WO2014126401A1 - Optical interference tomographic method and apparatus - Google Patents

Optical interference tomographic method and apparatus Download PDF

Info

Publication number
WO2014126401A1
WO2014126401A1 PCT/KR2014/001194 KR2014001194W WO2014126401A1 WO 2014126401 A1 WO2014126401 A1 WO 2014126401A1 KR 2014001194 W KR2014001194 W KR 2014001194W WO 2014126401 A1 WO2014126401 A1 WO 2014126401A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
light
reference light
optical signal
Prior art date
Application number
PCT/KR2014/001194
Other languages
French (fr)
Korean (ko)
Inventor
정지채
김지현
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2014126401A1 publication Critical patent/WO2014126401A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02067Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence

Definitions

  • the present invention relates to an optical coherence tomography apparatus and method.
  • Optical coherence tomography is a device that photographs the inside of a living tissue and material in high resolution using light that is harmless to the human body.
  • OCT can take a high-resolution image of monolayers of minute portions in biological tissues and materials using sub-wavelength interference light sources, to sub-micron regions.
  • OCT is widely used in laser tomography, optical fiber sensor systems, or optical communication in medical imaging, and can be classified into frequency domain OCT and spectrum domain OCT according to principles and structures.
  • the spectral region OCT uses a broadband light source, and the broadband light source analyzes the image of the light reflected from the measuring object for each wavelength band by a spectrometer.
  • a line detector in the form of a CMOS (Complementary Oxide Semiconductor) camera or a Charge-Coupled Device (CCD) camera is used.
  • spectrometers are designed so that a specific wavelength of a broadband light source is mapped to a specific pixel of a CCD or CMOS camera, and the mapped wavelength-specific pixels are kept linear.
  • the spectral region OCT obtains depth information of a measurement object by Fourier transforming a pixel combination.
  • the OCT is an apparatus for obtaining an image by analyzing the interference pattern generated by the optical path difference between the reference signal and the sample signal (measurement signal), it is necessary to adjust the reference signal according to the situation.
  • Korean Patent No. 849193 (Occurity System of the Invention) installs a filter member on an optical path between a light source and a detector so as to process an image by allowing the light to leave a time difference for each spectrum, Using a filter member such as a Fabry-Perot filter to disclose a configuration for processing the image by advancing by the wavelength with a time difference before the light generated from the light source is split in the light splitter or reflected from the measurement skin and combined in the light splitter have.
  • a filter member such as a Fabry-Perot filter
  • the present invention is to solve the above-mentioned problems of the prior art, to provide an optical coherence tomography apparatus and method in which a reference signal stage capable of adjusting the reference light amount is implemented.
  • the light source for outputting light the light output from the light source is divided into a first optical signal and a second optical signal and output
  • an interferometer for feedback receiving and combining the measurement light signal corresponding to the first optical signal and the reference light signal corresponding to the second optical signal, and irradiating the measurement target with the first optical signal output through the interferometer.
  • An object measuring unit for feeding back the measurement light signal reflected from the measurement object to the interferometer, irradiating the second optical signal output through the interferometer to a reference mirror, and applying the reference light signal reflected from the reference mirror to the interferometer
  • a reference light generator for feeding back, measuring the interference signal strength of the measurement light signal and the reference light signal coupled through the interferometer
  • a reference light amount adjusting unit for controlling the incident angle of the second optical signal to the reference mirror or the reflection angle of the reference mirror to be changed based on the photodetector and the previously measured interference signal strength.
  • an optical coherence tomography method using an optical coherence tomography apparatus comprises: (a) dividing and outputting light output from a light source into a first optical signal and a second optical signal, and (b) the Irradiating a first optical signal to a measurement object and irradiating the second optical signal to a reference mirror, (c) a measurement light signal in which the first optical signal is reflected from the measurement object, and the second optical signal is the reference mirror Receiving feedback of the reference light signal reflected from each other, (d) combining the fed back measurement light signal and reference light signal, and (e) measuring interference signal strength based on the combined measurement light signal and reference light signal Wherein the step (b) includes the incident angle of the second optical signal into the reference mirror or the reflection angle from the reference mirror set based on the interference signal strength previously measured. Apply the second optical signal.
  • the sensitivity of the tomography image can be improved to provide a clear tomography image.
  • any one of the problem solving means of the present invention it is possible to implement the reference light signal stage without a separate filter member can reduce the volume of the optical coherence tomography apparatus, and optimize the reference light signal irrespective of the blocking coefficient for each light wavelength can do.
  • any one of the problem solving means of the present invention by using the interference signal strength detected in real time, by actively changing the intensity of the next reference light signal, it is possible to quickly process the optimal tomography for the measurement object. .
  • FIG. 1 is a block diagram showing the configuration of an optical coherence tomography apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the reference light amount adjusting unit according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the reference light amount adjusting unit according to another embodiment of the present invention.
  • FIG. 4 is a block diagram showing the configuration of the reference light amount adjusting unit according to another embodiment of the present invention.
  • 5 is an example showing the spectrum of the interference signal strength according to the reference light amount control in an embodiment of the present invention.
  • FIG. 6 is an example showing a normalized light amount map for a reference light signal according to an embodiment of the present invention.
  • FIG. 7 is an example of a tomography image for explaining an effect of adjusting the amount of light of a reference light signal according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method for optical coherence tomography according to an exemplary embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing the configuration of an optical coherence tomography apparatus according to an embodiment of the present invention.
  • the optical coherence tomography apparatus 100 includes a light source 110, an interferometer 120, an object measuring unit 130, a reference light generating unit 140, a reference mirror 150, and a photodetector ( 160, a reference light amount adjusting unit 170, and a tomography image processing unit 180.
  • the light source 110 outputs light for optical coherence tomography to the interferometer 120.
  • the interferometer 120 splits the light output from the light source 110 into a first optical signal and a second optical signal.
  • the interferometer 120 outputs the first optical signal toward the measurement object through the target measurement unit 130, and outputs the second optical signal toward the reference mirror 150 through the reference light generator 140.
  • the interferometer 120 receives feedback of the measurement light signal corresponding to the first optical signal through the target measurement unit 130, and feedbacks the reference light signal corresponding to the second optical signal through the reference light generator 140.
  • the interferometer 120 combines the feedback light signal and the reference light signal and transmits the measured light signal to the photodetector 160.
  • the object measuring unit 130 irradiates the measurement object with the first optical signal output through the interferometer 120, and feeds back the measurement light signal reflected from the measurement object to the interferometer 120.
  • the target measuring unit 130 may include a first optical collimator (not shown) that collects the first optical signal output from the interferometer 120 and outputs the parallel optical light toward the measurement object.
  • the first optical collimator (not shown) may be configured as a scanning lens.
  • the reference light generator 140 radiates the second optical signal output through the interferometer 120 to the reference mirror 150, and feeds back the reference light signal reflected from the reference mirror 150 to the interferometer 120.
  • the reference light generator 140 may include a second optical collimator (not shown) that collects the second optical signal output from the interferometer 120 and outputs the parallel light toward the reference mirror 150.
  • the second optical collimator (not shown) may be configured as a focusing lens. For example, by configuring each lens of the first optical collimator and the second optical collimator as the same lens, tomography images can be easily obtained without separately matching the refractive indices between the reference light signal stage and the target measurement stage.
  • the photodetector 160 measures the interference signal strength of the measurement light signal and the reference light signal coupled through the interferometer 120, and measures the measured interference signal strength with the tomographic image processor 180 and the reference light amount controller 170. send.
  • the tomography image processor 180 processes and processes the value of the interference signal strength measured by the photodetector 160 in a preset manner to generate and provide a tomography image of the measurement object.
  • the tomography image processor 180 extracts depth information according to the interference signal intensity value of the measurement object scanned by the target measurement unit 130, and collects a predetermined number of depth information for each pixel to obtain a tomography image.
  • the tomography image processing unit 180 extracts depth information by performing inverse Fourier transform after performing equal-space k-spatial conversion of the values of the interference signal strengths acquired through the photodetector 160 with respect to a predetermined wavelength.
  • the optical interference tomography apparatus 100 adjusts the magnitude of the reference light signal fed back through the reference light generator 140, and thus the signal-to-noise ratio of the tomography image. ) And improve the sensitivity.
  • the photodetector 160 includes a photographing means (eg, a camera) including an optical sensor. If the amount of light of the measurement light signal and the reference light signal received by the photodetector 160 through the interferometer 120 is too strong, the light sensor of the photodetector 160 is in a state of light saturation (that is, the interference signal Strength) can be difficult to measure. In addition, when the amount of light of the measurement light signal and the reference light signal received by the photodetector 160 is too weak, the signal-to-noise ratio and the sensitivity of the interference signal may be reduced, resulting in deterioration of the tomography image.
  • a photographing means eg, a camera
  • the light sensor of the photodetector 160 is in a state of light saturation (that is, the interference signal Strength) can be difficult to measure.
  • the signal-to-noise ratio and the sensitivity of the interference signal may be reduced, resulting in deterioration of the tomography image.
  • the reference light amount adjusting unit 170 is based on the previously measured interference signal strength (hereinafter referred to as 'previous interference signal strength') of the incident angle of the second optical signal to the reference mirror 150 or the reference mirror 150 Control the reflection angle with respect to the second optical signal.
  • 'previous interference signal strength' previously measured interference signal strength
  • the reference light amount adjusting unit 170 determines the target intensity of the reference light signal based on the photosaturation threshold of the photodetector 160 and the previous interference signal strength received from the photodetector 160.
  • the reference light amount adjusting unit 170 changes the incident angle of the second optical signal to the reference mirror 150 or the reflection angle of the reference mirror 150 with respect to the second optical signal based on the determined target intensity of the reference light signal.
  • the reference light amount adjusting unit 170 may set the initial value of the interference signal strength according to the measurement light signal and the reference light signal first fed back to the interferometer 120 with respect to the measurement object as the previous interference signal strength.
  • the optical interference tomography apparatus 100 before the optical interference tomography apparatus 100 measures the effective interference signal intensity for generating the tomographic image of the measurement object, the optical interference tomography apparatus 100 first performs a test step of determining the optimal reference light signal strength for the photodetector 150. To perform. Accordingly, in the state where the incident angle of the second optical signal set based on the optimal reference light signal intensity (that is, the target intensity) to the reference mirror 150 or the reflection angle of the reference mirror 150 with respect to the second optical signal is applied, A reference light signal can be obtained.
  • the optimal reference light signal intensity that is, the target intensity
  • Figure 2 is a block diagram showing the configuration of the reference light amount adjusting unit according to an embodiment of the present invention.
  • the reference light amount adjusting unit 170 includes the optical systems 171 and 172 and the optical system driver 173.
  • the optical systems 171 and 172 reflect the second optical signal output through the reference light generator 140 toward the reference mirror 150 at a predetermined reflection angle, respectively, to adjust the incident angle to the reference mirror 150.
  • the reference light amount adjusting unit 170 is reflected from the first optical system 171 and the first optical system for reflecting the second optical signal output in the first travel direction in a second travel direction different from the first travel direction. It includes a second optical system 172 for reflecting the optical signal in the first travel direction to enter the reference mirror 150.
  • Such a plurality of optical systems are opposed to each other so that light reflected from any one of the other optical systems is incident.
  • the reference light amount adjusting unit 170 includes two optical systems 171 and 172, but the reference light amount adjusting unit 170 may include one or more optical systems.
  • the optical system driver 173 sets the reflection angle for each optical system based on the plurality of optical systems 171 and 172 and the previous interference signal strength, and rotates the optical system driver 173 based on the reflection angle for each optical system.
  • the optical system driver 173 determines the target intensity of the reference light signal based on the previous interference signal strength, and sets the reflection angles of the first and second optical systems 171 and 172 according to the target intensity of the reference light signal. do.
  • FIG. 3 is a block diagram showing the configuration of the reference light amount adjusting unit according to another embodiment of the present invention.
  • the reference light amount adjusting unit 170 includes an optical collimator driver 174 that controls the second optical signal output angle of the reference light generating unit 140.
  • the optical collimator driver 174 sets the optical output angle of the reference light generator 140 (that is, the optical output angle of the second optical collimator (not shown)) based on the previous interference signal strength, and sets the set optical output. Based on the angle, the second optical collimator (not shown) is rotated in a set direction and angle.
  • the optical collimator driver 174 determines the target intensity of the reference light signal based on the previous interference signal strength as described above, and sets the optical output angle of the second optical collimator (not shown) according to the target intensity of the reference light signal. do.
  • FIG. 4 is a block diagram showing the configuration of the reference light amount adjusting unit according to another embodiment of the present invention.
  • the reference light amount adjusting unit 170 includes a reference mirror driving unit 175.
  • the reference mirror driver 175 sets the reflection angle of the reference mirror 150 based on the previous interference signal strength, and rotates the reference mirror 150 in the set direction and angle based on the set reflection angle.
  • the reference mirror driver 175 determines the target intensity of the reference light signal based on the previous interference signal strength, and sets the reflection angle of the reference mirror 150 according to the target intensity of the reference light signal.
  • the reference light amount adjusting unit 170 is fed back through the reference light generating unit 140 by adjusting the incident angle of the second optical signal incident on the reference mirror 150 or the reflection angle of the second optical signal of the reference mirror 150. The amount of light of the reference light signal is changed.
  • FIG. 5 is an example showing the spectrum of the interference signal strength according to the reference light amount control in the embodiment of the present invention.
  • FIG. 5 the light quantity spectrum of the interference signal acquired by the photodetector 160 according to the change in the light amount of the reference light signal is shown, and it can be seen that the interference signal intensity is different as the light amount of the reference light signal is changed.
  • the reference light amount adjusting unit 170 is applied to the incident angle of the second optical signal to the reference mirror 150 or to the second optical signal of the reference mirror 150.
  • a reference generation unit (not shown) may be further provided to provide setting criteria to accurately and quickly determine the angle of reflection for the target.
  • the reference generator (not shown) matches the reference light by matching at least one of the incident angle of the second optical signal to the reference mirror 150 and the reflection angle of the reference mirror 150 with respect to the second optical signal for each reference light signal intensity. Generate and store a normalized light quantity map for the signal.
  • FIG. 6 is an example showing a normalized light amount map for a reference light signal according to an embodiment of the present invention.
  • the reference light amount adjusting unit 170 may detect the incident angle or the reflection angle matching the target intensity of the reference light signal from the normalized light amount map generated and stored by the reference generator (not shown).
  • Such a reference generation unit may be included in the optical interference tomography apparatus 100 described above with reference to FIG. 1 as a configuration, and the reference light amount adjusting unit 170 is a self-contained reference generation unit (not shown). It is also possible to perform the operation.
  • the optical coherence tomography apparatus 100 actively changes and changes the intensity of the reference light signal by using the interference signal intensity detected in real time, thereby providing optimal tomography for the measurement object. Can be processed quickly.
  • FIG. 7 is an example of a tomography image for explaining a light amount control effect of a reference light signal according to an embodiment of the present invention.
  • FIG. 7A is a tomography image of a measurement object without adjusting the amount of light of the reference light signal
  • FIG. 7B shows an object to be measured by applying an optimal amount of light of the reference light signal set according to the interference signal strength measured in advance. It is a tomography image taken.
  • the sensitivity of the tomography image may be improved to provide a clear tomography image.
  • FIG. 8 is a flowchart illustrating a method for optical coherence tomography according to an embodiment of the present invention.
  • the target intensity of the reference light signal suitable for the light saturation threshold value of the photodetector of the optical interference tomography apparatus is determined (S110).
  • the reference light signal prior to acquiring the next measurement light signal and the reference light signal in the tomography of the measurement object, the reference light signal based on the previous interference signal intensity and the light saturation threshold measured based on the previous measurement light signal and the reference light signal. To determine the target strength.
  • the light saturation threshold may be set to the light saturation of the light sensor in the photodetector, and assuming that the light saturation of the light sensor is 100%, the target intensity of the reference light signal is 90% or less of the light saturation. Can be set.
  • the previous interference signal strength may be an initial value of the interference signal strength according to the measurement light signal and the reference light signal first fed back to the measurement object.
  • the incident angle of light with respect to the reference mirror of the optical interference tomography apparatus or the light reflection angle of the reference mirror is set and applied based on the determined target intensity of the reference light signal (S120).
  • the angle of incidence of the light with respect to the reference mirror may be changed by controlling the driving of a plurality of optical systems positioned between the interferometer and the reference mirror of the optical coherence tomography apparatus and changing the traveling path and angle of the light output through the interferometer.
  • the incident angle of the light to the reference mirror may be changed by controlling the driving of the optical collimator for outputting the light output through the interferometer at a set output angle.
  • the reflection angle of the reference mirror may be changed by controlling the driving of the reference mirror itself.
  • the normalized light amount map for the reference light signal to generate a normalized light amount map for the reference light signal by matching the incident angle of the optical signal to the reference mirror or the reflection angle for the optical signal of the reference mirror in advance for each reference light signal intensity Can be.
  • the incident angle or the reflection angle matched to the target intensity of the reference light signal may be quickly detected using the normalized light amount map in step S120.
  • the light output from the light source is divided into a first optical signal and a second optical signal through an interferometer and outputs (S130).
  • the target measuring unit of the optical coherence tomography apparatus irradiates the first optical signal to the measurement object
  • the reference light generating unit irradiates the second optical signal to the reference mirror (S140).
  • the second optical signal is irradiated to the reference mirror in a state in which the incident angle of light with respect to the reference mirror or the light reflection angle of the reference mirror is applied in step S120.
  • the interferometer receives feedback of the measurement light signal reflected from the measurement object through the target measurement unit, and receives the reference light signal reflected from the reference mirror through the reference light generator (S150).
  • the interference signal intensity based on the measured light signal and the reference light signal is measured through the photodetector of the optical coherence tomography apparatus (S160).
  • the step (S110) of determining the target intensity of the reference light signal is applied to the initial value of the interference signal intensity once or based on the previous interference signal every tomography. It is possible to apply.
  • Embodiments of the present invention may also be implemented in the form of a recording medium containing instructions executable by a computer, such as a program module executed by the computer.
  • Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • Computer readable media may include both computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.
  • FIG. 1 is a configuration diagram showing the configuration of an optical coherence tomography apparatus according to an embodiment of the present invention.
  • the optical coherence tomography apparatus 100 includes a light source 110, an interferometer 120, an object measuring unit 130, a reference light generating unit 140, a reference mirror 150, and a photodetector ( 160, a reference light amount adjusting unit 170, and a tomography image processing unit 180.
  • the light source 110 outputs light for optical coherence tomography to the interferometer 120.
  • the interferometer 120 splits the light output from the light source 110 into a first optical signal and a second optical signal.
  • the interferometer 120 outputs the first optical signal toward the measurement object through the target measurement unit 130, and outputs the second optical signal toward the reference mirror 150 through the reference light generator 140.
  • the interferometer 120 receives feedback of the measurement light signal corresponding to the first optical signal through the target measurement unit 130, and feedbacks the reference light signal corresponding to the second optical signal through the reference light generator 140.
  • the interferometer 120 combines the feedback light signal and the reference light signal and transmits the measured light signal to the photodetector 160.
  • the object measuring unit 130 irradiates the measurement object with the first optical signal output through the interferometer 120, and feeds back the measurement light signal reflected from the measurement object to the interferometer 120.
  • the target measuring unit 130 may include a first optical collimator (not shown) that collects the first optical signal output from the interferometer 120 and outputs the parallel optical light toward the measurement object.
  • the first optical collimator (not shown) may be configured as a scanning lens.
  • the reference light generator 140 radiates the second optical signal output through the interferometer 120 to the reference mirror 150, and feeds back the reference light signal reflected from the reference mirror 150 to the interferometer 120.
  • the reference light generator 140 may include a second optical collimator (not shown) that collects the second optical signal output from the interferometer 120 and outputs the parallel light toward the reference mirror 150.
  • the second optical collimator (not shown) may be configured as a focusing lens. For example, by configuring each lens of the first optical collimator and the second optical collimator as the same lens, tomography images can be easily obtained without separately matching the refractive indices between the reference light signal stage and the target measurement stage.
  • the photodetector 160 measures the interference signal strength of the measurement light signal and the reference light signal coupled through the interferometer 120, and measures the measured interference signal strength with the tomographic image processor 180 and the reference light amount controller 170. send.
  • the tomography image processor 180 processes and processes the value of the interference signal strength measured by the photodetector 160 in a preset manner to generate and provide a tomography image of the measurement object.
  • the tomography image processor 180 extracts depth information according to the interference signal intensity value of the measurement object scanned by the target measurement unit 130, and collects a predetermined number of depth information for each pixel to obtain a tomography image.
  • the tomography image processing unit 180 extracts depth information by performing inverse Fourier transform after performing equal-space k-spatial conversion of the values of the interference signal strengths acquired through the photodetector 160 with respect to a predetermined wavelength.
  • the optical interference tomography apparatus 100 adjusts the magnitude of the reference light signal fed back through the reference light generator 140, and thus the signal-to-noise ratio of the tomography image. ) And improve the sensitivity.
  • the photodetector 160 includes a photographing means (eg, a camera) including an optical sensor. If the amount of light of the measurement light signal and the reference light signal received by the photodetector 160 through the interferometer 120 is too strong, the light sensor of the photodetector 160 is in a state of light saturation (that is, the interference signal Strength) can be difficult to measure. In addition, when the amount of light of the measurement light signal and the reference light signal received by the photodetector 160 is too weak, the signal-to-noise ratio and the sensitivity of the interference signal may be reduced, resulting in deterioration of the tomography image.
  • a photographing means eg, a camera
  • the light sensor of the photodetector 160 is in a state of light saturation (that is, the interference signal Strength) can be difficult to measure.
  • the signal-to-noise ratio and the sensitivity of the interference signal may be reduced, resulting in deterioration of the tomography image.
  • the reference light amount adjusting unit 170 is based on the previously measured interference signal strength (hereinafter referred to as 'previous interference signal strength') of the incident angle of the second optical signal to the reference mirror 150 or the reference mirror 150 Control the reflection angle with respect to the second optical signal.
  • 'previous interference signal strength' previously measured interference signal strength
  • the reference light amount adjusting unit 170 determines the target intensity of the reference light signal based on the photosaturation threshold of the photodetector 160 and the previous interference signal strength received from the photodetector 160.
  • the reference light amount adjusting unit 170 changes the incident angle of the second optical signal to the reference mirror 150 or the reflection angle of the reference mirror 150 with respect to the second optical signal based on the determined target intensity of the reference light signal.
  • the reference light amount adjusting unit 170 may set the initial value of the interference signal strength according to the measurement light signal and the reference light signal first fed back to the interferometer 120 with respect to the measurement object as the previous interference signal strength.
  • the optical interference tomography apparatus 100 before the optical interference tomography apparatus 100 measures the effective interference signal intensity for generating the tomographic image of the measurement object, the optical interference tomography apparatus 100 first performs a test step of determining the optimal reference light signal strength for the photodetector 150. To perform. Accordingly, in the state where the incident angle of the second optical signal set based on the optimal reference light signal intensity (that is, the target intensity) to the reference mirror 150 or the reflection angle of the reference mirror 150 with respect to the second optical signal is applied, A reference light signal can be obtained.
  • the optimal reference light signal intensity that is, the target intensity
  • Figure 2 is a block diagram showing the configuration of the reference light amount adjusting unit according to an embodiment of the present invention.
  • the reference light amount adjusting unit 170 includes the optical systems 171 and 172 and the optical system driver 173.
  • the optical systems 171 and 172 reflect the second optical signal output through the reference light generator 140 toward the reference mirror 150 at a predetermined reflection angle, respectively, to adjust the incident angle to the reference mirror 150.
  • the reference light amount adjusting unit 170 is reflected from the first optical system 171 and the first optical system for reflecting the second optical signal output in the first travel direction in a second travel direction different from the first travel direction. It includes a second optical system 172 for reflecting the optical signal in the first travel direction to enter the reference mirror 150.
  • Such a plurality of optical systems are opposed to each other so that light reflected from any one of the other optical systems is incident.
  • the reference light amount adjusting unit 170 includes two optical systems 171 and 172, but the reference light amount adjusting unit 170 may include one or more optical systems.
  • the optical system driver 173 sets the reflection angle for each optical system based on the plurality of optical systems 171 and 172 and the previous interference signal strength, and rotates the optical system driver 173 based on the reflection angle for each optical system.
  • the optical system driver 173 determines the target intensity of the reference light signal based on the previous interference signal strength, and sets the reflection angles of the first and second optical systems 171 and 172 according to the target intensity of the reference light signal. do.
  • FIG. 3 is a block diagram showing the configuration of the reference light amount adjusting unit according to another embodiment of the present invention.
  • the reference light amount adjusting unit 170 includes an optical collimator driver 174 that controls the second optical signal output angle of the reference light generating unit 140.
  • the optical collimator driver 174 sets the optical output angle of the reference light generator 140 (that is, the optical output angle of the second optical collimator (not shown)) based on the previous interference signal strength, and sets the set optical output. Based on the angle, the second optical collimator (not shown) is rotated in a set direction and angle.
  • the optical collimator driver 174 determines the target intensity of the reference light signal based on the previous interference signal strength, and sets the optical output angle of the second optical collimator (not shown) according to the target intensity of the reference light signal. do.
  • FIG. 4 is a block diagram showing the configuration of the reference light amount adjusting unit according to another embodiment of the present invention.
  • the reference light amount adjusting unit 170 includes a reference mirror driving unit 175.
  • the reference mirror driver 175 sets the reflection angle of the reference mirror 150 based on the previous interference signal strength, and rotates the reference mirror 150 in the set direction and angle based on the set reflection angle.
  • the reference mirror driver 175 determines the target intensity of the reference light signal based on the previous interference signal strength, and sets the reflection angle of the reference mirror 150 according to the target intensity of the reference light signal.
  • the reference light amount adjusting unit 170 is fed back through the reference light generating unit 140 by adjusting the incident angle of the second optical signal incident on the reference mirror 150 or the reflection angle of the second optical signal of the reference mirror 150. The amount of light of the reference light signal is changed.
  • FIG. 5 is an example showing the spectrum of the interference signal strength according to the reference light amount control in the embodiment of the present invention.
  • FIG. 5 the light quantity spectrum of the interference signal acquired by the photodetector 160 according to the change in the light amount of the reference light signal is shown, and it can be seen that the interference signal intensity is different as the light amount of the reference light signal is changed.
  • the reference light amount adjusting unit 170 is applied to the incident angle of the second optical signal to the reference mirror 150 or to the second optical signal of the reference mirror 150.
  • a reference generation unit (not shown) may be further provided to provide setting criteria to accurately and quickly determine the angle of reflection for the target.
  • the reference generator (not shown) matches the reference light by matching at least one of the incident angle of the second optical signal to the reference mirror 150 and the reflection angle of the reference mirror 150 with respect to the second optical signal for each reference light signal intensity. Generate and store a normalized light quantity map for the signal.
  • FIG. 6 is an example showing a normalized light amount map for a reference light signal according to an embodiment of the present invention.
  • the reference light amount adjusting unit 170 may detect the incident angle or the reflection angle matching the target intensity of the reference light signal from the normalized light amount map generated and stored by the reference generator (not shown).
  • Such a reference generation unit may be included in the optical interference tomography apparatus 100 described above with reference to FIG. 1 as a configuration, and the reference light amount adjusting unit 170 is a self-contained reference generation unit (not shown). It is also possible to perform the operation.
  • the optical coherence tomography apparatus 100 actively changes and changes the intensity of the reference light signal by using the interference signal intensity detected in real time, thereby providing optimal tomography for the measurement object. Can be processed quickly.
  • FIG. 7 is an example of a tomography image for explaining a light amount control effect of a reference light signal according to an embodiment of the present invention.
  • FIG. 7A is a tomography image of a measurement object without adjusting the amount of light of the reference light signal
  • FIG. 7B shows an object to be measured by applying an optimal amount of light of the reference light signal set according to the interference signal strength measured in advance. It is a tomography image taken.
  • the sensitivity of the tomography image may be improved to provide a clear tomography image.
  • FIG. 8 is a flowchart illustrating a method for optical coherence tomography according to an embodiment of the present invention.
  • the target intensity of the reference light signal suitable for the light saturation threshold value of the photodetector of the optical interference tomography apparatus is determined (S110).
  • the reference light signal prior to acquiring the next measurement light signal and the reference light signal in the tomography of the measurement object, the reference light signal based on the previous interference signal intensity and the light saturation threshold measured based on the previous measurement light signal and the reference light signal. To determine the target strength.
  • the light saturation threshold may be set to the light saturation of the light sensor in the photodetector, and assuming that the light saturation of the light sensor is 100%, the target intensity of the reference light signal is 90% or less of the light saturation. Can be set.
  • the previous interference signal strength may be an initial value of the interference signal strength according to the measurement light signal and the reference light signal first fed back to the measurement object.
  • the incident angle of light with respect to the reference mirror of the optical interference tomography apparatus or the light reflection angle of the reference mirror is set and applied based on the determined target intensity of the reference light signal (S120).
  • the angle of incidence of the light with respect to the reference mirror may be changed by controlling the driving of a plurality of optical systems positioned between the interferometer and the reference mirror of the optical coherence tomography apparatus and changing the traveling path and angle of the light output through the interferometer.
  • the incident angle of the light to the reference mirror may be changed by controlling the driving of the optical collimator for outputting the light output through the interferometer at a set output angle.
  • the reflection angle of the reference mirror may be changed by controlling the driving of the reference mirror itself.
  • the normalized light amount map for the reference light signal to generate a normalized light amount map for the reference light signal by matching the incident angle of the optical signal to the reference mirror or the reflection angle for the optical signal of the reference mirror in advance for each reference light signal intensity Can be.
  • the incident angle or the reflection angle matched to the target intensity of the reference light signal may be quickly detected using the normalized light amount map in step S120.
  • the light output from the light source is divided into a first optical signal and a second optical signal through an interferometer and outputs (S130).
  • the target measuring unit of the optical coherence tomography apparatus irradiates the first optical signal to the measurement object
  • the reference light generating unit irradiates the second optical signal to the reference mirror (S140).
  • the second optical signal is irradiated to the reference mirror in a state in which the incident angle of light with respect to the reference mirror or the light reflection angle of the reference mirror is applied in step S120.
  • the interferometer receives feedback of the measurement light signal reflected from the measurement object through the target measurement unit, and receives the reference light signal reflected from the reference mirror through the reference light generator (S150).
  • the interference signal intensity based on the measured light signal and the reference light signal is measured through the photodetector of the optical coherence tomography apparatus (S160).
  • the step (S110) of determining the target intensity of the reference light signal is applied to the initial value of the interference signal intensity once or based on the previous interference signal every tomography. It is possible to apply.
  • Embodiments of the present invention may also be implemented in the form of a recording medium containing instructions executable by a computer, such as a program module executed by the computer.
  • Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • Computer readable media may include both computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.

Abstract

The optical interference tomographic method includes the steps of: dividing the light output of a light source into a first and a second optical signal; irradiating a measured object with the first optical signal, and a reference mirror with the second optical signal; feeding back the measurement optical signal obtained from the first optical signal reflected by the measured object and the reference optical signal obtained from the second optical signal reflected by the reference mirror; combining the measurement optical signal and the reference optical signal; and measuring the intensity of an interference signal based on the combination of the measurement and the reference optical signal, wherein the second optical signal is irradiated on the reference mirror by applying the incident angle and the reflection angle of the second optical signal set based on the intensity of the interference signal previously measured.

Description

광 간섭 단층 촬영 장치 및 방법Optical coherence tomography apparatus and method
본 발명은 광 간섭 단층 촬영 장치 및 방법에 관한 것이다.The present invention relates to an optical coherence tomography apparatus and method.
광 간섭 단층 촬영 장치(Optical coherence tomography, 이하 ‘OCT’로 지칭함)는 인체에 무해한 광을 이용하여 실시간으로 생체 조직 및 재료의 내부를 고해상도로 촬영하는 장치이다. 이러한 OCT는 파장이 짧은 간섭 광원을 이용하여 생체 조직 및 재료 내의 미세한 부분의 단층을 서브-마이크론(sub-micron) 영역까지 고해상도로 촬영할 수 있다.Optical coherence tomography (hereinafter referred to as 'OCT') is a device that photographs the inside of a living tissue and material in high resolution using light that is harmless to the human body. Such OCT can take a high-resolution image of monolayers of minute portions in biological tissues and materials using sub-wavelength interference light sources, to sub-micron regions.
OCT는 의료 영상 진단 분야의 레이저 단층 촬영, 광섬유 센서 시스템, 또는 광통신 분야에 널리 사용되고 있으며, 원리와 구조에 따라 주파수 영역(Frequency Domain) OCT와 스펙트럼 영역(Spectrum Domain) OCT로 분류할 수 있다.OCT is widely used in laser tomography, optical fiber sensor systems, or optical communication in medical imaging, and can be classified into frequency domain OCT and spectrum domain OCT according to principles and structures.
스펙트럼 영역 OCT는 광대역 광원을 이용하며, 광대역 광원은 스펙트로미터(spectrometer)에 의해 파장대 별로 측정체로부터 반사되는 빛의 크기를 분석하여 영상화한다. 이러한 스펙트로미터로서는 씨모스(CMOS, Complementary Oxide Semiconductor) 카메라 또는 씨씨디(CCD, Charge-Coupled Device) 카메라 형태의 라인 디텍터가 사용된다. 일반적으로 스펙트로미터는 광대역 광원의 특정 파장이 CCD 또는 CMOS 카메라의 특정 픽셀에 맵핑되도록 설계되며, 맵핑된 파장별 픽셀이 선형적으로 유지된다. 스펙트럼 영역 OCT는 픽셀 조합을 푸리에 변환하여 측정체의 깊이 정보를 획득한다.The spectral region OCT uses a broadband light source, and the broadband light source analyzes the image of the light reflected from the measuring object for each wavelength band by a spectrometer. As such a spectrometer, a line detector in the form of a CMOS (Complementary Oxide Semiconductor) camera or a Charge-Coupled Device (CCD) camera is used. In general, spectrometers are designed so that a specific wavelength of a broadband light source is mapped to a specific pixel of a CCD or CMOS camera, and the mapped wavelength-specific pixels are kept linear. The spectral region OCT obtains depth information of a measurement object by Fourier transforming a pixel combination.
한편, OCT는 기준 신호와 샘플 신호(측정 신호)의 광 경로차에 의해 발생한 간섭 무늬를 분석하여 영상을 획득하는 장치로서, 기준 신호를 상황에 맞게 조절해 줄 필요가 있다.On the other hand, the OCT is an apparatus for obtaining an image by analyzing the interference pattern generated by the optical path difference between the reference signal and the sample signal (measurement signal), it is necessary to adjust the reference signal according to the situation.
종래의 OCT는 적절한 기준 신호를 획득하기 위해 기준 신호단에 ND(Neutral density) 필터를 장착하여 빛의 크기를 감소시키는 방법을 이용하였다. 그러나 ND 필터의 빛의 감쇠도는 고정되어 있기 때문에 원하는 수준의 기준 신호를 정확하게 획득하기 어렵다. 이러한 문제를 해결하기 위하여 ND 필터의 빛 감쇠량이 점진적으로 바뀌는 가변 ND 필터를 이용하는 방안이 제시되었다. 그러나 ND 필터를 이용한 기준 신호 획득 방식은 ND 필터 자체를 움직여 빛의 세기를 변경하기 때문에 ND 필터의 빛 파장별 차단 계수에 의존적이고, 속도가 느리며, OCT의 부피가 커지는 단점이 있었다.Conventional OCT uses a method of reducing the size of light by mounting a ND (Neutral density) filter in the reference signal stage to obtain an appropriate reference signal. However, because the light attenuation of the ND filter is fixed, it is difficult to accurately obtain a desired level of reference signal. In order to solve this problem, a method of using a variable ND filter in which the amount of light attenuation of the ND filter is gradually changed is proposed. However, since the reference signal acquisition method using the ND filter changes the light intensity by moving the ND filter itself, it has a disadvantage in that it depends on the blocking coefficient of each wavelength of light of the ND filter, is slow, and the volume of the OCT is large.
이와 관련하여, 한국등록특허 제849193호(발명의 명칭: 오씨티 시스템)는, 광원과 검출기 사이의 광 경로상에 필터부재를 설치하여 광이 스펙트럼별로 시간차를 두고 나가도록 하여 이미지를 처리하되, 패브리 페로 필터와 같은 필터부재를 사용하여 광원에서 발생된 광이 광분할기에서 분할되기 전 또는 측정피부로부터 반사되어 광분할기에서 결합된 후 시간차를 두고 파장별로 나아가도록 하여 이미지를 처리하는 구성을 개시하고 있다.In this regard, Korean Patent No. 849193 (Occurity System of the Invention) installs a filter member on an optical path between a light source and a detector so as to process an image by allowing the light to leave a time difference for each spectrum, Using a filter member such as a Fabry-Perot filter to disclose a configuration for processing the image by advancing by the wavelength with a time difference before the light generated from the light source is split in the light splitter or reflected from the measurement skin and combined in the light splitter have.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 기준광량을 조절할 수 있는 기준 신호단이 구현된 광 간섭 단층 촬영 장치 및 방법을 제공하고자 한다.The present invention is to solve the above-mentioned problems of the prior art, to provide an optical coherence tomography apparatus and method in which a reference signal stage capable of adjusting the reference light amount is implemented.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical problem to be achieved by the present embodiment is not limited to the technical problem as described above, and other technical problems may exist.
상기와 같은 기술적 과제를 달성하기 위한 본 발명의 일 측면에 따른 광 간섭 단층 촬영 장치는, 광을 출력하는 광원, 상기 광원으로부터 출력된 광을 제 1 광신호 및 제 2 광신호로 분할하여 출력하고, 상기 제 1 광신호에 대응하는 측정광 신호 및 상기 제 2 광신호에 대응하는 기준광 신호를 각각 피드백 받아 결합하는 간섭계, 상기 간섭계를 통해 출력된 상기 제 1 광신호를 측정 대상물에 조사하고, 상기 측정 대상물로부터 반사된 상기 측정광 신호를 상기 간섭계로 피드백하는 대상 측정부, 상기 간섭계를 통해 출력된 상기 제 2 광신호를 기준 거울에 조사하고, 상기 기준 거울로부터 반사된 상기 기준광 신호를 상기 간섭계로 피드백하는 기준광 생성부, 상기 간섭계를 통해 결합된 상기 측정광 신호 및 상기 기준광 신호의 간섭 신호 세기를 계측하는 광검출기 및 이전에 계측된 상기 간섭 신호 세기에 기초하여 상기 제 2 광신호의 상기 기준 거울로의 입사각 또는 상기 기준 거울에서의 반사각이 변경되도록 제어하는 기준광량 조절부를 포함한다.The optical interference tomography apparatus according to an aspect of the present invention for achieving the above technical problem, the light source for outputting light, the light output from the light source is divided into a first optical signal and a second optical signal and output And an interferometer for feedback receiving and combining the measurement light signal corresponding to the first optical signal and the reference light signal corresponding to the second optical signal, and irradiating the measurement target with the first optical signal output through the interferometer. An object measuring unit for feeding back the measurement light signal reflected from the measurement object to the interferometer, irradiating the second optical signal output through the interferometer to a reference mirror, and applying the reference light signal reflected from the reference mirror to the interferometer A reference light generator for feeding back, measuring the interference signal strength of the measurement light signal and the reference light signal coupled through the interferometer And a reference light amount adjusting unit for controlling the incident angle of the second optical signal to the reference mirror or the reflection angle of the reference mirror to be changed based on the photodetector and the previously measured interference signal strength.
본 발명의 다른 측면에 따른 광 간섭 단층 촬영 장치를 통한 광 간섭 단층 촬영 방법은, (a) 광원으로부터 출력된 광을 제 1 광신호 및 제 2 광신호로 분할하여 출력하는 단계, (b) 상기 제 1 광신호를 측정 대상물에 조사하고, 상기 제 2 광신호를 기준 거울에 조사하는 단계, (c) 상기 제 1 광신호가 상기 측정 대상물로부터 반사된 측정광 신호 및 상기 제2광신호가 상기 기준 거울로부터 반사된 기준광 신호를 각각 피드백 받는 단계, (d) 상기 피드백된 측정광 신호 및 기준광 신호를 결합하는 단계 및 (e) 상기 결합된 측정광 신호 및 기준광 신호에 기초하여 간섭 신호 세기를 계측하는 단계를 포함하되, 상기 (b) 단계는, 이전에 계측된 상기 간섭 신호 세기에 기초하여 설정된 상기 제 2 광신호의 상기 기준 거울로의 입사각 또는 상기 기준 거울에서의 반사각을 적용하여 상기 제 2 광신호를 조사한다.In accordance with another aspect of the present invention, an optical coherence tomography method using an optical coherence tomography apparatus comprises: (a) dividing and outputting light output from a light source into a first optical signal and a second optical signal, and (b) the Irradiating a first optical signal to a measurement object and irradiating the second optical signal to a reference mirror, (c) a measurement light signal in which the first optical signal is reflected from the measurement object, and the second optical signal is the reference mirror Receiving feedback of the reference light signal reflected from each other, (d) combining the fed back measurement light signal and reference light signal, and (e) measuring interference signal strength based on the combined measurement light signal and reference light signal Wherein the step (b) includes the incident angle of the second optical signal into the reference mirror or the reflection angle from the reference mirror set based on the interference signal strength previously measured. Apply the second optical signal.
전술한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 기준광 신호의 광량을 조절하여 단층 촬영함으로써 단층 촬영 영상의 감도가 향상되어 선명한 단층 영상을 제공할 수 있다.According to any one of the problem solving means of the present invention described above, by adjusting the amount of light of the reference light signal tomography, the sensitivity of the tomography image can be improved to provide a clear tomography image.
그리고 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 별도의 필터 부재 없이도 기준광 신호단을 구현할 수 있어 광 간섭 단층 촬영 장치의 부피를 소형화할 수 있으며, 빛 파장별 차단 계수와 무관하게 기준광 신호를 최적화할 수 있다.In addition, according to any one of the problem solving means of the present invention, it is possible to implement the reference light signal stage without a separate filter member can reduce the volume of the optical coherence tomography apparatus, and optimize the reference light signal irrespective of the blocking coefficient for each light wavelength can do.
또한, 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 실시간으로 검출된 간섭 신호 세기를 이용하여 능동적으로 다음 기준광 신호의 세기를 변경함으로써, 측정 대상물에 대한 최적의 단층 촬영을 신속하게 처리할 수 있다.Further, according to any one of the problem solving means of the present invention, by using the interference signal strength detected in real time, by actively changing the intensity of the next reference light signal, it is possible to quickly process the optimal tomography for the measurement object. .
도 1은 본 발명의 실시예에 따른 광 간섭 단층 촬영 장치의 구성을 나타내는 구성도이다.1 is a block diagram showing the configuration of an optical coherence tomography apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 기준광량 조절부의 구성을 나타낸 구성도이다.2 is a block diagram showing the configuration of the reference light amount adjusting unit according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 기준광량 조절부의 구성을 나타낸 구성도이다.3 is a block diagram showing the configuration of the reference light amount adjusting unit according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 실시예에 따른 기준광량 조절부의 구성을 나타낸 구성도이다.4 is a block diagram showing the configuration of the reference light amount adjusting unit according to another embodiment of the present invention.
도 5는 본 발명의 실시예에서 기준광량 조절에 따른 간섭 신호 세기의 스펙트럼을 나타내는 일례이다.5 is an example showing the spectrum of the interference signal strength according to the reference light amount control in an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 기준광 신호에 대한 정규화 광량 맵을 나타내는 일례이다.6 is an example showing a normalized light amount map for a reference light signal according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 기준광 신호의 광량 조절 효과를 설명하기 위한 단층 촬영 영상의 일례이다.7 is an example of a tomography image for explaining an effect of adjusting the amount of light of a reference light signal according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 광 간섭 단층 촬영 방법을 설명하기 위한 순서도이다.8 is a flowchart illustrating a method for optical coherence tomography according to an exemplary embodiment of the present invention.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, this includes not only "directly connected" but also "electrically connected" with another element in between. . In addition, when a part is said to "include" a certain component, which means that it may further include other components, except to exclude other components unless otherwise stated.
도 1은 본 발명의 실시예에 따른 광 간섭 단층 촬영 장치의 구성을 나타내는 구성도이다.1 is a configuration diagram showing the configuration of an optical coherence tomography apparatus according to an embodiment of the present invention.
도 1에 도시한 바와 같이, 광 간섭 단층 촬영 장치(100)는 광원(110), 간섭계(120), 대상 측정부(130), 기준광 생성부(140), 기준 거울(150), 광검출기(160), 기준광량 조절부(170) 및 단층 영상 처리부(180)를 포함한다.As shown in FIG. 1, the optical coherence tomography apparatus 100 includes a light source 110, an interferometer 120, an object measuring unit 130, a reference light generating unit 140, a reference mirror 150, and a photodetector ( 160, a reference light amount adjusting unit 170, and a tomography image processing unit 180.
광원(110)은 광 간섭 단층 촬영을 위한 광을 간섭계(120)로 출력한다.The light source 110 outputs light for optical coherence tomography to the interferometer 120.
간섭계(120)는 광원(110)으로부터 출력된 광을 제 1 광신호 및 제 2 광신호로 분할한다. 그리고 간섭계(120)는 제 1 광신호를 대상 측정부(130)를 통해 측정 대상물을 향해 출력하고, 제 2 광신호를 기준광 생성부(140)를 통해 기준 거울(150)을 향해 출력한다.The interferometer 120 splits the light output from the light source 110 into a first optical signal and a second optical signal. The interferometer 120 outputs the first optical signal toward the measurement object through the target measurement unit 130, and outputs the second optical signal toward the reference mirror 150 through the reference light generator 140.
간섭계(120)는 대상 측정부(130)를 통해 제 1 광신호에 대응하는 측정광 신호를 피드백 받고, 기준광 생성부(140)를 통해 제 2 광신호에 대응하는 기준광 신호를 피드백 받는다.The interferometer 120 receives feedback of the measurement light signal corresponding to the first optical signal through the target measurement unit 130, and feedbacks the reference light signal corresponding to the second optical signal through the reference light generator 140.
간섭계(120)는 피드백된 측정광 신호 및 기준광 신호를 결합하여 광검출기(160)로 전달한다.The interferometer 120 combines the feedback light signal and the reference light signal and transmits the measured light signal to the photodetector 160.
대상 측정부(130)는 간섭계(120)를 통해 출력된 제 1 광신호를 측정 대상물에 조사하고, 측정 대상물로부터 반사된 측정광 신호를 간섭계(120)로 피드백한다.The object measuring unit 130 irradiates the measurement object with the first optical signal output through the interferometer 120, and feeds back the measurement light signal reflected from the measurement object to the interferometer 120.
대상 측정부(130)는 간섭계(120)로부터 출력된 제 1 광신호를 집광하여 측정 대상물을 향해 평행광으로 출력하는 제 1 광시준기(미도시)를 포함할 수 있다. 제 1 광시준기(미도시)는 스캐닝 렌즈로 구성될 수 있다.The target measuring unit 130 may include a first optical collimator (not shown) that collects the first optical signal output from the interferometer 120 and outputs the parallel optical light toward the measurement object. The first optical collimator (not shown) may be configured as a scanning lens.
기준광 생성부(140)는 간섭계(120)를 통해 출력된 제 2 광신호를 기준 거울(150)에 조사하고, 기준 거울(150)로부터 반사된 기준광 신호를 간섭계(120)로 피드백한다.The reference light generator 140 radiates the second optical signal output through the interferometer 120 to the reference mirror 150, and feeds back the reference light signal reflected from the reference mirror 150 to the interferometer 120.
기준광 생성부(140)는 간섭계(120)로부터 출력된 제 2 광신호를 집광하여 기준 거울(150)을 향해 평행광으로 출력하는 제 2 광시준기(미도시)를 포함할 수 있다. 제 2 광시준기(미도시)는 포커싱 렌즈로 구성될 수 있다. 예를 들어, 제 1 광시준기 및 제 2 광시준기의 각 렌즈를 동일한 렌즈로 구성함으로써, 기준광 신호단과 대상 측정단 간의 굴절율을 별도로 정합 처리하지 않고도 간편하게 단층 촬영 영상을 획득할 수 있다.The reference light generator 140 may include a second optical collimator (not shown) that collects the second optical signal output from the interferometer 120 and outputs the parallel light toward the reference mirror 150. The second optical collimator (not shown) may be configured as a focusing lens. For example, by configuring each lens of the first optical collimator and the second optical collimator as the same lens, tomography images can be easily obtained without separately matching the refractive indices between the reference light signal stage and the target measurement stage.
광검출기(160)는 간섭계(120)를 통해 결합된 측정광 신호 및 기준광 신호에 대한 간섭 신호 세기를 계측하고, 계측한 간섭 신호 세기를 단층 영상 처리부(180) 및 기준광량 조절부(170)로 전송한다.The photodetector 160 measures the interference signal strength of the measurement light signal and the reference light signal coupled through the interferometer 120, and measures the measured interference signal strength with the tomographic image processor 180 and the reference light amount controller 170. send.
단층 영상 처리부(180)는 광검출기(160)를 통해 계측된 간섭 신호 세기의 값을 사전에 설정된 방식으로 신호 처리하여 측정 대상물에 대한 단층 촬영 영상을 생성 및 제공한다.The tomography image processor 180 processes and processes the value of the interference signal strength measured by the photodetector 160 in a preset manner to generate and provide a tomography image of the measurement object.
구체적으로, 단층 영상 처리부(180)는 대상 측정부(130)가 스캐닝한 측정 대상물에 대해 간섭 신호 세기의 값에 따른 깊이 정보를 추출하고, 미리 설정된 개수의 픽셀 별 깊이 정보를 취합하여 단층 영상을 구성한다. 단층 영상 처리부(180)는 광검출기(160)를 통해 획득한 간섭 신호 세기의 값들을 기설정된 파장(wavelength)에 대해 등간격 k-공간 변환한 후 역푸리에 변환 처리하여 깊이 정보를 추출한다.In detail, the tomography image processor 180 extracts depth information according to the interference signal intensity value of the measurement object scanned by the target measurement unit 130, and collects a predetermined number of depth information for each pixel to obtain a tomography image. Configure. The tomography image processing unit 180 extracts depth information by performing inverse Fourier transform after performing equal-space k-spatial conversion of the values of the interference signal strengths acquired through the photodetector 160 with respect to a predetermined wavelength.
한편, 본 발명의 실시예에 따른 광 간섭 단층 촬영 장치(100)는 기준광 생성부(140)를 통해 피드백된 기준광 신호의 크기를 조절하여, 단층 촬영 영상의 신호 대 잡음비(signal-to-noise ratio )와 감도를 향상시킨다.On the other hand, the optical interference tomography apparatus 100 according to the embodiment of the present invention adjusts the magnitude of the reference light signal fed back through the reference light generator 140, and thus the signal-to-noise ratio of the tomography image. ) And improve the sensitivity.
구체적으로, 광검출기(160)는 광센서를 포함하는 촬영 수단(예를 들어, 카메라)을 포함하여 구성된다. 간섭계(120)를 통해 광검출기(160)에 수신되는 측정광 신호 및 기준광 신호의 광량이 너무 강할 경우, 광검출기(160)의 광센서가 광포화 상태가 되어 간섭 신호의 광량(즉, 간섭 신호 세기)의 계측이 어려워질 수 있다. 또한, 광검출기(160)에 수신되는 측정광 신호 및 기준광 신호의 광량이 너무 약할 경우, 간섭 신호에 따른 신호 대 잡음비와 감도가 감소되어 단층 촬영 영상의 열화가 발생될 수 있다.In detail, the photodetector 160 includes a photographing means (eg, a camera) including an optical sensor. If the amount of light of the measurement light signal and the reference light signal received by the photodetector 160 through the interferometer 120 is too strong, the light sensor of the photodetector 160 is in a state of light saturation (that is, the interference signal Strength) can be difficult to measure. In addition, when the amount of light of the measurement light signal and the reference light signal received by the photodetector 160 is too weak, the signal-to-noise ratio and the sensitivity of the interference signal may be reduced, resulting in deterioration of the tomography image.
이에 따라, 기준광량 조절부(170)는 이전에 계측된 간섭 신호 세기(이하, ‘이전 간섭 신호 세기’라고 함)에 기초하여 제 2 광신호의 기준 거울(150)로의 입사각 또는 기준 거울(150)의 제 2 광신호에 대한 반사각이 변경되도록 제어한다.Accordingly, the reference light amount adjusting unit 170 is based on the previously measured interference signal strength (hereinafter referred to as 'previous interference signal strength') of the incident angle of the second optical signal to the reference mirror 150 or the reference mirror 150 Control the reflection angle with respect to the second optical signal.
구체적으로, 기준광량 조절부(170)는 사전에 설정된 광검출기(160)의 광포화 임계값 및 광검출기(160)로부터 수신된 이전 간섭 신호 세기에 기초하여 기준광 신호의 목표 세기를 결정한다. 그리고 기준광량 조절부(170)는 결정된 기준광 신호의 목표 세기에 기초하여 제 2 광신호의 기준 거울(150)로의 입사각 또는 기준 거울(150)의 제 2 광신호에 대한 반사각을 변경한다.In detail, the reference light amount adjusting unit 170 determines the target intensity of the reference light signal based on the photosaturation threshold of the photodetector 160 and the previous interference signal strength received from the photodetector 160. The reference light amount adjusting unit 170 changes the incident angle of the second optical signal to the reference mirror 150 or the reflection angle of the reference mirror 150 with respect to the second optical signal based on the determined target intensity of the reference light signal.
이때, 기준광량 조절부(170)는 측정 대상물에 대해 간섭계(120)에 최초 피드백된 측정광 신호 및 기준광 신호에 따른 간섭 신호 세기의 초기 값을 이전 간섭 신호 세기로서 설정할 수 있다.In this case, the reference light amount adjusting unit 170 may set the initial value of the interference signal strength according to the measurement light signal and the reference light signal first fed back to the interferometer 120 with respect to the measurement object as the previous interference signal strength.
즉, 광 간섭 단층 촬영 장치(100)는 측정 대상물에 대한 단층 영상을 생성하기 위한 유효한 간섭 신호 세기를 계측하기에 앞서, 광검출기(150)에 대한 최적의 기준광 신호 세기를 결정하는 테스트 단계를 먼저 수행한다. 이에 따라, 상기 최적의 기준광 신호 세기(즉, 목표 세기)에 기초하여 설정된 제 2 광신호의 기준 거울(150)로의 입사각 또는 기준 거울(150)의 제 2 광신호에 대한 반사각이 적용된 상태에서 다음 기준광 신호를 획득할 수 있다.That is, before the optical interference tomography apparatus 100 measures the effective interference signal intensity for generating the tomographic image of the measurement object, the optical interference tomography apparatus 100 first performs a test step of determining the optimal reference light signal strength for the photodetector 150. To perform. Accordingly, in the state where the incident angle of the second optical signal set based on the optimal reference light signal intensity (that is, the target intensity) to the reference mirror 150 or the reflection angle of the reference mirror 150 with respect to the second optical signal is applied, A reference light signal can be obtained.
이하, 도 2 내지 도 4를 참조하여 본 발명의 실시예에 따른 기준광량 조절부(170)의 다양한 실시예에 대해서 상세히 설명하도록 한다.Hereinafter, various embodiments of the reference light amount adjusting unit 170 according to an embodiment of the present invention will be described in detail with reference to FIGS. 2 to 4.
먼저, 도 2는 본 발명의 일 실시예에 따른 기준광량 조절부의 구성을 나타낸 구성도이다.First, Figure 2 is a block diagram showing the configuration of the reference light amount adjusting unit according to an embodiment of the present invention.
도 2에 도시한 바와 같이, 기준광량 조절부(170)는 광학계(171, 172) 및 광학계 구동부(173)를 포함하여 구성된다.As shown in FIG. 2, the reference light amount adjusting unit 170 includes the optical systems 171 and 172 and the optical system driver 173.
구체적으로, 광학계(171, 172)는 기준광 생성부(140)를 통해 기준 거울(150)을 향해 출력된 제 2 광신호를 각각 미리 설정된 반사각으로 반사시켜 기준 거울(150)로의 입사각을 조절한다.In detail, the optical systems 171 and 172 reflect the second optical signal output through the reference light generator 140 toward the reference mirror 150 at a predetermined reflection angle, respectively, to adjust the incident angle to the reference mirror 150.
도 2에서는 기준광량 조절부(170)가 제 1 진행 방향으로 출력된 상기 제2 광신호를 제 1 진행 방향과 상이한 제 2 진행 방향으로 반사시키는 제 1 광학계(171) 및 제 1 광학계로부터 반사된 광신호를 제 1 진행 방향으로 반사시켜 기준 거울(150)에 입사시키는 제 2 광학계를(172)를 포함하는 것을 나타내었다. 이와 같은 복수의 광학계는 각각 어느 하나의 다른 광학계로부터 반사된 광이 입사되도록 대향 배치된다.In FIG. 2, the reference light amount adjusting unit 170 is reflected from the first optical system 171 and the first optical system for reflecting the second optical signal output in the first travel direction in a second travel direction different from the first travel direction. It includes a second optical system 172 for reflecting the optical signal in the first travel direction to enter the reference mirror 150. Such a plurality of optical systems are opposed to each other so that light reflected from any one of the other optical systems is incident.
도 2에서는 기준광량 조절부(170)가 두 개의 광학계(171, 172)를 포함하여 구성되는 것을 예로서 설명하였으나, 기준광량 조절부(170)는 하나 이상의 광학계를 포함하여 구성될 수 있다.In FIG. 2, the reference light amount adjusting unit 170 includes two optical systems 171 and 172, but the reference light amount adjusting unit 170 may include one or more optical systems.
광학계 구동부(173)는 복수의 광학계(171, 172) 및 이전 간섭 신호 세기에 기초하여 광학계 별 반사각을 설정하고, 복수의 광학계 별로 반사각에 기초하여 설정된 방향 및 각도로 회동시킨다.The optical system driver 173 sets the reflection angle for each optical system based on the plurality of optical systems 171 and 172 and the previous interference signal strength, and rotates the optical system driver 173 based on the reflection angle for each optical system.
이때, 광학계 구동부(173)는 앞서 설명한 바와 같이 이전 간섭 신호 세기에 기초하여 기준광 신호의 목표 세기를 결정하고, 기준광 신호의 목표 세기에 따라 제 1 및 제 2 광학계(171, 172)의 반사각을 설정한다.In this case, as described above, the optical system driver 173 determines the target intensity of the reference light signal based on the previous interference signal strength, and sets the reflection angles of the first and second optical systems 171 and 172 according to the target intensity of the reference light signal. do.
도 3은 본 발명의 다른 실시예에 따른 기준광량 조절부의 구성을 나타낸 구성도이다.3 is a block diagram showing the configuration of the reference light amount adjusting unit according to another embodiment of the present invention.
도 3에 도시한 바와 같이, 기준광량 조절부(170)는 기준광 생성부(140)의 제 2 광신호 출력각을 제어하는 광시준기 구동부(174)를 포함하여 구성된다.As shown in FIG. 3, the reference light amount adjusting unit 170 includes an optical collimator driver 174 that controls the second optical signal output angle of the reference light generating unit 140.
구체적으로, 광시준기 구동부(174)는 이전 간섭 신호 세기에 기초하여 기준광 생성부(140)의 광출력각(즉, 제 2 광시준기(미도시)의 광출력각)을 설정하고, 설정된 광출력각에 기초하여 제 2 광시준기(미도시)를 설정된 방향 및 각도로 회동시킨다.Specifically, the optical collimator driver 174 sets the optical output angle of the reference light generator 140 (that is, the optical output angle of the second optical collimator (not shown)) based on the previous interference signal strength, and sets the set optical output. Based on the angle, the second optical collimator (not shown) is rotated in a set direction and angle.
이때, 광시준기 구동부(174)는 앞서 설명한 바와 같이 이전 간섭 신호 세기에 기초하여 기준광 신호의 목표 세기를 결정하고, 기준광 신호의 목표 세기에 따라 제 2 광시준기(미도시)의 광출력각을 설정한다.In this case, the optical collimator driver 174 determines the target intensity of the reference light signal based on the previous interference signal strength as described above, and sets the optical output angle of the second optical collimator (not shown) according to the target intensity of the reference light signal. do.
도 4는 본 발명의 또 다른 실시예에 따른 기준광량 조절부의 구성을 나타낸 구성도이다.4 is a block diagram showing the configuration of the reference light amount adjusting unit according to another embodiment of the present invention.
도 4에 도시한 바와 같이, 본 발명의 또 다른 실시예에 따른 기준광량 조절부(170)는 기준 거울 구동부(175)를 포함하여 구성된다.As shown in FIG. 4, the reference light amount adjusting unit 170 according to another embodiment of the present invention includes a reference mirror driving unit 175.
구체적으로, 기준 거울 구동부(175)는 이전 간섭 신호 세기에 기초하여 기준 거울(150)의 반사각을 설정하고, 설정된 반사각에 기초하여 기준 거울(150)을 설정된 방향 및 각도로 회동시킨다.In detail, the reference mirror driver 175 sets the reflection angle of the reference mirror 150 based on the previous interference signal strength, and rotates the reference mirror 150 in the set direction and angle based on the set reflection angle.
이때, 기준 거울 구동부(175)는 앞서 설명한 바와 같이 이전 간섭 신호 세기에 기초하여 기준광 신호의 목표 세기를 결정하고, 기준광 신호의 목표 세기에 따라 기준 거울(150)의 반사각을 설정한다.In this case, as described above, the reference mirror driver 175 determines the target intensity of the reference light signal based on the previous interference signal strength, and sets the reflection angle of the reference mirror 150 according to the target intensity of the reference light signal.
이와 같이 기준광량 조절부(170)가 기준 거울(150)에 입사되는 제 2 광신호의 입사각 또는 기준 거울(150)의 제 2 광신호 반사각을 조절함에 따라 기준광 생성부(140)를 통해 피드백되는 기준광 신호의 광량이 변경된다.As such, the reference light amount adjusting unit 170 is fed back through the reference light generating unit 140 by adjusting the incident angle of the second optical signal incident on the reference mirror 150 or the reflection angle of the second optical signal of the reference mirror 150. The amount of light of the reference light signal is changed.
예를 들어, 도 5는 본 발명의 실시예에서 기준광량 조절에 따른 간섭 신호 세기의 스펙트럼을 나타내는 일례이다.For example, FIG. 5 is an example showing the spectrum of the interference signal strength according to the reference light amount control in the embodiment of the present invention.
도 5에서는 기준광 신호의 광량 변화에 따라 광검출기(160)에서 획득하는 간섭 신호의 광량 스펙트럼을 나타내었으며, 기준광 신호의 광량이 변경됨에 따라 간섭 신호 세기가 상이한 것을 알 수 있다.In FIG. 5, the light quantity spectrum of the interference signal acquired by the photodetector 160 according to the change in the light amount of the reference light signal is shown, and it can be seen that the interference signal intensity is different as the light amount of the reference light signal is changed.
한편, 본 발명의 실시예에 따른 광 간섭 단층 촬영 장치(100)는 기준광량 조절부(170)가 제 2 광신호의 기준 거울(150)로의 입사각 또는 기준 거울(150)의 제2 광신호에 대한 반사각을 정확하고 신속하게 결정할 수 있도록 설정 기준을 제공하는 기준 생성부(미도시)를 더 포함할 수 있다.On the other hand, in the optical interference tomography apparatus 100 according to the exemplary embodiment of the present invention, the reference light amount adjusting unit 170 is applied to the incident angle of the second optical signal to the reference mirror 150 or to the second optical signal of the reference mirror 150. A reference generation unit (not shown) may be further provided to provide setting criteria to accurately and quickly determine the angle of reflection for the target.
구체적으로, 기준 생성부(미도시)는 사전에 기준광 신호 세기 별로 제 2 광신호의 기준 거울(150)로의 입사각 및 기준 거울(150)의 제2 광신호에 대한 반사각 중 적어도 하나를 매칭하여 기준광 신호에 대한 정규화 광량 맵(map)을 생성하여 저장한다.Specifically, the reference generator (not shown) matches the reference light by matching at least one of the incident angle of the second optical signal to the reference mirror 150 and the reflection angle of the reference mirror 150 with respect to the second optical signal for each reference light signal intensity. Generate and store a normalized light quantity map for the signal.
예를 들어, 도 6은 본 발명의 실시예에 따른 기준광 신호에 대한 정규화 광량 맵을 나타내는 일례이다.For example, FIG. 6 is an example showing a normalized light amount map for a reference light signal according to an embodiment of the present invention.
도 6에서 나타낸 정규화 광량 맵은, 앞서 도 2 내지 도 4에서 설명한 복수의 광학계의 반사각, 제 2 광시준기의 출력각 및 기준 거울의 반사각 중 어느 하나의 변경에 따라 기준 거울의 위치 별로 반사되는 광량을 나타내는 광량 분포도이다.In the normalized light quantity map shown in FIG. 6, the amount of light reflected by the position of the reference mirror according to any one of the reflection angle of the plurality of optical systems, the output angle of the second optical collimator, and the reflection angle of the reference mirror described above with reference to FIGS. It is a light quantity distribution map which shows.
참고로 기준광량 조절부(170)는 기준 생성부(미도시)가 생성하여 저장해둔 정규화 광량 맵으로부터 기준광 신호의 목표 세기에 매칭된 상기 입사각 또는 상기 반사각을 검출할 수 있다.For reference, the reference light amount adjusting unit 170 may detect the incident angle or the reflection angle matching the target intensity of the reference light signal from the normalized light amount map generated and stored by the reference generator (not shown).
이와 같은 기준 생성부(미도시)는 앞서 도 1을 통해 설명한 광 간섭 단층 촬영 장치(100) 내에 일 구성으로 포함될 수 있으며, 기준광량 조절부(170)가 자체적으로 기준 생성부(미도시)의 동작을 수행하는 것도 가능하다.Such a reference generation unit (not shown) may be included in the optical interference tomography apparatus 100 described above with reference to FIG. 1 as a configuration, and the reference light amount adjusting unit 170 is a self-contained reference generation unit (not shown). It is also possible to perform the operation.
이상에서와 같이, 본 발명의 실시예에 따른 광 간섭 단층 촬영 장치(100)는 실시간으로 검출된 간섭 신호 세기를 이용하여 능동적으로 기준광 신호의 세기를 변경 적용함으로써, 측정 대상물에 대한 최적의 단층 촬영을 신속하게 처리할 수 있다.As described above, the optical coherence tomography apparatus 100 according to the exemplary embodiment of the present invention actively changes and changes the intensity of the reference light signal by using the interference signal intensity detected in real time, thereby providing optimal tomography for the measurement object. Can be processed quickly.
예를 들어, 도 7은 본 발명의 실시예에 따른 기준광 신호의 광량 조절 효과를 설명하기 위한 단층 촬영 영상의 일례이다.For example, FIG. 7 is an example of a tomography image for explaining a light amount control effect of a reference light signal according to an embodiment of the present invention.
도 7의 (a)는 기준광 신호의 광량 조절없이 측정 대상물을 촬영한 단층 영상이고, 도 7의 (b)는 미리 측정된 간섭 신호 세기에 따라 설정된 기준광 신호의 최적의 광량을 적용하여 측정 대상물을 촬영한 단층 영상이다.FIG. 7A is a tomography image of a measurement object without adjusting the amount of light of the reference light signal, and FIG. 7B shows an object to be measured by applying an optimal amount of light of the reference light signal set according to the interference signal strength measured in advance. It is a tomography image taken.
이처럼, 광 간섭 단층 촬영 장치(100)를 통해 기준광 신호의 광량을 조절하여 단층 촬영을 할 경우 단층 영상의 감도가 향상되어 선명한 단층 영상을 제공할 수 있다.As such, when tomography is performed by adjusting the amount of light of the reference light signal through the optical interference tomography apparatus 100, the sensitivity of the tomography image may be improved to provide a clear tomography image.
이하, 도 8을 참조하여 광 간섭 단층 촬영 방법을 상세히 설명하도록 한다.Hereinafter, the optical coherence tomography method will be described in detail with reference to FIG. 8.
도 8은 본 발명의 실시예에 따른 광 간섭 단층 촬영 방법을 설명하기 위한 순서도이다.8 is a flowchart illustrating a method for optical coherence tomography according to an embodiment of the present invention.
먼저, 광 간섭 단층 촬영 장치의 광검출기의 광포화 임계값에 적합한 기준광 신호의 목표 세기를 결정한다(S110).First, the target intensity of the reference light signal suitable for the light saturation threshold value of the photodetector of the optical interference tomography apparatus is determined (S110).
구체적으로, 측정 대상물에 대한 단층 촬영 시 다음 측정광 신호 및 기준광 신호를 획득하기에 앞서, 이전 측정광 신호 및 기준광 신호에 기초하여 계측된 이전 간섭 신호 세기와 상기 광포화 임계값에 기초하여 기준광 신호의 목표 세기를 결정한다.Specifically, prior to acquiring the next measurement light signal and the reference light signal in the tomography of the measurement object, the reference light signal based on the previous interference signal intensity and the light saturation threshold measured based on the previous measurement light signal and the reference light signal. To determine the target strength.
예를 들어, 광포화 임계값은 광검출기 내 광센서의 광포화도로 설정될 수 있고, 이러한 광센서의 광포화도를 100%로 가정할 경우 기준광 신호의 목표 세기를 광포화도의 90% 이하가 되도록 설정할 수 있다. For example, the light saturation threshold may be set to the light saturation of the light sensor in the photodetector, and assuming that the light saturation of the light sensor is 100%, the target intensity of the reference light signal is 90% or less of the light saturation. Can be set.
참고로, 이전 간섭 신호 세기는 측정 대상물에 대해 최초로 피드백된 측정광 신호 및 기준광 신호에 따른 간섭 신호 세기의 초기 값일 수 있다.For reference, the previous interference signal strength may be an initial value of the interference signal strength according to the measurement light signal and the reference light signal first fed back to the measurement object.
그런 다음, 결정된 기준광 신호의 목표 세기에 기초하여 광 간섭 단층 촬영 장치의 기준 거울에 대한 광의 입사각 또는 기준 거울의 광 반사각을 설정하여 적용한다(S120).Then, the incident angle of light with respect to the reference mirror of the optical interference tomography apparatus or the light reflection angle of the reference mirror is set and applied based on the determined target intensity of the reference light signal (S120).
예를 들어, 광 간섭 단층 촬영 장치의 간섭계와 기준 거울 사이에 위치하여 간섭계를 통해 출력된 광의 진행 경로 및 각도를 변경시키는 복수의 광학계의 구동을 제어함으로써 기준 거울에 대한 광의 입사각을 변경할 수 있다. 또한, 간섭계를 통해 출력되는 광을 설정된 출력각으로 출력하는 광시준기의 구동을 제어함으로써 기준 거울에 대한 광의 입사각을 변경할 수 있다. 또한, 기준 거울 자체의 구동을 제어하여 기준 거울의 반사각을 변경할 수 있다.For example, the angle of incidence of the light with respect to the reference mirror may be changed by controlling the driving of a plurality of optical systems positioned between the interferometer and the reference mirror of the optical coherence tomography apparatus and changing the traveling path and angle of the light output through the interferometer. In addition, the incident angle of the light to the reference mirror may be changed by controlling the driving of the optical collimator for outputting the light output through the interferometer at a set output angle. In addition, the reflection angle of the reference mirror may be changed by controlling the driving of the reference mirror itself.
한편, 상기 단계 (S110) 또는 (S120)에 앞서, 사전에 기준광 신호 세기 별로 광신호의 기준 거울로의 입사각 또는 기준 거울의 광신호에 대한 반사각을 매칭하여 기준광 신호에 대한 정규화 광량 맵을 생성할 수 있다. 이때, 상기 단계 (S120)에서 정규화 광량 맵을 이용하여 기준광 신호의 목표 세기에 매칭된 상기 입사각 또는 상기 반사각을 신속하게 검출할 수 있다.On the other hand, prior to the step (S110) or (S120), the normalized light amount map for the reference light signal to generate a normalized light amount map for the reference light signal by matching the incident angle of the optical signal to the reference mirror or the reflection angle for the optical signal of the reference mirror in advance for each reference light signal intensity Can be. In this case, the incident angle or the reflection angle matched to the target intensity of the reference light signal may be quickly detected using the normalized light amount map in step S120.
그런 후, 광원으로부터 출력된 광을 간섭계를 통해 제 1 광신호 및 제 2 광신호로 분할하여 출력한다(S130).Then, the light output from the light source is divided into a first optical signal and a second optical signal through an interferometer and outputs (S130).
그런 다음, 광 간섭 단층 촬영 장치의 대상 측정부가 측정 대상물에 제 1 광신호를 조사하고, 기준광 생성부가 기준 거울에 제 2 광신호를 조사한다(S140).Then, the target measuring unit of the optical coherence tomography apparatus irradiates the first optical signal to the measurement object, and the reference light generating unit irradiates the second optical signal to the reference mirror (S140).
이때, 상기 단계 (S120)에서 설정된 기준 거울에 대한 광의 입사각 또는 기준 거울의 광 반사각이 적용된 상태에서 기준 거울에 제 2 광신호가 조사된다.At this time, the second optical signal is irradiated to the reference mirror in a state in which the incident angle of light with respect to the reference mirror or the light reflection angle of the reference mirror is applied in step S120.
다음으로, 간섭계가 측정 대상물로부터 반사된 측정광 신호를 대상 측정부를 통해 피드백 받고, 기준 거울로부터 반사된 기준광 신호를 기준광 생성부를 통해 피드백 받는다(S150).Next, the interferometer receives feedback of the measurement light signal reflected from the measurement object through the target measurement unit, and receives the reference light signal reflected from the reference mirror through the reference light generator (S150).
그런 다음, 광 간섭 단층 촬영 장치의 광검출기를 통해 측정광 신호 및 기준광 신호에 기초한 간섭 신호 세기를 계측한다(S160).Then, the interference signal intensity based on the measured light signal and the reference light signal is measured through the photodetector of the optical coherence tomography apparatus (S160).
그런 후, 계측된 간섭 신호 세기에 기초하여 측정 대상물에 대한 단층 촬영 영상을 생성하여 제공한다(S170).Thereafter, a tomography image of the measurement object is generated and provided based on the measured interference signal strength (S170).
한편, 본 발명의 실시예에 따른 광 간섭 단층 촬영 방법에서는 기준광 신호의 목표 세기를 결정하는 단계 (S110)를 간섭 신호 세기의 초기 값에 대해서 일회 적용하거나, 매 단층 촬영 회마다 이전 간섭 신호에 기초하여 적용하는 것이 가능하다.On the other hand, in the optical coherence tomography method according to an embodiment of the present invention, the step (S110) of determining the target intensity of the reference light signal is applied to the initial value of the interference signal intensity once or based on the previous interference signal every tomography. It is possible to apply.
본 발명의 실시예는 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행 가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. 통신 매체는 전형적으로 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈, 또는 반송파와 같은 변조된 데이터 신호의 기타 데이터, 또는 기타 전송 메커니즘을 포함하며, 임의의 정보 전달 매체를 포함한다.Embodiments of the present invention may also be implemented in the form of a recording medium containing instructions executable by a computer, such as a program module executed by the computer. Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media. In addition, computer readable media may include both computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, this includes not only "directly connected" but also "electrically connected" with another element in between. . In addition, when a part is said to "include" a certain component, which means that it may further include other components, except to exclude other components unless otherwise stated.
도 1은 본 발명의 실시예에 따른 광 간섭 단층 촬영 장치의 구성을 나타내는 구성도이다.1 is a configuration diagram showing the configuration of an optical coherence tomography apparatus according to an embodiment of the present invention.
도 1에 도시한 바와 같이, 광 간섭 단층 촬영 장치(100)는 광원(110), 간섭계(120), 대상 측정부(130), 기준광 생성부(140), 기준 거울(150), 광검출기(160), 기준광량 조절부(170) 및 단층 영상 처리부(180)를 포함한다.As shown in FIG. 1, the optical coherence tomography apparatus 100 includes a light source 110, an interferometer 120, an object measuring unit 130, a reference light generating unit 140, a reference mirror 150, and a photodetector ( 160, a reference light amount adjusting unit 170, and a tomography image processing unit 180.
광원(110)은 광 간섭 단층 촬영을 위한 광을 간섭계(120)로 출력한다.The light source 110 outputs light for optical coherence tomography to the interferometer 120.
간섭계(120)는 광원(110)으로부터 출력된 광을 제 1 광신호 및 제 2 광신호로 분할한다. 그리고 간섭계(120)는 제 1 광신호를 대상 측정부(130)를 통해 측정 대상물을 향해 출력하고, 제 2 광신호를 기준광 생성부(140)를 통해 기준 거울(150)을 향해 출력한다.The interferometer 120 splits the light output from the light source 110 into a first optical signal and a second optical signal. The interferometer 120 outputs the first optical signal toward the measurement object through the target measurement unit 130, and outputs the second optical signal toward the reference mirror 150 through the reference light generator 140.
간섭계(120)는 대상 측정부(130)를 통해 제 1 광신호에 대응하는 측정광 신호를 피드백 받고, 기준광 생성부(140)를 통해 제 2 광신호에 대응하는 기준광 신호를 피드백 받는다.The interferometer 120 receives feedback of the measurement light signal corresponding to the first optical signal through the target measurement unit 130, and feedbacks the reference light signal corresponding to the second optical signal through the reference light generator 140.
간섭계(120)는 피드백된 측정광 신호 및 기준광 신호를 결합하여 광검출기(160)로 전달한다.The interferometer 120 combines the feedback light signal and the reference light signal and transmits the measured light signal to the photodetector 160.
대상 측정부(130)는 간섭계(120)를 통해 출력된 제 1 광신호를 측정 대상물에 조사하고, 측정 대상물로부터 반사된 측정광 신호를 간섭계(120)로 피드백한다.The object measuring unit 130 irradiates the measurement object with the first optical signal output through the interferometer 120, and feeds back the measurement light signal reflected from the measurement object to the interferometer 120.
대상 측정부(130)는 간섭계(120)로부터 출력된 제 1 광신호를 집광하여 측정 대상물을 향해 평행광으로 출력하는 제 1 광시준기(미도시)를 포함할 수 있다. 제 1 광시준기(미도시)는 스캐닝 렌즈로 구성될 수 있다.The target measuring unit 130 may include a first optical collimator (not shown) that collects the first optical signal output from the interferometer 120 and outputs the parallel optical light toward the measurement object. The first optical collimator (not shown) may be configured as a scanning lens.
기준광 생성부(140)는 간섭계(120)를 통해 출력된 제 2 광신호를 기준 거울(150)에 조사하고, 기준 거울(150)로부터 반사된 기준광 신호를 간섭계(120)로 피드백한다.The reference light generator 140 radiates the second optical signal output through the interferometer 120 to the reference mirror 150, and feeds back the reference light signal reflected from the reference mirror 150 to the interferometer 120.
기준광 생성부(140)는 간섭계(120)로부터 출력된 제 2 광신호를 집광하여 기준 거울(150)을 향해 평행광으로 출력하는 제 2 광시준기(미도시)를 포함할 수 있다. 제 2 광시준기(미도시)는 포커싱 렌즈로 구성될 수 있다. 예를 들어, 제 1 광시준기 및 제 2 광시준기의 각 렌즈를 동일한 렌즈로 구성함으로써, 기준광 신호단과 대상 측정단 간의 굴절율을 별도로 정합 처리하지 않고도 간편하게 단층 촬영 영상을 획득할 수 있다.The reference light generator 140 may include a second optical collimator (not shown) that collects the second optical signal output from the interferometer 120 and outputs the parallel light toward the reference mirror 150. The second optical collimator (not shown) may be configured as a focusing lens. For example, by configuring each lens of the first optical collimator and the second optical collimator as the same lens, tomography images can be easily obtained without separately matching the refractive indices between the reference light signal stage and the target measurement stage.
광검출기(160)는 간섭계(120)를 통해 결합된 측정광 신호 및 기준광 신호에 대한 간섭 신호 세기를 계측하고, 계측한 간섭 신호 세기를 단층 영상 처리부(180) 및 기준광량 조절부(170)로 전송한다.The photodetector 160 measures the interference signal strength of the measurement light signal and the reference light signal coupled through the interferometer 120, and measures the measured interference signal strength with the tomographic image processor 180 and the reference light amount controller 170. send.
단층 영상 처리부(180)는 광검출기(160)를 통해 계측된 간섭 신호 세기의 값을 사전에 설정된 방식으로 신호 처리하여 측정 대상물에 대한 단층 촬영 영상을 생성 및 제공한다.The tomography image processor 180 processes and processes the value of the interference signal strength measured by the photodetector 160 in a preset manner to generate and provide a tomography image of the measurement object.
구체적으로, 단층 영상 처리부(180)는 대상 측정부(130)가 스캐닝한 측정 대상물에 대해 간섭 신호 세기의 값에 따른 깊이 정보를 추출하고, 미리 설정된 개수의 픽셀 별 깊이 정보를 취합하여 단층 영상을 구성한다. 단층 영상 처리부(180)는 광검출기(160)를 통해 획득한 간섭 신호 세기의 값들을 기설정된 파장(wavelength)에 대해 등간격 k-공간 변환한 후 역푸리에 변환 처리하여 깊이 정보를 추출한다.In detail, the tomography image processor 180 extracts depth information according to the interference signal intensity value of the measurement object scanned by the target measurement unit 130, and collects a predetermined number of depth information for each pixel to obtain a tomography image. Configure. The tomography image processing unit 180 extracts depth information by performing inverse Fourier transform after performing equal-space k-spatial conversion of the values of the interference signal strengths acquired through the photodetector 160 with respect to a predetermined wavelength.
한편, 본 발명의 실시예에 따른 광 간섭 단층 촬영 장치(100)는 기준광 생성부(140)를 통해 피드백된 기준광 신호의 크기를 조절하여, 단층 촬영 영상의 신호 대 잡음비(signal-to-noise ratio )와 감도를 향상시킨다.On the other hand, the optical interference tomography apparatus 100 according to the embodiment of the present invention adjusts the magnitude of the reference light signal fed back through the reference light generator 140, and thus the signal-to-noise ratio of the tomography image. ) And improve the sensitivity.
구체적으로, 광검출기(160)는 광센서를 포함하는 촬영 수단(예를 들어, 카메라)을 포함하여 구성된다. 간섭계(120)를 통해 광검출기(160)에 수신되는 측정광 신호 및 기준광 신호의 광량이 너무 강할 경우, 광검출기(160)의 광센서가 광포화 상태가 되어 간섭 신호의 광량(즉, 간섭 신호 세기)의 계측이 어려워질 수 있다. 또한, 광검출기(160)에 수신되는 측정광 신호 및 기준광 신호의 광량이 너무 약할 경우, 간섭 신호에 따른 신호 대 잡음비와 감도가 감소되어 단층 촬영 영상의 열화가 발생될 수 있다.In detail, the photodetector 160 includes a photographing means (eg, a camera) including an optical sensor. If the amount of light of the measurement light signal and the reference light signal received by the photodetector 160 through the interferometer 120 is too strong, the light sensor of the photodetector 160 is in a state of light saturation (that is, the interference signal Strength) can be difficult to measure. In addition, when the amount of light of the measurement light signal and the reference light signal received by the photodetector 160 is too weak, the signal-to-noise ratio and the sensitivity of the interference signal may be reduced, resulting in deterioration of the tomography image.
이에 따라, 기준광량 조절부(170)는 이전에 계측된 간섭 신호 세기(이하, ‘이전 간섭 신호 세기’라고 함)에 기초하여 제 2 광신호의 기준 거울(150)로의 입사각 또는 기준 거울(150)의 제 2 광신호에 대한 반사각이 변경되도록 제어한다.Accordingly, the reference light amount adjusting unit 170 is based on the previously measured interference signal strength (hereinafter referred to as 'previous interference signal strength') of the incident angle of the second optical signal to the reference mirror 150 or the reference mirror 150 Control the reflection angle with respect to the second optical signal.
구체적으로, 기준광량 조절부(170)는 사전에 설정된 광검출기(160)의 광포화 임계값 및 광검출기(160)로부터 수신된 이전 간섭 신호 세기에 기초하여 기준광 신호의 목표 세기를 결정한다. 그리고 기준광량 조절부(170)는 결정된 기준광 신호의 목표 세기에 기초하여 제 2 광신호의 기준 거울(150)로의 입사각 또는 기준 거울(150)의 제 2 광신호에 대한 반사각을 변경한다.In detail, the reference light amount adjusting unit 170 determines the target intensity of the reference light signal based on the photosaturation threshold of the photodetector 160 and the previous interference signal strength received from the photodetector 160. The reference light amount adjusting unit 170 changes the incident angle of the second optical signal to the reference mirror 150 or the reflection angle of the reference mirror 150 with respect to the second optical signal based on the determined target intensity of the reference light signal.
이때, 기준광량 조절부(170)는 측정 대상물에 대해 간섭계(120)에 최초 피드백된 측정광 신호 및 기준광 신호에 따른 간섭 신호 세기의 초기 값을 이전 간섭 신호 세기로서 설정할 수 있다.In this case, the reference light amount adjusting unit 170 may set the initial value of the interference signal strength according to the measurement light signal and the reference light signal first fed back to the interferometer 120 with respect to the measurement object as the previous interference signal strength.
즉, 광 간섭 단층 촬영 장치(100)는 측정 대상물에 대한 단층 영상을 생성하기 위한 유효한 간섭 신호 세기를 계측하기에 앞서, 광검출기(150)에 대한 최적의 기준광 신호 세기를 결정하는 테스트 단계를 먼저 수행한다. 이에 따라, 상기 최적의 기준광 신호 세기(즉, 목표 세기)에 기초하여 설정된 제 2 광신호의 기준 거울(150)로의 입사각 또는 기준 거울(150)의 제 2 광신호에 대한 반사각이 적용된 상태에서 다음 기준광 신호를 획득할 수 있다.That is, before the optical interference tomography apparatus 100 measures the effective interference signal intensity for generating the tomographic image of the measurement object, the optical interference tomography apparatus 100 first performs a test step of determining the optimal reference light signal strength for the photodetector 150. To perform. Accordingly, in the state where the incident angle of the second optical signal set based on the optimal reference light signal intensity (that is, the target intensity) to the reference mirror 150 or the reflection angle of the reference mirror 150 with respect to the second optical signal is applied, A reference light signal can be obtained.
이하, 도 2 내지 도 4를 참조하여 본 발명의 실시예에 따른 기준광량 조절부(170)의 다양한 실시예에 대해서 상세히 설명하도록 한다.Hereinafter, various embodiments of the reference light amount adjusting unit 170 according to an embodiment of the present invention will be described in detail with reference to FIGS. 2 to 4.
먼저, 도 2는 본 발명의 일 실시예에 따른 기준광량 조절부의 구성을 나타낸 구성도이다.First, Figure 2 is a block diagram showing the configuration of the reference light amount adjusting unit according to an embodiment of the present invention.
도 2에 도시한 바와 같이, 기준광량 조절부(170)는 광학계(171, 172) 및 광학계 구동부(173)를 포함하여 구성된다.As shown in FIG. 2, the reference light amount adjusting unit 170 includes the optical systems 171 and 172 and the optical system driver 173.
구체적으로, 광학계(171, 172)는 기준광 생성부(140)를 통해 기준 거울(150)을 향해 출력된 제 2 광신호를 각각 미리 설정된 반사각으로 반사시켜 기준 거울(150)로의 입사각을 조절한다.In detail, the optical systems 171 and 172 reflect the second optical signal output through the reference light generator 140 toward the reference mirror 150 at a predetermined reflection angle, respectively, to adjust the incident angle to the reference mirror 150.
도 2에서는 기준광량 조절부(170)가 제 1 진행 방향으로 출력된 상기 제2 광신호를 제 1 진행 방향과 상이한 제 2 진행 방향으로 반사시키는 제 1 광학계(171) 및 제 1 광학계로부터 반사된 광신호를 제 1 진행 방향으로 반사시켜 기준 거울(150)에 입사시키는 제 2 광학계를(172)를 포함하는 것을 나타내었다. 이와 같은 복수의 광학계는 각각 어느 하나의 다른 광학계로부터 반사된 광이 입사되도록 대향 배치된다.In FIG. 2, the reference light amount adjusting unit 170 is reflected from the first optical system 171 and the first optical system for reflecting the second optical signal output in the first travel direction in a second travel direction different from the first travel direction. It includes a second optical system 172 for reflecting the optical signal in the first travel direction to enter the reference mirror 150. Such a plurality of optical systems are opposed to each other so that light reflected from any one of the other optical systems is incident.
도 2에서는 기준광량 조절부(170)가 두 개의 광학계(171, 172)를 포함하여 구성되는 것을 예로서 설명하였으나, 기준광량 조절부(170)는 하나 이상의 광학계를 포함하여 구성될 수 있다.In FIG. 2, the reference light amount adjusting unit 170 includes two optical systems 171 and 172, but the reference light amount adjusting unit 170 may include one or more optical systems.
광학계 구동부(173)는 복수의 광학계(171, 172) 및 이전 간섭 신호 세기에 기초하여 광학계 별 반사각을 설정하고, 복수의 광학계 별로 반사각에 기초하여 설정된 방향 및 각도로 회동시킨다.The optical system driver 173 sets the reflection angle for each optical system based on the plurality of optical systems 171 and 172 and the previous interference signal strength, and rotates the optical system driver 173 based on the reflection angle for each optical system.
이때, 광학계 구동부(173)는 앞서 설명한 바와 같이 이전 간섭 신호 세기에 기초하여 기준광 신호의 목표 세기를 결정하고, 기준광 신호의 목표 세기에 따라 제 1 및 제 2 광학계(171, 172)의 반사각을 설정한다.In this case, as described above, the optical system driver 173 determines the target intensity of the reference light signal based on the previous interference signal strength, and sets the reflection angles of the first and second optical systems 171 and 172 according to the target intensity of the reference light signal. do.
도 3은 본 발명의 다른 실시예에 따른 기준광량 조절부의 구성을 나타낸 구성도이다.3 is a block diagram showing the configuration of the reference light amount adjusting unit according to another embodiment of the present invention.
도 3에 도시한 바와 같이, 기준광량 조절부(170)는 기준광 생성부(140)의 제 2 광신호 출력각을 제어하는 광시준기 구동부(174)를 포함하여 구성된다.As shown in FIG. 3, the reference light amount adjusting unit 170 includes an optical collimator driver 174 that controls the second optical signal output angle of the reference light generating unit 140.
구체적으로, 광시준기 구동부(174)는 이전 간섭 신호 세기에 기초하여 기준광 생성부(140)의 광출력각(즉, 제 2 광시준기(미도시)의 광출력각)을 설정하고, 설정된 광출력각에 기초하여 제 2 광시준기(미도시)를 설정된 방향 및 각도로 회동시킨다.Specifically, the optical collimator driver 174 sets the optical output angle of the reference light generator 140 (that is, the optical output angle of the second optical collimator (not shown)) based on the previous interference signal strength, and sets the set optical output. Based on the angle, the second optical collimator (not shown) is rotated in a set direction and angle.
이때, 광시준기 구동부(174)는 앞서 설명한 바와 같이 이전 간섭 신호 세기에 기초하여 기준광 신호의 목표 세기를 결정하고, 기준광 신호의 목표 세기에 따라 제 2 광시준기(미도시)의 광출력각을 설정한다.In this case, as described above, the optical collimator driver 174 determines the target intensity of the reference light signal based on the previous interference signal strength, and sets the optical output angle of the second optical collimator (not shown) according to the target intensity of the reference light signal. do.
도 4는 본 발명의 또 다른 실시예에 따른 기준광량 조절부의 구성을 나타낸 구성도이다.4 is a block diagram showing the configuration of the reference light amount adjusting unit according to another embodiment of the present invention.
도 4에 도시한 바와 같이, 본 발명의 또 다른 실시예에 따른 기준광량 조절부(170)는 기준 거울 구동부(175)를 포함하여 구성된다.As shown in FIG. 4, the reference light amount adjusting unit 170 according to another embodiment of the present invention includes a reference mirror driving unit 175.
구체적으로, 기준 거울 구동부(175)는 이전 간섭 신호 세기에 기초하여 기준 거울(150)의 반사각을 설정하고, 설정된 반사각에 기초하여 기준 거울(150)을 설정된 방향 및 각도로 회동시킨다.In detail, the reference mirror driver 175 sets the reflection angle of the reference mirror 150 based on the previous interference signal strength, and rotates the reference mirror 150 in the set direction and angle based on the set reflection angle.
이때, 기준 거울 구동부(175)는 앞서 설명한 바와 같이 이전 간섭 신호 세기에 기초하여 기준광 신호의 목표 세기를 결정하고, 기준광 신호의 목표 세기에 따라 기준 거울(150)의 반사각을 설정한다.In this case, as described above, the reference mirror driver 175 determines the target intensity of the reference light signal based on the previous interference signal strength, and sets the reflection angle of the reference mirror 150 according to the target intensity of the reference light signal.
이와 같이 기준광량 조절부(170)가 기준 거울(150)에 입사되는 제 2 광신호의 입사각 또는 기준 거울(150)의 제 2 광신호 반사각을 조절함에 따라 기준광 생성부(140)를 통해 피드백되는 기준광 신호의 광량이 변경된다.As such, the reference light amount adjusting unit 170 is fed back through the reference light generating unit 140 by adjusting the incident angle of the second optical signal incident on the reference mirror 150 or the reflection angle of the second optical signal of the reference mirror 150. The amount of light of the reference light signal is changed.
예를 들어, 도 5는 본 발명의 실시예에서 기준광량 조절에 따른 간섭 신호 세기의 스펙트럼을 나타내는 일례이다.For example, FIG. 5 is an example showing the spectrum of the interference signal strength according to the reference light amount control in the embodiment of the present invention.
도 5에서는 기준광 신호의 광량 변화에 따라 광검출기(160)에서 획득하는 간섭 신호의 광량 스펙트럼을 나타내었으며, 기준광 신호의 광량이 변경됨에 따라 간섭 신호 세기가 상이한 것을 알 수 있다.In FIG. 5, the light quantity spectrum of the interference signal acquired by the photodetector 160 according to the change in the light amount of the reference light signal is shown, and it can be seen that the interference signal intensity is different as the light amount of the reference light signal is changed.
한편, 본 발명의 실시예에 따른 광 간섭 단층 촬영 장치(100)는 기준광량 조절부(170)가 제 2 광신호의 기준 거울(150)로의 입사각 또는 기준 거울(150)의 제2 광신호에 대한 반사각을 정확하고 신속하게 결정할 수 있도록 설정 기준을 제공하는 기준 생성부(미도시)를 더 포함할 수 있다.On the other hand, in the optical interference tomography apparatus 100 according to the exemplary embodiment of the present invention, the reference light amount adjusting unit 170 is applied to the incident angle of the second optical signal to the reference mirror 150 or to the second optical signal of the reference mirror 150. A reference generation unit (not shown) may be further provided to provide setting criteria to accurately and quickly determine the angle of reflection for the target.
구체적으로, 기준 생성부(미도시)는 사전에 기준광 신호 세기 별로 제 2 광신호의 기준 거울(150)로의 입사각 및 기준 거울(150)의 제2 광신호에 대한 반사각 중 적어도 하나를 매칭하여 기준광 신호에 대한 정규화 광량 맵(map)을 생성하여 저장한다.Specifically, the reference generator (not shown) matches the reference light by matching at least one of the incident angle of the second optical signal to the reference mirror 150 and the reflection angle of the reference mirror 150 with respect to the second optical signal for each reference light signal intensity. Generate and store a normalized light quantity map for the signal.
예를 들어, 도 6은 본 발명의 실시예에 따른 기준광 신호에 대한 정규화 광량 맵을 나타내는 일례이다.For example, FIG. 6 is an example showing a normalized light amount map for a reference light signal according to an embodiment of the present invention.
도 6에서 나타낸 정규화 광량 맵은, 앞서 도 2 내지 도 4에서 설명한 복수의 광학계의 반사각, 제 2 광시준기의 출력각 및 기준 거울의 반사각 중 어느 하나의 변경에 따라 기준 거울의 위치 별로 반사되는 광량을 나타내는 광량 분포도이다.In the normalized light quantity map shown in FIG. 6, the amount of light reflected by the position of the reference mirror according to any one of the reflection angle of the plurality of optical systems, the output angle of the second optical collimator, and the reflection angle of the reference mirror described above with reference to FIGS. It is a light quantity distribution map which shows.
참고로 기준광량 조절부(170)는 기준 생성부(미도시)가 생성하여 저장해둔 정규화 광량 맵으로부터 기준광 신호의 목표 세기에 매칭된 상기 입사각 또는 상기 반사각을 검출할 수 있다.For reference, the reference light amount adjusting unit 170 may detect the incident angle or the reflection angle matching the target intensity of the reference light signal from the normalized light amount map generated and stored by the reference generator (not shown).
이와 같은 기준 생성부(미도시)는 앞서 도 1을 통해 설명한 광 간섭 단층 촬영 장치(100) 내에 일 구성으로 포함될 수 있으며, 기준광량 조절부(170)가 자체적으로 기준 생성부(미도시)의 동작을 수행하는 것도 가능하다.Such a reference generation unit (not shown) may be included in the optical interference tomography apparatus 100 described above with reference to FIG. 1 as a configuration, and the reference light amount adjusting unit 170 is a self-contained reference generation unit (not shown). It is also possible to perform the operation.
이상에서와 같이, 본 발명의 실시예에 따른 광 간섭 단층 촬영 장치(100)는 실시간으로 검출된 간섭 신호 세기를 이용하여 능동적으로 기준광 신호의 세기를 변경 적용함으로써, 측정 대상물에 대한 최적의 단층 촬영을 신속하게 처리할 수 있다.As described above, the optical coherence tomography apparatus 100 according to the exemplary embodiment of the present invention actively changes and changes the intensity of the reference light signal by using the interference signal intensity detected in real time, thereby providing optimal tomography for the measurement object. Can be processed quickly.
예를 들어, 도 7은 본 발명의 실시예에 따른 기준광 신호의 광량 조절 효과를 설명하기 위한 단층 촬영 영상의 일례이다.For example, FIG. 7 is an example of a tomography image for explaining a light amount control effect of a reference light signal according to an embodiment of the present invention.
도 7의 (a)는 기준광 신호의 광량 조절없이 측정 대상물을 촬영한 단층 영상이고, 도 7의 (b)는 미리 측정된 간섭 신호 세기에 따라 설정된 기준광 신호의 최적의 광량을 적용하여 측정 대상물을 촬영한 단층 영상이다.FIG. 7A is a tomography image of a measurement object without adjusting the amount of light of the reference light signal, and FIG. 7B shows an object to be measured by applying an optimal amount of light of the reference light signal set according to the interference signal strength measured in advance. It is a tomography image taken.
이처럼, 광 간섭 단층 촬영 장치(100)를 통해 기준광 신호의 광량을 조절하여 단층 촬영을 할 경우 단층 영상의 감도가 향상되어 선명한 단층 영상을 제공할 수 있다.As such, when tomography is performed by adjusting the amount of light of the reference light signal through the optical interference tomography apparatus 100, the sensitivity of the tomography image may be improved to provide a clear tomography image.
이하, 도 8을 참조하여 광 간섭 단층 촬영 방법을 상세히 설명하도록 한다.Hereinafter, the optical coherence tomography method will be described in detail with reference to FIG. 8.
도 8은 본 발명의 실시예에 따른 광 간섭 단층 촬영 방법을 설명하기 위한 순서도이다.8 is a flowchart illustrating a method for optical coherence tomography according to an embodiment of the present invention.
먼저, 광 간섭 단층 촬영 장치의 광검출기의 광포화 임계값에 적합한 기준광 신호의 목표 세기를 결정한다(S110).First, the target intensity of the reference light signal suitable for the light saturation threshold value of the photodetector of the optical interference tomography apparatus is determined (S110).
구체적으로, 측정 대상물에 대한 단층 촬영 시 다음 측정광 신호 및 기준광 신호를 획득하기에 앞서, 이전 측정광 신호 및 기준광 신호에 기초하여 계측된 이전 간섭 신호 세기와 상기 광포화 임계값에 기초하여 기준광 신호의 목표 세기를 결정한다.Specifically, prior to acquiring the next measurement light signal and the reference light signal in the tomography of the measurement object, the reference light signal based on the previous interference signal intensity and the light saturation threshold measured based on the previous measurement light signal and the reference light signal. To determine the target strength.
예를 들어, 광포화 임계값은 광검출기 내 광센서의 광포화도로 설정될 수 있고, 이러한 광센서의 광포화도를 100%로 가정할 경우 기준광 신호의 목표 세기를 광포화도의 90% 이하가 되도록 설정할 수 있다. For example, the light saturation threshold may be set to the light saturation of the light sensor in the photodetector, and assuming that the light saturation of the light sensor is 100%, the target intensity of the reference light signal is 90% or less of the light saturation. Can be set.
참고로, 이전 간섭 신호 세기는 측정 대상물에 대해 최초로 피드백된 측정광 신호 및 기준광 신호에 따른 간섭 신호 세기의 초기 값일 수 있다.For reference, the previous interference signal strength may be an initial value of the interference signal strength according to the measurement light signal and the reference light signal first fed back to the measurement object.
그런 다음, 결정된 기준광 신호의 목표 세기에 기초하여 광 간섭 단층 촬영 장치의 기준 거울에 대한 광의 입사각 또는 기준 거울의 광 반사각을 설정하여 적용한다(S120).Then, the incident angle of light with respect to the reference mirror of the optical interference tomography apparatus or the light reflection angle of the reference mirror is set and applied based on the determined target intensity of the reference light signal (S120).
예를 들어, 광 간섭 단층 촬영 장치의 간섭계와 기준 거울 사이에 위치하여 간섭계를 통해 출력된 광의 진행 경로 및 각도를 변경시키는 복수의 광학계의 구동을 제어함으로써 기준 거울에 대한 광의 입사각을 변경할 수 있다. 또한, 간섭계를 통해 출력되는 광을 설정된 출력각으로 출력하는 광시준기의 구동을 제어함으로써 기준 거울에 대한 광의 입사각을 변경할 수 있다. 또한, 기준 거울 자체의 구동을 제어하여 기준 거울의 반사각을 변경할 수 있다.For example, the angle of incidence of the light with respect to the reference mirror may be changed by controlling the driving of a plurality of optical systems positioned between the interferometer and the reference mirror of the optical coherence tomography apparatus and changing the traveling path and angle of the light output through the interferometer. In addition, the incident angle of the light to the reference mirror may be changed by controlling the driving of the optical collimator for outputting the light output through the interferometer at a set output angle. In addition, the reflection angle of the reference mirror may be changed by controlling the driving of the reference mirror itself.
한편, 상기 단계 (S110) 또는 (S120)에 앞서, 사전에 기준광 신호 세기 별로 광신호의 기준 거울로의 입사각 또는 기준 거울의 광신호에 대한 반사각을 매칭하여 기준광 신호에 대한 정규화 광량 맵을 생성할 수 있다. 이때, 상기 단계 (S120)에서 정규화 광량 맵을 이용하여 기준광 신호의 목표 세기에 매칭된 상기 입사각 또는 상기 반사각을 신속하게 검출할 수 있다.On the other hand, prior to the step (S110) or (S120), the normalized light amount map for the reference light signal to generate a normalized light amount map for the reference light signal by matching the incident angle of the optical signal to the reference mirror or the reflection angle for the optical signal of the reference mirror in advance for each reference light signal intensity Can be. In this case, the incident angle or the reflection angle matched to the target intensity of the reference light signal may be quickly detected using the normalized light amount map in step S120.
그런 후, 광원으로부터 출력된 광을 간섭계를 통해 제 1 광신호 및 제 2 광신호로 분할하여 출력한다(S130).Then, the light output from the light source is divided into a first optical signal and a second optical signal through an interferometer and outputs (S130).
그런 다음, 광 간섭 단층 촬영 장치의 대상 측정부가 측정 대상물에 제 1 광신호를 조사하고, 기준광 생성부가 기준 거울에 제 2 광신호를 조사한다(S140).Then, the target measuring unit of the optical coherence tomography apparatus irradiates the first optical signal to the measurement object, and the reference light generating unit irradiates the second optical signal to the reference mirror (S140).
이때, 상기 단계 (S120)에서 설정된 기준 거울에 대한 광의 입사각 또는 기준 거울의 광 반사각이 적용된 상태에서 기준 거울에 제 2 광신호가 조사된다.At this time, the second optical signal is irradiated to the reference mirror in a state in which the incident angle of light with respect to the reference mirror or the light reflection angle of the reference mirror is applied in step S120.
다음으로, 간섭계가 측정 대상물로부터 반사된 측정광 신호를 대상 측정부를 통해 피드백 받고, 기준 거울로부터 반사된 기준광 신호를 기준광 생성부를 통해 피드백 받는다(S150).Next, the interferometer receives feedback of the measurement light signal reflected from the measurement object through the target measurement unit, and receives the reference light signal reflected from the reference mirror through the reference light generator (S150).
그런 다음, 광 간섭 단층 촬영 장치의 광검출기를 통해 측정광 신호 및 기준광 신호에 기초한 간섭 신호 세기를 계측한다(S160).Then, the interference signal intensity based on the measured light signal and the reference light signal is measured through the photodetector of the optical coherence tomography apparatus (S160).
그런 후, 계측된 간섭 신호 세기에 기초하여 측정 대상물에 대한 단층 촬영 영상을 생성하여 제공한다(S170).Thereafter, a tomography image of the measurement object is generated and provided based on the measured interference signal strength (S170).
한편, 본 발명의 실시예에 따른 광 간섭 단층 촬영 방법에서는 기준광 신호의 목표 세기를 결정하는 단계 (S110)를 간섭 신호 세기의 초기 값에 대해서 일회 적용하거나, 매 단층 촬영 회마다 이전 간섭 신호에 기초하여 적용하는 것이 가능하다.On the other hand, in the optical coherence tomography method according to an embodiment of the present invention, the step (S110) of determining the target intensity of the reference light signal is applied to the initial value of the interference signal intensity once or based on the previous interference signal every tomography. It is possible to apply.
본 발명의 실시예는 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행 가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. 통신 매체는 전형적으로 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈, 또는 반송파와 같은 변조된 데이터 신호의 기타 데이터, 또는 기타 전송 메커니즘을 포함하며, 임의의 정보 전달 매체를 포함한다.Embodiments of the present invention may also be implemented in the form of a recording medium containing instructions executable by a computer, such as a program module executed by the computer. Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media. In addition, computer readable media may include both computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.

Claims (15)

  1. 광 간섭 단층 촬영 장치에 있어서,In the optical interference tomography apparatus,
    광을 출력하는 광원;A light source for outputting light;
    상기 광원으로부터 출력된 광을 제 1 광신호 및 제 2 광신호로 분할하여 출력하고, 상기 제 1 광신호에 대응하는 측정광 신호 및 상기 제 2 광신호에 대응하는 기준광 신호를 각각 피드백 받아 결합하는 간섭계;The light output from the light source is divided into a first optical signal and a second optical signal, and outputted, and the feedback and coupling of the measurement light signal corresponding to the first optical signal and the reference light signal corresponding to the second optical signal are respectively received and combined. interferometer;
    상기 간섭계를 통해 출력된 상기 제 1 광신호를 측정 대상물에 조사하고, 상기 측정 대상물로부터 반사된 상기 측정광 신호를 상기 간섭계로 피드백하는 대상 측정부;An object measuring unit configured to irradiate the measurement object with the first optical signal output through the interferometer and to feed back the measurement light signal reflected from the measurement object to the interferometer;
    상기 간섭계를 통해 출력된 상기 제 2 광신호를 기준 거울에 조사하고, 상기 기준 거울로부터 반사된 상기 기준광 신호를 상기 간섭계로 피드백하는 기준광 생성부;A reference light generator for irradiating the reference mirror with the second optical signal output through the interferometer and feeding back the reference light signal reflected from the reference mirror to the interferometer;
    상기 간섭계를 통해 결합된 상기 측정광 신호 및 상기 기준광 신호의 간섭 신호 세기를 계측하는 광검출기; 및A photodetector for measuring interference signal strengths of the measurement light signal and the reference light signal coupled through the interferometer; And
    이전에 계측된 상기 간섭 신호 세기에 기초하여 상기 제 2 광신호의 상기 기준 거울로의 입사각 또는 상기 기준 거울에서의 반사각이 변경되도록 제어하는 기준광량 조절부를 포함하는 광 간섭 단층 촬영 장치.And a reference light amount adjusting unit configured to control an incident angle of the second optical signal into the reference mirror or a reflection angle from the reference mirror to be changed based on the interference signal strength previously measured.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 기준광량 조절부는,The reference light amount adjusting unit,
    상기 광검출기의 광포화 임계값 및 상기 이전에 계측된 간섭 신호 세기에 기초하여 상기 기준광 신호의 목표 세기를 결정하고,Determine a target intensity of the reference light signal based on the photosaturation threshold of the photodetector and the previously measured interference signal strength,
    상기 기준광 신호의 목표 세기에 기초하여 상기 제 2 광신호의 상기 기준 거울로의 입사각 또는 상기 기준 거울에서의 반사각을 변경하는 광 간섭 단층 촬영 장치.And an angle of incidence of the second optical signal to the reference mirror or a reflection angle of the reference mirror based on a target intensity of the reference light signal.
  3. 제 2 항에 있어서,The method of claim 2,
    사전에 기준광 신호 세기 별로 상기 제 2 광신호의 상기 기준 거울로의 입사각 및 상기 기준 거울에서의 반사각 중 적어도 하나를 매칭하여 상기 기준광 신호에 대한 정규화 광량 맵을 생성하는 기준 생성부를 더 포함하되,A reference generation unit may be further configured to generate a normalized light quantity map for the reference light signal by matching at least one of an incident angle of the second optical signal to the reference mirror and a reflection angle from the reference mirror for each reference light signal in advance.
    상기 기준광량 조절부는,The reference light amount adjusting unit,
    상기 정규화 광량 맵으로부터 상기 기준광 신호의 목표 세기에 매칭된 상기 입사각 또는 상기 반사각을 검출하는 광 간섭 단층 촬영 장치.And an incident angle or a reflection angle matched to a target intensity of the reference light signal from the normalized light amount map.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 기준광량 조절부는,The reference light amount adjusting unit,
    상기 기준 거울을 향해 출력된 상기 제 2 광신호를 각각 기설정된 반사각으로 반사시키는 하나 이상의 광학계; 및At least one optical system for reflecting the second optical signal output toward the reference mirror at a predetermined reflection angle, respectively; And
    상기 이전에 계측된 간섭 신호 세기에 기초하여 상기 광학계 별 상기 반사각을 설정하고, 상기 광학계 별로 상기 반사각에 기초하여 설정된 방향 및 각도로 회동시키는 광학계 구동부를 포함하되,An optical system driver configured to set the reflection angle for each optical system based on the previously measured interference signal strength, and rotate the optical system for each optical system in a direction and an angle set based on the reflection angle,
    상기 기준 광량 조절부에 복수의 광학계가 포함된 경우,When a plurality of optical systems are included in the reference light amount adjusting unit,
    상기 복수의 광학계는 각각 어느 하나의 다른 광학계로부터 반사된 광이 입사되도록 대향 배치된 것인 광 간섭 단층 촬영 장치.And the plurality of optical systems are disposed to face each other such that light reflected from any one of the other optical systems is incident thereon.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 복수의 광학계는,The plurality of optical systems,
    제 1 진행 방향으로 출력된 상기 제2 광신호를 상기 제 1 진행 방향과 상이한 제 2 진행 방향으로 반사시키는 제 1 광학계; 및A first optical system for reflecting the second optical signal output in a first travel direction in a second travel direction different from the first travel direction; And
    상기 제 1 광학계로부터 반사된 광신호를 상기 제 1 진행 방향으로 반사시켜 상기 기준 거울에 입사시키는 제 2 광학계를 포함하는 광 간섭 단층 촬영 장치.And a second optical system reflecting the optical signal reflected from the first optical system in the first travel direction and incident on the reference mirror.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 대상 측정부는 상기 간섭계를 통해 출력된 상기 제 1 광신호를 집광하여 상기 측정 대상물을 향해 평행광으로 출력하는 제 1 광시준기를 포함하고,The target measuring unit includes a first optical collimator that focuses the first optical signal output through the interferometer and outputs parallel light toward the measurement object.
    상기 기준광 생성부는 상기 간섭계를 통해 출력된 상기 제 2 광신호를 집광하여 상기 기준 거울을 향해 평행광으로 출력하는 제 2 광시준기를 포함하는 광 간섭 단층 촬영 장치.And the reference light generating unit includes a second optical collimator for collecting the second optical signal output through the interferometer and outputting the second optical signal as parallel light toward the reference mirror.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 기준광량 조절부는,The reference light amount adjusting unit,
    상기 이전에 계측된 간섭 신호 세기에 기초하여 상기 제 2 광시준기의 광출력각을 설정하고, 상기 제 2 광시준기를 상기 광출력각에 기초하여 설정된 방향 및 각도로 회동시키는 광시준기 구동부를 포함하는 광 간섭 단층 촬영 장치.An optical collimator driver configured to set an optical output angle of the second optical collimator based on the previously measured interference signal strength, and rotate the second optical collimator to a direction and an angle set based on the optical output angle. Optical coherence tomography device.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 기준광량 조절부는,The reference light amount adjusting unit,
    상기 이전에 계측된 간섭 신호 세기에 기초하여 상기 기준 거울의 반사각을 설정하고, 상기 기준 거울을 상기 반사각에 기초하여 설정된 방향 및 각도로 회동시키는 기준 거울 구동부를 포함하는 광 간섭 단층 촬영 장치.And a reference mirror driver configured to set a reflection angle of the reference mirror based on the previously measured interference signal strength, and rotate the reference mirror in a direction and an angle set based on the reflection angle.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 광검출기를 통해 계측된 간섭 신호 세기의 값을 신호 처리하여 상기 측정 대상물에 대한 단층 촬영 영상을 생성하는 단층 영상 처리부를 더 포함하는 광 간섭 단층 촬영 장치.And a tomography image processor configured to signal-process a value of the interference signal intensity measured by the photodetector to generate a tomography image of the measurement object.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 이전에 계측된 간섭 신호 세기는,The previously measured interference signal strength is
    상기 측정 대상물에 대해 상기 간섭계에 최초 피드백된 상기 측정광 신호 및 상기 기준광 신호에 따른 간섭 신호 세기의 초기 값인 광 간섭 단층 촬영 장치.And an initial value of an interference signal intensity according to the measurement light signal and the reference light signal initially fed back to the interferometer with respect to the measurement object.
  11. 광 간섭 단층 촬영 장치를 통한 광 간섭 단층 촬영 방법에 있어서,In the optical interference tomography method through the optical interference tomography apparatus,
    (a) 광원으로부터 출력된 광을 제 1 광신호 및 제 2 광신호로 분할하여 출력하는 단계;(a) dividing and outputting the light output from the light source into a first optical signal and a second optical signal;
    (b) 상기 제 1 광신호를 측정 대상물에 조사하고, 상기 제 2 광신호를 기준 거울에 조사하는 단계;(b) irradiating the first optical signal to a measurement object and irradiating the second optical signal to a reference mirror;
    (c) 상기 제 1 광신호가 상기 측정 대상물로부터 반사된 측정광 신호 및 상기 제2광신호가 상기 기준 거울로부터 반사된 기준광 신호를 각각 피드백 받는 단계;(c) receiving feedback of a measurement light signal reflecting the first optical signal from the measurement object and a reference light signal reflecting the second optical signal from the reference mirror;
    (d) 상기 피드백된 측정광 신호 및 기준광 신호를 결합하는 단계; 및(d) combining the fed back measurement light signal and reference light signal; And
    (e) 상기 결합된 측정광 신호 및 기준광 신호에 기초하여 간섭 신호 세기를 계측하는 단계를 포함하되,(e) measuring interference signal strength based on the combined measurement light signal and the reference light signal,
    상기 (b) 단계는,In step (b),
    이전에 계측된 상기 간섭 신호 세기에 기초하여 설정된 상기 제 2 광신호의 상기 기준 거울로의 입사각 또는 상기 기준 거울에서의 반사각을 적용하여 상기 제 2 광신호를 조사하는 광 간섭 단층 촬영 방법.And irradiating the second optical signal by applying an angle of incidence of the second optical signal to the reference mirror or a reflection angle of the reference mirror set based on the interference signal strength previously measured.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 (a) 단계 이전에,Before step (a) above,
    (f) 상기 간섭 신호 세기를 계측하는 광검출기의 광포화 임계값 및 상기 이전에 계측된 간섭 신호 세기에 기초하여 상기 기준광 신호의 목표 세기를 결정하는 단계; 및(f) determining a target intensity of the reference light signal based on a photosaturation threshold of the photodetector measuring the interference signal strength and the previously measured interference signal strength; And
    (g) 상기 기준광 신호의 목표 세기에 기초하여 상기 제 2 광신호의 상기 기준 거울로의 입사각 또는 상기 기준 거울에서의 반사각을 설정하는 단계를 더 포함하는 광 간섭 단층 촬영 방법.and (g) setting an angle of incidence of the second optical signal into the reference mirror or a reflection angle of the reference mirror based on a target intensity of the reference light signal.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 (g) 단계 이전에,Before step (g),
    (h) 기준광 신호 세기 별로 상기 제 2 광신호의 상기 기준 거울로의 입사각 또는 상기 기준 거울에서의 반사각을 매칭하여 상기 기준광 신호에 대한 정규화 광량 맵을 생성하는 단계를 더 포함하되,(h) generating a normalized light quantity map for the reference light signal by matching the incident angle of the second optical signal to the reference mirror or the reflection angle at the reference mirror for each reference light signal intensity,
    상기 (g) 단계는,Step (g) is
    상기 정규화 광량 맵으로부터 상기 기준광 신호의 목표 세기에 매칭된 상기 입사각 또는 상기 반사각을 검출하는 광 간섭 단층 촬영 방법.And detecting the incident angle or the reflected angle matched to a target intensity of the reference light signal from the normalized light quantity map.
  14. 제 11 항에 있어서,The method of claim 11,
    상기 이전에 계측된 간섭 신호 세기는,The previously measured interference signal strength is
    상기 측정 대상물에 대해 최초 피드백된 상기 측정광 신호 및 상기 기준광 신호에 따른 간섭 신호 세기의 초기 값인 광 간섭 단층 촬영 방법.And an initial value of an interference signal intensity according to the measurement light signal and the reference light signal initially fed back to the measurement object.
  15. 제 11 항에 있어서,The method of claim 11,
    상기 (e) 단계 이후에,After step (e),
    상기 계측된 간섭 신호 세기의 값을 신호 처리하여 상기 측정 대상물에 대한 단층 촬영 영상을 생성하는 단계를 더 포함하는 광 간섭 단층 촬영 방법.And generating a tomography image of the measurement object by signal processing the measured value of the interference signal strength.
PCT/KR2014/001194 2013-02-13 2014-02-13 Optical interference tomographic method and apparatus WO2014126401A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0015423 2013-02-13
KR1020130015423A KR101438748B1 (en) 2013-02-13 2013-02-13 Optical coherence tomography device and tomography method thereof

Publications (1)

Publication Number Publication Date
WO2014126401A1 true WO2014126401A1 (en) 2014-08-21

Family

ID=51354349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001194 WO2014126401A1 (en) 2013-02-13 2014-02-13 Optical interference tomographic method and apparatus

Country Status (2)

Country Link
KR (1) KR101438748B1 (en)
WO (1) WO2014126401A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102092331B1 (en) 2018-06-05 2020-03-23 주식회사 필로포스 Compact oct spectrometer suitable for mobile environment
KR102436950B1 (en) * 2020-12-22 2022-08-26 주식회사 마하테크 Spectrometer system for sample measuring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283912A (en) * 1999-03-30 2000-10-13 Biophotonics Information Laboratories Ltd Optical tomograph
JP2009072280A (en) * 2007-09-19 2009-04-09 Fujifilm Corp Optical tomography imaging system, contact area detecting method, and image processing method using the same
JP2011527418A (en) * 2008-07-11 2011-10-27 オプトポル・テクノロジー・スプウカ・アクツィイナ Spectral optical coherence tomography (SOCT)
KR20120135422A (en) * 2010-03-25 2012-12-13 캐논 가부시끼가이샤 Optical tomographic imaging apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100982656B1 (en) * 2008-10-23 2010-09-16 부산대학교 산학협력단 Optical coherence tomography system using multi-wavelength comb spectrum light source
KR101078190B1 (en) * 2009-10-15 2011-11-01 이큐메드 주식회사 Wavelength detector and optical coherence topography having the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283912A (en) * 1999-03-30 2000-10-13 Biophotonics Information Laboratories Ltd Optical tomograph
JP2009072280A (en) * 2007-09-19 2009-04-09 Fujifilm Corp Optical tomography imaging system, contact area detecting method, and image processing method using the same
JP2011527418A (en) * 2008-07-11 2011-10-27 オプトポル・テクノロジー・スプウカ・アクツィイナ Spectral optical coherence tomography (SOCT)
KR20120135422A (en) * 2010-03-25 2012-12-13 캐논 가부시끼가이샤 Optical tomographic imaging apparatus

Also Published As

Publication number Publication date
KR101438748B1 (en) 2014-09-05
KR20140102034A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2012105780A2 (en) Dual focusing optical coherence imaging system
WO2009096750A2 (en) Laser processing apparatus for monitoring processing state by using optical coherence tomography technology
EP3161437B1 (en) Measuring polarisation
US9759662B2 (en) Examination device and examination method
WO2020080692A1 (en) Apparatus for optical coherence tomography and image generation method using same
WO2017039171A1 (en) Laser processing device and laser processing method
WO2011126219A2 (en) Image acquisition method and system for object to be measured using confocal microscope structure
WO2020101380A1 (en) Optical diagnosis device for skin disease
WO2016153132A1 (en) Skin measurement device and control method therefor
WO2014126401A1 (en) Optical interference tomographic method and apparatus
WO2019199019A1 (en) Terahertz wave-based defect measurement apparatus and method
JPH11211668A (en) Method and apparatus for detection of defect
US6891162B2 (en) Method of acquiring data from multi-element detector in infrared imaging apparatus
WO1997023161A3 (en) Device for localizing an object in a turbid medium
WO2020105954A1 (en) Portable apparatus for diagnosing skin disease by using skin image information based on variable wavelength
WO2016195464A2 (en) Complex medical imaging system
WO2018101623A1 (en) Method and device for correcting defocused photoacoustic image distortion using optical coherence tomography image
WO2014148781A1 (en) Three-dimensional shape measuring device capable of measuring color information
WO2018056726A2 (en) Optical coherence tomography device
CN113108908B (en) Relative spectral response measuring device and method of broadband imaging sensor
WO2020166929A1 (en) Blood flow measurement device and blood flow measurement method
WO2021080232A1 (en) Heterodyne type two-dimensional infrared spectroscopy device, and spectroscopy method using same
JP2002152584A (en) Device and method for arranging color scannerless range image pickup system
CN114076746A (en) Tomographic inspection apparatus and method using dual line camera
WO2020050687A1 (en) Microorganism information providing device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751782

Country of ref document: EP

Kind code of ref document: A1