is detected, and the process of detecting and obtaining the inclination of the straight line using Hough transform may be performed.
  • step (3-3) More preferably, in the step (3-3),
  • the inclination of the optical interference image and the inclination of the optoacoustic image detected in step (3-2) may be calculated, and the inclination difference between the inclination of the optical interference image and the inclination of the optoacoustic image may be obtained.
  • step (3-4) More preferably, in step (3-4),
  • the distortion of the photoacoustic image is corrected by using the difference between the slope of the optical interference image and the slope of the photoacoustic image calculated through the step (3-3), but the photoacoustic image is warped by the difference of the slope.
  • the distortion of the image may be corrected.
  • Non-focal photoacoustic image distortion correction method using an optical tomography image for achieving the above object
  • Non-focal photoacoustic image distortion correction method using optical tomography image
  • the optoacoustic image distortion correcting unit detects edges of the photoacoustic original image and the optical interference original image provided from the photoacoustic image capturing unit and the optical interference tomography unit through step (12). Applying an algorithm to detect edges of the photoacoustic original image and the optical interference original image;
  • a non-focused optoacoustic image distortion correction apparatus using optical tomography image uses optical tomography image
  • An optoacoustic imaging unit for acquiring and outputting an optoacoustic original image of a biological tissue sample
  • An optical coherence tomography unit for obtaining and outputting an optical interference original image of the biological tissue sample
  • Photoacoustic image receiving the photoacoustic original image and the optical interference original image obtained from the photoacoustic image pickup unit and the optical interference tomography unit to correct the distortion of the photoacoustic original image based on the optical interference original image Including the distortion correction unit is characterized by its configuration.
  • the non-focus photoacoustic image distortion correction device Preferably, the non-focus photoacoustic image distortion correction device,
  • the photoacoustic image capturing unit and the optical interference tomography unit combine the lasers in the same optical path and scan the same area of the same tissue sample at the same time to control driving to obtain the photoacoustic original image and the optical interference original image. .
  • the photoacoustic image pickup unit Preferably, the photoacoustic image pickup unit,
  • It may be configured as a photoacoustic microscope imaging device for measuring the thermal ultrasonic signal generated by the light source irradiated to the biological tissue sample to non-invasive to image the microstructure inside the biological tissue sample.
  • the photoacoustic image pickup unit More preferably, the photoacoustic image pickup unit,
  • It can be configured to include a fixed ultrasound transducer and a galvano scanner.
  • the optoacoustic imaging unit is configured to:
  • image distortion may be generated in the optoacoustic image obtained by the distance between the sample to which the light is irradiated and the distance from the ultrasound transducer.
  • the optical coherence tomography unit Preferably, the optical coherence tomography unit,
  • An optical coherence tomography apparatus combining the principle of the confocal microscope and the interference phenomenon of the laser light source for imaging the inside of the biological tissue sample in real time.
  • the non-focus photoacoustic image distortion correction device Preferably, the non-focus photoacoustic image distortion correction device,
  • the optoacoustic image capturing unit, the optical coherence tomography unit, and the optoacoustic image distortion correction unit may be configured as a single device, or may be electrically connected and connected to a separate photoacoustic microscope imaging apparatus, an optical coherence tomography apparatus, and image processing control. It can be configured as a device.
  • the distance between the position of the ultrasonic transducer of the photoacoustic microscope imaging device and the acquisition position of the photoacoustic signal changed by sample scanning The photoacoustic image distortion caused by the photoacoustic tomography can be corrected based on the optical coherence tomography to effectively correct the distortion of the photoacoustic image in the depth direction generated by the conventional photoacoustic microscopy imager. It can be calibrated and can make it possible to acquire an image of a more accurate optoacoustic tomography.
  • the photoacoustic image is corrected by correcting the photoacoustic image based on the obtained optical coherence tomography image obtained by capturing the same position simultaneously using the photoacoustic microscope imaging device and the optical interference tomography apparatus. It is possible to continuously correct the phenomenon.
  • FIG. 1 is a block diagram showing the configuration of an apparatus for correcting a non-focused optoacoustic image distortion using an optical tomography image according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a configuration of an optoacoustic image capturing unit of an apparatus for correcting a non-focused optoacoustic image distortion using an optical tomography image according to an exemplary embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating an operation of a non-focused photoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention.
  • FIG. 4 is a view illustrating an operation flow of a distortion correction step of an optoacoustic original image in a non-focal photoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating another example of a non-focal photoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an optoacoustic signal acquisition process and an acquired optoacoustic and photointerference original image of a non-focused optoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an image changed for each process of the distortion correction step of the photoacoustic original image in the non-focused photoacoustic image distortion correction method using the optical tomography image according to an embodiment of the present invention.
  • S260 step of correcting the distortion of the optoacoustic image by warping the optoacoustic image by the difference of the slope
  • FIG. 1 is a block diagram showing the configuration of a non-focused optoacoustic image distortion correction apparatus using an optical tomography image according to an embodiment of the present invention
  • Figure 2 is a optical tomographic image according to an embodiment of the present invention
  • FIG. 10 is a diagram schematically illustrating a configuration of an optoacoustic image capturing unit of a non-focused optoacoustic image distortion correction apparatus.
  • the non-focused optoacoustic image distortion correction apparatus 100 using the optical tomographic image according to an embodiment of the present invention includes an optoacoustic image capturing unit 110 and an optical interference tomography.
  • the photographing unit 120 and the photoacoustic image distortion correction unit 130 may be configured.
  • the photoacoustic image capturing unit 110 is configured to acquire and output a photoacoustic original image of a biological tissue sample.
  • the photoacoustic image capturing unit 110 may be configured as an optoacoustic microscope imaging apparatus that measures a thermal ultrasonic signal generated by a light source irradiated onto a biological tissue sample to non-invasively image the microstructure inside the biological tissue sample.
  • the photoacoustic image capturing unit 110 may include a fixed ultrasonic transducer 111 and a galvano scanner 112.
  • the photoacoustic image capturing unit 110 performs beam scanning using the fixed ultrasonic transducer 111 and the galvano scanner 112, and thus the position of the sample to which light is irradiated and the ultrasonic transducer 111 Image distortion may occur in the optoacoustic image obtained due to the distance difference.
  • the photoacoustic original image includes structural information and oxygen saturation in the biological tissue sample.
  • the optical coherence tomography unit 120 is configured to acquire and output the optical interference original image of the biological tissue sample.
  • the optical coherence tomography unit 120 may be configured as an optical coherence tomography apparatus combining the principle of the confocal microscope and the interference phenomenon of the laser light source for imaging the inside of the biological tissue sample in real time.
  • the non-focal photoacoustic image distortion correction apparatus 100 combines the lasers of the photoacoustic image capturing unit 110 and the optical coherence tomography unit 120 in the same optical path and scans the same area of the same biological tissue sample at the same time. By imaging, the driving control is performed such that the photoacoustic original image and the optical interference original image are obtained.
  • the optoacoustic image distortion correction unit 130 receives the photoacoustic original image and the optical interference original image obtained from the optoacoustic image capturing unit 110 and the optical interference tomography unit 120, based on the optical interference original image. It is the configuration to correct the distortion of the photoacoustic original image.
  • the photoacoustic image distortion correction unit 130 detects edges by applying an edge detection algorithm to each of the photoacoustic and optical interference original images, and detects the slope of a straight line using a Hough transform in each image image. The slope difference between the interference and the optoacoustic image is calculated, and the distortion of the optoacoustic image is corrected by warping the optoacoustic image by the difference of the inclination.
  • the non-focal photoacoustic image distortion correction apparatus 100 includes the photoacoustic image capturing unit 110, the optical coherence tomography unit 120, and the photoacoustic image distortion correcting unit 130 as a single device, Or a separate optoacoustic microscope imaging device, an optical coherence tomography device, and an image processing control device that are electrically connected and connected.
  • FIG. 3 is a view illustrating an operation flow of a non-focal photoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention
  • FIG. 4 is a view using an optical tomography image according to an embodiment of the present invention.
  • the operation flow of the distortion correction step of the photoacoustic original image is shown.
  • the non-focal photoacoustic image distortion correction method using the optical tomography image according to an embodiment of the present invention includes: acquiring the photoacoustic original image and the optical interference original image (S110). ), Providing a photoacoustic and optical interference original image (S120), and correcting the distortion of the photoacoustic original image (S130).
  • the photoacoustic original image and the optical interference original image of the biological tissue sample may be obtained using the photoacoustic image capturing unit 110 and the optical interference tomography unit 120.
  • the lasers of the photoacoustic imaging unit 110 and the optical coherence tomography unit 120 are combined and scanned in the same optical path to simultaneously image regions of the same biological tissue sample as shown in FIG.
  • Photoacoustic original image and optical interference original image can be obtained.
  • the photoacoustic image capturing unit 110 may be configured as a photoacoustic microscope imaging device that measures the thermal ultrasonic signal generated by the light source irradiated onto the biological tissue sample to non-invasively image the microstructure inside the biological tissue sample. have.
  • the photoacoustic imaging unit 110 may photograph and image a biological tissue at a depth of 10 cm at a resolution of a micro area, and includes a fixed ultrasonic transducer 111 and a galvano scanner 112. Can be configured.
  • the photoacoustic original image includes structural information and oxygen saturation in a biological tissue sample.
  • step S120 the photoacoustic original image and the optical interference original image obtained in step S110 are transmitted to be received by the photoacoustic image distortion correction unit 130.
  • the distortion of the photoacoustic original image is corrected based on the optical interference original image received by the photoacoustic image distortion correcting unit 130.
  • the photoacoustic image distortion correction unit 130 the step of detecting the edge of the received photoacoustic original image and the optical interference original image (S131), and the edge through the step S131 Detecting an inclination of a straight line in each detected image image (S132), calculating an inclination of the optical interference image detected in step S132 and an inclination of the optoacoustic image (S133), and in step S133 Compensating for the distortion of the optoacoustic image by using the calculated difference between the inclination of the optical interference image and the inclination of the photoacoustic image (S134).
  • step S131 an edge for each of the photoacoustic original image PAM and the optical interference original image OCT shown in FIGS. 7A and 7 provided from the photoacoustic image capturing unit 110 and the optical interference tomography unit 120 is provided.
  • the detection algorithm is applied to detect edges of the photoacoustic original image and the optical interference original image, such as c and d of FIG. 7.
  • step S132 a slope of a straight line as shown in e and f of FIG. 7 is detected from each image image of which edges are detected through step S131, but a process of detecting and obtaining the slope of the straight line using a Hough transform is performed. .
  • step S133 the inclination of the optical interference image and the inclination of the optoacoustic image detected through step S132 are calculated, and as shown in g of FIG. 7, the inclination difference between the inclination of the optical interference image and the inclination of the optoacoustic image is obtained.
  • step S134 the distortion of the optoacoustic image is corrected by using the difference between the inclination of the optical interference image and the inclination of the optoacoustic image calculated in step S133, and the photoacoustic image is warped by the difference of the inclinations. As in h, distortion of the photoacoustic image is corrected.
  • FIG. 5 is a diagram illustrating another example of a non-focused optoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention.
  • the non-focal photoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention includes obtaining an optoacoustic original image and an optical interference original image (S210), and Transmitting an acoustic and optical interference original image (S220), detecting an edge by applying an edge detection algorithm to each photoacoustic and optical interference original image (S230), and using Hough transform in each image image.
  • Detecting an inclination of the straight line (S240), calculating an inclination of the optical interference and the optoacoustic image, obtaining an inclination difference (S250), and warping the optoacoustic image by the difference of the inclinations of the optoacoustic image. It may be implemented including the step of correcting the distortion (S260).
  • step S210 the lasers of the photoacoustic imaging unit 110 and the optical coherence tomography unit 120 are combined in the same optical path and then scanned to simultaneously image the regions of the same biological tissue sample, and thus the photoacoustic original image and the optical interference original. Acquire an image.
  • step S210 the photoacoustic original image PAM and the optical interference original image OCT are obtained.
  • FIG. 6B illustrates the acquired photoacoustic original image PAM and optical interference original image OCT.
  • step S220 the photoacoustic original image and the optical interference original image obtained in step S210 are transmitted to be received by the photoacoustic image distortion correction unit.
  • step S230 the photoacoustic image distortion correction unit 130 is applied to the photoacoustic original image and the optical interference original image provided from the photoacoustic image capturing unit 110 and the optical interference tomography unit 120 through step S220.
  • the edge detection algorithm is applied to detect the edges of the photoacoustic original image and the optical interference original image.
  • 7 a and b show an optical interference original image (OCT) and an optoacoustic original image (PAM), and c and d of FIG. 7 indicate edge detection of an optical interference original image (OCT) and an optoacoustic original image (PAM). Display the image.
  • step S240 the slope of the straight line is detected using the Hough transform in each image image of which the edge is detected in step S230.
  • 7E and 7E show an image of a straight line inclination, that is, a line detected from an edge detection image of an optical interference original image OCT and an optoacoustic original image PAM.
  • step S250 the inclination of the optical interference image and the inclination of the optoacoustic image detected through step S240 are calculated, and the inclination difference between the inclination of the optical interference image and the inclination of the optoacoustic image is calculated.
  • 7g illustrates the difference between the inclinations of the optical interference image OCT and the optoacoustic image PAM.
  • step S260 the distortion of the optoacoustic image is corrected by warping the optoacoustic image by a difference between the inclination of the photointerference image and the inclination of the optoacoustic image calculated in step S250.
  • 7H illustrates the image distortion correction result of the photoacoustic image (PAM) using the derived slope.
  • FIG. 6 is a diagram illustrating an optoacoustic signal acquisition process and an acquired optoacoustic and coherent original image of the non-focal photoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention.
  • 6 (a) shows the process of acquiring the photoacoustic signal, and when the laser beam is scanned while the laser beam moves in the directions (1), (2) and (3), the laser beam is irradiated at the position of (1). At this time, the irradiation position of the ultrasonic transducer 111 and the laser beam is closer to when the laser is irradiated to (2) and (3).
  • 6B is an image of a needle placed horizontally using the photoacoustic imaging unit 110 and the optical interference tomography unit 120. That is, although the optical interference original image (OCT) under FIG. 6 (b) shows the horizontal position of the needle well, the photoacoustic original image (PAM) above FIG. 6 (b) shows the transmission distance of the ultrasonic signal. This causes distortion in the image and shows an image in which the needle is inclined.
  • OCT optical interference original image
  • PAM photoacoustic original image
  • FIG. 7 is a diagram illustrating an image changed for each process of the distortion correction step of the photoacoustic original image in the non-focused photoacoustic image distortion correction method using the optical tomography image according to an embodiment of the present invention.
  • 7A and 7B show an optical interference image OCT and an optoacoustic image before correction of distortion
  • c and d of FIG. 7 represent an image using an edge detection algorithm for the optical interference image and the photoacoustic image.
  • the slope of the needle may be derived using the Hough transform in the edge-detected image.
  • Fig. 7 e and f show the derived inclination of the needle in the original image.
  • FIG. 7 g shows the difference between the inclination obtained from the optical interference image and the inclination obtained from the optoacoustic image, and warps the optoacoustic image to correct distortion. do.
  • the corrected result may be represented as shown in h of FIG. 7. That is, FIG.
  • FIG. 7 illustrates a process of correcting distortion of an optoacoustic image based on an optical coherence tomography image
  • a and b represent original optical coherence tomography (OCT) and photoacoustic (PAM) original images
  • c and d Edge detection images of OCT and PAM are shown
  • e and f represent slope derived images using Hough transform
  • g represents slope calculation of OCT and PAM
  • h represents PAM image distortion correction result using derived slope.
  • the non-focal photoacoustic image distortion correction method and apparatus using the optical tomography image the photoacoustic signal that is changed by the ultrasonic transducer position and sample scanning of the photoacoustic microscope imaging device
  • the photoacoustic image distortion generated by the distance between the acquisition positions of the photoacoustic images can be corrected based on the optical coherence tomography to correct the distortion of the photoacoustic image. It is possible to effectively correct the distortion of the acoustic image, and to enable more accurate image acquisition of the photoacoustic tomography.
  • the photoacoustic image is corrected based on the optical coherence tomography image obtained by capturing the same position using an optoacoustic microscope imaging device and an optical coherence tomography device at the same time, and continuously correcting the distortion of the photoacoustic image. You can do it.
  • non-focal photoacoustic image distortion correction method and apparatus using the optical tomography image of the present invention will be applied as a key technology for correcting the image distortion of the optoacoustic imaging technology and surgical photoacoustic imaging device that is currently actively researched It is expected to be applied to the research and development of photoacoustic imaging technology and surgical photoacoustic microscope which is currently in the spotlight, and can be applied to the general development of ophthalmic photoacoustic imaging device. That is, the present invention corrects the image distortion generated when using the fixed ultrasonic transducer and galvanometer optical scanning in the optoacoustic microscope imaging apparatus based on the image of the optical coherence tomography apparatus, thereby positioning the ultrasonic transducer. In addition, it is possible to effectively correct an optoacoustic image whose image distortion is changed according to a tilt, based on an optical interference imaging apparatus that simultaneously images the same region.

Abstract

According to a method and a device for correcting defocused photoacoustic image distortion using an optical coherence tomography image provided in the present invention, a photoacoustic image distortion, which is generated due to the distance between the location of an ultrasonic transducer of a photoacoustic microscope imaging device and the acquisition location of a photoacoustic signal changed by means of sample scanning, can be corrected on the basis of an optical coherence tomography image. Therefore, photoacoustic image distortion in the depth direction generated in an existing photoacoustic microscope imaging device can effectively be corrected, and a more accurate photoacoustic tomography image can be obtained.

Description

광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법 및 장치Non-focal photoacoustic image distortion correction method and apparatus using optical tomography image
본 발명은 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법 및 장치에 관한 것으로서, 보다 구체적으로는 고정된 초음파 트랜스듀서와, 갈바노 스캐너를 이용하여 빔 스캐닝을 하는 광음향 현미경 영상기기에서 빛이 조사되는 샘플의 위치와 초음파 트랜스듀서와의 거리차로 인해 발생하는 영상 왜곡을 광간섭 단층 영상장치에서 얻은 영상을 기준으로 하여 광음향 영상의 왜곡을 보정할 수 있도록 하는 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for correcting an out of focus optoacoustic image distortion using an optical tomography image. More specifically, the present invention relates to a fixed ultrasonic transducer and a light scanning apparatus for beam scanning using a galvano scanner. Non-focus using optical tomography to correct the distortion of the optoacoustic image based on the image obtained from the optical coherence tomography apparatus based on the image distortion generated by the distance between the irradiated sample and the ultrasonic transducer. The present invention relates to a photoacoustic image distortion correction method and apparatus.
일반적으로 광음향 영상기술은 광원에 의해 발생하는 열적 초음파 신호를 측정하여 비침습적으로 생체조직 내부의 미세구조를 영상화 할 수 있는 기술로 마이크로 영역의 해상도로 10㎝ 깊이로 촬영이 가능한 고 분해능 영상기기이다. 이러한 광음향 영상기술은 생체 내부의 구조적 정보와 산소포화도와 같은 기능적 정보를 얻을 수 있기 때문에 임상 및 전 임상 연구에 많이 활용되고 있다. 즉, 이러한 광음향 영상기술은 비초점 트랜스듀서를 이용하여 광학적인 스캐닝 방법을 적용 시, 빛의 속도와 광음향 신호의 속도차이로 인하여 먼지역의 광음향 깊이 방향으로 정확한 위치를 알려주지 못하는 왜곡이 발행되는 문제가 있었다.In general, the photoacoustic imaging technology is a technique that can measure the thermal ultrasonic signals generated by the light source to non-invasively image the microstructure of the inside of the biological tissue. to be. The photoacoustic imaging technique is widely used in clinical and preclinical studies because it can obtain functional information such as structural information and oxygen saturation in the living body. In other words, the photoacoustic imaging technique uses a non-focus transducer to detect an accurate position in the photoacoustic depth direction of the dust region due to the difference between the speed of light and the speed of the photoacoustic signal. There was a problem being issued.
이러한 종래의 광음향 현미경 영상기기의 광원의 포커싱을 이용하는 광학 스캐닝을 하는 방법에는, 스텝모터를 이용하여 빛과 초음파 트랜스듀서를 움직이는 방식, 스텝모터를 이용하여 샘플을 이동시키는 방식, 그리고 갈바노 미터를 이용하여 빔을 움직이는 방식이 주로 사용되고 있다. 다양한 광학 스캐닝 방법 중 갈바노 미터를 이용하여 빔을 움직이는 방식은 초음파 트랜스듀서의 신호 획득 구역을 고정된 상태에서 빔을 움직이기 때문에 빛과 광음향 신호의 속도 차이로 먼 지역 일수록 신호의 왜곡이 발생되게 된다. 자세히는 레이저가 조사된 샘플에서 발생한 광음향 신호가 초음파 트랜스듀서에 도달하는 시간이 달라져 이미지가 기울어지는 왜곡현상이 발생 하게 된다. 한편, 광간섭 단층 촬영 장치는 레이저 광원의 간섭 현상과 공초점 현미경의 원리를 조합하여 생체조직 내부를 실시간으로 영상화 할 수 있는 장치로서, 이러한 광간섭 단층 촬영 장치는 빛을 조사하여 반사, 산란된 빛의 신호를 감지하여 고해상도 단층영상을 얻기 때문에 갈바노 미터를 이용하여 광학 스캐닝을 하여도 영상의 왜곡현상이 발생하지 않는 장점을 가지고 있다.The optical scanning method using focusing of the light source of the conventional photoacoustic microscope imaging apparatus includes a method of moving a light and an ultrasonic transducer using a step motor, a method of moving a sample using a step motor, and a galvanometer The method of moving the beam by using is mainly used. Among the various optical scanning methods, the beam is moved by using a galvanometer, because the beam is moved while the signal acquisition area of the ultrasonic transducer is fixed, so that the farther region is the signal distortion due to the speed difference between the light and the optoacoustic signal. Will be. In detail, the time taken for the photoacoustic signal generated by the laser irradiated sample to reach the ultrasonic transducer is changed, which causes distortion of the image. On the other hand, the optical coherence tomography device is a device capable of real-time imaging of the inside of the biological tissue by combining the interference phenomenon of the laser light source and the principle of confocal microscope, the optical coherence tomography device is reflected and scattered by irradiating light Since high-resolution tomography is obtained by detecting light signals, distortion of the image does not occur even if optical scanning is performed using a galvanometer.
이에 본 출원인은 광음향 현미경 영상기기에서 광음향 영상을 획득하는 과정에서 고정된 비초점 초음파 트랜스듀서를 이용하여 광음향 신호를 획득할 때 발생하는 광음향 영상의 왜곡 현상을 보정할 있는 방안을 제시하고자 한다.Therefore, the present applicant proposes a method for correcting a distortion phenomenon of an optoacoustic image generated when acquiring an optoacoustic signal by using a fixed nonfocus ultrasound transducer in the process of acquiring an optoacoustic image in an optoacoustic microscope imaging apparatus. I would like to.
본 발명은 기존에 제안된 방법들의 상기와 같은 문제점들을 해결하기 위해 제안된 것으로서, 광음향 현미경 영상기기의 초음파 트랜스듀서 위치와 샘플 스캐닝에 의해 변화하는 광음향 신호의 획득 위치 간의 거리로 인해 발생하는 광음향의 이미지 왜곡을 광간섭 단층 영상을 기준으로 광음향 영상의 왜곡을 보정할 수 있도록 구성함으로써, 기존의 광음향 현미경 영상기기에서 발생하는 깊이 방향으로의 광음향 영상의 왜곡을 효과적으로 보정 할 수 있고, 보다 정확한 광음향 단층의 영상 획득이 가능하도록 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법 및 장치를 제공하는 것을 그 목적으로 한다.The present invention has been proposed to solve the above problems of the conventionally proposed methods, which is caused by the distance between the position of the ultrasonic transducer of the optoacoustic microscope imaging device and the acquisition position of the optoacoustic signal which is changed by sample scanning. By configuring the photoacoustic image distortion to correct the distortion of the optoacoustic image based on the optical coherence tomography image, it is possible to effectively correct the distortion of the optoacoustic image in the depth direction generated by the conventional photoacoustic microscope imaging apparatus. An object of the present invention is to provide a method and apparatus for correcting a non-focal photoacoustic image distortion using an optical tomography image, which enables a more accurate image acquisition of an optical acoustic tomography.
또한, 본 발명은, 동일한 위치를 동시에 광음향 현미경 영상기기와 광간섭 단층 촬영 장치를 이용하여 촬영하고 획득한 광간섭 단층 영상을 기준으로 광음향 영상을 보정하는 방식으로, 광음향 영상의 왜곡 현상을 지속적으로 보정할 수 있도록 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법 및 장치를 제공하는 것을 또 다른 목적으로 한다.In addition, the present invention is a distortion phenomenon of the optoacoustic image by correcting the optoacoustic image based on the obtained optical coherence tomography image obtained by using the photoacoustic microscope imaging device and the optical interference tomography apparatus at the same time Another object of the present invention is to provide a method and apparatus for correcting a non-focused optoacoustic image distortion using an optical tomography image, so as to continuously correct the PSA.
상기한 목적을 달성하기 위한 본 발명의 특징에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법은,Non-focal photoacoustic image distortion correction method using an optical tomography image according to the characteristics of the present invention for achieving the above object,
광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법으로서,Non-focal photoacoustic image distortion correction method using optical tomography image,
(1) 광음향 영상 촬영부와 광간섭 단층 촬영부를 이용하여 생체조직 샘플의 광음향 원본 영상과 광간섭 원본 영상을 획득하는 단계;(1) acquiring the photoacoustic original image and the optical interference original image of the biological tissue sample by using the photoacoustic imaging unit and the optical interference tomography unit;
(2) 상기 단계 (1)에서 획득된 광음향 원본 영상과 광간섭 원본 영상을 광음향 영상 왜곡 보정부에서 수신하는 단계; 및(2) receiving the photoacoustic original image and the optical interference original image obtained in step (1) by the photoacoustic image distortion correction unit; And
(3) 상기 광음향 영상 왜곡 보정부에서 수신된 광간섭 원본 영상을 기준으로 상기 광음향 원본 영상의 왜곡을 보정하는 단계를 포함하는 것을 그 구성상의 특징으로 한다.And (3) correcting the distortion of the photoacoustic original image based on the optical interference original image received by the photoacoustic image distortion correcting unit.
바람직하게는, 상기 단계 (1)에서는,Preferably, in step (1),
상기 광음향 영상 촬영부와 상기 광간섭 단층 촬영부의 레이저를 동일한 광 경로로 합친 후 스캐닝 하여 동시에 같은 생체조직 샘플의 영역을 이미징 하여 광음향 원본 영상과 광간섭 원본 영상을 획득할 수 있다.The photoacoustic image capturing unit and the optical coherence tomography unit combine lasers in the same optical path and scan the same area of the same biological tissue sample to acquire the photoacoustic original image and the optical interference original image.
바람직하게는, 상기 광음향 영상 촬영부는,Preferably, the photoacoustic image pickup unit,
상기 생체조직 샘플에 조사된 광원에 의해 발생하는 열적 초음파 신호를 측정하여 비침습적으로 생체조직 샘플 내부의 미세 구조를 영상화하는 광음향 현미경 영상기기로 구성될 수 있다.It may be configured as a photoacoustic microscope imaging device for measuring the thermal ultrasonic signal generated by the light source irradiated to the biological tissue sample to non-invasive to image the microstructure inside the biological tissue sample.
더욱 바람직하게는, 상기 광음향 영상 촬영부는,More preferably, the photoacoustic image pickup unit,
상기 마이크로 영역의 해상도로 10㎝의 깊이로 상기 생체조직 샘플을 촬영하고 이미징화 할 수 있다.The biological tissue sample may be photographed and imaged to a depth of 10 cm at the resolution of the micro area.
더욱 바람직하게는, 상기 광음향 영상 촬영부는,More preferably, the photoacoustic image pickup unit,
고정된 초음파 트랜스듀서와 갈바노 스캐너를 포함하여 구성할 수 있다.It can be configured to include a fixed ultrasound transducer and a galvano scanner.
더욱 바람직하게는, 상기 광음향 원본 영상은,More preferably, the photoacoustic original image,
생체조직 샘플 내부의 구조적 정보와 산소포화도를 포함할 수 있다.It may include structural information and oxygen saturation in the biological tissue sample.
바람직하게는, 상기 단계 (3)에서는,Preferably, in step (3),
(3-1) 상기 광음향 영상 왜곡 보정부가, 수신 받은 상기 광음향 원본 영상과 상기 광간섭 원본 영상의 에지를 검출하는 단계;(3-1) detecting, by the optoacoustic image distortion correction unit, edges of the received photoacoustic original image and the optical interference original image;
(3-2) 상기 단계 (3-1)를 통해 에지가 검출된 각각의 이미지 영상에서 직선의 기울기를 검출하는 단계;(3-2) detecting a slope of a straight line in each image image of which edges are detected through step (3-1);
(3-3) 상기 단계 (3-2)를 통해 검출한 광간섭 영상의 기울기와 광음향 영상의 기울기를 계산하는 단계; 및(3-3) calculating the slope of the optical interference image and the slope of the optoacoustic image detected through the step (3-2); And
(3-4) 상기 단계 (3-3)를 통해 계산한 광간섭 영상의 기울기와 광음향 영상의 기울기의 차이를 이용하여 광음향 영상의 왜곡을 보정하는 단계를 포함하여 이루어질 수 있다.And (3-4) correcting the distortion of the optoacoustic image by using the difference between the inclination of the optical interference image and the inclination of the optoacoustic image calculated through the step (3-3).
더욱 바람직하게는, 상기 단계 (3-1)에서는,More preferably, in the step (3-1),
상기 광음향 영상 촬영부와 상기 광간섭 단층 촬영부로부터 제공받은 상기 광음향 원본 영상과 상기 광간섭 원본 영상 각각에 대해 에지검출 알고리즘을 적용하여 상기 광음향 원본 영상과 광간섭 원본 영상의 에지를 검출하는 처리를 수행할 수 있다.Edges of the photoacoustic original image and the optical interference original image are detected by applying an edge detection algorithm to the photoacoustic original image and the optical interference original image provided from the photoacoustic image capturing unit and the optical interference tomography unit. Processing can be performed.
더욱 바람직하게는, 상기 단계 (3-2)에서는,More preferably, in the step (3-2),
상기 단계 (3-1)를 통해 에지가 검출된 각각의 이미지 영상에서 직선의 기울기를 검출하되, 허프 변환을 이용하여 직선의 기울기를 검출하여 구하는 처리를 수행할 수 있다.In step (3-1), the inclination of the straight line may be detected in each image image of which the edge is detected, and the process of detecting and obtaining the inclination of the straight line using Hough transform may be performed.
더욱 바람직하게는, 상기 단계 (3-3)에서는,More preferably, in the step (3-3),
상기 단계 (3-2)를 통해 검출한 광간섭 영상의 기울기와 광음향 영상의 기울기를 계산하고, 상기 광간섭 영상의 기울기와 광음향 영상의 기울기 차이를 구할 수 있다.The inclination of the optical interference image and the inclination of the optoacoustic image detected in step (3-2) may be calculated, and the inclination difference between the inclination of the optical interference image and the inclination of the optoacoustic image may be obtained.
더욱 바람직하게는, 상기 단계 (3-4)에서는,More preferably, in step (3-4),
상기 단계 (3-3)를 통해 계산한 광간섭 영상의 기울기와 광음향 영상의 기울기의 차이를 이용하여 광음향 영상의 왜곡을 보정하되, 기울기의 차이만큼 상기 광음향 영상을 와핑 처리하여 광음향 영상의 왜곡이 보정되도록 할 수 있다.The distortion of the photoacoustic image is corrected by using the difference between the slope of the optical interference image and the slope of the photoacoustic image calculated through the step (3-3), but the photoacoustic image is warped by the difference of the slope. The distortion of the image may be corrected.
상기한 목적을 달성하기 위한 본 발명의 다른 특징에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법은,Non-focal photoacoustic image distortion correction method using an optical tomography image according to another aspect of the present invention for achieving the above object,
광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법으로서,Non-focal photoacoustic image distortion correction method using optical tomography image,
(11) 광음향 영상 촬영부와 광간섭 단층 촬영부의 레이저를 동일한 광 경로로 합친 후 스캐닝 하여 동시에 같은 생체조직 샘플의 영역을 이미징 하여 광음향 원본 영상과 광간섭 원본 영상을 획득하는 단계;(11) combining the lasers of the optoacoustic imaging unit and the optical coherence tomography unit in the same optical path and scanning the same to image regions of the same biological tissue sample to obtain an optoacoustic original image and an optical interference original image;
(12) 상기 단계 (11)에서 획득된 광음향 원본 영상과 광간섭 원본 영상을 광음향 영상 왜곡 보정부에서 수신하는 단계;(12) receiving the photoacoustic original image and the optical interference original image obtained in the step (11) by the photoacoustic image distortion correction unit;
(13) 상기 광음향 영상 왜곡 보정부가, 상기 단계 (12)를 통해 상기 광음향 영상 촬영부와 상기 광간섭 단층 촬영부로부터 제공받은 상기 광음향 원본 영상과 상기 광간섭 원본 영상 각각에 대해 에지검출 알고리즘을 적용하여 상기 광음향 원본 영상과 광간섭 원본 영상의 에지를 검출하는 단계;(13) the optoacoustic image distortion correcting unit detects edges of the photoacoustic original image and the optical interference original image provided from the photoacoustic image capturing unit and the optical interference tomography unit through step (12). Applying an algorithm to detect edges of the photoacoustic original image and the optical interference original image;
(14) 상기 단계 (13)를 통해 에지가 검출된 각각의 이미지 영상에서 허프 변환을 이용하여 직선의 기울기를 검출하는 단계;(14) detecting a slope of a straight line using a Hough transform in each image image of which edges are detected through step (13);
(15) 상기 단계 (14)를 통해 검출한 광간섭 영상의 기울기와 광음향 영상의 기울기를 계산하고, 상기 광간섭 영상의 기울기와 광음향 영상의 기울기 차이를 구하는 단계; 및(15) calculating a slope of the optical interference image and a slope of the photoacoustic image detected through the step (14), and obtaining a difference between the slope of the optical interference image and the slope of the photoacoustic image; And
(16) 상기 단계 (15)를 통해 계산한 광간섭 영상의 기울기와 광음향 영상의 기울기의 차이만큼 광음향 영상을 와핑 처리하여 광음향 영상의 왜곡을 보정하는 단계를 포함하는 것을 그 구성상의 특징으로 한다.(16) a step of correcting the distortion of the optoacoustic image by warping the optoacoustic image by a difference between the inclination of the photointerference image and the inclination of the optoacoustic image calculated through the step (15). It is done.
상기한 목적을 달성하기 위한 본 발명의 특징에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치는,A non-focused optoacoustic image distortion correction apparatus using an optical tomography image according to the characteristics of the present invention for achieving the above object,
광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치로서,A non-focused optoacoustic image distortion correction apparatus using optical tomography image,
생체조직 샘플의 광음향 원본 영상을 획득하여 출력하는 광음향 영상 촬영부;An optoacoustic imaging unit for acquiring and outputting an optoacoustic original image of a biological tissue sample;
상기 생체조직 샘플의 광간섭 원본 영상을 획득하여 출력하는 광간섭 단층 촬영부; 및An optical coherence tomography unit for obtaining and outputting an optical interference original image of the biological tissue sample; And
상기 광음향 영상 촬영부와 상기 광간섭 단층 촬영부로부터 획득된 광음향 원본 영상 및 광간섭 원본 영상을 제공받아 상기 광간섭 원본 영상을 기준으로 상기 광음향 원본 영상의 왜곡을 보정 처리하는 광음향 영상 왜곡 보정부를 포함하는 것을 그 구성상의 특징으로 한다.Photoacoustic image receiving the photoacoustic original image and the optical interference original image obtained from the photoacoustic image pickup unit and the optical interference tomography unit to correct the distortion of the photoacoustic original image based on the optical interference original image Including the distortion correction unit is characterized by its configuration.
바람직하게는, 상기 비초점 광음향 영상 왜곡 보정 장치는,Preferably, the non-focus photoacoustic image distortion correction device,
상기 광음향 영상 촬영부와 상기 광간섭 단층 촬영부의 레이저를 동일한 광 경로로 합친 후 스캐닝 하여 동시에 같은 생체조직 샘플의 영역을 이미징 하여 광음향 원본 영상과 광간섭 원본 영상이 획득되도록 구동 제어할 수 있다.The photoacoustic image capturing unit and the optical interference tomography unit combine the lasers in the same optical path and scan the same area of the same tissue sample at the same time to control driving to obtain the photoacoustic original image and the optical interference original image. .
바람직하게는, 상기 광음향 영상 촬영부는,Preferably, the photoacoustic image pickup unit,
상기 생체조직 샘플에 조사된 광원에 의해 발생하는 열적 초음파 신호를 측정하여 비침습적으로 생체조직 샘플 내부의 미세 구조를 영상화하는 광음향 현미경 영상기기로 구성될 수 있다.It may be configured as a photoacoustic microscope imaging device for measuring the thermal ultrasonic signal generated by the light source irradiated to the biological tissue sample to non-invasive to image the microstructure inside the biological tissue sample.
더욱 바람직하게는, 상기 광음향 영상 촬영부는,More preferably, the photoacoustic image pickup unit,
고정된 초음파 트랜스듀서와 갈바노 스캐너를 포함하여 구성할 수 있다.It can be configured to include a fixed ultrasound transducer and a galvano scanner.
더욱 더 바람직하게는, 상기 광음향 영상 촬영부는,Still more preferably, the optoacoustic imaging unit,
상기 고정된 초음파 트랜스듀서와 갈바노 스캐너를 이용하여 빔 스캐닝을 수행함에 따라 빛이 조사되는 샘플의 위치와 초음파 트랜스듀서와의 거리차로 인해 획득되는 광음향 영상에서 영상 왜곡이 발생될 수 있다.As beam scanning is performed by using the fixed ultrasound transducer and the galvano scanner, image distortion may be generated in the optoacoustic image obtained by the distance between the sample to which the light is irradiated and the distance from the ultrasound transducer.
더욱 더 바람직하게는, 상기 광음향 원본 영상은,Even more preferably, the photoacoustic original image,
생체조직 샘플 내부의 구조적 정보와 산소포화도를 포함할 수 있다.It may include structural information and oxygen saturation in the biological tissue sample.
바람직하게는, 상기 광간섭 단층 촬영부는,Preferably, the optical coherence tomography unit,
생체조직 샘플의 내부를 실시간으로 영상화하는 레이저 광원의 간섭 현상과 공초점 현미경의 원리를 조합하는 광간섭 단층 촬영장치로 구성될 수 있다.An optical coherence tomography apparatus combining the principle of the confocal microscope and the interference phenomenon of the laser light source for imaging the inside of the biological tissue sample in real time.
바람직하게는, 상기 비초점 광음향 영상 왜곡 보정 장치는,Preferably, the non-focus photoacoustic image distortion correction device,
상기 광음향 영상 촬영부, 광간섭 단층 촬영부, 및 광음향 영상 왜곡 보정부를 단일의 장비로 구성하거나, 또는 전기적으로 연결 접속되는 별개의 광음향 현미경 영상기기와 광간섭 단층 촬영장치 및 영상처리 제어장치로 구성될 수 있다.The optoacoustic image capturing unit, the optical coherence tomography unit, and the optoacoustic image distortion correction unit may be configured as a single device, or may be electrically connected and connected to a separate photoacoustic microscope imaging apparatus, an optical coherence tomography apparatus, and image processing control. It can be configured as a device.
본 발명에서 제안하고 있는 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법 및 장치에 따르면, 광음향 현미경 영상기기의 초음파 트랜스듀서 위치와 샘플 스캐닝에 의해 변화하는 광음향 신호의 획득 위치 간의 거리로 인해 발생하는 광음향의 이미지 왜곡을 광간섭 단층 영상을 기준으로 광음향 영상의 왜곡을 보정할 수 있도록 구성함으로써, 기존의 광음향 현미경 영상기기에서 발생하는 깊이 방향으로의 광음향 영상의 왜곡을 효과적으로 보정 할 수 있고, 보다 정확한 광음향 단층의 영상 획득이 가능하도록 할 수 있다.According to the non-focal photoacoustic image distortion correction method and apparatus using the optical tomography image proposed by the present invention, the distance between the position of the ultrasonic transducer of the photoacoustic microscope imaging device and the acquisition position of the photoacoustic signal changed by sample scanning The photoacoustic image distortion caused by the photoacoustic tomography can be corrected based on the optical coherence tomography to effectively correct the distortion of the photoacoustic image in the depth direction generated by the conventional photoacoustic microscopy imager. It can be calibrated and can make it possible to acquire an image of a more accurate optoacoustic tomography.
또한, 본 발명에 따르면, 동일한 위치를 동시에 광음향 현미경 영상기기와 광간섭 단층 촬영 장치를 이용하여 촬영하고 획득한 광간섭 단층 영상을 기준으로 광음향 영상을 보정하는 방식으로, 광음향 영상의 왜곡 현상을 지속적으로 보정할 수 있도록 할 수 있다.Further, according to the present invention, the photoacoustic image is corrected by correcting the photoacoustic image based on the obtained optical coherence tomography image obtained by capturing the same position simultaneously using the photoacoustic microscope imaging device and the optical interference tomography apparatus. It is possible to continuously correct the phenomenon.
도 1은 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치의 구성을 기능블록으로 도시한 도면.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing the configuration of an apparatus for correcting a non-focused optoacoustic image distortion using an optical tomography image according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치의 광음향 영상 촬영부의 구성을 개략적으로 도시한 도면.2 is a diagram schematically illustrating a configuration of an optoacoustic image capturing unit of an apparatus for correcting a non-focused optoacoustic image distortion using an optical tomography image according to an exemplary embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법의 동작 흐름을 도시한 도면.3 is a flowchart illustrating an operation of a non-focused photoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법에서, 광음향 원본 영상의 왜곡 보정 단계의 동작 흐름을 도시한 도면.4 is a view illustrating an operation flow of a distortion correction step of an optoacoustic original image in a non-focal photoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법의 다른 일례의 동작 흐름을 도시한 도면.5 is a flowchart illustrating another example of a non-focal photoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법의 광음향 신호 획득 과정 및 획득한 광음향 및 광간섭 원본 영상을 도시한 도면.FIG. 6 is a diagram illustrating an optoacoustic signal acquisition process and an acquired optoacoustic and photointerference original image of a non-focused optoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention. FIG.
도 7은 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법에서의 광음향 원본 영상의 왜곡 보정 단계의 각 과정별 변화되는 영상을 도시한 도면.FIG. 7 is a diagram illustrating an image changed for each process of the distortion correction step of the photoacoustic original image in the non-focused photoacoustic image distortion correction method using the optical tomography image according to an embodiment of the present invention.
<부호의 설명><Description of the code>
100: 본 발명의 일실시예에 따른 비초점 광음향 영상 왜곡 보정 장치100: non-focal photoacoustic image distortion correction apparatus according to an embodiment of the present invention
110: 광음향 영상 촬영부110: photoacoustic image recording unit
111: 초음파 트랜스듀서111: ultrasonic transducer
112: 갈바노 스캐너112: galvano scanner
120: 광간섭 단층 촬여부120: optical coherence tomography
130: 광음향 영상 왜곡 보정부130: photoacoustic image distortion correction unit
S110: 광음향 원본 영상과 광간섭 원본 영상을 획득하는 단계S110: acquiring the photoacoustic original image and the optical interference original image
S120: 광음향 및 광간섭 원본 영상을 제공하는 단계S120: providing a photoacoustic and optical interference original image
S130: 광음향 원본 영상의 왜곡을 보정하는 단계S130: correcting distortion of the optoacoustic original image
S131: 광음향 및 광간섭 원본 영상의 에지를 검출하는 단계S131: detecting edges of the optoacoustic and optical interference original image
S132: 각각의 이미지 영상에서 직선의 기울기를 검출하는 단계S132: detecting a slope of a straight line in each image image
S133: 광간섭 및 광음향의 기울기를 계산하는 단계S133: calculating the slope of the optical interference and the optoacoustic
S134: 기울기의 차이를 이용하여 광음향 영상의 왜곡을 보정하는 단계S134: correcting distortion of the optoacoustic image by using the difference of the slopes
S210: 광음향 원본 영상과 광간섭 원본 영상을 획득하는 단계S210: Acquiring the photoacoustic original image and the optical interference original image
S220: 광음향 및 광간섭 원본 영상을 전달하는 단계S220: transmitting the photoacoustic and optical interference original image
S230: 광음향 및 광간섭 원본 영상 각각에 대해 에지검출 알고리즘을 적용하여 에지를 검출하는 단계S230: detecting edges by applying an edge detection algorithm to each photoacoustic and optical interference original image
S240: 각각의 이미지 영상에서 허프 변환을 이용하여 직선의 기울기를 검출하는 단계S240: Detecting the slope of the straight line using the Hough transform in each image image
S250: 광간섭 및 광음향 영상의 기울기를 계산하고, 기울기 차이를 구하는 단계S250: calculating the slope of the optical interference and the optoacoustic image, and obtaining the slope difference
S260: 기울기의 차이만큼 광음향 영상을 와핑 처리하여 광음향 영상의 왜곡을 보정하는 단계S260: step of correcting the distortion of the optoacoustic image by warping the optoacoustic image by the difference of the slope
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. However, in describing the preferred embodiment of the present invention in detail, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, the same reference numerals are used throughout the drawings for parts having similar functions and functions.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 ‘연결’ 되어 있다고 할 때, 이는 ‘직접적으로 연결’ 되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 ‘간접적으로 연결’ 되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 ‘포함’ 한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, in the specification, when a part is 'connected' to another part, it is not only 'directly connected' but also 'indirectly connected' with another element in between. Include. In addition, the term "comprising" a certain component means that the component may further include other components, except for the case where there is no contrary description.
도 1은 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치의 구성을 기능블록으로 도시한 도면이고, 도 2는 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치의 광음향 영상 촬영부의 구성을 개략적으로 도시한 도면이다. 도 1 및 도 2에 각각 도시된 바와 같이, 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치(100)는, 광음향 영상 촬영부(110), 광간섭 단층 촬영부(120), 및 광음향 영상 왜곡 보정부(130)를 포함하여 구성될 수 있다.1 is a block diagram showing the configuration of a non-focused optoacoustic image distortion correction apparatus using an optical tomography image according to an embodiment of the present invention, Figure 2 is a optical tomographic image according to an embodiment of the present invention FIG. 10 is a diagram schematically illustrating a configuration of an optoacoustic image capturing unit of a non-focused optoacoustic image distortion correction apparatus. As shown in FIGS. 1 and 2, the non-focused optoacoustic image distortion correction apparatus 100 using the optical tomographic image according to an embodiment of the present invention includes an optoacoustic image capturing unit 110 and an optical interference tomography. The photographing unit 120 and the photoacoustic image distortion correction unit 130 may be configured.
광음향 영상 촬영부(110)는, 생체조직 샘플의 광음향 원본 영상을 획득하여 출력하는 구성이다. 이러한 광음향 영상 촬영부(110)는 생체조직 샘플에 조사된 광원에 의해 발생하는 열적 초음파 신호를 측정하여 비침습적으로 생체조직 샘플 내부의 미세 구조를 영상화하는 광음향 현미경 영상기기로 구성될 수 있다. 여기서, 광음향 영상 촬영부(110)는 고정된 초음파 트랜스듀서(111)와 갈바노 스캐너(112)를 포함하여 구성할 수 있다.The photoacoustic image capturing unit 110 is configured to acquire and output a photoacoustic original image of a biological tissue sample. The photoacoustic image capturing unit 110 may be configured as an optoacoustic microscope imaging apparatus that measures a thermal ultrasonic signal generated by a light source irradiated onto a biological tissue sample to non-invasively image the microstructure inside the biological tissue sample. . The photoacoustic image capturing unit 110 may include a fixed ultrasonic transducer 111 and a galvano scanner 112.
또한, 광음향 영상 촬영부(110)는 고정된 초음파 트랜스듀서(111)와 갈바노 스캐너(112)를 이용하여 빔 스캐닝을 수행함에 따라 빛이 조사되는 샘플의 위치와 초음파 트랜스듀서(111)와의 거리차로 인해 획득되는 광음향 영상에서 영상 왜곡이 발생될 수 있다. 이때, 광음향 원본 영상에는 생체조직 샘플 내부의 구조적 정보와 산소포화도를 포함한다.In addition, the photoacoustic image capturing unit 110 performs beam scanning using the fixed ultrasonic transducer 111 and the galvano scanner 112, and thus the position of the sample to which light is irradiated and the ultrasonic transducer 111 Image distortion may occur in the optoacoustic image obtained due to the distance difference. In this case, the photoacoustic original image includes structural information and oxygen saturation in the biological tissue sample.
광간섭 단층 촬영부(120)는, 생체조직 샘플의 광간섭 원본 영상을 획득하여 출력하는 구성이다. 이러한 광간섭 단층 촬영부(120)는 생체조직 샘플의 내부를 실시간으로 영상화하는 레이저 광원의 간섭 현상과 공초점 현미경의 원리를 조합하는 광간섭 단층 촬영장치로 구성될 수 있다. 여기서, 비초점 광음향 영상 왜곡 보정 장치(100)는 광음향 영상 촬영부(110)와 광간섭 단층 촬영부(120)의 레이저를 동일한 광 경로로 합친 후 스캐닝 하여 동시에 같은 생체조직 샘플의 영역을 이미징 하여 광음향 원본 영상과 광간섭 원본 영상이 획득되도록 구동 제어하게 된다.The optical coherence tomography unit 120 is configured to acquire and output the optical interference original image of the biological tissue sample. The optical coherence tomography unit 120 may be configured as an optical coherence tomography apparatus combining the principle of the confocal microscope and the interference phenomenon of the laser light source for imaging the inside of the biological tissue sample in real time. Here, the non-focal photoacoustic image distortion correction apparatus 100 combines the lasers of the photoacoustic image capturing unit 110 and the optical coherence tomography unit 120 in the same optical path and scans the same area of the same biological tissue sample at the same time. By imaging, the driving control is performed such that the photoacoustic original image and the optical interference original image are obtained.
광음향 영상 왜곡 보정부(130)는, 광음향 영상 촬영부(110)와 광간섭 단층 촬영부(120)로부터 획득된 광음향 원본 영상 및 광간섭 원본 영상을 제공받아 광간섭 원본 영상을 기준으로 광음향 원본 영상의 왜곡을 보정 처리하는 구성이다. 이러한 광음향 영상 왜곡 보정부(130)는 광음향 및 광간섭 원본 영상 각각에 대해 에지검출 알고리즘을 적용하여 에지를 검출하고, 각각의 이미지 영상에서 허프 변환을 이용하여 직선의 기울기를 검출하며, 광간섭 및 광음향 영상의 기울기를 계산하여 기울기 차이를 구하고, 기울기의 차이만큼 광음향 영상을 와핑 처리하여 광음향 영상의 왜곡을 보정 처리하게 된다.The optoacoustic image distortion correction unit 130 receives the photoacoustic original image and the optical interference original image obtained from the optoacoustic image capturing unit 110 and the optical interference tomography unit 120, based on the optical interference original image. It is the configuration to correct the distortion of the photoacoustic original image. The photoacoustic image distortion correction unit 130 detects edges by applying an edge detection algorithm to each of the photoacoustic and optical interference original images, and detects the slope of a straight line using a Hough transform in each image image. The slope difference between the interference and the optoacoustic image is calculated, and the distortion of the optoacoustic image is corrected by warping the optoacoustic image by the difference of the inclination.
또한, 비초점 광음향 영상 왜곡 보정 장치(100)는 광음향 영상 촬영부(110), 광간섭 단층 촬영부(120), 및 광음향 영상 왜곡 보정부(130)를 단일의 장비로 구성하거나, 또는 전기적으로 연결 접속되는 별개의 광음향 현미경 영상기기와 광간섭 단층 촬영장치 및 영상처리 제어장치로 구성할 수 있다.In addition, the non-focal photoacoustic image distortion correction apparatus 100 includes the photoacoustic image capturing unit 110, the optical coherence tomography unit 120, and the photoacoustic image distortion correcting unit 130 as a single device, Or a separate optoacoustic microscope imaging device, an optical coherence tomography device, and an image processing control device that are electrically connected and connected.
도 3은 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법의 동작 흐름을 도시한 도면이고, 도 4는 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법에서, 광음향 원본 영상의 왜곡 보정 단계의 동작 흐름을 도시한 도면이다. 도 3 및 도 4에 각각 도시된 바와 같이, 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법은, 광음향 원본 영상과 광간섭 원본 영상을 획득하는 단계(S110), 광음향 및 광간섭 원본 영상을 제공하는 단계(S120), 및 광음향 원본 영상의 왜곡을 보정하는 단계(S130)를 포함하여 구현될 수 있다.3 is a view illustrating an operation flow of a non-focal photoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention, and FIG. 4 is a view using an optical tomography image according to an embodiment of the present invention. In the focus optoacoustic image distortion correction method, the operation flow of the distortion correction step of the photoacoustic original image is shown. As shown in FIGS. 3 and 4, the non-focal photoacoustic image distortion correction method using the optical tomography image according to an embodiment of the present invention includes: acquiring the photoacoustic original image and the optical interference original image (S110). ), Providing a photoacoustic and optical interference original image (S120), and correcting the distortion of the photoacoustic original image (S130).
단계 S110에서는, 광음향 영상 촬영부(110)와 광간섭 단층 촬영부(120)를 이용하여 생체조직 샘플의 광음향 원본 영상과 광간섭 원본 영상을 획득할 수 있다. 이러한 단계 S110에서는 광음향 영상 촬영부(110)와 광간섭 단층 촬영부(120)의 레이저를 동일한 광 경로로 합친 후 스캐닝 하여 동시에 같은 생체조직 샘플의 영역을 이미징 하여 도 6의 (b)와 같은 광음향 원본 영상과 광간섭 원본 영상을 획득할 수 있다. 여기서, 광음향 영상 촬영부(110)는 생체조직 샘플에 조사된 광원에 의해 발생하는 열적 초음파 신호를 측정하여 비침습적으로 생체조직 샘플 내부의 미세 구조를 영상화하는 광음향 현미경 영상기기로 구성될 수 있다. 또한, 광음향 영상 촬영부(110)는 마이크로 영역의 해상도로 10㎝의 깊이로 생체조직 샘플을 촬영하고 이미징화 할 수 있으며, 고정된 초음파 트랜스듀서(111)와 갈바노 스캐너(112)를 포함하여 구성될 수 있다. 여기서, 광음향 원본 영상은 생체조직 샘플 내부의 구조적 정보와 산소포화도를 포함한다.In operation S110, the photoacoustic original image and the optical interference original image of the biological tissue sample may be obtained using the photoacoustic image capturing unit 110 and the optical interference tomography unit 120. In step S110, the lasers of the photoacoustic imaging unit 110 and the optical coherence tomography unit 120 are combined and scanned in the same optical path to simultaneously image regions of the same biological tissue sample as shown in FIG. Photoacoustic original image and optical interference original image can be obtained. Here, the photoacoustic image capturing unit 110 may be configured as a photoacoustic microscope imaging device that measures the thermal ultrasonic signal generated by the light source irradiated onto the biological tissue sample to non-invasively image the microstructure inside the biological tissue sample. have. In addition, the photoacoustic imaging unit 110 may photograph and image a biological tissue at a depth of 10 cm at a resolution of a micro area, and includes a fixed ultrasonic transducer 111 and a galvano scanner 112. Can be configured. Here, the photoacoustic original image includes structural information and oxygen saturation in a biological tissue sample.
단계 S120에서는, 단계 S110에서 획득된 광음향 원본 영상과 광간섭 원본 영상을 광음향 영상 왜곡 보정부(130)에서 수신할 수 있도록 전달한다.In step S120, the photoacoustic original image and the optical interference original image obtained in step S110 are transmitted to be received by the photoacoustic image distortion correction unit 130.
단계 S130에서는, 광음향 영상 왜곡 보정부(130)에서 수신된 광간섭 원본 영상을 기준으로 광음향 원본 영상의 왜곡을 보정한다. 이러한 단계 S130에서는 도 4에 도시된 바와 같이, 광음향 영상 왜곡 보정부(130)가, 수신 받은 광음향 원본 영상과 광간섭 원본 영상의 에지를 검출하는 단계(S131)와, 단계 S131을 통해 에지가 검출된 각각의 이미지 영상에서 직선의 기울기를 검출하는 단계(S132)와, 단계 S132를 통해 검출한 광간섭 영상의 기울기와 광음향 영상의 기울기를 계산하는 단계(S133)와, 단계 S133을 통해 계산한 광간섭 영상의 기울기와 광음향 영상의 기울기의 차이를 이용하여 광음향 영상의 왜곡을 보정하는 단계(S134)를 포함하여 이루어질 수 있다.In operation S130, the distortion of the photoacoustic original image is corrected based on the optical interference original image received by the photoacoustic image distortion correcting unit 130. In this step S130, as shown in Figure 4, the photoacoustic image distortion correction unit 130, the step of detecting the edge of the received photoacoustic original image and the optical interference original image (S131), and the edge through the step S131 Detecting an inclination of a straight line in each detected image image (S132), calculating an inclination of the optical interference image detected in step S132 and an inclination of the optoacoustic image (S133), and in step S133 Compensating for the distortion of the optoacoustic image by using the calculated difference between the inclination of the optical interference image and the inclination of the photoacoustic image (S134).
단계 S131에서는 광음향 영상 촬영부(110)와 광간섭 단층 촬영부(120)로부터 제공받은 도 7의 a, b와 같은 광음향 원본 영상(PAM)과 광간섭 원본 영상(OCT) 각각에 대해 에지검출 알고리즘을 적용하여 도 7의 c, d와 같은 광음향 원본 영상과 광간섭 원본 영상의 에지를 검출하는 처리를 수행하게 된다. 또한, 단계 S132에서는 단계 S131을 통해 에지가 검출된 각각의 이미지 영상에서 도 7의 e, f와 같은 직선의 기울기를 검출하되, 허프 변환을 이용하여 직선의 기울기를 검출하여 구하는 처리를 수행하게 된다. 이어, 단계 S133에서는 단계 S132를 통해 검출한 광간섭 영상의 기울기와 광음향 영상의 기울기를 계산하고, 도 7의 g와 같이 광간섭 영상의 기울기와 광음향 영상의 기울기 차이를 구하게 된다. 다음, 단계 S134에서는 단계 S133을 통해 계산한 광간섭 영상의 기울기와 광음향 영상의 기울기의 차이를 이용하여 광음향 영상의 왜곡을 보정하되, 기울기의 차이만큼 광음향 영상을 와핑 처리하여 도 7의 h와 같이 광음향 영상의 왜곡이 보정되도록 한다.In step S131, an edge for each of the photoacoustic original image PAM and the optical interference original image OCT shown in FIGS. 7A and 7 provided from the photoacoustic image capturing unit 110 and the optical interference tomography unit 120 is provided. The detection algorithm is applied to detect edges of the photoacoustic original image and the optical interference original image, such as c and d of FIG. 7. Further, in step S132, a slope of a straight line as shown in e and f of FIG. 7 is detected from each image image of which edges are detected through step S131, but a process of detecting and obtaining the slope of the straight line using a Hough transform is performed. . Subsequently, in step S133, the inclination of the optical interference image and the inclination of the optoacoustic image detected through step S132 are calculated, and as shown in g of FIG. 7, the inclination difference between the inclination of the optical interference image and the inclination of the optoacoustic image is obtained. Next, in step S134, the distortion of the optoacoustic image is corrected by using the difference between the inclination of the optical interference image and the inclination of the optoacoustic image calculated in step S133, and the photoacoustic image is warped by the difference of the inclinations. As in h, distortion of the photoacoustic image is corrected.
도 5는 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법의 다른 일례의 동작 흐름을 도시한 도면이다. 도 5에 도시된 바와 같이, 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법은, 광음향 원본 영상과 광간섭 원본 영상을 획득하는 단계(S210)와, 광음향 및 광간섭 원본 영상을 전달하는 단계(S220)와, 광음향 및 광간섭 원본 영상 각각에 대해 에지검출 알고리즘을 적용하여 에지를 검출하는 단계(S230)와, 각각의 이미지 영상에서 허프 변환을 이용하여 직선의 기울기를 검출하는 단계(S240)와, 광간섭 및 광음향 영상의 기울기를 계산하고, 기울기 차이를 구하는 단계(S250), 및 기울기의 차이만큼 광음향 영상을 와핑 처리하여 광음향 영상의 왜곡을 보정하는 단계(S260)를 포함하여 구현될 수 있다.FIG. 5 is a diagram illustrating another example of a non-focused optoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention. As shown in FIG. 5, the non-focal photoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention includes obtaining an optoacoustic original image and an optical interference original image (S210), and Transmitting an acoustic and optical interference original image (S220), detecting an edge by applying an edge detection algorithm to each photoacoustic and optical interference original image (S230), and using Hough transform in each image image. Detecting an inclination of the straight line (S240), calculating an inclination of the optical interference and the optoacoustic image, obtaining an inclination difference (S250), and warping the optoacoustic image by the difference of the inclinations of the optoacoustic image. It may be implemented including the step of correcting the distortion (S260).
단계 S210에서는, 광음향 영상 촬영부(110)와 광간섭 단층 촬영부(120)의 레이저를 동일한 광 경로로 합친 후 스캐닝 하여 동시에 같은 생체조직 샘플의 영역을 이미징 하여 광음향 원본 영상과 광간섭 원본 영상을 획득한다. 이러한 단계 S210에서는 광음향 원본 영상(PAM)과, 광간섭 원본 영상(OCT)을 획득하게 된다. 도 6의 (b)는 획득한 광음향 원본 영상(PAM)과, 광간섭 원본 영상(OCT)을 나타내고 있다.In step S210, the lasers of the photoacoustic imaging unit 110 and the optical coherence tomography unit 120 are combined in the same optical path and then scanned to simultaneously image the regions of the same biological tissue sample, and thus the photoacoustic original image and the optical interference original. Acquire an image. In this step S210, the photoacoustic original image PAM and the optical interference original image OCT are obtained. FIG. 6B illustrates the acquired photoacoustic original image PAM and optical interference original image OCT.
단계 S220에서는, 단계 S210에서 획득된 광음향 원본 영상과 광간섭 원본 영상을 광음향 영상 왜곡 보정부에서 수신할 수 있도록 전달하게 된다.In step S220, the photoacoustic original image and the optical interference original image obtained in step S210 are transmitted to be received by the photoacoustic image distortion correction unit.
단계 S230에서는, 광음향 영상 왜곡 보정부(130)가, 단계 S220을 통해 광음향 영상 촬영부(110)와 광간섭 단층 촬영부(120)로부터 제공받은 광음향 원본 영상과 광간섭 원본 영상 각각에 대해 에지검출 알고리즘을 적용하여 광음향 원본 영상과 광간섭 원본 영상의 에지를 검출하게 된다. 도 7의 a, b는 광간섭 원본 영상(OCT)과 광음향 원본 영상(PAM)을 나타내고, 도 7의 c, d는 광간섭 원본 영상(OCT)과 광음향 원본 영상(PAM)의 에지 검출 영상을 나타낸다.In step S230, the photoacoustic image distortion correction unit 130 is applied to the photoacoustic original image and the optical interference original image provided from the photoacoustic image capturing unit 110 and the optical interference tomography unit 120 through step S220. The edge detection algorithm is applied to detect the edges of the photoacoustic original image and the optical interference original image. 7 a and b show an optical interference original image (OCT) and an optoacoustic original image (PAM), and c and d of FIG. 7 indicate edge detection of an optical interference original image (OCT) and an optoacoustic original image (PAM). Display the image.
단계 S240에서는, 단계 S230을 통해 에지가 검출된 각각의 이미지 영상에서 허프 변환을 이용하여 직선의 기울기를 검출하게 된다. 도 7의 e와 f는 광간섭 원본 영상(OCT)과 광음향 원본 영상(PAM)의 에지 검출 영상으로부터 직선의 기울기, 즉 라인을 검출한 영상을 나타내고 있다.In step S240, the slope of the straight line is detected using the Hough transform in each image image of which the edge is detected in step S230. 7E and 7E show an image of a straight line inclination, that is, a line detected from an edge detection image of an optical interference original image OCT and an optoacoustic original image PAM.
단계 S250에서는 단계 S240을 통해 검출한 광간섭 영상의 기울기와 광음향 영상의 기울기를 계산하고, 광간섭 영상의 기울기와 광음향 영상의 기울기 차이를 구하게 된다. 도 7의 g는 광간섭 영상(OCT)과 광음향 영상(PAM)의 기울기 차이를 나타내고 있다.In operation S250, the inclination of the optical interference image and the inclination of the optoacoustic image detected through step S240 are calculated, and the inclination difference between the inclination of the optical interference image and the inclination of the optoacoustic image is calculated. 7g illustrates the difference between the inclinations of the optical interference image OCT and the optoacoustic image PAM.
단계 S260에서는 단계 S250을 통해 계산한 광간섭 영상의 기울기와 광음향 영상의 기울기의 차이만큼 광음향 영상을 와핑 처리하여 광음향 영상의 왜곡을 보정하게 된다. 도 7의 h는 도출한 기울기를 이용한 광음향 영상(PAM)의 이미지 왜곡 보정 결과를 나타내고 있다.In step S260, the distortion of the optoacoustic image is corrected by warping the optoacoustic image by a difference between the inclination of the photointerference image and the inclination of the optoacoustic image calculated in step S250. 7H illustrates the image distortion correction result of the photoacoustic image (PAM) using the derived slope.
도 6은 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법의 광음향 신호 획득 과정 및 획득한 광음향 및 광간섭 원본 영상을 도시한 도면이다. 도 6의 (a)는 광음향 신호 획득 과정을 나타내며, 레이저 빔이 (1), (2), (3) 방향으로 이동하면서 샘플을 스캐닝 할 때, (1)의 위치에 레이저 빔이 조사될 때 초음파 트랜스듀서(111)와 레이저 빔의 조사 위치는 (2), (3)에 레이저가 조사되었을 때 보다 가깝게 된다. 따라서 음파의 발생위치에서 초음파 트랜스듀서(111)까지의 거리가 짧아 발생한 광음향 신호가 (2), (3)에서 보다 빨리 도착하게 된다. 도면 6의 (b) 는 광음향 영상 촬영부(110)와, 광간섭 단층 촬영부(120)를 이용하여 수평하게 놓인 주사바늘을 촬영한 영상이다. 즉, 도 6의 (b) 아래의 광간섭 원본 영상(OCT)은 주사바늘의 수평한 위치를 잘 보여주지만, 도 6의 (b) 위의 광음향 원본 영상(PAM)은 초음파 신호의 전달 거리에 의해 영상에 왜곡이 생겨 바늘이 기울어진 영상을 나타내고 있다.FIG. 6 is a diagram illustrating an optoacoustic signal acquisition process and an acquired optoacoustic and coherent original image of the non-focal photoacoustic image distortion correction method using an optical tomography image according to an embodiment of the present invention. 6 (a) shows the process of acquiring the photoacoustic signal, and when the laser beam is scanned while the laser beam moves in the directions (1), (2) and (3), the laser beam is irradiated at the position of (1). At this time, the irradiation position of the ultrasonic transducer 111 and the laser beam is closer to when the laser is irradiated to (2) and (3). Therefore, the photoacoustic signal generated due to the short distance from the position where the sound wave is generated to the ultrasonic transducer 111 arrives more quickly at (2) and (3). 6B is an image of a needle placed horizontally using the photoacoustic imaging unit 110 and the optical interference tomography unit 120. That is, although the optical interference original image (OCT) under FIG. 6 (b) shows the horizontal position of the needle well, the photoacoustic original image (PAM) above FIG. 6 (b) shows the transmission distance of the ultrasonic signal. This causes distortion in the image and shows an image in which the needle is inclined.
도 7은 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법에서의 광음향 원본 영상의 왜곡 보정 단계의 각 과정별 변화되는 영상을 도시한 도면이다. 도 7의 a, b는 왜곡을 보정하기 전의 광간섭 영상(OCT)와 광음향 영상(PAM)이고, 도 7의 c, d는 광간섭 영상과 광음향 영상을 에지검출 알고리즘을 이용한 영상을 나타낸다. 이와 같이, 에지 검출된 영상에서 허프 변환을 이용하여 바늘의 기울기를 도출해 낼 수 있다. 도 7의 e, f는 도출한 바늘의 기울기를 원본영상에 나타내고 있다.도 7의 g는 광간섭 영상에서 구한 기울기와 광음향 영상에서 구한 기울기의 차이를 구하여 광음향 영상을 와핑하여 왜곡을 보정한다. 보정한 결과는 도 7의 h와 같이 나타낼 수 있다. 즉, 도 7은 광간섭 단층영상을 기준으로 광음향 영상의 왜곡을 보정하는 과정을 나타내며, a, b는 광간섭 단층영상(OCT) 및 광음향(PAM) 원본 영상을 나타내고, c, d는 OCT, PAM의 에지 검출 영상을 나타내며, e, f는 허프 변환을 이용한 기울기 도출 영상을 나타내고, g는 OCT, PAM의 기울기 계산을 나타내며, h는 도출한 기울기를 이용한 PAM 이미지 왜곡 보정 결과를 나타내고 있다.FIG. 7 is a diagram illustrating an image changed for each process of the distortion correction step of the photoacoustic original image in the non-focused photoacoustic image distortion correction method using the optical tomography image according to an embodiment of the present invention. 7A and 7B show an optical interference image OCT and an optoacoustic image before correction of distortion, and c and d of FIG. 7 represent an image using an edge detection algorithm for the optical interference image and the photoacoustic image. . As such, the slope of the needle may be derived using the Hough transform in the edge-detected image. Fig. 7 e and f show the derived inclination of the needle in the original image. Fig. 7 g shows the difference between the inclination obtained from the optical interference image and the inclination obtained from the optoacoustic image, and warps the optoacoustic image to correct distortion. do. The corrected result may be represented as shown in h of FIG. 7. That is, FIG. 7 illustrates a process of correcting distortion of an optoacoustic image based on an optical coherence tomography image, and a and b represent original optical coherence tomography (OCT) and photoacoustic (PAM) original images, and c and d Edge detection images of OCT and PAM are shown, e and f represent slope derived images using Hough transform, g represents slope calculation of OCT and PAM, and h represents PAM image distortion correction result using derived slope. .
상술한 바와 같이, 본 발명의 일실시예에 따른 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법 및 장치는, 광음향 현미경 영상기기의 초음파 트랜스듀서 위치와 샘플 스캐닝에 의해 변화하는 광음향 신호의 획득 위치 간의 거리로 인해 발생하는 광음향의 이미지 왜곡을 광간섭 단층 영상을 기준으로 광음향 영상의 왜곡을 보정할 수 있도록 구성함으로써, 기존의 광음향 현미경 영상기기에서 발생하는 깊이 방향으로의 광음향 영상의 왜곡을 효과적으로 보정 할 수 있고, 보다 정확한 광음향 단층의 영상 획득이 가능하도록 할 수 있다. 또한, 동일한 위치를 동시에 광음향 현미경 영상기기와 광간섭 단층 촬영 장치를 이용하여 촬영하고 획득한 광간섭 단층 영상을 기준으로 광음향 영상을 보정하는 방식으로, 광음향 영상의 왜곡 현상을 지속적으로 보정할 수 있도록 할 수 있다.As described above, the non-focal photoacoustic image distortion correction method and apparatus using the optical tomography image according to an embodiment of the present invention, the photoacoustic signal that is changed by the ultrasonic transducer position and sample scanning of the photoacoustic microscope imaging device The photoacoustic image distortion generated by the distance between the acquisition positions of the photoacoustic images can be corrected based on the optical coherence tomography to correct the distortion of the photoacoustic image. It is possible to effectively correct the distortion of the acoustic image, and to enable more accurate image acquisition of the photoacoustic tomography. In addition, the photoacoustic image is corrected based on the optical coherence tomography image obtained by capturing the same position using an optoacoustic microscope imaging device and an optical coherence tomography device at the same time, and continuously correcting the distortion of the photoacoustic image. You can do it.
특히, 본 발명의 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법 및 장치는, 현재 활발히 연구 중인 광음향 영상 기술과, 수술용 광음향 영상기기의 영상 왜곡을 보정하는 핵심기술로 적용 될 것으로 기대되며, 현재 각광받고 있는 광음향 영상 기술과, 수술용 광음향 현미경 연구 개발에 적용 할 수 있으며, 안과용 광음향 영상 장치 개발 시에 범용적인 적용이 가능하다. 즉, 본 발명은 광음향 현미경 영상기기에서 고정된 초음파 트랜스듀서와 갈바노 미터 광학 스캐닝을 이용 할 때에 발생하는 영상 왜곡을 광간섭 단층 촬영 장치의 영상을 기준으로 하여 보정함으로써, 초음파 트랜스듀서의 위치, 기울기에 따라서 이미지의 왜곡 정도가 변하는 광음향 영상을 동시에 같은 영역을 이미징 하는 광간섭 영상 촬영 장치를 기준으로 하여 효과적으로 보정할 수 있게 된다.In particular, non-focal photoacoustic image distortion correction method and apparatus using the optical tomography image of the present invention will be applied as a key technology for correcting the image distortion of the optoacoustic imaging technology and surgical photoacoustic imaging device that is currently actively researched It is expected to be applied to the research and development of photoacoustic imaging technology and surgical photoacoustic microscope which is currently in the spotlight, and can be applied to the general development of ophthalmic photoacoustic imaging device. That is, the present invention corrects the image distortion generated when using the fixed ultrasonic transducer and galvanometer optical scanning in the optoacoustic microscope imaging apparatus based on the image of the optical coherence tomography apparatus, thereby positioning the ultrasonic transducer. In addition, it is possible to effectively correct an optoacoustic image whose image distortion is changed according to a tilt, based on an optical interference imaging apparatus that simultaneously images the same region.
이상 설명한 본 발명은 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에 의하여 다양한 변형이나 응용이 가능하며, 본 발명에 따른 기술적 사상의 범위는 아래의 특허청구범위에 의하여 정해져야 할 것이다.The present invention described above may be variously modified or applied by those skilled in the art, and the scope of the technical idea according to the present invention should be defined by the following claims.

Claims (13)

  1. 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법으로서,Non-focal photoacoustic image distortion correction method using optical tomography image,
    (1) 광음향 영상 촬영부(110)와 광간섭 단층 촬영부(120)를 이용하여 생체조직 샘플의 광음향 원본 영상과 광간섭 원본 영상을 획득하는 단계;(1) acquiring the photoacoustic original image and the optical interference original image of the biological tissue sample using the photoacoustic image capturing unit 110 and the optical interference tomography unit 120;
    (2) 상기 단계 (1)에서 획득된 광음향 원본 영상과 광간섭 원본 영상을 광음향 영상 왜곡 보정부(130)에서 수신하는 단계; 및(2) receiving the photoacoustic original image and the optical interference original image obtained in step (1) by the photoacoustic image distortion correction unit 130; And
    (3) 상기 광음향 영상 왜곡 보정부(130)에서 수신된 광간섭 원본 영상을 기준으로 상기 광음향 원본 영상의 왜곡을 보정하는 단계를 포함하되,(3) correcting the distortion of the photoacoustic original image based on the optical interference original image received by the photoacoustic image distortion correcting unit 130,
    상기 광음향 영상 촬영부(110)는,The photoacoustic image capturing unit 110,
    상기 생체조직 샘플에 조사된 광원에 의해 발생하는 열적 초음파 신호를 측정하여 비침습적으로 생체조직 샘플 내부의 미세 구조를 영상화하는 광음향 현미경 영상기기이며,It is a photoacoustic microscope imaging device for measuring the thermal ultrasonic signals generated by the light source irradiated to the biological tissue sample to non-invasive to image the microstructure inside the biological tissue sample,
    상기 단계 (3)에서는,In the step (3),
    (3-1) 상기 광음향 영상 왜곡 보정부(130)가, 수신 받은 상기 광음향 원본 영상과 상기 광간섭 원본 영상의 에지를 검출하는 단계;(3-1) detecting, by the photoacoustic image distortion correcting unit, edges of the received photoacoustic original image and the optical interference original image;
    (3-2) 상기 단계 (3-1)를 통해 에지가 검출된 각각의 이미지 영상에서 직선의 기울기를 검출하는 단계;(3-2) detecting a slope of a straight line in each image image of which edges are detected through step (3-1);
    (3-3) 상기 단계 (3-2)를 통해 검출한 광간섭 영상의 기울기와 광음향 영상의 기울기를 계산하는 단계; 및(3-3) calculating the slope of the optical interference image and the slope of the optoacoustic image detected through the step (3-2); And
    (3-4) 상기 단계 (3-3)를 통해 계산한 광간섭 영상의 기울기와 광음향 영상의 기울기의 차이를 이용하여 광음향 영상의 왜곡을 보정하는 단계를 포함하고,(3-4) correcting the distortion of the optoacoustic image by using the difference between the inclination of the optical interference image and the inclination of the optoacoustic image calculated in step (3-3),
    상기 단계 (3-1)에서는,In the step (3-1),
    상기 광음향 영상 촬영부(110)와 상기 광간섭 단층 촬영부(120)로부터 제공받은 상기 광음향 원본 영상과 상기 광간섭 원본 영상 각각에 대해 에지검출 알고리즘을 적용하여 상기 광음향 원본 영상과 광간섭 원본 영상의 에지를 검출하는 처리를 수행하며,The photoacoustic original image and the optical interference are applied to each of the photoacoustic original image and the optical interference original image provided from the photoacoustic image capturing unit 110 and the optical interference tomography unit 120. Performs a process of detecting an edge of the original image,
    상기 단계 (3-2)에서는,In the step (3-2),
    상기 단계 (3-1)를 통해 에지가 검출된 각각의 이미지 영상에서 직선의 기울기를 검출하되, 하프 변환을 이용하여 직선의 기울기를 검출하여 구하는 처리를 수행하고,In step (3-1), the slope of the straight line is detected in each image image of which the edge is detected, and a process of detecting and obtaining the slope of the straight line using a half transform is performed.
    상기 단계 (3-3)에서는,In the step (3-3),
    상기 단계 (3-2)를 통해 검출한 광간섭 영상의 기울기와 광음향 영상의 기울기를 계산하고, 상기 광간섭 영상의 기울기와 광음향 영상의 기울기 차이를 구하며,Calculating the inclination of the optical interference image and the inclination of the optoacoustic image detected through the step (3-2), obtaining the difference between the inclination of the optical interference image and the inclination of the optoacoustic image,
    상기 단계 (3-4)에서는,In the step (3-4),
    상기 단계 (3-3)를 통해 계산한 광간섭 영상의 기울기와 광음향 영상의 기울기의 차이를 이용하여 광음향 영상의 왜곡을 보정하되, 기울기의 차이만큼 상기 광음향 영상을 와핑 처리하여 광음향 영상의 왜곡이 보정되도록 하여, 광음향 영상의 왜곡 현상을 지속적으로 보정할 수 있도록 하는 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법.The distortion of the photoacoustic image is corrected by using the difference between the slope of the optical interference image and the slope of the photoacoustic image calculated through the step (3-3), but the photoacoustic image is warped by the difference of the slope. Non-focused photoacoustic image distortion correction method using a tomography image, characterized in that the distortion of the image to be corrected, so that it is possible to continuously correct the distortion phenomenon of the photoacoustic image.
  2. 제1항에 있어서, 상기 단계 (1)에서는,The method of claim 1, wherein in step (1),
    상기 광음향 영상 촬영부(110)와 상기 광간섭 단층 촬영부(120)의 레이저를 동일한 광 경로로 합친 후 스캐닝 하여 동시에 같은 생체조직 샘플의 영역을 이미징 하여 광음향 원본 영상과 광간섭 원본 영상을 획득하는 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법.The photoacoustic image capturing unit 110 and the optical interference tomography unit 120 combine the lasers in the same optical path and scan the same area of the same tissue sample to simultaneously scan the photoacoustic original image and the optical interference original image. A non-focused optoacoustic image distortion correction method using an optical tomography image, characterized in that obtaining.
  3. 제1항에 있어서, 상기 광음향 영상 촬영부(110)는,According to claim 1, The photoacoustic image pickup unit 110,
    마이크로 영역의 해상도로 10㎝의 깊이로 상기 생체조직 샘플을 촬영하고 이미징화 하는 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법.Non-focused optoacoustic image distortion correction method using a tomography image, characterized in that the imaging and imaging the biological tissue sample to a depth of 10 cm at the resolution of the micro area.
  4. 제1항에 있어서, 상기 광음향 영상 촬영부(110)는,According to claim 1, The photoacoustic image pickup unit 110,
    고정된 초음파 트랜스듀서(111)와 갈바노 스캐너(112)를 포함하여 구성하는 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법.Non-focal photoacoustic image distortion correction method using a tomography image, characterized in that it comprises a fixed ultrasonic transducer 111 and galvano scanner (112).
  5. 제1항에 있어서, 상기 광음향 원본 영상은,The method of claim 1, wherein the photoacoustic original image,
    생체조직 샘플 내부의 구조적 정보와 산소포화도를 포함하는 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법.Non-focal photoacoustic image distortion correction method using a tomography image, characterized in that it comprises the structural information and the oxygen saturation in the biological tissue sample.
  6. 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법으로서,Non-focal photoacoustic image distortion correction method using optical tomography image,
    (11) 광음향 영상 촬영부(110)와 광간섭 단층 촬영부(120)의 레이저를 동일한 광 경로로 합친 후 스캐닝 하여 동시에 같은 생체조직 샘플의 영역을 이미징 하여 광음향 원본 영상과 광간섭 원본 영상을 획득하는 단계;(11) combining the lasers of the photoacoustic image capturing unit 110 and the optical coherence tomography unit 120 into the same optical path, and then scanning them to simultaneously image the areas of the same biological tissue sample, and thus the photoacoustic original image and the optical interference original image. Obtaining a;
    (12) 상기 단계 (11)에서 획득된 광음향 원본 영상과 광간섭 원본 영상을 광음향 영상 왜곡 보정부(130)에서 수신하는 단계;(12) receiving the photoacoustic original image and the optical interference original image obtained in the step (11) in the photoacoustic image distortion correction unit (130);
    (13) 상기 광음향 영상 왜곡 보정부(130)가, 상기 단계 (12)를 통해 상기 광음향 영상 촬영부(110)와 상기 광간섭 단층 촬영부(120)로부터 제공받은 상기 광음향 원본 영상과 상기 광간섭 원본 영상 각각에 대해 에지검출 알고리즘을 적용하여 상기 광음향 원본 영상과 광간섭 원본 영상의 에지를 검출하는 단계;(13) the photoacoustic image distortion correction unit 130 and the photoacoustic original image received from the photoacoustic image capturing unit 110 and the optical interference tomography unit 120 through step (12); Detecting an edge of the photoacoustic original image and the optical interference original image by applying an edge detection algorithm to each of the optical interference original images;
    (14) 상기 단계 (13)를 통해 에지가 검출된 각각의 이미지 영상에서 허프 변환을 이용하여 직선의 기울기를 검출하는 단계;(14) detecting a slope of a straight line using a Hough transform in each image image of which edges are detected through step (13);
    (15) 상기 단계 (14)를 통해 검출한 광간섭 영상의 기울기와 광음향 영상의 기울기를 계산하고, 상기 광간섭 영상의 기울기와 광음향 영상의 기울기 차이를 구하는 단계; 및(15) calculating a slope of the optical interference image and a slope of the photoacoustic image detected through the step (14), and obtaining a difference between the slope of the optical interference image and the slope of the photoacoustic image; And
    (16) 상기 단계 (15)를 통해 계산한 광간섭 영상의 기울기와 광음향 영상의 기울기의 차이만큼 광음향 영상을 와핑 처리하여 광음향 영상의 왜곡을 보정하는 단계를 포함하되,(16) correcting the distortion of the optoacoustic image by warping the optoacoustic image by a difference between the inclination of the optical interference image and the inclination of the optoacoustic image calculated through the step (15),
    상기 광음향 영상 촬영부(110)는,The photoacoustic image capturing unit 110,
    상기 생체조직 샘플에 조사된 광원에 의해 발생하는 열적 초음파 신호를 측정하여 비침습적으로 생체조직 샘플 내부의 미세 구조를 영상화하는 광음향 현미경 영상기기인 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법.Non-focal light using an optical tomography image, characterized in that the optical acoustic microscope imaging device for measuring the thermal ultrasonic signals generated by the light source irradiated on the biological tissue sample to non-invasive to image the microstructure inside the biological tissue sample Acoustic image distortion correction method.
  7. 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치(100)로서,A non-focused optoacoustic image distortion correction apparatus 100 using an optical tomography image,
    생체조직 샘플의 광음향 원본 영상을 획득하여 출력하는 광음향 영상 촬영부(110);An optoacoustic imaging unit 110 for acquiring and outputting an optoacoustic original image of the biological tissue sample;
    상기 생체조직 샘플의 광간섭 원본 영상을 획득하여 출력하는 광간섭 단층 촬영부(120); 및An optical coherence tomography unit 120 for obtaining and outputting an optical interference original image of the biological tissue sample; And
    상기 광음향 영상 촬영부(110)와 상기 광간섭 단층 촬영부(120)로부터 획득된 광음향 원본 영상 및 광간섭 원본 영상을 제공받아 상기 광간섭 원본 영상을 기준으로 상기 광음향 원본 영상의 왜곡을 보정 처리하는 광음향 영상 왜곡 보정부(130)를 포함하되,The photoacoustic original image and the optical interference original image obtained from the photoacoustic image capturing unit 110 and the optical interference tomography unit 120 are provided to correct distortion of the photoacoustic original image based on the optical interference original image. Including a photoacoustic image distortion correction unit 130 for the correction process,
    상기 광음향 영상 촬영부(110)는,The photoacoustic image capturing unit 110,
    상기 생체조직 샘플에 조사된 광원에 의해 발생하는 열적 초음파 신호를 측정하여 비침습적으로 생체조직 샘플 내부의 미세 구조를 영상화하는 광음향 현미경 영상기기이며,It is a photoacoustic microscope imaging device for measuring the thermal ultrasonic signals generated by the light source irradiated to the biological tissue sample to non-invasive to image the microstructure inside the biological tissue sample,
    상기 광음향 영상 왜곡 보정부(130)가, 상기 광음향 영상 촬영부(110)와 상기 광간섭 단층 촬영부(120)로부터 제공받은 상기 광음향 원본 영상과 상기 광간섭 원본 영상 각각에 대해 에지검출 알고리즘을 적용하여 상기 광음향 원본 영상과 광간섭 원본 영상의 에지를 검출하고,The photoacoustic image distortion correction unit 130 detects edges of the photoacoustic original image and the optical interference original image provided from the photoacoustic image capturing unit 110 and the optical interference tomography unit 120. Applying an algorithm to detect edges of the photoacoustic original image and the optical interference original image,
    상기 에지가 검출된 각각의 이미지 영상에서 하프 변환을 이용하여 직선의 기울기를 검출하며,A slope of a straight line is detected by using a half transform in each image image of which the edge is detected,
    상기 검출한 광간섭 영상의 기울기와 광음향 영상의 기울기를 계산하고, 상기 광간섭 영상의 기울기와 광음향 영상의 기울기 차이를 구하고,Calculating the slope of the detected optical interference image and the slope of the photoacoustic image, obtaining the difference between the slope of the optical interference image and the slope of the photoacoustic image,
    상기 계산한 광간섭 영상의 기울기와 광음향 영상의 기울기의 차이만큼 광음향 영상을 와핑 처리하여 광음향 영상의 왜곡을 보정하는 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치.Non-focal photoacoustic image distortion correction apparatus using the optical tomography image, characterized in that the distortion of the optoacoustic image by warping the photoacoustic image by the difference between the calculated inclination of the optical interference image and the inclination of the photoacoustic image .
  8. 제7항에 있어서, 상기 비초점 광음향 영상 왜곡 보정 장치(100)는,The apparatus of claim 7, wherein the non-focused optoacoustic image distortion correcting apparatus 100 comprises:
    상기 광음향 영상 촬영부(110)와 상기 광간섭 단층 촬영부(120)의 레이저를 동일한 광 경로로 합친 후 스캐닝 하여 동시에 같은 생체조직 샘플의 영역을 이미징 하여 광음향 원본 영상과 광간섭 원본 영상이 획득되도록 구동 제어하는 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치.The photoacoustic image pickup unit 110 and the optical interference tomography unit 120 combine the lasers in the same optical path and scan the same area of the same tissue sample to simultaneously scan the photoacoustic original image and the optical interference original image. And non-focused optoacoustic image distortion correction apparatus using optical tomography image, characterized in that the drive control to obtain.
  9. 제7항에 있어서, 상기 광음향 영상 촬영부(110)는,The method of claim 7, wherein the photoacoustic image pickup unit 110,
    고정된 초음파 트랜스듀서(111)와 갈바노 스캐너(112)를 포함하여 구성하는 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치.Non-focused optoacoustic image distortion correction device, characterized in that it comprises a fixed ultrasonic transducer 111 and galvano scanner (112).
  10. 제9항에 있어서, 상기 광음향 영상 촬영부(110)는,The method of claim 9, wherein the photoacoustic image pickup unit 110,
    상기 고정된 초음파 트랜스듀서(111)와 갈바노 스캐너(112)를 이용하여 빔 스캐닝을 수행함에 따라 빛이 조사되는 샘플의 위치와 초음파 트랜스듀서(111)와의 거리차로 인해 획득되는 광음향 영상에서 영상 왜곡이 발생되는 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치.As the beam scanning is performed by using the fixed ultrasound transducer 111 and the galvano scanner 112, the image is obtained from the photoacoustic image obtained by the distance between the sample to which the light is irradiated and the distance between the ultrasound transducer 111. A non-focused optoacoustic image distortion correction apparatus using a tomography image, characterized in that distortion is generated.
  11. 제9항에 있어서, 상기 광음향 원본 영상은,The method of claim 9, wherein the photoacoustic original image,
    생체조직 샘플 내부의 구조적 정보와 산소포화도를 포함하는 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치.Non-focal photoacoustic image distortion correction apparatus using a tomography image, characterized in that it comprises structural information and oxygen saturation in the biological tissue sample.
  12. 제7항에 있어서, 상기 광간섭 단층 촬영부(120)는,The method of claim 7, wherein the optical coherence tomography unit 120,
    생체조직 샘플의 내부를 실시간으로 영상화하는 레이저 광원의 간섭 현상과 공초점 현미경의 원리를 조합하는 광간섭 단층 촬영장치로 구성되는 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치.Non-focal optoacoustic image distortion correction apparatus comprising an optical coherence tomography apparatus combining the principle of the confocal microscope and the interference phenomenon of the laser light source for imaging the inside of the biological tissue sample in real time .
  13. 제7항에 있어서, 상기 비초점 광음향 영상 왜곡 보정 장치(100)는,The apparatus of claim 7, wherein the non-focused optoacoustic image distortion correcting apparatus 100 comprises:
    상기 광음향 영상 촬영부(110), 광간섭 단층 촬영부(120), 및 광음향 영상 왜곡 보정부(130)를 단일의 장비로 구성하거나, 또는 전기적으로 연결 접속되는 별개의 광음향 현미경 영상기기와 광간섭 단층 촬영장치 및 영상처리 제어장치로 구성하는 것을 특징으로 하는, 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 장치.The optoacoustic image capturing unit 110, the optical coherence tomography unit 120, and the optoacoustic image distortion correcting unit 130 are configured as a single device or are electrically connected and connected to a separate photoacoustic microscope imaging apparatus. And an optical coherence tomography device and an image processing control device.
PCT/KR2017/012442 2016-12-01 2017-11-03 Method and device for correcting defocused photoacoustic image distortion using optical coherence tomography image WO2018101623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160163079A KR101848235B1 (en) 2016-12-01 2016-12-01 A distortion compensation method and device of photoacoustic imaging using optical coherence tomography
KR10-2016-0163079 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018101623A1 true WO2018101623A1 (en) 2018-06-07

Family

ID=61969374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012442 WO2018101623A1 (en) 2016-12-01 2017-11-03 Method and device for correcting defocused photoacoustic image distortion using optical coherence tomography image

Country Status (2)

Country Link
KR (1) KR101848235B1 (en)
WO (1) WO2018101623A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112773392A (en) * 2019-11-05 2021-05-11 通用电气精准医疗有限责任公司 Method and system for coherent composite motion detection using channel coherence and transmit coherence

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085590A1 (en) * 2022-10-17 2024-04-25 울산과학기술원 Scanning tip for photoacoustic-ultrasound mini probe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157408A (en) * 2001-11-19 2003-05-30 Glory Ltd Distortion image associating method, device and program
KR20130033936A (en) * 2011-09-27 2013-04-04 전북대학교산학협력단 Device and method of biomedical photoacoustic imaging device using induced laser
JP2014140716A (en) * 2012-12-28 2014-08-07 Canon Inc Subject information obtaining apparatus, control method of subject information obtaining apparatus, and program
KR20150109667A (en) * 2014-03-20 2015-10-02 서강대학교산학협력단 Apparatus and method of producing photoacoustic images

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157408A (en) * 2001-11-19 2003-05-30 Glory Ltd Distortion image associating method, device and program
KR20130033936A (en) * 2011-09-27 2013-04-04 전북대학교산학협력단 Device and method of biomedical photoacoustic imaging device using induced laser
JP2014140716A (en) * 2012-12-28 2014-08-07 Canon Inc Subject information obtaining apparatus, control method of subject information obtaining apparatus, and program
KR20150109667A (en) * 2014-03-20 2015-10-02 서강대학교산학협력단 Apparatus and method of producing photoacoustic images

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, EDWARD Z. ET AL.: "Multimodal Photoacoustic and Optical Coherence Tomography Scanner Using an All Optical Detection Scheme for 3D Morphological Skin Imaging", BIOMEDICAL OPTICAL EXPRESS, vol. 2, no. 8, 1 August 2011 (2011-08-01), pages 2202 - 2215, XP055013268 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112773392A (en) * 2019-11-05 2021-05-11 通用电气精准医疗有限责任公司 Method and system for coherent composite motion detection using channel coherence and transmit coherence

Also Published As

Publication number Publication date
KR101848235B1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
WO2011074810A2 (en) Handy scanner apparatus and control method thereof
WO2014069892A1 (en) Magnetic resonance imaging apparatus
WO2018101623A1 (en) Method and device for correcting defocused photoacoustic image distortion using optical coherence tomography image
WO2017039171A1 (en) Laser processing device and laser processing method
WO2013157673A1 (en) Optical coherence tomography and control method for the same
WO2019108028A1 (en) Portable device for measuring skin condition and skin condition diagnosis and management system
WO2020027377A1 (en) Device for providing 3d image registration and method therefor
US11064144B2 (en) Imaging element, imaging apparatus, and electronic equipment
WO2021133090A2 (en) Method for investigating optical element embedded in intraoral scanner, and system using same
WO2011126219A2 (en) Image acquisition method and system for object to be measured using confocal microscope structure
WO2016080716A1 (en) Iris recognition camera system, terminal comprising same, and iris recognition method of system
WO2020153703A1 (en) Camera apparatus and auto-focusing method therefor
WO2019199019A1 (en) Terahertz wave-based defect measurement apparatus and method
JPS60120675A (en) Signal extractor of optical device
WO2018226050A1 (en) Method and system for stereo-visual localization of object
WO2021091282A1 (en) Three-dimensional diagnostic system
WO2014126401A1 (en) Optical interference tomographic method and apparatus
WO2011037299A1 (en) Capsule endoscope having biopsy function and method for controlling the same
WO2020045729A1 (en) Galvanometer scanner and photoacoustic microscope system having same
WO2018056726A2 (en) Optical coherence tomography device
WO2016195464A2 (en) Complex medical imaging system
WO2020166929A1 (en) Blood flow measurement device and blood flow measurement method
WO2020101157A1 (en) Compound microscope system
WO2017146330A1 (en) Apparatus and method for measuring straightness
WO2023121094A1 (en) Three-dimensional shape measurement device for acquiring multiple pieces of image information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875712

Country of ref document: EP

Kind code of ref document: A1