WO2013012106A1 - Camera for detecting metal surface defects, device for detecting metal surface defects including the camera, and method for detecting metal surface defects - Google Patents

Camera for detecting metal surface defects, device for detecting metal surface defects including the camera, and method for detecting metal surface defects Download PDF

Info

Publication number
WO2013012106A1
WO2013012106A1 PCT/KR2011/005282 KR2011005282W WO2013012106A1 WO 2013012106 A1 WO2013012106 A1 WO 2013012106A1 KR 2011005282 W KR2011005282 W KR 2011005282W WO 2013012106 A1 WO2013012106 A1 WO 2013012106A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal object
light source
light
wavelength
linearly polarized
Prior art date
Application number
PCT/KR2011/005282
Other languages
French (fr)
Korean (ko)
Inventor
장유진
이주섭
Original Assignee
동국대학교 경주캠퍼스 산학협력단
주식회사 네드텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 경주캠퍼스 산학협력단, 주식회사 네드텍 filed Critical 동국대학교 경주캠퍼스 산학협력단
Publication of WO2013012106A1 publication Critical patent/WO2013012106A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8845Multiple wavelengths of illumination or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • G01N2021/8918Metal

Definitions

  • the present invention relates to a camera system for detecting metal surface defects, and more particularly, to a camera for metal surface defect detection, a metal surface defect detection apparatus including the camera, and a metal surface defect detection method.
  • a method of detecting surface defects of a steel plate moving at a high speed includes a method of detecting surface defects by observing a surface of a steel plate being moved directly by an operator, and irradiating a laser light source to the surface and receiving a laser light receiving unit.
  • a laser light source to the surface and receiving a laser light receiving unit.
  • To detect surface defects through constant signal processing and to irradiate the surface of the steel sheet with illumination in the visible light region, to receive it with a line scan camera, and to detect surface defects through constant signal processing. There may be.
  • the defect detection method based on the operator's observation may be difficult to objectively detect because it is difficult to have consistent detection criteria among workers. Detecting defects using lasers can be susceptibly affected by external conditions, such as minor vibrations of continuously moving steel sheets.
  • the technical problem to be solved by the present invention relates to a metal surface defect detection technique and system, a surface for obtaining an image by simultaneously irradiating a stationary or moving metal surface with linearly polarized illumination without interference and orthogonal to each other
  • a camera for defect detection, a metal surface defect detection apparatus including the camera, and a metal surface defect detection method are provided.
  • the camera according to the embodiment of the present invention when irradiating the surface of the metal object with the linearly polarized lights (horizontal wave and longitudinal wave) without interference and orthogonal to each other at the same time, the reflection on the surface of the metal object A polarization separator that separates the divided light into vertical polarization (longwave) and horizontal polarization (horizontal wave); A first charge coupled device obtaining an image of the vertical polarization; And a second charge coupling device for acquiring the image of the horizontal polarization.
  • the polarizer may be a polarizing beamsplitter cube.
  • the metal surface defect detection apparatus for irradiating the surface of the metal object with linearly polarized light in bright field conditions;
  • a camera for acquiring the light reflected from the surface of the metal object to acquire an image for inspecting the surface defect of the metal object.
  • the camera may include a polarization separator that separates light reflected from the surface of the metal object into vertical polarization (longwave) and horizontal polarization (horizontal wave) when the linearly polarized lights are irradiated on the surface of the metal object; A first charge coupled device obtaining the image of the vertical polarization; And a second charge coupling device for acquiring the image of the horizontal polarization.
  • the metal object may be a stationary metal object or a moving metal object.
  • the first light source for irradiating the surface of the metal object with linearly polarized light of the first wavelength in bright field conditions;
  • a second light source for irradiating a surface of the metal object with linearly polarized light having a second wavelength under dark field conditions;
  • a third light source for irradiating a surface of the metal object with a linearly polarized light having a second wavelength orthogonal to the linearly polarized light of the second wavelength in a dark field condition;
  • a fourth light source for irradiating the surface of the metal object with illumination of the linearly polarized first wavelength orthogonal to the linearly polarized illumination of the first wavelength in dark field conditions;
  • a camera unit which acquires the light reflected from the surface of the metal object to acquire an image for inspecting the surface defect of the metal object, wherein the first light source, the second light source, the third light source, and the The fourth light source can illuminate the lights at the
  • the camera unit is disposed between the first light source and the fourth light source, and between the second light source and the third light source, wherein the first light source and the fourth light source are disposed with respect to the second light source and the third light source. It may be arranged to be orthogonal.
  • the camera unit reflects from the surface of the metal object when the illumination of the first light source, the illumination of the second light source, the illumination of the third light source, and the illumination of the fourth light source are simultaneously irradiated onto the surface of the metal object.
  • a color screening mirror that separates the light into the light of the first wavelength and the light of the second wavelength;
  • a first camera that obtains light of a first wavelength separated from the color-dividing mirror into vertical and horizontal polarizations, and acquires an image for inspecting surface defects of the metal object by using the obtained vertical and horizontal polarizations ;
  • a second light obtained by separating light having a second wavelength separated from the color-dividing mirror into vertical polarization and horizontal polarization and acquiring an image for inspecting surface defects of the metal object by using the obtained vertical polarization and horizontal polarization. It may include a camera.
  • the first light source for irradiating the surface of the metal object with linearly polarized light of the first wavelength at a first angle;
  • a second light source for irradiating a surface of the metal object with linearly polarized light having a second wavelength at a second angle;
  • a third light source for irradiating a surface of the metal object with the linearly polarized light of the second wavelength orthogonal to the linearly polarized light of the second wavelength at a third angle;
  • a fourth light source for irradiating the surface of the metal object with the linearly polarized light of the first wavelength orthogonal to the linearly polarized light of the first wavelength at a fourth angle;
  • a camera unit which acquires the light reflected from the surface of the metal object to acquire an image for inspecting the surface defect of the metal object, wherein the first light source, the second light source, the third light source, and the The fourth light source irradiates
  • the metal surface defect detection method (a) irradiating the surface of the metal object with linearly polarized light in bright field conditions; (b) irradiating the surface of the metal object at the same time as the irradiation of the linearly polarized light in the bright field conditions orthogonal to the linearly polarized light in the dark field conditions and having the same wavelength as the wavelength of the linearly polarized light; Doing; (c) simultaneously acquiring an image of light reflected from the surface of the metal object; And (d) signal processing the obtained image to detect surface defects of the metal object.
  • a metal surface defect detection method (a) irradiating the surface of the metal object with a linearly polarized light of the first wavelength at a first angle; (b) irradiating a surface of the metal object with linearly polarized light of a second wavelength at a second angle; (c) irradiating a surface of the metal object with a linearly polarized light of a second wavelength orthogonal to the linearly polarized light of the second wavelength at a third angle; (d) irradiating a surface of the metal object with linearly polarized light of a first wavelength orthogonal to the linearly polarized light of the first wavelength at a fourth angle; (e) simultaneously acquiring an image of light reflected from the surface of the metal object; And (f) signal processing the obtained image to detect surface defects of the metal object, wherein the illumination of the first wavelength and the illumination of the second wavelength are simultaneously irradiated and the first angle
  • a camera for detecting metal surface defects according to the present invention a device for detecting metal surface defects including a camera, and a method for detecting metal surface defects are provided for a surface of a metal object, such as a metal steel sheet moving at a stationary or relatively high speed.
  • An image of a same visual point may be obtained by minimizing the loss of light. Therefore, the present invention can obtain image information for a more sharp surface defect.
  • the present invention can acquire images of sharp surface defects, it is possible to improve the detection rate of the surface defects on the metal surface of the production product which is typically moving at high speed in the steel industry, and based on this, the quality control of the steel products is greatly improved. You can contribute.
  • the present invention moves at a higher speed or inspects surface defects of finer metals by acquiring images having two or four different positions and angles of light in one shot. To allow surface defect inspection of metals.
  • the present invention acquires the image of the simultaneous point, synchronization of the brightfield image and the darkfield image can be clearly performed. Since the present invention does not require an additional device such as an encoder for synchronizing positions of images, it is possible to reduce the complexity of the camera system, which is an optical system for surface defect detection, and to significantly reduce the configuration cost of the camera system.
  • the present invention when using a light having two different wavelength bands by distinguishing the horizontal polarization (horizontal wave) and the vertical polarization (longwave) for the wavelength band of each of the illumination by the position of the four different lights and The image according to the angle can be acquired at the same time.
  • the present invention can have an improved rate of detection of surface defects in metals.
  • FIG. 1 is a view showing a surface defect detection apparatus 50 of a metal object compared with the present invention.
  • FIG. 2 is a diagram illustrating a method of operating the light sources 20 and 30 shown in FIG. 1.
  • FIG. 3 is a diagram illustrating an apparatus 90 for detecting surface defects of a moving metal object compared to the present invention.
  • FIG. 5 is a diagram illustrating a camera 100 for detecting metal surface defects according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining an embodiment of the polarization separator 115 shown in FIG.
  • FIG. 7 is a view for explaining the metal surface defect detection apparatus 200 according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining a method of operating the light sources 205 and 210 shown in FIG. 7.
  • FIG. 9 is a view for explaining a metal surface defect detection apparatus 300 according to another embodiment of the present invention.
  • FIG. 10 is a plan view illustrating an embodiment of an illumination arrangement of the metal surface defect detection apparatus 300 shown in FIG. 9.
  • FIG. 11A is a view for explaining the relationship between the surface defect form of the metal object shown in FIG. 9 and the illumination arrangement shown in FIG. 10.
  • FIG. 11B is a view for explaining another relationship between the surface defect shape of the metal object shown in FIG. 9 and the illumination arrangement shown in FIG. 10.
  • a system for detecting the shape and location of metal surface defects may consist of one camera and two lights of different illumination angles and on the same plane.
  • the shape and location of surface defects are detected through two images obtained by sequentially blinking a bright field light and a dark field light.
  • metal sheets are moving at high speeds and the surface defects vary, so depending on the location and angle of illumination, surface defects may or may not be captured in the camera image.
  • the surface defect detection apparatus 50 includes a camera 10, a first light source 20, and a second light source 30.
  • the surface defect detection device 50 may be a multiview system.
  • the camera 10 is not a camera that distinguishes different wavelength bands, but is a single charge coupled device (CCD) camera. Therefore, the surface defect detection apparatus 50 constitutes the first light source 20 in the bright field condition and the second light source 30 in the dark field condition, and as shown in FIG. 2, the first light source 20 and the second light source. Acquiring an image by sequentially flashing the 30, and analyzing the acquired image through an image processing unit included in the surface defect detection device 50, to determine the surface of the stationary metal 40 as an object to be detected. Detect defects Therefore, when the method of the surface defect detection apparatus 50 is applied to a moving metal object, there is a problem in that the position difference of the image by the distance moved during the blinking time difference of the two lights 20 and 30 occurs.
  • CCD charge coupled device
  • the surface defect detection apparatus 90 of the metal object includes a first camera 60, a second camera 65, a first light source 70, and a second light source 75.
  • the first camera 60 or the second camera 65 is not a camera that distinguishes different wavelength bands, but is a single CCD camera. Thus, the two lights 70, 75 alternately irradiate the surface of the moving metal object 80 as shown in FIG. 2.
  • the surface defect detection apparatus 90 of the metal object shown in FIG. 3 is used.
  • the first camera 60 and the second camera 65 acquire images sequentially with respect to the moving direction of the metal object 80. That is, after the first camera 60 acquires the image by the illumination of the first light source 70 in the dark field condition, the second camera 65 is the illumination of the second light source 75 in the bright field condition. Acquire an image.
  • the surface defect detection apparatus 90 of the metal object may be a multiview system.
  • Encoder or speed meter for measuring the position change of the metal object 80 to synchronize the position of the image between the image acquired by the first camera 60 and the image obtained by the second camera 65.
  • An additional device such as) is required for the surface defect detection device 90 of the metal object.
  • the surface defect detection device 90 synchronizes the positions of the images and analyzes the images acquired by the first camera 60 and the second camera 65 through an image processing unit therein to detect surface defects of the metal object 80. Detect.
  • the camera 95 includes a lens 11, a prism (or beam splitter) 12, a first charge coupled device (CCD) 13, and a second CCD 14 is included.
  • Camera 95 may also be referred to as a two CCD type camera.
  • the first CCD 13 and the second CCD 14 may each have a color filter for passing only light of a specific wavelength band provided in front of the first CCD 13 and the second CCD 14.
  • the prism 12 divides two lights of different wavelength bands (50%), which are surface reflections of the metal object incident through the lens 11, into the first CCD 13 and the second CCD 14, respectively. Each incident.
  • the camera 95 may obtain the image of the simultaneous point by acquiring the light irradiated simultaneously to the surface of the metal object by two illuminations of different wavelength bands.
  • the light irradiated is not polarized illumination.
  • the camera 95 equally divides the amount of light incident on the prism 12 through the lens 11 (or the intensity of light) by using the prism 12 and evenly divides the light by half (50%).
  • the incident images of the same surface of the metal object can be obtained by injecting into 13 and the second CCD 14, respectively. Therefore, as the amount of light loss occurs as shown in FIG. 4, the camera 95 obtains an image at least 50% darker than the camera of FIG. 1 or 2 using a single CCD camera. Considering the filter installed in front of the first CCD 13 and the second CCD 14, the camera 95 acquires a darker image.
  • the illumination should be brighter or the amount of light loss in the camera 95 should be reduced.
  • the camera 100 includes a body 105, a lens 110, a polarization separator 115, a first charge coupled device (CCD) 120, and a second CCD 125. It includes.
  • the camera 100 obtains an image of a simultaneous point using the reflected light 130 which is irradiated on the surface of the metal object simultaneously with two illuminations (horizontal wave and longitudinal wave) that are linearly polarized to be orthogonal to each other in the same wavelength band.
  • the reflected light 130 is linearly polarized light that is incident to the camera 100 through the lens 110 and has the same wavelength band and is orthogonal to each other and is free from interference.
  • the camera 100 includes two CCDs 120 and 125 each having the same viewing angle, and each of the CCDs 120 and 125 has a vertical polarization 135 according to the vibration direction of light in the surface reflection image.
  • Image and horizontal polarization 140 are obtained.
  • An image of horizontally polarized wave or horizontally polarized light and an image of vertically polarized wave or vertically polarized light are independent images. Therefore, the camera 100 may obtain two simultaneous point image information.
  • the polarization separator 115 passes the vertical polarization 135 of the reflected light 130 toward the first CCD 120 and reflects the horizontal polarization 140 of the reflected light 130 toward the second CCD 125 so that the camera 100 may be reflected.
  • Vertical polarization (longwave) and horizontal polarization (horizontal wave) incident on the surface are separated with little loss of light amount. Therefore, the polarization separator 115 may suppress the loss of the amount of light generated by the prism 12 shown in FIG. 4.
  • FIG. 6 is a view for explaining an embodiment of the polarization separator 115 shown in FIG.
  • the polarization separator 115 may be implemented as a cube-shaped polarizing beamsplitter cube.
  • the polarizing beam splitter cube If the light incident on the polarizing beam splitter cube is linearly polarized light, the light is separated into components perpendicular to each other according to the direction of the linearly polarized light. Therefore, when the light incident on the polarization beam splitter cube is linearly polarized light orthogonal to each other, when the direction of the polarization beam splitter cube is adjusted, the polarization beam splitter cube is vertically polarized (135) among the reflected light 130 incident on the polarization beam splitter cube. ) Passes through and reflects the horizontal polarization 140 of the reflected light 130. As a result, the camera 100 can obtain independent images with little loss of light and no interference with each other.
  • the polarizing beamsplitter cube includes two rectangular prisms.
  • a dielectric coating layer 116 is disposed (formed) between the right prisms.
  • the vertical polarization 135 may be generated by transmitting the reflected light 130 from the dielectric coating layer 140, and the horizontal polarization 140 may be generated by reflecting the reflected light 130 from the dielectric coating layer 140.
  • the first CCD 120 and the second CCD 125 each constitute an imaging device as a sensor.
  • the first CCD 120 acquires an image (image information) of the vertical polarization 135 separated by the polarization separator 115, and the second CCD 125 obtains an image of the horizontal polarization 140. That is, the first CCD 120 converts the optical signal of the vertical polarization 135 into an electrical signal, and the second CCD 125 converts the optical signal of the horizontal polarization 140 into an electrical signal.
  • Each of the first CCD 120 and the second CCD 125 may include a color filter array and a photodiode.
  • the camera 100 of the present invention includes a polarization separator 115, there is almost no loss of light compared to the camera 95 of FIG. 4 which acquires an image by two illuminations having different wavelength bands. Since illumination of the same wavelength band can be used to obtain a very bright image for detecting a surface defect of a metal object, surface defects of a metal object moving at high speed can be effectively detected.
  • the metal surface defect detecting apparatus 200 may include a camera 100, a first light source 205, and a second light source 210.
  • the camera 100 includes the components of the camera 100 shown in FIG. 5.
  • Each of the first light source 205 and the second light source 210 may include a light emitted diode.
  • a xenon lamp or a halogen lamp may be used instead of the light emitting diode (LED).
  • the first light source 205 or the second light source 210 may include an optical filter. The optical filter may be installed on the front surface of the first light source 205 or on the front surface of the second light source 210.
  • the first light source 205 is illumination in a bright field condition and linearly polarized light
  • the second light source 210 is illumination in a dark field condition and linearly polarized light.
  • the bright field condition illumination and the dark field condition illumination are linearly polarized lights having the same wavelength band and orthogonal to each other.
  • the first light source 205 irradiates the surface of the metal object 215 with linearly polarized light under bright field conditions.
  • the first light source 205 may be brightfield illumination and should be disposed at an angle as close to 90 degrees as possible from the surface of the metal object 215 and at an angle of approximately 80 degrees in consideration of the installation of the illumination. May be
  • the second light source 210 irradiates the surface of the metal object 215 simultaneously with the first light source 205 with linearly polarized light that is orthogonal to the illumination of the first light source 205 in the dark field condition.
  • the second light source 210 may be dark field illumination and may be disposed at an angle that is greater than 0 degrees and less than 45 degrees from the surface of the metal object 215, for example. The angle of the dark field illumination is effective to be adjusted according to the defect characteristics of the metal object.
  • Bright field illumination indicates illumination with a relatively high angle of illumination (light source).
  • brightfield illumination is illuminating the light from a metal surface at a high angle so that shadows of metal surface defects do not occur.
  • Dark field illumination indicates illumination with relatively low angles of illumination.
  • dark field illumination is illumination from a low angle from the metal surface so that the shadow of the metal surface defect is generated as much as possible.
  • the first light source 205 and the second light source 210 may be opposite to each other with respect to a vertical line from which the camera 100 acquires a surface reflection image of the metal object 215. Can be arranged. That is, when viewed from above the camera 100, the camera 100 may be disposed between the first light source 205 and the second light source 210.
  • FIG. 8 is a view for explaining a method of operating the light sources 205 and 210 shown in FIG. 7. As shown in FIG. 8, the first light source 205 and the second light source 210 may be turned on at the same time and turned off at the same time.
  • the camera 100 simultaneously acquires a brightfield image and a darkfield image at the same point on the surface of the metal object 215.
  • the camera 100 acquires light (or lights) that are simultaneously irradiated by the first light source 205 and the second light source 210 and reflected from the surface of the metal object 215 to inspect the surface defects of the metal object 215. Acquire an image for.
  • the metal object 215 may be a stationary metal object (eg, a metal sheet) or a moving metal object.
  • the metal surface defect detecting apparatus 200 obtains two independent images at the same time by irradiating two independent lights 205 and 210 of the same wavelength band to the surface of the metal object 215. Each of the lights 205, 210 includes two linearly polarized lights that are orthogonal to each other.
  • the image signal processing apparatus included in the metal surface defect detecting apparatus 200 receives the image information (image signal) acquired by the camera 100, analyzes the signal, and processes the surface of the metal object 215. Detect the type and location of the defect.
  • the image signal processing apparatus may be connected to a screen output device (not shown) included in the metal surface defect detecting apparatus 200.
  • the screen output apparatus may output a screen of an image processed by the image signal processing apparatus.
  • the image signal processing apparatus may be implemented by hardware, software, or a combination thereof, and may be implemented by a dedicated processor or a computer.
  • the metal surface defect detecting apparatus 200 has two different illumination positions and angles in one shot, compared to the image processing method obtained by the sequential blinking method of illumination illustrated in FIG. 1 or 3. By acquiring, it is possible to inspect the surface defects of a more detailed metal object or to inspect the surface defects of a metal object moving at high speed.
  • the metal surface defect detection apparatus 200 of the present invention acquires images of the simultaneous point, the bright field image and the dark field image may be clearly synchronized.
  • the present invention does not require an additional device such as an encoder for synchronizing positions of images, thereby reducing the complexity of the camera system, which is an optical system for surface defect detection. The construction cost of the camera system can be significantly reduced.
  • a metal surface defect detection method is described as follows.
  • the metal surface defect detection method may be applied to the metal surface defect detection apparatus 200 shown in FIG. 7.
  • the metal surface defect detection method includes a first irradiation step, a second irradiation step, an acquisition step, and a detection step.
  • the linearly polarized light in the bright field condition is irradiated onto the surface of the metal object 215 by the first light source 205.
  • the metal object 215 may be a stationary metal object or a moving metal object.
  • the linearly polarized light having a wavelength perpendicular to the illumination of the first light source 205 and having the same wavelength as that of the illumination of the first light source 205 in the dark field condition is generated by the second light source 210.
  • the surface of the metal object 215 is irradiated at the same time as the bright field illumination by the first light source 205.
  • the image of the light reflected from the surface of the metal object 215 is acquired by the camera 100 at the same time.
  • the camera 100 may include a polarizing beamsplitter cube.
  • the image signal processing apparatus of the metal surface defect detecting apparatus 200 performs signal processing (for example, digital image signal processing) on the obtained image to detect a surface defect (surface defect image) of the metal object 215. Is detected.
  • signal processing for example, digital image signal processing
  • the metal surface defect detecting apparatus 300 may include a camera unit 305, a first light source 325, a second light source 330, a third light source 335, and a fourth light source.
  • Light source 340 may include a camera unit 305, a first light source 325, a second light source 330, a third light source 335, and a fourth light source.
  • Each of the first light source 325, the second light source 330, the third light source 335, and the fourth light source 340 may include a light emitting diode, a xenon lamp, or a halogen lamp.
  • the first light source 325, the second light source 330, the third light source 335, or the fourth light source 340 may include an optical filter.
  • the optical filter may be installed on the front surface of the first light source 325, the front surface of the second light source 330, the front surface of the third light source 335, or the front surface of the fourth light source 340.
  • the center wavelength band of the first light source 325 and the center wavelength band of the fourth light source 340 are the same as the first wavelength ⁇ 1, and the first light source 325 and the fourth light source 340 are Linearly polarized lights that are orthogonal to one another.
  • the center wavelength band of the second light source 330 and the center wavelength band of the third light source 335 are the same as the second wavelength ⁇ 2, and the second light source 330 and the third light source 335 are perpendicular to each other. Linearly polarized lights.
  • the first light source 325 irradiates the surface of the metal object 345 with linearly polarized light having a first wavelength ⁇ 1 at a first angle
  • the second light source 330 has a second wavelength ⁇ 2 at a second angle.
  • Linearly polarized light of the metal object 345 is irradiated to the surface of the metal object 345
  • the third light source 335 is irradiated to the surface of the metal object 345 of the linearly polarized light of the second wavelength ( ⁇ 2) at a third angle
  • the light source 340 irradiates the surface of the metal object 345 with linearly polarized light having a first wavelength ⁇ 1 at a fourth angle.
  • the first angle may be an angle for brightfield illumination
  • the second angle, the third angle, and the fourth angle may be an angle for darkfield illumination
  • the brightfield illumination should be placed at an angle as close to 90 degrees as possible from the surface of the metal object 345 and may be arranged at an angle of approximately 80 degrees in consideration of the position of the illumination.
  • the dark field illumination may be disposed at an angle that is greater than 0 degrees and less than 45 degrees from the surface of the metal object 345 according to the defect characteristics of the metal object.
  • the first light source 325, the second light source 330, the third light source 335, and the fourth light source 340 emit the polarizations (lights) in a manner similar to that shown in FIG. 8. Irradiate simultaneously on the surface.
  • the camera unit 305 includes a first camera 310, a second camera 315, and a dichroic mirror or dichroic beamsplitter 320.
  • the camera unit 305 is irradiated simultaneously by the first light source 325, the second light source 330, the third light source 335, and the fourth light source 340 and reflected from the surface of the metal object 345 ( By acquiring light), an image for inspecting a surface defect of the metal object 345 is obtained.
  • the color screening mirror 320 separates the light reflected from the surface of the metal object 345 into light having a first wavelength ⁇ 1 and light having a second wavelength ⁇ 2.
  • the dichroic mirror 320 transmits light in the wavelength band of ⁇ 1 and reflects light in the wavelength band of ⁇ 2 with little loss of light due to the interference effect of light in the multilayer thin film therein. Therefore, the first camera 310 and the second camera 315 can obtain a high-definition video image with little loss of light.
  • the first camera 310 obtains the light having the first wavelength ⁇ 1 separated by the color-dividing mirror 320 into vertical and horizontal polarizations, and uses the obtained vertical and horizontal polarizations to detect the metal object 345. Image for surface defect inspection).
  • the second camera 315 is obtained by dividing the light of the second wavelength ⁇ 2 separated from the color-dividing mirror 320 into vertical and horizontal polarizations, and using the obtained vertical and horizontal polarizations, the metal object 345. Image for surface defect inspection).
  • the first camera 310 or the second camera 315 includes the components of the camera 100 shown in FIG. 5.
  • the metal object 345 may be a stationary metal object (eg, a metal sheet) or a moving metal object.
  • the metal surface defect detecting apparatus 300 may simultaneously irradiate the surface of the metal object 345 with four independent polarization lights 325, 330, 335, and 340 of two different wavelength bands ⁇ 1 and ⁇ 2. Acquire four independent images of time at the same time.
  • the image signal processing apparatus included in the metal surface defect detecting apparatus 300 receives the image information acquired by the camera unit 305, analyzes the signal, and processes the signal to form a surface defect of the metal object 345. Detect and position.
  • the image signal processing apparatus may be connected to a screen output device (not shown) included in the metal surface defect detecting apparatus 300.
  • the screen output apparatus may output a screen of an image processed by the image signal processing apparatus.
  • the image signal processing apparatus may be implemented by hardware, software, or a combination thereof, and may be implemented by a dedicated processor or a computer.
  • the metal surface defect detecting apparatus 300 has an image having positions and angles of four different illuminations in one shot as compared to the image processing method obtained by the sequential blinking method of illumination illustrated in FIG. 1 or 3. By acquiring, it is possible to inspect the surface defects of a more detailed metal object or to inspect the surface defects of a metal object moving at high speed.
  • the metal surface defect detecting apparatus 300 of the present invention acquires an image of a simultaneous point, the bright field image and the dark field image may be clearly synchronized.
  • the present invention does not require an additional device such as an encoder for synchronizing positions of images, thereby reducing the complexity of the camera system, which is an optical system for surface defect detection. The construction cost of the camera system can be significantly reduced.
  • the metal surface defect detection apparatus 300 of the present invention uses four different illuminations by distinguishing horizontal polarization and vertical polarization for illuminations of the same wavelength band when the illumination having two different wavelengths is used. Images according to the position and angle of can be acquired simultaneously. Accordingly, the present invention may have an improved metal surface defect detection rate than the surface defect detection device 90 shown in FIG. 3.
  • FIG. 10 is a plan view illustrating an embodiment of an illumination arrangement of the metal surface defect detection apparatus 300 shown in FIG. 9.
  • the first light sources ⁇ 1 and 325 and the fourth light sources ⁇ 1 and 340 are disposed to face each other with respect to the camera unit 305 (or to the center), and the second light sources ⁇ 2 and 330. ) And the third light sources ⁇ 2 and 335 are disposed to face each other with respect to the camera unit 305.
  • the first light source ⁇ 1 and the fourth light source ⁇ 1, which are the first illumination pair, are disposed to be perpendicular to the second light source ⁇ 2 and the third light source ⁇ 2, which are the second illumination pair.
  • the camera unit 305 when viewed from above the camera unit 305, the camera unit 305 is disposed between the first light source ⁇ 1 and the fourth light source ⁇ 1, and between the second light source ⁇ 2 and the third light source ⁇ 2.
  • the first light source ⁇ 1 and the fourth light source ⁇ 1 are arranged perpendicularly (orthogonally) with respect to the second light source ⁇ 2 and the third light source ⁇ 2.
  • FIG. 11A is a view for explaining the relationship between the surface defect form of the metal object shown in FIG. 9 and the illumination arrangement shown in FIG. 10.
  • the defect DEFECT of the metal object is narrow in the direction of the first light source ⁇ 1 and the direction of the fourth light source, the defect is caused by the first light source ⁇ 1 and the fourth light source ⁇ 1.
  • the detection probability of DEFECT is low
  • the width of the defect DEFECT of the metal object is wide in the direction of the second light source ⁇ 2 and the direction of the third light source ⁇ 2, so that the second light source ⁇ 2 and the third light source are By ( ⁇ 2), the probability of detecting a defect is high.
  • FIG. 11B is a view for explaining another relationship between the surface defect shape of the metal object shown in FIG. 9 and the illumination arrangement shown in FIG. 10.
  • the second light source ⁇ 2 and the third light source ⁇ 2 may be formed.
  • the detection probability of the defect DEFECT is low
  • the width of the defect DEFECT of the metal object is wide in the direction of the first light source ⁇ 1 and the direction of the fourth light source ⁇ 1.
  • the fourth light source ⁇ 1 has a high probability of detecting a defect DEFECT.
  • the embodiment of the illumination arrangement shown in FIG. 10 can improve the probability of detecting a defect regardless of the shape of the defect or the direction of the defect.
  • a metal surface defect detection method is described as follows.
  • the metal surface defect detection method may be applied to the metal surface defect detection apparatus 300 shown in FIG. 9.
  • the metal surface defect detection method includes a first irradiation step, a second irradiation step, a third irradiation step, a fourth irradiation step, an acquisition step, and a detection step.
  • a first irradiation step linearly polarized light having a first wavelength ⁇ 1 at a first angle is irradiated onto the surface of the metal object 345 by the first light source 325.
  • the metal object 345 may be a stationary metal object or a moving metal object.
  • the first angle may be an angle for brightfield illumination or darkfield illumination.
  • the linearly polarized light of the second wavelength ⁇ 2 at the second angle is irradiated onto the surface of the metal object 345 by the second light source 330.
  • the second angle may be an angle for brightfield illumination or darkfield illumination.
  • the third angle may be an angle for brightfield illumination or darkfield illumination.
  • the linearly polarized light of the first wavelength ⁇ 1 orthogonal to the linearly polarized light of the first wavelength ⁇ 1 at a fourth angle is transferred to the metal object 345 by the fourth light source 340. Irradiated to the surface.
  • the fourth angle may be an angle for brightfield illumination or darkfield illumination.
  • the illumination of the first wavelength and the illumination of the second wavelength are simultaneously irradiated in a manner similar to that shown in FIG. 8.
  • the illumination of the first to fourth irradiation steps is irradiated so that an image of light reflected from the surface of the metal object 345 is simultaneously acquired by the camera unit 305.
  • the camera unit 305 includes a first camera 310, a second camera 315, and a color screening mirror 320.
  • the image signal processing apparatus of the surface defect detection apparatus 300 performs signal processing (for example, digital image signal processing) on the obtained image to detect surface defects (surface defect images) of the metal object 345. Detect.
  • signal processing for example, digital image signal processing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A camera for detecting a metal surface defect comprises: a polarizing separator; a first charge coupled device; and a second charge coupled device. When the polarizing separator simultaneously emits mutually intersecting linearly polarized lights onto a surface of a metal object, light reflected from the surface of the metal object is separated into vertically polarized light and horizontally polarized light. The first charge coupled device (CCD) acquires a vertically polarized image. The second charge coupled device acquires a horizontally polarized image.

Description

금속 표면 결함 검출을 위한 카메라, 카메라를 포함하는 금속 표면 결함 검출 장치, 및 금속 표면 결함 검출 방법Camera for metal surface defect detection, metal surface defect detection apparatus including camera, and metal surface defect detection method
본 발명은 금속 표면 결함 검출을 위한 카메라 시스템에 관한 것으로, 보다 상세하게는, 금속 표면 결함 검출을 위한 카메라, 상기 카메라를 포함하는 금속 표면 결함 검출 장치, 및 금속 표면 결함 검출 방법에 관한 것이다.The present invention relates to a camera system for detecting metal surface defects, and more particularly, to a camera for metal surface defect detection, a metal surface defect detection apparatus including the camera, and a metal surface defect detection method.
일반적으로, 고속으로 이동하는 강판의 표면 결함을 검출하는 방법은 작업자가 직접 이동하고 있는 강판의 표면을 관찰하는 것에 의해 표면 결함을 검출하는 방법과, 레이저 광원을 표면에 조사하고 레이저 수광부가 이를 받아들여 일정한 신호처리를 거쳐 표면결함을 검출하는 방법과, 가시광선 영역의 조명을 강판 표면에 조사하고 라인 스캔 카메라(line scan camera)로 이를 받아들여 일정한 신호처리를 거쳐 표면 결함을 검출하는 방법 등이 있을 수 있다.In general, a method of detecting surface defects of a steel plate moving at a high speed includes a method of detecting surface defects by observing a surface of a steel plate being moved directly by an operator, and irradiating a laser light source to the surface and receiving a laser light receiving unit. To detect surface defects through constant signal processing, and to irradiate the surface of the steel sheet with illumination in the visible light region, to receive it with a line scan camera, and to detect surface defects through constant signal processing. There may be.
그러나 작업자의 관찰에 의한 결함검출방법은 작업자들 사이에 일관된 검출 기준이 존재하기 어려우므로 객관적인 검출이 어려울 수 있다. 레이저를 이용한 결함 검출은 연속적으로 이동하는 강판의 사소한 진동과 같은 외부환경에 민감하게 영향을 받을 수 있다.However, the defect detection method based on the operator's observation may be difficult to objectively detect because it is difficult to have consistent detection criteria among workers. Detecting defects using lasers can be susceptibly affected by external conditions, such as minor vibrations of continuously moving steel sheets.
본 발명이 해결하고자 하는 기술적 과제는, 금속 표면 결함 검출 기법 및 시스템에 관한 것으로서, 간섭이 없고 서로 직교하는 선편광된(linearly polarized) 조명들을 정지된 또는 이동중인 금속 표면에 동시에 조사하여 영상을 얻는 표면 결함 검출을 위한 카메라, 상기 카메라를 포함하는 금속 표면 결함 검출 장치, 및 금속 표면 결함 검출 방법을 제공하는 것이다.The technical problem to be solved by the present invention relates to a metal surface defect detection technique and system, a surface for obtaining an image by simultaneously irradiating a stationary or moving metal surface with linearly polarized illumination without interference and orthogonal to each other A camera for defect detection, a metal surface defect detection apparatus including the camera, and a metal surface defect detection method are provided.
상기 기술적 과제를 달성하기 위하여, 본 발명의 실시예에 따른 카메라는, 간섭이 없고 서로 직교하는 선편광된 조명들(횡파 및 종파)을 금속물체의 표면에 동시에 조사할 때 상기 금속물체의 표면에서 반사된 빛을 수직편파(종파) 및 수평편파(횡파)로 분리하는 편광분리기; 상기 수직편파의 영상을 획득하는 제1 전하결합소자(charge coupled device); 및 상기 수평편파의 영상을 획득하는 제2 전하결합소자를 포함할 수 있다.In order to achieve the above technical problem, the camera according to the embodiment of the present invention, when irradiating the surface of the metal object with the linearly polarized lights (horizontal wave and longitudinal wave) without interference and orthogonal to each other at the same time, the reflection on the surface of the metal object A polarization separator that separates the divided light into vertical polarization (longwave) and horizontal polarization (horizontal wave); A first charge coupled device obtaining an image of the vertical polarization; And a second charge coupling device for acquiring the image of the horizontal polarization.
상기 편광분리기는 편광 빔스플리터 큐브(polarizing beamsplitter cube)일 수 있다.The polarizer may be a polarizing beamsplitter cube.
상기 기술적 과제를 달성하기 위하여, 본 발명의 실시예에 따른 금속 표면 결함 검출 장치는, 명시야 조건에서 선편광된 조명을 금속물체의 표면에 조사하는 제1 광원; 암시야 조건에서 상기 선편광된 조명과 서로 직교하고 상기 선편광된 조명의 파장과 동일한 파장을 가지는 선편광된 조명을 상기 제1 광원과 동시에 상기 금속물체의 표면에 조사하는 제2 광원; 및 상기 금속물체의 표면에서 반사된 빛을 획득하여 상기 금속물체의 표면 결함 검사를 위한 영상을 취득하는 카메라를 포함할 수 있다.In order to achieve the above technical problem, the metal surface defect detection apparatus according to an embodiment of the present invention, the first light source for irradiating the surface of the metal object with linearly polarized light in bright field conditions; A second light source for irradiating the surface of the metal object with the first light source simultaneously with the first light source in a dark field condition with the linearly polarized light orthogonal to each other and having the same wavelength as that of the linearly polarized light; And a camera for acquiring the light reflected from the surface of the metal object to acquire an image for inspecting the surface defect of the metal object.
상기 카메라는, 상기 서로 직교하도록 선편광된 조명들을 상기 금속물체의 표면에 조사할 때 상기 금속물체의 표면에서 반사된 빛을 수직편파(종파) 및 수평편파(횡파)로 분리하는 편광분리기; 상기 수직편파의 영상을 획득하는 제1 전하결합소자; 및 상기 수평편파의 영상을 획득하는 제2 전하결합소자를 포함할 수 있다. 상기 금속물체는 정지된 금속물체 또는 이동하는 금속물체일 수 있다.The camera may include a polarization separator that separates light reflected from the surface of the metal object into vertical polarization (longwave) and horizontal polarization (horizontal wave) when the linearly polarized lights are irradiated on the surface of the metal object; A first charge coupled device obtaining the image of the vertical polarization; And a second charge coupling device for acquiring the image of the horizontal polarization. The metal object may be a stationary metal object or a moving metal object.
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 실시예에 따른 금속 표면 결함 검출 장치는, 명시야 조건에서 제1 파장의 선편광된 조명을 금속물체의 표면에 조사하는 제1 광원; 암시야 조건에서 제2 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 제2 광원; 암시야 조건에서 상기 제2 파장의 선편광된 조명과 직교하는 제2 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 제3 광원; 암시야 조건에서 상기 제1 파장의 선편광된 조명과 직교하는 선편광된 제1 파장의 조명을 상기 금속물체의 표면에 조사하는 제4 광원; 및 상기 금속물체의 표면에서 반사된 빛을 획득하여 상기 금속물체의 표면 결함 검사를 위한 영상을 취득하는 카메라부를 포함할 수 있으며, 상기 제1 광원, 상기 제2 광원, 상기 제3 광원, 및 상기 제4 광원은 조명들을 동시에 조사할 수 있다.In order to achieve the above technical problem, a metal surface defect detecting apparatus according to another embodiment of the present invention, the first light source for irradiating the surface of the metal object with linearly polarized light of the first wavelength in bright field conditions; A second light source for irradiating a surface of the metal object with linearly polarized light having a second wavelength under dark field conditions; A third light source for irradiating a surface of the metal object with a linearly polarized light having a second wavelength orthogonal to the linearly polarized light of the second wavelength in a dark field condition; A fourth light source for irradiating the surface of the metal object with illumination of the linearly polarized first wavelength orthogonal to the linearly polarized illumination of the first wavelength in dark field conditions; And a camera unit which acquires the light reflected from the surface of the metal object to acquire an image for inspecting the surface defect of the metal object, wherein the first light source, the second light source, the third light source, and the The fourth light source can illuminate the lights at the same time.
상기 카메라부는 상기 제1 광원 및 상기 제4 광원 사이와, 상기 제2 광원 및 상기 제3 광원 사이에 배치되고, 상기 제1 광원 및 상기 제4 광원은 상기 제2 광원 및 상기 제3 광원에 대하여 직교하도록 배치될 수 있다.The camera unit is disposed between the first light source and the fourth light source, and between the second light source and the third light source, wherein the first light source and the fourth light source are disposed with respect to the second light source and the third light source. It may be arranged to be orthogonal.
상기 카메라부는, 상기 제1 광원의 조명, 상기 제2 광원의 조명, 상기 제3 광원의 조명, 및 상기 제4 광원의 조명이 상기 금속물체의 표면에 동시에 조사될 때 상기 금속물체의 표면에서 반사된 빛을 상기 제1 파장의 빛과 상기 제2 파장의 빛으로 분리하는 색선별 거울; 상기 색선별 거울에서 분리된 제1 파장의 빛을 수직편파와 수평편파로 분리하여 획득하고 상기 획득된 수직편파와 수평편파를 이용하여 상기 금속물체의 표면 결함 검사를 위한 영상을 취득하는 제1 카메라; 및 상기 색선별 거울에서 분리된 제2 파장의 빛을 수직편파와 수평편파로 분리하여 획득하고 상기 획득된 수직편파와 수평편파를 이용하여 상기 금속물체의 표면 결함 검사를 위한 영상을 취득하는 제2 카메라를 포함할 수 있다.The camera unit reflects from the surface of the metal object when the illumination of the first light source, the illumination of the second light source, the illumination of the third light source, and the illumination of the fourth light source are simultaneously irradiated onto the surface of the metal object. A color screening mirror that separates the light into the light of the first wavelength and the light of the second wavelength; A first camera that obtains light of a first wavelength separated from the color-dividing mirror into vertical and horizontal polarizations, and acquires an image for inspecting surface defects of the metal object by using the obtained vertical and horizontal polarizations ; And a second light obtained by separating light having a second wavelength separated from the color-dividing mirror into vertical polarization and horizontal polarization and acquiring an image for inspecting surface defects of the metal object by using the obtained vertical polarization and horizontal polarization. It may include a camera.
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 실시예에 따른 금속 표면 결함 검출 장치는, 제1 각도에서 제1 파장의 선편광된 조명을 금속물체의 표면에 조사하는 제1 광원; 제2 각도에서 제2 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 제2 광원; 제3 각도에서 상기 제2 파장의 선편광된 조명과 직교하는 제2 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 제3 광원; 제4 각도에서 상기 제1 파장의 선편광된 조명과 직교하는 제1 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 제4 광원; 및 상기 금속물체의 표면에서 반사된 빛을 획득하여 상기 금속물체의 표면 결함 검사를 위한 영상을 취득하는 카메라부를 포함할 수 있으며, 상기 제1 광원, 상기 제2 광원, 상기 제3 광원, 및 상기 제4 광원은 조명들을 동시에 조사하고, 상기 제1 각도, 상기 제2 각도, 상기 제3 각도, 또는 상기 제4 각도는 명시야 조명 또는 암시야 조명을 위한 각도일 수 있다.In order to achieve the above technical problem, a metal surface defect detecting apparatus according to another embodiment of the present invention, the first light source for irradiating the surface of the metal object with linearly polarized light of the first wavelength at a first angle; A second light source for irradiating a surface of the metal object with linearly polarized light having a second wavelength at a second angle; A third light source for irradiating a surface of the metal object with the linearly polarized light of the second wavelength orthogonal to the linearly polarized light of the second wavelength at a third angle; A fourth light source for irradiating the surface of the metal object with the linearly polarized light of the first wavelength orthogonal to the linearly polarized light of the first wavelength at a fourth angle; And a camera unit which acquires the light reflected from the surface of the metal object to acquire an image for inspecting the surface defect of the metal object, wherein the first light source, the second light source, the third light source, and the The fourth light source irradiates the lights simultaneously, and the first angle, the second angle, the third angle, or the fourth angle may be an angle for brightfield illumination or darkfield illumination.
상기 기술적 과제를 달성하기 위하여, 본 발명의 실시예에 따른 금속 표면 결함 검출 방법은, (a) 명시야 조건에서 선편광된 조명을 금속물체의 표면에 조사하는 단계; (b) 암시야 조건에서 상기 선편광된 조명과 서로 직교하고 상기 선편광된 조명의 파장과 동일한 파장을 가지는 선편광된 조명을 상기 명시야 조건에서의 선편광된 조명의 조사와 동시에 상기 금속물체의 표면에 조사하는 단계; (c) 상기 금속물체의 표면에서 반사된 빛의 영상을 동시에 획득하는 단계; 및 (d) 상기 획득된 영상을 신호처리하여 상기 금속물체의 표면 결함을 검출하는 단계를 포함할 수 있다.In order to achieve the above technical problem, the metal surface defect detection method according to an embodiment of the present invention, (a) irradiating the surface of the metal object with linearly polarized light in bright field conditions; (b) irradiating the surface of the metal object at the same time as the irradiation of the linearly polarized light in the bright field conditions orthogonal to the linearly polarized light in the dark field conditions and having the same wavelength as the wavelength of the linearly polarized light; Doing; (c) simultaneously acquiring an image of light reflected from the surface of the metal object; And (d) signal processing the obtained image to detect surface defects of the metal object.
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 실시예에 따른 금속 표면 결함 검출 방법은, (a) 제1 각도에서 제1 파장의 선편광된 조명을 금속물체의 표면에 조사하는 단계; (b) 제2 각도에서 제2 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 단계; (c) 제3 각도에서 상기 제2 파장의 선편광된 조명과 직교하는 제2 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 단계; (d) 제4 각도에서 상기 제1 파장의 선편광된 조명과 직교하는 제1 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 단계; (e) 상기 금속물체의 표면에서 반사된 빛의 영상을 동시에 획득하는 단계; 및 (f) 상기 획득된 영상을 신호처리하여 상기 금속물체의 표면 결함을 검출하는 단계를 포함할 수 있으며, 상기 제1 파장의 조명 및 상기 제2 파장의 조명은 동시에 조사되고, 상기 제1 각도, 상기 제2 각도, 상기 제3 각도, 또는 상기 제4 각도는 명시야 조명 또는 암시야 조명을 위한 각도일 수 있다.In order to achieve the above technical problem, a metal surface defect detection method according to another embodiment of the present invention, (a) irradiating the surface of the metal object with a linearly polarized light of the first wavelength at a first angle; (b) irradiating a surface of the metal object with linearly polarized light of a second wavelength at a second angle; (c) irradiating a surface of the metal object with a linearly polarized light of a second wavelength orthogonal to the linearly polarized light of the second wavelength at a third angle; (d) irradiating a surface of the metal object with linearly polarized light of a first wavelength orthogonal to the linearly polarized light of the first wavelength at a fourth angle; (e) simultaneously acquiring an image of light reflected from the surface of the metal object; And (f) signal processing the obtained image to detect surface defects of the metal object, wherein the illumination of the first wavelength and the illumination of the second wavelength are simultaneously irradiated and the first angle The second angle, the third angle, or the fourth angle may be an angle for brightfield illumination or darkfield illumination.
본 발명에 따른 금속 표면 결함 검출을 위한 카메라, 카메라를 포함하는 금속 표면 결함 검출 장치, 및 금속 표면 결함 검출 방법은, 정지된 또는 상대적으로 높은 속도로 이동하는 금속 강판과 같은 금속 물체의 표면에 대한 동시점(同視点)(same visual point)의 영상을 광량의 손실을 최소화하여 획득할 수 있다. 따라서 본 발명은 보다 선명한 표면 결함에 대한 영상 정보를 획득할 수 있다.A camera for detecting metal surface defects according to the present invention, a device for detecting metal surface defects including a camera, and a method for detecting metal surface defects are provided for a surface of a metal object, such as a metal steel sheet moving at a stationary or relatively high speed. An image of a same visual point may be obtained by minimizing the loss of light. Therefore, the present invention can obtain image information for a more sharp surface defect.
본 발명은 선명한 표면 결함에 대한 영상을 획득할 수 있으므로, 철강 산업에서 통상적으로 고속으로 이동 중인 생산 제품의 금속 표면에 대한 표면 결함 검출률을 향상시킬 수 있고, 이를 바탕으로 철강 제품의 품질 관리에 큰 기여를 할 수 있다.Since the present invention can acquire images of sharp surface defects, it is possible to improve the detection rate of the surface defects on the metal surface of the production product which is typically moving at high speed in the steel industry, and based on this, the quality control of the steel products is greatly improved. You can contribute.
기존의 표면 결함 검출 시스템은 외국 기술에 대부분 의존하고 있는 실정이므로, 본 발명을 통하여 수입대체 및 수출의 효과를 얻을 수 있다.Since the existing surface defect detection system relies mostly on foreign technology, it is possible to obtain the effect of import substitution and export through the present invention.
본 발명은 조명의 순차적 조사에 의해 얻어지는 영상처리 방법에 비하여 한 번의 촬영으로 2개 또는 4개의 서로 다른 조명의 위치와 각도를 가지는 영상을 취득하는 것에 의해 보다 세밀한 금속의 표면 결함 검사 또는 고속으로 이동하는 금속의 표면 결함 검사가 가능하도록 한다.Compared to the image processing method obtained by the sequential irradiation of the light, the present invention moves at a higher speed or inspects surface defects of finer metals by acquiring images having two or four different positions and angles of light in one shot. To allow surface defect inspection of metals.
본 발명은 동시점의 영상을 획득하므로 명시야 영상과 암시야 영상의 동기화가 명확히 수행될 수 있다. 본 발명은 영상의 위치 동기화를 위한 인코더(encoder)와 같은 부가장치를 필요로 하지 않으므로 표면 결함 검출을 위한 광학계통인 카메라 시스템의 복잡도를 낮추고 카메라 시스템의 구성비용을 현저히 절감시킬 수 있다.Since the present invention acquires the image of the simultaneous point, synchronization of the brightfield image and the darkfield image can be clearly performed. Since the present invention does not require an additional device such as an encoder for synchronizing positions of images, it is possible to reduce the complexity of the camera system, which is an optical system for surface defect detection, and to significantly reduce the configuration cost of the camera system.
또한, 본 발명은 서로 다른 2개의 파장대역을 가지는 조명을 사용할 경우 각각의 조명들이 가지는 파장대역에 대한 수평편파(횡파) 및 수직편파(종파)를 구별하는 것에 의해 4개의 서로 다른 조명의 위치 및 각도에 따른 영상을 동시에 취득할 수 있다. 따라서 본 발명은 향상된 금속의 표면 결함 검출률을 가질 수 있다.In addition, the present invention, when using a light having two different wavelength bands by distinguishing the horizontal polarization (horizontal wave) and the vertical polarization (longwave) for the wavelength band of each of the illumination by the position of the four different lights and The image according to the angle can be acquired at the same time. Thus, the present invention can have an improved rate of detection of surface defects in metals.
본 발명의 상세한 설명에서 사용되는 도면을 보다 충분히 이해하기 위하여, 각 도면의 간단한 설명이 제공된다.In order to more fully understand the drawings used in the detailed description of the invention, a brief description of each drawing is provided.
도 1은 본 발명과 비교되는 금속 물체의 표면 결함 검출 장치(50)를 나타내는 도면이다.1 is a view showing a surface defect detection apparatus 50 of a metal object compared with the present invention.
도 2는 도 1에 도시된 광원들(20, 30)의 운영 방법을 나타내는 도면이다.FIG. 2 is a diagram illustrating a method of operating the light sources 20 and 30 shown in FIG. 1.
도 3은 본 발명과 비교되는 이동하는 금속 물체의 표면 결함을 검출하기 위한 장치(90)를 설명하는 도면이다.3 is a diagram illustrating an apparatus 90 for detecting surface defects of a moving metal object compared to the present invention.
도 4는 본 발명과 비교되는 카메라(95)를 나타내는 도면이다.4 shows a camera 95 compared with the present invention.
도 5는 본 발명의 실시예에 따른 금속 표면 결함 검출을 위한 카메라(100)를 설명하는 도면이다.5 is a diagram illustrating a camera 100 for detecting metal surface defects according to an embodiment of the present invention.
도 6은 도 5에 도시된 편광분리기(115)의 실시예를 설명하는 도면이다.6 is a view for explaining an embodiment of the polarization separator 115 shown in FIG.
도 7은 본 발명의 실시예에 따른 금속 표면 결함 검출 장치(200)를 설명하는 도면이다.7 is a view for explaining the metal surface defect detection apparatus 200 according to an embodiment of the present invention.
도 8은 도 7에 도시된 광원들(205, 210)의 운영 방법을 설명하는 도면이다. FIG. 8 is a view for explaining a method of operating the light sources 205 and 210 shown in FIG. 7.
도 9는 본 발명의 다른 실시예에 따른 금속 표면 결함 검출 장치(300)를 설명하는 도면이다.9 is a view for explaining a metal surface defect detection apparatus 300 according to another embodiment of the present invention.
도 10은 도 9에 도시된 금속 표면 결함 검출 장치(300)의 조명 배치의 실시예를 설명하는 평면도이다.FIG. 10 is a plan view illustrating an embodiment of an illumination arrangement of the metal surface defect detection apparatus 300 shown in FIG. 9.
도 11a는 도 9에 도시된 금속물체의 표면 결함 형태와 도 10에 도시된 조명 배치와의 관계를 설명하는 도면이다.FIG. 11A is a view for explaining the relationship between the surface defect form of the metal object shown in FIG. 9 and the illumination arrangement shown in FIG. 10.
도 11b는 도 9에 도시된 금속물체의 표면 결함 형태와 도 10에 도시된 조명 배치와의 다른 관계를 설명하는 도면이다.FIG. 11B is a view for explaining another relationship between the surface defect shape of the metal object shown in FIG. 9 and the illumination arrangement shown in FIG. 10.
본 발명 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는, 본 발명의 실시예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용이 참조되어야 한다.In order to fully understand the present invention and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings which illustrate embodiments of the present invention and the contents described in the accompanying drawings.
이하, 첨부한 도면을 참조하여 본 발명의 실시예를 설명하는 것에 의해, 본 발명을 상세히 설명한다. 각 도면에 제시된 동일한 참조 부호는 동일한 구성 요소를 나타낸다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail by explaining embodiment of this invention with reference to attached drawing. Like reference numerals in the drawings denote like elements.
철강 산업 분야에서 이동 중인 금속 표면의 다양한 결함의 모양과 위치를 검출하는 시스템은 제품 표면의 품질 관리를 위해 매우 중요하며 표면 결함 검출 장치가 상용화 되어있는 상황이다.In the steel industry, a system for detecting the shape and location of various defects on a moving metal surface is very important for quality control of product surfaces, and surface defect detection devices are commercially available.
금속 표면 결함의 모양과 위치를 검출하기 위한 시스템은 카메라 1대와, 조사 각도가 다르며 같은 평면상에 존재하는 2개의 조명들로 구성될 수 있다. 이러한 시스템에서는 명시야(bright field) 조건의 조명과 암시야(dark field) 조건의 조명을 순차적으로 점멸하여 얻은 2개의 영상들을 통하여 표면 결함의 모양과 위치를 검출한다.A system for detecting the shape and location of metal surface defects may consist of one camera and two lights of different illumination angles and on the same plane. In such a system, the shape and location of surface defects are detected through two images obtained by sequentially blinking a bright field light and a dark field light.
생산 라인에서 금속 재질의 강판은 고속으로 이동하고 있으며 표면 결함의 종류는 다양하므로, 조명의 위치 및 각도에 따라 표면 결함이 카메라 영상에 포착되기도 하며 포착되지 않기도 한다.In the production line, metal sheets are moving at high speeds and the surface defects vary, so depending on the location and angle of illumination, surface defects may or may not be captured in the camera image.
따라서 조명 위치 및 각도를 조절하여 결함 검출률을 높일 수 있는 장치의 개발이 필요하다. 또한 금속 강판은 고속으로 이동하기 때문에 동시점(同視点)의 영상을 광량의 손실을 최소화하여 획득 할 수 있는 장치의 개발이 요구된다.Therefore, it is necessary to develop a device that can increase the defect detection rate by adjusting the lighting position and angle. In addition, since the metal steel plate moves at a high speed, it is required to develop a device capable of acquiring images of the same point with a minimum amount of light loss.
철강 산업에서는 최종 생산 제품의 표면의 다양한 결함들에 대한 검출률을 높이고 이를 바탕으로 적절한 조치를 취하는 것에 의해 최종 출고 제품의 품질을 향상시키기 위해 많은 노력을 기울이고 있으며 관련 기술 개발이 꾸준히 요구되고 있다.In the steel industry, much effort has been made to improve the quality of finished products by increasing the detection rate of various defects on the surface of the final product and taking appropriate measures based on them, and related technology development is constantly required.
본 발명을 설명하기 전에, 본 발명에 대한 비교예가 다음과 같이 설명된다.Before explaining the present invention, a comparative example to the present invention is described as follows.
도 1은 본 발명과 비교되는 금속 물체의 표면 결함 검출 장치(50)를 나타내는 도면이다. 도 1을 참조하면, 표면 결함 검출 장치(50)는, 카메라(10), 제1 광원(light source)(20), 및 제2 광원(30)을 포함한다. 표면 결함 검출 장치(50)는 다시점(多視点)(multiview) 시스템일 수 있다.1 is a view showing a surface defect detection apparatus 50 of a metal object compared with the present invention. Referring to FIG. 1, the surface defect detection apparatus 50 includes a camera 10, a first light source 20, and a second light source 30. The surface defect detection device 50 may be a multiview system.
카메라(10)는 서로 다른 파장대역(wavelength band)을 구분하는 카메라가 아니며 단일 CCD(charge coupled device) 카메라이다. 따라서 표면 결함 검출 장치(50)는 명시야 조건의 제1 광원(20)과 암시야 조건의 제2 광원(30)을 구성하여 도 2에 도시된 바와 같이 제1 광원(20)과 제2 광원(30)을 순차적으로 점멸하는 방법으로 영상을 획득하고, 표면 결함 검출 장치(50)에 포함된 영상 처리부를 통하여 상기 획득된 영상을 분석하여 검출 대상물(object)인 정지된 금속(40)의 표면 결함을 검출한다. 따라서 이동중인 금속 물체에 대해 표면 결함 검출 장치(50)의 방법을 적용하면 두 개의 조명들(20, 30)의 점멸 시간 차이 동안 이동한 거리만큼의 영상의 위치 차이가 발생하는 문제점이 있다.The camera 10 is not a camera that distinguishes different wavelength bands, but is a single charge coupled device (CCD) camera. Therefore, the surface defect detection apparatus 50 constitutes the first light source 20 in the bright field condition and the second light source 30 in the dark field condition, and as shown in FIG. 2, the first light source 20 and the second light source. Acquiring an image by sequentially flashing the 30, and analyzing the acquired image through an image processing unit included in the surface defect detection device 50, to determine the surface of the stationary metal 40 as an object to be detected. Detect defects Therefore, when the method of the surface defect detection apparatus 50 is applied to a moving metal object, there is a problem in that the position difference of the image by the distance moved during the blinking time difference of the two lights 20 and 30 occurs.
도 3은 본 발명과 비교되는 이동하는 금속 물체의 표면 결함을 검출하기 위한 장치(90)를 설명하는 도면이다. 도 3을 참조하면, 금속 물체의 표면 결함 검출 장치(90)는, 제1 카메라(60), 제2 카메라(65), 제1 광원(70), 및 제2 광원(75)을 포함한다.3 is a diagram illustrating an apparatus 90 for detecting surface defects of a moving metal object compared to the present invention. Referring to FIG. 3, the surface defect detection apparatus 90 of the metal object includes a first camera 60, a second camera 65, a first light source 70, and a second light source 75.
제1 카메라(60) 또는 제2 카메라(65)는 서로 다른 파장대역을 구분하는 카메라가 아니며 단일 CCD 카메라이다. 따라서 두 개의 조명들(70, 75)은 도 2에 도시된 바와 같이 이동하는 금속 물체(80)의 표면을 교대로(alternately) 조사한다.The first camera 60 or the second camera 65 is not a camera that distinguishes different wavelength bands, but is a single CCD camera. Thus, the two lights 70, 75 alternately irradiate the surface of the moving metal object 80 as shown in FIG. 2.
검출 대상물인 금속 물체(80)가 이동하는 경우, 금속 물체의 표면 결함 검출 장치(90)에서 조명들(70, 75)의 점멸 시간 차이 동안 이동한 거리만큼의 영상의 위치 오차가 발생한다. When the metal object 80, which is a detection object, moves, a position error of an image corresponding to the distance moved during the blinking time difference of the lights 70 and 75 in the surface defect detection apparatus 90 of the metal object occurs.
이 영상의 위치 오차를 제거하기 위해, 도 3에 도시된 금속 물체의 표면 결함 검출 장치(90)가 사용된다. 금속 물체(80)의 이동 방향에 대해 제1 카메라(60) 및 제2 카메라(65)가 순차적으로 영상을 취득한다. 즉, 제1 카메라(60)는 암시야 조건의 제1 광원(70)의 조명에 의한 영상을 획득한 후, 제2 카메라(65)는 명시야 조건의 제2 광원(75)의 조명에 의한 영상을 획득한다. 따라서 금속 물체의 표면 결함 검출 장치(90)는 다시점(多視点)(multiview) 시스템일 수 있다.In order to eliminate the positional error of this image, the surface defect detection apparatus 90 of the metal object shown in FIG. 3 is used. The first camera 60 and the second camera 65 acquire images sequentially with respect to the moving direction of the metal object 80. That is, after the first camera 60 acquires the image by the illumination of the first light source 70 in the dark field condition, the second camera 65 is the illumination of the second light source 75 in the bright field condition. Acquire an image. Accordingly, the surface defect detection apparatus 90 of the metal object may be a multiview system.
제1 카메라(60)에서 획득된 영상과 제2 카메라(65)에서 획득된 영상 사이에는 영상의 위치 동기화를 위해, 금속 물체(80)의 위치 변화 측정을 위한 인코더(encoder) 또는 속도계(speed meter)와 같은 부가장치가 금속 물체의 표면 결함 검출 장치(90)에 필요하다. 표면 결함 검출 장치(90)는 영상의 위치를 동기화시킨 후 내부의 영상 처리부를 통하여 제1 카메라(60) 및 제2 카메라(65)에서 획득된 영상을 분석하여 금속 물체(80)의 표면 결함을 검출한다. Encoder or speed meter for measuring the position change of the metal object 80 to synchronize the position of the image between the image acquired by the first camera 60 and the image obtained by the second camera 65. An additional device such as) is required for the surface defect detection device 90 of the metal object. The surface defect detection device 90 synchronizes the positions of the images and analyzes the images acquired by the first camera 60 and the second camera 65 through an image processing unit therein to detect surface defects of the metal object 80. Detect.
도 4는 본 발명과 비교되는 카메라(95)를 나타내는 도면이다. 도 4를 참조하면, 카메라(95)는, 렌즈(11), 프리즘(또는 빔 스플리터(beam splitter))(12), 제1 전하결합소자(charge coupled device, CCD)(13), 및 제2 CCD(14)를 포함한다.4 shows a camera 95 compared with the present invention. Referring to FIG. 4, the camera 95 includes a lens 11, a prism (or beam splitter) 12, a first charge coupled device (CCD) 13, and a second CCD 14 is included.
카메라(95)는 2 CCD 방식(type) 카메라로 언급될 수도 있다. 제1 CCD(13) 및 제2 CCD(14)는 각각 제1 CCD(13) 및 제2 CCD(14)의 앞에 설치된 특정 파장 대역의 빛만을 통과시키는 컬러 필터(color filter)를 가질 수 있다. Camera 95 may also be referred to as a two CCD type camera. The first CCD 13 and the second CCD 14 may each have a color filter for passing only light of a specific wavelength band provided in front of the first CCD 13 and the second CCD 14.
프리즘(12)은 렌즈(11)를 통해 입사되는 금속 물체의 표면 반사광인 서로 다른 파장 대역의 2개의 빛들을 각각 절반(50%)씩 나누어 제1 CCD(13) 및 제2 CCD(14)로 각각 입사시킨다.The prism 12 divides two lights of different wavelength bands (50%), which are surface reflections of the metal object incident through the lens 11, into the first CCD 13 and the second CCD 14, respectively. Each incident.
따라서 카메라(95)는 서로 다른 파장대역의 2개의 조명들에 의해 금속물체의 표면에 동시에 조사된 빛을 획득하여 동시점의 영상을 얻을 수 있다. 상기 조사되는 빛은 편광된 조명이 아니다.Therefore, the camera 95 may obtain the image of the simultaneous point by acquiring the light irradiated simultaneously to the surface of the metal object by two illuminations of different wavelength bands. The light irradiated is not polarized illumination.
카메라(95)는 렌즈(11)를 통해 프리즘(12)에 입사되는 광량(光量)(또는 빛의 세기)을 프리즘(12)을 이용하여 각각 절반(50%)씩 균등하게 분할하여 제1 CCD(13) 및 제2 CCD(14)로 각각 입사시키는 것에 의해 금속 물체의 동일한 표면의 반사 영상을 획득할 수 있다. 따라서 도 4에 도시된 바와 같이 광량의 손실이 발생하므로, 카메라(95)는 단일 CCD 카메라를 사용하는 도 1 또는 도 2의 카메라보다 최소 50(%) 어두운 영상을 얻는다. 제1 CCD(13) 및 제2 CCD(14) 앞에 설치된 필터를 고려할 때, 카메라(95)는 더욱 어두운 영상을 획득한다. 카메라(95)를 이용하여 이동하는 금속 물체 표면을 촬영하는 경우, 금속 물체의 속도가 높아짐에 따라 점점 영상이 흐려질 수 있다. 선명한 영상을 얻기 위해서, 조명이 더 밝아지거나 또는 카메라(95)에서의 광량 손실이 감소되어야 한다.The camera 95 equally divides the amount of light incident on the prism 12 through the lens 11 (or the intensity of light) by using the prism 12 and evenly divides the light by half (50%). The incident images of the same surface of the metal object can be obtained by injecting into 13 and the second CCD 14, respectively. Therefore, as the amount of light loss occurs as shown in FIG. 4, the camera 95 obtains an image at least 50% darker than the camera of FIG. 1 or 2 using a single CCD camera. Considering the filter installed in front of the first CCD 13 and the second CCD 14, the camera 95 acquires a darker image. When photographing the surface of the moving metal object by using the camera 95, as the speed of the metal object increases, the image may gradually become blurred. In order to obtain a clear image, the illumination should be brighter or the amount of light loss in the camera 95 should be reduced.
도 5는 본 발명의 실시예에 따른 금속 표면 결함 검출을 위한 카메라(100)를 설명하는 도면이다. 도 5를 참조하면, 카메라(100)는, 본체(body)(105), 렌즈(110), 편광분리기(115), 제1 전하결합소자(CCD)(120), 및 제2 CCD(125)를 포함한다.5 is a diagram illustrating a camera 100 for detecting metal surface defects according to an embodiment of the present invention. Referring to FIG. 5, the camera 100 includes a body 105, a lens 110, a polarization separator 115, a first charge coupled device (CCD) 120, and a second CCD 125. It includes.
카메라(100)는 동일 파장대역이면서 서로 직교하도록 선편광된 2개의 조명들(횡파 및 종파)을 동시에 금속물체의 표면에 조사하여 반사되는 반사광(130)을 이용하여 동시점의 영상을 획득한다. 반사광(130)은 렌즈(110)를 통하여 카메라(100)로 입사되며 서로 동일한 파장대역을 가지며 서로 직교하고 간섭이 없는 선편광된(linearly polarized) 빛들이다.The camera 100 obtains an image of a simultaneous point using the reflected light 130 which is irradiated on the surface of the metal object simultaneously with two illuminations (horizontal wave and longitudinal wave) that are linearly polarized to be orthogonal to each other in the same wavelength band. The reflected light 130 is linearly polarized light that is incident to the camera 100 through the lens 110 and has the same wavelength band and is orthogonal to each other and is free from interference.
카메라(100)는 동일한 시야각(viewing angle)을 각각 가지는 2개의 CCD들(120, 125)을 포함하고 각각의 CCD들(120, 125)은 표면 반사 영상에서 빛의 진동 방향에 따른 수직편파(135)의 영상 및 수평편파(140)의 영상을 획득한다. 수평편파(horizontally polarized wave 또는 horizontally polarized light)의 영상과 수직편파(vertically polarized wave 또는 vertically polarized light)의 영상은 서로 독립적인 영상이다. 그러므로 카메라(100)는 2개의 동시점 영상 정보들을 획득할 수 있다.The camera 100 includes two CCDs 120 and 125 each having the same viewing angle, and each of the CCDs 120 and 125 has a vertical polarization 135 according to the vibration direction of light in the surface reflection image. Image and horizontal polarization 140 are obtained. An image of horizontally polarized wave or horizontally polarized light and an image of vertically polarized wave or vertically polarized light are independent images. Therefore, the camera 100 may obtain two simultaneous point image information.
편광분리기(115)는 반사광(130) 중 수직편파(135)를 제1 CCD(120) 쪽으로 통과시키고 반사광(130) 중 수평편파(140)를 제2 CCD(125) 쪽으로 반사시켜 카메라(100)로 입사되는 수직편파(종파) 및 수평편파(횡파)로 광량의 손실을 거의 발생시키지 않고 분리(separation)한다. 따라서 편광분리기(115)는 도 4에 도시된 프리즘(12)에서 발생되는 광량의 손실을 억제할 수 있다.The polarization separator 115 passes the vertical polarization 135 of the reflected light 130 toward the first CCD 120 and reflects the horizontal polarization 140 of the reflected light 130 toward the second CCD 125 so that the camera 100 may be reflected. Vertical polarization (longwave) and horizontal polarization (horizontal wave) incident on the surface are separated with little loss of light amount. Therefore, the polarization separator 115 may suppress the loss of the amount of light generated by the prism 12 shown in FIG. 4.
도 6은 도 5에 도시된 편광분리기(115)의 실시예를 설명하는 도면이다. 도 6에 도시된 바와 같이, 편광분리기(115)는 정육면체 형태의 편광 빔스플리터 큐브(polarizing beamsplitter cube)로 구현될 수 있다.6 is a view for explaining an embodiment of the polarization separator 115 shown in FIG. As shown in FIG. 6, the polarization separator 115 may be implemented as a cube-shaped polarizing beamsplitter cube.
편광 빔스플리터 큐브로 입사되는 빛이 선편광된 빛이면 선편광된 빛의 방향에 따라 서로 수직인 성분으로 분리된다. 따라서 상기 편광 빔스플리터 큐브로 입사되는 빛이 서로 직교하는 선편광된 빛일 때, 편광 빔스플리터 큐브의 방향을 조절하면 편광 빔스플리터 큐브는, 편광 빔스플리터 큐브로 입사되는 반사광(130) 중 수직편파(135)는 통과시키고 반사광(130) 중 수평편파(140)는 반사시킨다. 그 결과, 카메라(100)는 광량의 손실이 거의 없고 서로 간섭이 없는 독립적인 영상을 얻을 수 있다.If the light incident on the polarizing beam splitter cube is linearly polarized light, the light is separated into components perpendicular to each other according to the direction of the linearly polarized light. Therefore, when the light incident on the polarization beam splitter cube is linearly polarized light orthogonal to each other, when the direction of the polarization beam splitter cube is adjusted, the polarization beam splitter cube is vertically polarized (135) among the reflected light 130 incident on the polarization beam splitter cube. ) Passes through and reflects the horizontal polarization 140 of the reflected light 130. As a result, the camera 100 can obtain independent images with little loss of light and no interference with each other.
편광 빔스플리터 큐브는 두 개의 직각 프리즘들을 포함한다. 직각 프리즘들 사이에는 유전체 코팅층(coating layer)(116)이 배치(형성)된다. 수직편파(135)는 유전체 코팅층(140)에서 반사광(130)이 투과되어 발생되고 수평편파(140)는 유전체 코팅층(140)에서 반사광(130)이 반사되어 발생될 수 있다.The polarizing beamsplitter cube includes two rectangular prisms. A dielectric coating layer 116 is disposed (formed) between the right prisms. The vertical polarization 135 may be generated by transmitting the reflected light 130 from the dielectric coating layer 140, and the horizontal polarization 140 may be generated by reflecting the reflected light 130 from the dielectric coating layer 140.
다시 도 5를 참조하면, 제1 CCD(120) 및 제2 CCD(125)은 각각 센서(sensor)로서 촬상장치(imaging device)를 구성한다. 제1 CCD(120)는 편광분리기(115)에서 분리된 수직편파(135)의 영상(영상정보)을 획득하고 제2 CCD(125)는 수평편파(140)의 영상을 획득한다. 즉, 제1 CCD(120)는 수직편파(135)의 광신호를 전기신호로 변환하고 제2 CCD(125)는 수평편파(140)의 광신호를 전기신호로 변환한다. 제1 CCD(120) 및 제2 CCD(125) 각각은 컬러 필터 어레이(color filter array) 및 포토다이오드(photodiode)를 포함할 수 있다.Referring back to FIG. 5, the first CCD 120 and the second CCD 125 each constitute an imaging device as a sensor. The first CCD 120 acquires an image (image information) of the vertical polarization 135 separated by the polarization separator 115, and the second CCD 125 obtains an image of the horizontal polarization 140. That is, the first CCD 120 converts the optical signal of the vertical polarization 135 into an electrical signal, and the second CCD 125 converts the optical signal of the horizontal polarization 140 into an electrical signal. Each of the first CCD 120 and the second CCD 125 may include a color filter array and a photodiode.
따라서 본 발명의 카메라(100)는 편광분리기(115)를 포함하므로, 서로 다른 파장 대역을 가지는 2개의 조명들에 의해 영상을 획득하는 도 4의 카메라(95)와 비교할 때 광량의 손실이 거의 없고 동일 파장대역의 조명을 사용하여 금속물체의 표면 결함 검출을 위한 매우 밝은 영상을 얻을 수 있기 때문에 고속으로 이동하는 금속물체의 표면결함을 효과적으로 검출할 수 있다.Therefore, since the camera 100 of the present invention includes a polarization separator 115, there is almost no loss of light compared to the camera 95 of FIG. 4 which acquires an image by two illuminations having different wavelength bands. Since illumination of the same wavelength band can be used to obtain a very bright image for detecting a surface defect of a metal object, surface defects of a metal object moving at high speed can be effectively detected.
도 7은 본 발명의 실시예에 따른 금속 표면 결함 검출 장치(200)를 설명하는 도면이다. 도 7을 참조하면, 금속 표면 결함 검출 장치(200)는, 카메라(100), 제1 광원(light source)(205), 및 제2 광원(210)을 포함한다.7 is a view for explaining the metal surface defect detection apparatus 200 according to an embodiment of the present invention. Referring to FIG. 7, the metal surface defect detecting apparatus 200 may include a camera 100, a first light source 205, and a second light source 210.
카메라(100)는 도 5에 도시된 카메라(100)의 구성 요소들을 포함한다.The camera 100 includes the components of the camera 100 shown in FIG. 5.
제1 광원(205) 및 제2 광원(210) 각각은 발광 다이오드(light emitted diode)를 포함할 수 있다. 상기 발광 다이오드(LED) 대신 제논 램프(xenon lamp) 또는 할로겐 램프가 사용될 수 있다. 제1 광원(205) 또는 제2 광원(210)은 광학 필터(optical filter)를 포함할 수 있다. 광학 필터는 제1 광원(205)의 전면(front surface) 또는 제2 광원(210)의 전면에 설치될 수 있다.Each of the first light source 205 and the second light source 210 may include a light emitted diode. A xenon lamp or a halogen lamp may be used instead of the light emitting diode (LED). The first light source 205 or the second light source 210 may include an optical filter. The optical filter may be installed on the front surface of the first light source 205 or on the front surface of the second light source 210.
제1 광원(205)은 명시야 조건의 조명이면서 선편광된 조명이고, 제2 광원(210)은 암시야 조건의 조명이면서 선편광된 조명이다. 상기 명시야 조건의 조명과 상기 암시야 조건의 조명은 서로 동일한 파장대역을 가지며 서로 직교하는 선편광된 빛들이다. 제1 광원(205)은 명시야 조건에서 선편광된 조명을 금속물체(215)의 표면에 조사한다. 제1 광원(205)은 명시야 조명일 수 있고, 금속물체(215)의 표면으로부터 최대한 90 도(degree)에 가까운 각도에 배치되어야 하며 조명의 설치를 고려하여 대략 80 도(degree)의 각도에 배치될 수도 있다.The first light source 205 is illumination in a bright field condition and linearly polarized light, and the second light source 210 is illumination in a dark field condition and linearly polarized light. The bright field condition illumination and the dark field condition illumination are linearly polarized lights having the same wavelength band and orthogonal to each other. The first light source 205 irradiates the surface of the metal object 215 with linearly polarized light under bright field conditions. The first light source 205 may be brightfield illumination and should be disposed at an angle as close to 90 degrees as possible from the surface of the metal object 215 and at an angle of approximately 80 degrees in consideration of the installation of the illumination. May be
제2 광원(210)은 암시야 조건에서 제1 광원(205)의 조명과 서로 직교하는 선편광된 조명을 제1 광원(205)과 동시에 금속물체(215)의 표면에 조사한다. 제2 광원(210)은 암시야 조명일 수 있고, 예를 들어, 금속물체(215)의 표면으로부터 0 도(degree)를 초과하고 45 도(degree) 이하인 각도에 배치될 수 있다. 암시야 조명의 각도는 금속물체의 결함 특성에 따라 조절되는 것이 효과적이다.The second light source 210 irradiates the surface of the metal object 215 simultaneously with the first light source 205 with linearly polarized light that is orthogonal to the illumination of the first light source 205 in the dark field condition. The second light source 210 may be dark field illumination and may be disposed at an angle that is greater than 0 degrees and less than 45 degrees from the surface of the metal object 215, for example. The angle of the dark field illumination is effective to be adjusted according to the defect characteristics of the metal object.
명시야 조명(bright field illumination)은 조명(광원)의 각도가 상대적으로 높은 조명을 지시(indication)한다. 즉, 명시야 조명은 금속 표면 결함의 그림자가 발생하지 않도록 금속 표면으로부터 높은 각도에서 조명을 조사하는 것이다. 암시야 조명(dark field illumination)은 조명의 각도가 상대적으로 낮은 조명을 지시한다. 즉, 암시야 조명은 금속 표면 결함의 그림자가 최대한 많이 발생하도록 금속 표면으로부터 낮은 각도에서 조명을 조사하는 것이다. 이러한 명시야 조명과 암시야 조명은 카메라의 영상에 나타나는 변화가 단순한 색상의 변화인 지 또는 금속 표면의 결함으로 인해 나타나는 것인 지를 구분할 수 있게 한다.Bright field illumination indicates illumination with a relatively high angle of illumination (light source). In other words, brightfield illumination is illuminating the light from a metal surface at a high angle so that shadows of metal surface defects do not occur. Dark field illumination indicates illumination with relatively low angles of illumination. In other words, dark field illumination is illumination from a low angle from the metal surface so that the shadow of the metal surface defect is generated as much as possible. These brightfield and darkfield illuminations can distinguish between a change in the image of the camera, whether it is a simple change in color or a defect in the metal surface.
제1 광원(205)과 제2 광원(210)은, 예를 들어, 도 7에 도시된 바와 같이, 카메라(100)가 금속물체(215)의 표면 반사 영상을 획득하는 수직선에 대하여 서로 반대쪽에 배치될 수 있다. 즉, 카메라(100)의 위쪽에서 보았을 때, 카메라(100)는 제1 광원(205)과 제2 광원(210) 사이에 배치될 수 있다.For example, as illustrated in FIG. 7, the first light source 205 and the second light source 210 may be opposite to each other with respect to a vertical line from which the camera 100 acquires a surface reflection image of the metal object 215. Can be arranged. That is, when viewed from above the camera 100, the camera 100 may be disposed between the first light source 205 and the second light source 210.
도 8은 도 7에 도시된 광원들(205, 210)의 운영 방법을 설명하는 도면이다. 도 8에 도시된 바와 같이, 제1 광원(205) 및 제2 광원(210)은 동시에 점등(on)되고 동시에 소등(off)될 수 있다.FIG. 8 is a view for explaining a method of operating the light sources 205 and 210 shown in FIG. 7. As shown in FIG. 8, the first light source 205 and the second light source 210 may be turned on at the same time and turned off at the same time.
다시 도 7을 참조하면, 카메라(100)는 금속물체(215) 표면의 동일 지점에서 명시야 영상 및 암시야 영상을 동시에 획득한다. 카메라(100)는 제1 광원(205) 및 제2 광원(210)에 의해 동시에 조사되어 금속물체(215)의 표면에서 반사된 빛(또는 빛들)을 획득하여 금속물체(215)의 표면 결함 검사를 위한 영상을 취득한다.Referring back to FIG. 7, the camera 100 simultaneously acquires a brightfield image and a darkfield image at the same point on the surface of the metal object 215. The camera 100 acquires light (or lights) that are simultaneously irradiated by the first light source 205 and the second light source 210 and reflected from the surface of the metal object 215 to inspect the surface defects of the metal object 215. Acquire an image for.
금속물체(215)는 정지된 금속 물체(예를 들어, 금속 강판) 또는 이동하는 금속 물체일 수 있다.The metal object 215 may be a stationary metal object (eg, a metal sheet) or a moving metal object.
금속 표면 결함 검출 장치(200)는 동일한 파장대역의 독립적인 2개의 조명들(205, 210)을 금속물체(215)의 표면에 조사하여 동시에 2개의 독립적인 영상을 취득한다. 상기 각각의 조명들(205, 210)은 서로 직교하는 선편광된(linearly polarized) 2개의 빛들을 포함한다. 금속 표면 결함 검출 장치(200)에 포함된 영상신호처리장치(미도시)는 카메라(100)에서 획득된 영상정보(영상신호)를 입력받아 분석하고 신호처리하는 것에 의해 금속물체(215)의 표면 결함의 형태와 위치를 검출한다.The metal surface defect detecting apparatus 200 obtains two independent images at the same time by irradiating two independent lights 205 and 210 of the same wavelength band to the surface of the metal object 215. Each of the lights 205, 210 includes two linearly polarized lights that are orthogonal to each other. The image signal processing apparatus (not shown) included in the metal surface defect detecting apparatus 200 receives the image information (image signal) acquired by the camera 100, analyzes the signal, and processes the surface of the metal object 215. Detect the type and location of the defect.
영상신호처리장치는 금속 표면 결함 검출 장치(200)에 포함된 화면출력장치(미도시)에 연결될 수 있다. 화면출력장치는 영상신호처리장치에서 처리된 영상의 화면을 출력할 수 있다. 영상신호처리장치는 하드웨어, 소프트웨어, 또는 이들의 조합으로 구현될 수 있으며, 전용 프로세서 또는 컴퓨터로 구현될 수 있다.The image signal processing apparatus may be connected to a screen output device (not shown) included in the metal surface defect detecting apparatus 200. The screen output apparatus may output a screen of an image processed by the image signal processing apparatus. The image signal processing apparatus may be implemented by hardware, software, or a combination thereof, and may be implemented by a dedicated processor or a computer.
따라서 본 발명의 금속 표면 결함 검출 장치(200)는 도 1 또는 도 3에 도시된 조명의 순차적 점멸방법에 의해 얻어지는 영상처리 방법에 비하여 한 번의 촬영으로 2개의 서로 다른 조명의 위치와 각도를 가지는 영상을 취득하는 것에 의해 보다 세밀한 금속물체의 표면 결함 검사 또는 고속으로 이동하는 금속물체의 표면 결함 검사가 가능하도록 한다.Therefore, the metal surface defect detecting apparatus 200 according to the present invention has two different illumination positions and angles in one shot, compared to the image processing method obtained by the sequential blinking method of illumination illustrated in FIG. 1 or 3. By acquiring, it is possible to inspect the surface defects of a more detailed metal object or to inspect the surface defects of a metal object moving at high speed.
또한, 본 발명의 금속 표면 결함 검출 장치(200)는 동시점의 영상을 획득하므로 명시야 영상과 암시야 영상의 동기화가 명확히 수행될 수 있다. 본 발명은 도 3에 도시된 표면 결함 검출 장치(90)와 달리 영상의 위치 동기화를 위한 인코더(encoder)와 같은 부가장치를 필요로 하지 않으므로 표면 결함 검출을 위한 광학계통인 카메라 시스템의 복잡도를 낮추고 카메라 시스템의 구성비용을 현저히 절감시킬 수 있다.In addition, since the metal surface defect detection apparatus 200 of the present invention acquires images of the simultaneous point, the bright field image and the dark field image may be clearly synchronized. Unlike the surface defect detection device 90 shown in FIG. 3, the present invention does not require an additional device such as an encoder for synchronizing positions of images, thereby reducing the complexity of the camera system, which is an optical system for surface defect detection. The construction cost of the camera system can be significantly reduced.
본 발명의 실시예에 따른 금속 표면 결함 검출 방법이 다음과 같이 설명된다. 상기 금속 표면결함 검출방법은 도 7에 도시된 금속 표면결함 검출장치(200)에 적용될 수 있다.A metal surface defect detection method according to an embodiment of the present invention is described as follows. The metal surface defect detection method may be applied to the metal surface defect detection apparatus 200 shown in FIG. 7.
금속 표면결함 검출방법은, 제1 조사 단계, 제2 조사 단계, 획득 단계, 및 검출 단계를 포함한다. 도 7을 참조하면, 상기 제1 조사 단계에서, 명시야 조건에서 선편광된 조명이 제1 광원(205)에 의해 금속물체(215)의 표면에 조사된다. 금속물체(215)는 정지된 금속 물체 또는 이동하는 금속 물체일 수 있다.The metal surface defect detection method includes a first irradiation step, a second irradiation step, an acquisition step, and a detection step. Referring to FIG. 7, in the first irradiation step, the linearly polarized light in the bright field condition is irradiated onto the surface of the metal object 215 by the first light source 205. The metal object 215 may be a stationary metal object or a moving metal object.
제2 조사 단계에 따르면, 암시야 조건에서 제1 광원(205)의 조명과 서로 직교하고 제1 광원(205)의 조명의 파장과 동일한 파장을 가지는 선편광된 조명이 제2 광원(210)에 의해 도 8에 도시된 바와 같이 제1 광원(205)에 의한 명시야 조명의 조사와 동시에 금속물체(215)의 표면에 조사된다.According to the second irradiation step, the linearly polarized light having a wavelength perpendicular to the illumination of the first light source 205 and having the same wavelength as that of the illumination of the first light source 205 in the dark field condition is generated by the second light source 210. As shown in FIG. 8, the surface of the metal object 215 is irradiated at the same time as the bright field illumination by the first light source 205.
획득 단계에 따르면, 금속물체(215)의 표면에서 반사된 빛의 영상이 카메라(100)에 의해 동시에 획득된다. 카메라(100)는 편광 빔스플리터 큐브(polarizing beamsplitter cube)를 포함할 수 있다.According to the obtaining step, the image of the light reflected from the surface of the metal object 215 is acquired by the camera 100 at the same time. The camera 100 may include a polarizing beamsplitter cube.
검출 단계에 따르면, 금속 표면 결함 검출 장치(200)의 영상신호처리장치는 상기 획득된 영상을 신호처리(예를 들어, 디지털 영상신호 처리)하여 금속물체(215)의 표면 결함(표면 결함 영상)을 검출한다.According to the detecting step, the image signal processing apparatus of the metal surface defect detecting apparatus 200 performs signal processing (for example, digital image signal processing) on the obtained image to detect a surface defect (surface defect image) of the metal object 215. Is detected.
도 9는 본 발명의 다른 실시예에 따른 금속 표면 결함 검출 장치(300)를 설명하는 도면이다. 도 9를 참조하면, 금속 표면 결함 검출 장치(300)는, 카메라 부(camera unit)(305), 제1 광원(325), 제2 광원(330), 제3 광원(335), 및 제4 광원(340)을 포함한다.9 is a view for explaining a metal surface defect detection apparatus 300 according to another embodiment of the present invention. Referring to FIG. 9, the metal surface defect detecting apparatus 300 may include a camera unit 305, a first light source 325, a second light source 330, a third light source 335, and a fourth light source. Light source 340.
제1 광원(325), 제2 광원(330), 제3 광원(335), 및 제4 광원(340) 각각은 발광 다이오드, 제논 램프, 또는 할로겐 램프를 포함할 수 있다. 제1 광원(325), 제2 광원(330), 제3 광원(335), 또는 제4 광원(340)은 광학 필터를 포함할 수 있다. 광학 필터는 제1 광원(325)의 전면, 제2 광원(330)의 전면, 제3 광원(335)의 전면, 또는 제4 광원(340)의 전면에 설치될 수 있다.Each of the first light source 325, the second light source 330, the third light source 335, and the fourth light source 340 may include a light emitting diode, a xenon lamp, or a halogen lamp. The first light source 325, the second light source 330, the third light source 335, or the fourth light source 340 may include an optical filter. The optical filter may be installed on the front surface of the first light source 325, the front surface of the second light source 330, the front surface of the third light source 335, or the front surface of the fourth light source 340.
제1 광원(325)의 중심(center) 파장대역과 제4 광원(340)의 중심 파장대역은제1 파장(λ1)으로 서로 동일하고, 제1 광원(325)과 제4 광원(340)은 서로 직교하는 선편광된 조명들이다. 제2 광원(330)의 중심 파장대역과 제3 광원(335)의 중심 파장대역은 제2 파장(λ2)으로 서로 동일하고, 제2 광원(330)과 제3 광원(335)은 서로 직교하는 선편광된 조명들이다.The center wavelength band of the first light source 325 and the center wavelength band of the fourth light source 340 are the same as the first wavelength λ 1, and the first light source 325 and the fourth light source 340 are Linearly polarized lights that are orthogonal to one another. The center wavelength band of the second light source 330 and the center wavelength band of the third light source 335 are the same as the second wavelength λ2, and the second light source 330 and the third light source 335 are perpendicular to each other. Linearly polarized lights.
제1 광원(325)은 제1 각도에서 제1 파장(λ1)의 선편광된 조명을 금속물체(345)의 표면에 조사하며, 제2 광원(330)은 제2 각도에서 제2 파장(λ2)의 선편광된 조명을 금속물체(345)의 표면에 조사하며, 제3 광원(335)은 제3 각도에서 제2 파장(λ2)의 선편광된 조명을 금속물체(345)의 표면에 조사하며, 제4 광원(340)은 제4 각도에서 제1 파장(λ1)의 선편광된 조명을 금속물체(345)의 표면에 조사한다.The first light source 325 irradiates the surface of the metal object 345 with linearly polarized light having a first wavelength λ 1 at a first angle, and the second light source 330 has a second wavelength λ 2 at a second angle. Linearly polarized light of the metal object 345 is irradiated to the surface of the metal object 345, the third light source 335 is irradiated to the surface of the metal object 345 of the linearly polarized light of the second wavelength (λ2) at a third angle, The light source 340 irradiates the surface of the metal object 345 with linearly polarized light having a first wavelength λ 1 at a fourth angle.
예를 들어, 상기 제1 각도는 명시야 조명을 위한 각도일 수 있으며, 상기 제2 각도, 상기 제3 각도, 및 상기 제4 각도는 암시야 조명을 위한 각도일 수 있다.For example, the first angle may be an angle for brightfield illumination, and the second angle, the third angle, and the fourth angle may be an angle for darkfield illumination.
명시야 조명은 금속물체(345)의 표면으로부터 최대한 90 도(degree)에 가까운 각도에 배치되어야 하며 조명의 위치를 고려하여 대략 80 도(degree)의 각도에 배치될 수도 있다. 암시야 조명은 금속물체의 결함 특성에 따라 금속물체(345)의 표면으로부터 0 도(degree)를 초과하고 45 도(degree) 이하인 각도에 배치될 수 있다.The brightfield illumination should be placed at an angle as close to 90 degrees as possible from the surface of the metal object 345 and may be arranged at an angle of approximately 80 degrees in consideration of the position of the illumination. The dark field illumination may be disposed at an angle that is greater than 0 degrees and less than 45 degrees from the surface of the metal object 345 according to the defect characteristics of the metal object.
제1 광원(325), 제2 광원(330), 제3 광원(335), 및 제4 광원(340)은 도 8에 도시된 방식과 유사한 방식으로 편광들(조명들)을 금속물체(345)의 표면에 동시에 조사한다.The first light source 325, the second light source 330, the third light source 335, and the fourth light source 340 emit the polarizations (lights) in a manner similar to that shown in FIG. 8. Irradiate simultaneously on the surface.
카메라부(305)는, 제1 카메라(310), 제2 카메라(315), 및 색선별 거울(dichroic mirror 또는 dichroic beamsplitter)(320)을 포함한다. 카메라부(305)는 제1 광원(325), 제2 광원(330), 제3 광원(335), 및 제4 광원(340)에서 동시에 조사되어 금속물체(345)의 표면에서 반사된 빛(빛들)을 획득하는 것에 의해 금속물체(345)의 표면 결함 검사를 위한 영상을 취득한다.The camera unit 305 includes a first camera 310, a second camera 315, and a dichroic mirror or dichroic beamsplitter 320. The camera unit 305 is irradiated simultaneously by the first light source 325, the second light source 330, the third light source 335, and the fourth light source 340 and reflected from the surface of the metal object 345 ( By acquiring light), an image for inspecting a surface defect of the metal object 345 is obtained.
색선별 거울(320)은 금속물체(345)의 표면에서 반사된 빛을 제1 파장(λ1)을 가지는 빛과 제2 파장(λ2)의 빛으로 분리한다. 색선별 거울(320)은 내부의 다층박막 내의 빛의 간섭효과에 의해 광량의 손실이 거의 없이 λ1의 파장대역의 빛을 투과시키고 λ2의 파장대역의 빛을 반사시킨다. 따라서 제1 카메라(310)와 제2 카메라(315)는 광량의 손실이 거의 없는 고명도의 영상 이미지를 획득할 수 있다.The color screening mirror 320 separates the light reflected from the surface of the metal object 345 into light having a first wavelength λ 1 and light having a second wavelength λ 2. The dichroic mirror 320 transmits light in the wavelength band of λ1 and reflects light in the wavelength band of λ2 with little loss of light due to the interference effect of light in the multilayer thin film therein. Therefore, the first camera 310 and the second camera 315 can obtain a high-definition video image with little loss of light.
제1 카메라(310)는 색선별 거울(320)에서 분리된 제1 파장(λ1)의 빛을 수직편파와 수평편파로 분리하여 획득하고 상기 획득된 수직편파와 수평편파를 이용하여 금속물체(345)의 표면 결함 검사를 위한 영상을 취득한다. 제2 카메라(315)는 색선별 거울(320)에서 분리된 제2 파장(λ2)의 빛을 수직편파와 수평편파로 분리하여 획득하고 상기 획득된 수직편파와 수평편파를 이용하여 금속물체(345)의 표면 결함 검사를 위한 영상을 취득한다. 제1 카메라(310) 또는 제2 카메라(315)는 도 5에 도시된 카메라(100)의 구성 요소들을 포함한다.The first camera 310 obtains the light having the first wavelength λ1 separated by the color-dividing mirror 320 into vertical and horizontal polarizations, and uses the obtained vertical and horizontal polarizations to detect the metal object 345. Image for surface defect inspection). The second camera 315 is obtained by dividing the light of the second wavelength λ2 separated from the color-dividing mirror 320 into vertical and horizontal polarizations, and using the obtained vertical and horizontal polarizations, the metal object 345. Image for surface defect inspection). The first camera 310 or the second camera 315 includes the components of the camera 100 shown in FIG. 5.
금속물체(345)는 정지된 금속 물체(예를 들어, 금속 강판) 또는 이동하는 금속 물체일 수 있다.The metal object 345 may be a stationary metal object (eg, a metal sheet) or a moving metal object.
금속 표면 결함 검출 장치(300)는 두 개의 서로 다른 파장대역들(λ1, λ2)의 4개의 독립적인 편광 조명들(325, 330, 335, 340)이 금속물체(345)의 표면에 동시에 조사될 때의 4개의 독립적인 영상들을 동시에 취득한다.The metal surface defect detecting apparatus 300 may simultaneously irradiate the surface of the metal object 345 with four independent polarization lights 325, 330, 335, and 340 of two different wavelength bands λ 1 and λ 2. Acquire four independent images of time at the same time.
금속 표면 결함 검출 장치(300)에 포함된 영상신호처리장치(미도시)는 카메라부(305)에서 획득된 영상정보를 입력받아 분석하고 신호처리하는 것에 의해 금속물체(345)의 표면 결함의 형태와 위치를 검출한다.The image signal processing apparatus (not shown) included in the metal surface defect detecting apparatus 300 receives the image information acquired by the camera unit 305, analyzes the signal, and processes the signal to form a surface defect of the metal object 345. Detect and position.
영상신호처리장치는 금속 표면 결함 검출 장치(300)에 포함된 화면출력장치(미도시)에 연결될 수 있다. 화면출력장치는 영상신호처리장치에서 처리된 영상의 화면을 출력할 수 있다. 영상신호처리장치는 하드웨어, 소프트웨어, 또는 이들의 조합으로 구현될 수 있으며, 전용 프로세서 또는 컴퓨터로 구현될 수 있다.The image signal processing apparatus may be connected to a screen output device (not shown) included in the metal surface defect detecting apparatus 300. The screen output apparatus may output a screen of an image processed by the image signal processing apparatus. The image signal processing apparatus may be implemented by hardware, software, or a combination thereof, and may be implemented by a dedicated processor or a computer.
따라서 본 발명의 금속 표면 결함 검출 장치(300)는 도 1 또는 도 3에 도시된 조명의 순차적 점멸방법에 의해 얻어지는 영상처리 방법에 비하여 한 번의 촬영으로 4개의 서로 다른 조명의 위치와 각도를 가지는 영상을 취득하는 것에 의해 보다 세밀한 금속물체의 표면 결함 검사 또는 고속으로 이동하는 금속물체의 표면 결함 검사가 가능하도록 한다.Therefore, the metal surface defect detecting apparatus 300 according to the present invention has an image having positions and angles of four different illuminations in one shot as compared to the image processing method obtained by the sequential blinking method of illumination illustrated in FIG. 1 or 3. By acquiring, it is possible to inspect the surface defects of a more detailed metal object or to inspect the surface defects of a metal object moving at high speed.
본 발명의 금속 표면 결함 검출 장치(300)는 동시점의 영상을 획득하므로 명시야 영상과 암시야 영상의 동기화가 명확히 수행될 수 있다. 본 발명은 도 3에 도시된 표면 결함 검출 장치(90)와 달리 영상의 위치 동기화를 위한 인코더(encoder)와 같은 부가장치를 필요로 하지 않으므로 표면 결함 검출을 위한 광학계통인 카메라 시스템의 복잡도를 낮추고 카메라 시스템의 구성비용을 현저히 절감시킬 수 있다.Since the metal surface defect detecting apparatus 300 of the present invention acquires an image of a simultaneous point, the bright field image and the dark field image may be clearly synchronized. Unlike the surface defect detection device 90 shown in FIG. 3, the present invention does not require an additional device such as an encoder for synchronizing positions of images, thereby reducing the complexity of the camera system, which is an optical system for surface defect detection. The construction cost of the camera system can be significantly reduced.
또한, 본 발명의 금속 표면 결함 검출 장치(300)는 서로 다른 2개의 파장을 가지는 조명을 사용할 경우 각각의 동일 파장대역의 조명들에 대해 수평편파 및 수직편파를 구별하는 것에 의해 4개의 서로 다른 조명의 위치 및 각도에 따른 영상을 동시에 취득할 수 있다. 따라서 본 발명은 도 3에 도시된 표면 결함 검출 장치(90)보다 향상된 금속의 표면 결함 검출률을 가질 수 있다.In addition, the metal surface defect detection apparatus 300 of the present invention uses four different illuminations by distinguishing horizontal polarization and vertical polarization for illuminations of the same wavelength band when the illumination having two different wavelengths is used. Images according to the position and angle of can be acquired simultaneously. Accordingly, the present invention may have an improved metal surface defect detection rate than the surface defect detection device 90 shown in FIG. 3.
도 10은 도 9에 도시된 금속 표면 결함 검출 장치(300)의 조명 배치의 실시예를 설명하는 평면도이다.FIG. 10 is a plan view illustrating an embodiment of an illumination arrangement of the metal surface defect detection apparatus 300 shown in FIG. 9.
도 10을 참조하면, 제1 광원(λ1, 325)과 제4 광원(λ1, 340)은 카메라부(305)를 기준으로(또는 중심으로) 서로 마주보며 배치되고, 제2 광원(λ2, 330)과 제3 광원(λ2, 335)은 카메라부(305)를 중심으로 서로 마주보며 배치된다. 그리고 제1 조명 쌍인 제1 광원(λ1)과 제4 광원(λ1)은 제2 조명 쌍인 제2 광원(λ2)과 제3 광원(λ2)과 서로 수직되도록 배치된다.Referring to FIG. 10, the first light sources λ1 and 325 and the fourth light sources λ1 and 340 are disposed to face each other with respect to the camera unit 305 (or to the center), and the second light sources λ2 and 330. ) And the third light sources λ2 and 335 are disposed to face each other with respect to the camera unit 305. The first light source λ1 and the fourth light source λ1, which are the first illumination pair, are disposed to be perpendicular to the second light source λ2 and the third light source λ2, which are the second illumination pair.
즉, 카메라부(305)의 위쪽에서 보았을 때, 카메라부(305)는 제1 광원(λ1)과 제4 광원(λ1) 사이와, 제2 광원(λ2)과 제3 광원(λ2) 사이에 배치되고, 제1 광원(λ1)과 제4 광원(λ1)은 제2 광원(λ2)과 제3 광원(λ2)에 대하여 수직으로(직교하도록) 배치된다.That is, when viewed from above the camera unit 305, the camera unit 305 is disposed between the first light source λ1 and the fourth light source λ1, and between the second light source λ2 and the third light source λ2. The first light source λ1 and the fourth light source λ1 are arranged perpendicularly (orthogonally) with respect to the second light source λ2 and the third light source λ2.
도 11a는 도 9에 도시된 금속물체의 표면 결함 형태와 도 10에 도시된 조명 배치와의 관계를 설명하는 도면이다.FIG. 11A is a view for explaining the relationship between the surface defect form of the metal object shown in FIG. 9 and the illumination arrangement shown in FIG. 10.
도 11a를 참조하면, 금속물체의 결함(DEFECT)의 폭이 제1 광원(λ1)의 방향과 제4 광원의 방향에서는 좁으므로 제1 광원(λ1)과 제4 광원(λ1)에 의해서는 결함(DEFECT)의 검출확률이 낮지만, 금속물체의 결함(DEFECT)의 폭이 제2 광원(λ2)의 방향과 제3 광원(λ2)의 방향에서는 넓으므로 제2 광원(λ2)과 제3 광원(λ2)에 의해서는 결함(DEFECT)의 검출확률이 높다.Referring to FIG. 11A, since the width of the defect DEFECT of the metal object is narrow in the direction of the first light source λ1 and the direction of the fourth light source, the defect is caused by the first light source λ1 and the fourth light source λ1. Although the detection probability of DEFECT is low, the width of the defect DEFECT of the metal object is wide in the direction of the second light source λ2 and the direction of the third light source λ2, so that the second light source λ2 and the third light source are By (λ2), the probability of detecting a defect is high.
도 11b는 도 9에 도시된 금속물체의 표면 결함 형태와 도 10에 도시된 조명 배치와의 다른 관계를 설명하는 도면이다.FIG. 11B is a view for explaining another relationship between the surface defect shape of the metal object shown in FIG. 9 and the illumination arrangement shown in FIG. 10.
도 11b를 참조하면, 금속물체의 결함(DEFECT)의 폭이 제2 광원(λ2)의 방향과 제3 광원(λ2)의 방향에서는 좁으므로 제2 광원(λ2)과 제3 광원(λ2)에 의해서는 결함(DEFECT)의 검출확률이 낮지만, 금속물체의 결함(DEFECT)의 폭이 제1 광원(λ1)의 방향과 제4 광원(λ1)의 방향에서는 넓으므로 제1 광원(λ1)과 제4 광원(λ1)에 의해서는 결함(DEFECT)의 검출확률이 높다.Referring to FIG. 11B, since the width of the defect DEFECT of the metal object is narrow in the direction of the second light source λ2 and the direction of the third light source λ2, the second light source λ2 and the third light source λ2 may be formed. Although the detection probability of the defect DEFECT is low, the width of the defect DEFECT of the metal object is wide in the direction of the first light source λ1 and the direction of the fourth light source λ1. The fourth light source λ1 has a high probability of detecting a defect DEFECT.
따라서 도 10에 도시된 조명 배치의 실시예는 결함의 형태 또는 결함의 방향과 무관하게 결함의 검출확률을 향상시킬 수 있다.Accordingly, the embodiment of the illumination arrangement shown in FIG. 10 can improve the probability of detecting a defect regardless of the shape of the defect or the direction of the defect.
본 발명의 다른 실시예에 따른 금속 표면 결함 검출 방법이 다음과 같이 설명된다. 상기 금속 표면결함 검출방법은 도 9에 도시된 금속 표면결함 검출장치(300)에 적용될 수 있다.A metal surface defect detection method according to another embodiment of the present invention is described as follows. The metal surface defect detection method may be applied to the metal surface defect detection apparatus 300 shown in FIG. 9.
금속 표면결함 검출방법은, 제1 조사 단계, 제2 조사 단계, 제3 조사 단계, 제4 조사 단계, 획득 단계, 및 검출 단계를 포함한다. 도 9를 참조하면, 상기 제1 조사 단계에서, 제1 각도에서 제1 파장(λ1)의 선편광된 조명이 제1 광원(325)에 의해 금속물체(345)의 표면에 조사된다. 금속물체(345)는 정지된 금속 물체 또는 이동하는 금속 물체일 수 있다. 상기 제1 각도는 명시야 조명 또는 암시야 조명을 위한 각도일 수 있다.The metal surface defect detection method includes a first irradiation step, a second irradiation step, a third irradiation step, a fourth irradiation step, an acquisition step, and a detection step. 9, in the first irradiation step, linearly polarized light having a first wavelength λ1 at a first angle is irradiated onto the surface of the metal object 345 by the first light source 325. The metal object 345 may be a stationary metal object or a moving metal object. The first angle may be an angle for brightfield illumination or darkfield illumination.
제2 조사 단계에 따르면, 제2 각도에서 제2 파장(λ2)의 선편광된 조명이 제2 광원(330)에 의해 금속물체(345)의 표면에 조사된다. 상기 제2 각도는 명시야 조명 또는 암시야 조명을 위한 각도일 수 있다.According to the second irradiation step, the linearly polarized light of the second wavelength λ2 at the second angle is irradiated onto the surface of the metal object 345 by the second light source 330. The second angle may be an angle for brightfield illumination or darkfield illumination.
제3 조사 단계에 따르면, 제3 각도에서 상기 제2 파장(λ2)의 선편광된 조명과 직교하는 제2 파장(λ2)의 선편광된 조명이 제3 광원(335)에 의해 금속물체(345)의 표면에 조사된다. 상기 제3 각도는 명시야 조명 또는 암시야 조명을 위한 각도일 수 있다.According to the third irradiating step, the linearly polarized light of the second wavelength λ2 orthogonal to the linearly polarized light of the second wavelength λ2 at a third angle of the metal object 345 by the third light source 335. Irradiated to the surface. The third angle may be an angle for brightfield illumination or darkfield illumination.
제4 조사 단계에 따르면, 제4 각도에서 상기 제1 파장(λ1)의 선편광된 조명과 직교하는 제1 파장(λ1)의 선편광된 조명이 제4 광원(340)에 의해 금속물체(345)의 표면에 조사된다. 상기 제4 각도는 명시야 조명 또는 암시야 조명을 위한 각도일 수 있다.According to the fourth irradiating step, the linearly polarized light of the first wavelength λ1 orthogonal to the linearly polarized light of the first wavelength λ1 at a fourth angle is transferred to the metal object 345 by the fourth light source 340. Irradiated to the surface. The fourth angle may be an angle for brightfield illumination or darkfield illumination.
제1 조사 단계 내지 제4 조사 단계에서 상기 제1 파장의 조명 및 상기 제2 파장의 조명은 도 8에 도시된 방식과 유사한 방식으로 동시에 조사된다.In the first to fourth irradiation steps, the illumination of the first wavelength and the illumination of the second wavelength are simultaneously irradiated in a manner similar to that shown in FIG. 8.
획득 단계에 따르면, 제1 조사 단계 내지 제4 조사 단계의 조명이 조사되어 금속물체(345)의 표면에서 반사된 빛의 영상이 카메라부(305)에 의해 동시에 획득된다. 카메라부(305)는 제1 카메라(310), 제2 카메라(315), 및 색선별 거울(320)을 포함한다.According to the acquiring step, the illumination of the first to fourth irradiation steps is irradiated so that an image of light reflected from the surface of the metal object 345 is simultaneously acquired by the camera unit 305. The camera unit 305 includes a first camera 310, a second camera 315, and a color screening mirror 320.
검출 단계에 따르면, 표면 결함 검출 장치(300)의 영상신호처리장치는 상기 획득된 영상을 신호처리(예를 들어, 디지털 영상신호 처리)하여 금속물체(345)의 표면 결함(표면 결함 영상)을 검출한다.According to the detecting step, the image signal processing apparatus of the surface defect detection apparatus 300 performs signal processing (for example, digital image signal processing) on the obtained image to detect surface defects (surface defect images) of the metal object 345. Detect.
이상에서와 같이, 도면과 명세서에서 실시예가 개시되었다. 여기서, 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이며 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술분야의 통상의 지식을 가진 자는 본 발명으로부터 다양한 변형 및 균등한 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.As described above, the embodiments are disclosed in the drawings and the specification. Herein, specific terms have been used, but they are used only for the purpose of illustrating the present invention and are not used to limit the scope of the present invention as defined in the meaning or claims. Therefore, it will be understood by those skilled in the art that various modifications and equivalent embodiments are possible from the present invention. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (15)

  1. 서로 직교하는 선편광된 조명들을 금속물체의 표면에 동시에 조사할 때 상기 금속물체의 표면에서 반사된 빛을 수직편파 및 수평편파로 분리하는 편광분리기;A polarization separator that separates light reflected from the surface of the metal object into vertically and horizontally polarized light when simultaneously irradiating orthogonal linearly polarized lights on the surface of the metal object;
    상기 수직편파의 영상을 획득하는 제1 전하결합소자(charge coupled device); 및A first charge coupled device obtaining an image of the vertical polarization; And
    상기 수평편파의 영상을 획득하는 제2 전하결합소자를 포함하는 카메라.Camera comprising a second charge coupled device for obtaining the image of the horizontal polarization.
  2. 제1항에 있어서,The method of claim 1,
    상기 편광분리기는 편광 빔스플리터 큐브(polarizing beamsplitter cube)인 카메라.Wherein the polarizer is a polarizing beamsplitter cube.
  3. 명시야 조건에서 선편광된 조명을 금속물체의 표면에 조사하는 제1 광원;A first light source for irradiating the surface of the metal object with linearly polarized light under bright field conditions;
    암시야 조건에서 상기 선편광된 조명과 서로 직교하고 상기 선편광된 조명의 파장과 동일한 파장을 가지는 선편광된 조명을 상기 제1 광원과 동시에 상기 금속물체의 표면에 조사하는 제2 광원; 및A second light source for irradiating the surface of the metal object with the first light source simultaneously with the first light source in a dark field condition with the linearly polarized light orthogonal to each other and having the same wavelength as that of the linearly polarized light; And
    상기 금속물체의 표면에서 반사된 빛을 획득하여 상기 금속물체의 표면 결함 검사를 위한 영상을 취득하는 카메라를 포함하는 금속 표면 결함 검출 장치.And a camera acquiring an image for inspecting a surface defect of the metal object by acquiring light reflected from the surface of the metal object.
  4. 제3항에 있어서, 상기 카메라는, The method of claim 3, wherein the camera,
    상기 금속물체의 표면에서 반사된 빛을 수직편파 및 수평편파로 분리하는 편광분리기;A polarization separator that separates the light reflected from the surface of the metal object into vertical polarization and horizontal polarization;
    상기 수직편파의 영상을 획득하는 제1 전하결합소자; 및A first charge coupled device obtaining the image of the vertical polarization; And
    상기 수평편파의 영상을 획득하는 제2 전하결합소자를 포함하는 금속 표면 결함 검출 장치.And a second charge coupling device for acquiring the image of the horizontal polarization.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 편광분리기는 편광 빔스플리터 큐브인 금속 표면 결함 검출 장치.And the polarization separator is a polarization beam splitter cube.
  6. 제3항에 있어서,The method of claim 3,
    상기 금속물체는 정지된 금속물체 또는 이동하는 금속물체인 금속 표면 결함 검출 장치.The metal object is a metal surface defect detection device is a stationary metal object or a moving metal object.
  7. 명시야 조건에서 제1 파장의 선편광된 조명을 금속물체의 표면에 조사하는 제1 광원;A first light source for irradiating the surface of the metal object with linearly polarized light having a first wavelength in bright field conditions;
    암시야 조건에서 제2 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 제2 광원;A second light source for irradiating a surface of the metal object with linearly polarized light having a second wavelength under dark field conditions;
    암시야 조건에서 상기 제2 파장의 선편광된 조명과 직교하는 제2 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 제3 광원;A third light source for irradiating a surface of the metal object with a linearly polarized light having a second wavelength orthogonal to the linearly polarized light of the second wavelength in a dark field condition;
    암시야 조건에서 상기 제1 파장의 선편광된 조명과 직교하는 제1 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 제4 광원; 및A fourth light source for irradiating the surface of the metal object with the linearly polarized light having a first wavelength orthogonal to the linearly polarized light having the first wavelength in a dark field condition; And
    상기 금속물체의 표면에서 반사된 빛을 획득하여 상기 금속물체의 표면 결함 검사를 위한 영상을 취득하는 카메라부를 포함하며,A camera unit which acquires an image for inspecting surface defects of the metal object by acquiring light reflected from the surface of the metal object;
    상기 제1 광원, 상기 제2 광원, 상기 제3 광원, 및 상기 제4 광원은 조명들을 동시에 조사하는 금속 표면 결함 검출 장치.And the first light source, the second light source, the third light source, and the fourth light source irradiate lights simultaneously.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 카메라부는 상기 제1 광원 및 상기 제4 광원 사이와, 상기 제2 광원 및 상기 제3 광원 사이에 배치되고, 상기 제1 광원 및 상기 제4 광원은 상기 제2 광원 및 상기 제3 광원에 대하여 직교하도록 배치되는 금속 표면 결함 검출 장치.The camera unit is disposed between the first light source and the fourth light source, and between the second light source and the third light source, wherein the first light source and the fourth light source are disposed with respect to the second light source and the third light source. Metal surface defect detection device arranged to be orthogonal.
  9. 제7항에 있어서, 상기 카메라부는,The method of claim 7, wherein the camera unit,
    상기 금속물체의 표면에서 반사된 빛을 상기 제1 파장의 빛과 상기 제2 파장의 빛으로 분리하는 색선별 거울;A color screening mirror that separates the light reflected from the surface of the metal object into light of the first wavelength and light of the second wavelength;
    상기 색선별 거울에서 분리된 제1 파장의 빛을 수직편파와 수평편파로 분리하여 획득하고 상기 획득된 수직편파와 수평편파를 이용하여 상기 금속물체의 표면 결함 검사를 위한 영상을 취득하는 제1 카메라; 및A first camera that obtains light of a first wavelength separated from the color-dividing mirror into vertical and horizontal polarizations, and acquires an image for inspecting surface defects of the metal object by using the obtained vertical and horizontal polarizations ; And
    상기 색선별 거울에서 분리된 제2 파장의 빛을 수직편파와 수평편파로 분리하여 획득하고 상기 획득된 수직편파와 수평편파를 이용하여 상기 금속물체의 표면 결함 검사를 위한 영상을 취득하는 제2 카메라를 포함하는 금속 표면 결함 검출 장치.A second camera obtained by dividing the light having the second wavelength separated from the dichroic mirror into vertical polarization and horizontal polarization and acquiring an image for inspecting the surface defect of the metal object using the obtained vertical and horizontal polarization; Metal surface defect detection device comprising a.
  10. 제9항에 있어서, 상기 제1 카메라는,The method of claim 9, wherein the first camera,
    상기 색선별 거울에서 분리된 제1 파장의 빛을 상기 수직편파 및 상기 수평편파로 분리하는 편광분리기;A polarization separator that separates light of the first wavelength separated from the dichroic mirror into the vertical polarization and the horizontal polarization;
    상기 편광분리기에서 분리된 수직편파의 영상을 획득하는 제1 전하결합소자; 및A first charge coupling device obtaining an image of vertical polarization separated by the polarization separator; And
    상기 편광분리기에서 분리된 수평편파의 영상을 획득하는 제2 전하결합소자를 포함하는 금속 표면 결함 검출 장치.Metal surface defect detection device comprising a second charge coupling device for obtaining an image of the horizontal polarization separated by the polarization separator.
  11. 제9항에 있어서, 상기 제2 카메라는,The method of claim 9, wherein the second camera,
    상기 색선별 거울에서 분리된 제2 파장의 빛을 상기 수직편파 및 상기 수평편파로 분리하는 편광분리기;A polarization separator that separates light having a second wavelength separated from the dichroic mirror into the vertical polarization and the horizontal polarization;
    상기 편광분리기에서 분리된 수직편파의 영상을 획득하는 제1 전하결합소자; 및A first charge coupling device obtaining an image of vertical polarization separated by the polarization separator; And
    상기 편광분리기에서 분리된 수평편파의 영상을 획득하는 제2 전하결합소자를 포함하는 금속 표면 결함 검출 장치.Metal surface defect detection device comprising a second charge coupling device for obtaining an image of the horizontal polarization separated by the polarization separator.
  12. 제7항에 있어서,The method of claim 7, wherein
    상기 금속물체는 정지된 금속물체 또는 이동하는 금속물체인 금속 표면 결함 검출 장치.The metal object is a metal surface defect detection device is a stationary metal object or a moving metal object.
  13. 제1 각도에서 제1 파장의 선편광된 조명을 금속물체의 표면에 조사하는 제1 광원;A first light source for irradiating the surface of the metal object with linearly polarized light having a first wavelength at a first angle;
    제2 각도에서 제2 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 제2 광원;A second light source for irradiating a surface of the metal object with linearly polarized light having a second wavelength at a second angle;
    제3 각도에서 상기 제2 파장의 선편광된 조명과 직교하는 제2 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 제3 광원;A third light source for irradiating a surface of the metal object with the linearly polarized light of the second wavelength orthogonal to the linearly polarized light of the second wavelength at a third angle;
    제4 각도에서 상기 제1 파장의 선편광된 조명과 직교하는 제1 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 제4 광원; 및A fourth light source for irradiating the surface of the metal object with the linearly polarized light of the first wavelength orthogonal to the linearly polarized light of the first wavelength at a fourth angle; And
    상기 금속물체의 표면에서 반사된 빛을 획득하여 상기 금속물체의 표면 결함 검사를 위한 영상을 취득하는 카메라부를 포함하며,A camera unit for acquiring an image for inspecting a surface defect of the metal object by acquiring light reflected from the surface of the metal object;
    상기 제1 광원, 상기 제2 광원, 상기 제3 광원, 및 상기 제4 광원은 조명들을 동시에 조사하고, 상기 제1 각도, 상기 제2 각도, 상기 제3 각도, 또는 상기 제4 각도는 명시야 조명 또는 암시야 조명을 위한 각도인 금속 표면 결함 검출 장치.The first light source, the second light source, the third light source, and the fourth light source irradiate lights simultaneously, and the first angle, the second angle, the third angle, or the fourth angle is bright field. Metal surface defect detection device at an angle for illumination or dark field illumination.
  14. (a) 명시야 조건에서 선편광된 조명을 금속물체의 표면에 조사하는 단계;(a) irradiating the surface of the metal object with linearly polarized light under bright field conditions;
    (b) 암시야 조건에서 상기 선편광된 조명과 서로 직교하고 상기 선편광된 조명의 파장과 동일한 파장을 가지는 선편광된 조명을 상기 명시야 조건에서의 선편광된 조명의 조사와 동시에 상기 금속물체의 표면에 조사하는 단계;(b) irradiating the surface of the metal object at the same time as the irradiation of the linearly polarized light in the bright field conditions orthogonal to the linearly polarized light in the dark field conditions and having the same wavelength as the wavelength of the linearly polarized light; Doing;
    (c) 상기 금속물체의 표면에서 반사된 빛의 영상을 동시에 획득하는 단계; 및(c) simultaneously acquiring an image of light reflected from the surface of the metal object; And
    (d) 상기 획득된 영상을 신호처리하여 상기 금속물체의 표면 결함을 검출하는 단계를 포함하는 금속 표면 결함 검출 방법.(d) detecting a surface defect of the metal object by signal processing the obtained image.
  15. (a) 제1 각도에서 제1 파장의 선편광된 조명을 금속물체의 표면에 조사하는 단계;(a) irradiating a surface of the metal object with linearly polarized light of a first wavelength at a first angle;
    (b) 제2 각도에서 제2 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 단계;(b) irradiating a surface of the metal object with linearly polarized light of a second wavelength at a second angle;
    (c) 제3 각도에서 상기 제2 파장의 선편광된 조명과 직교하는 제2 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 단계;(c) irradiating a surface of the metal object with a linearly polarized light of a second wavelength orthogonal to the linearly polarized light of the second wavelength at a third angle;
    (d) 제4 각도에서 상기 제1 파장의 선편광된 조명과 직교하는 제1 파장의 선편광된 조명을 상기 금속물체의 표면에 조사하는 단계;(d) irradiating a surface of the metal object with linearly polarized light of a first wavelength orthogonal to the linearly polarized light of the first wavelength at a fourth angle;
    (e) 상기 금속물체의 표면에서 반사된 빛의 영상을 동시에 획득하는 단계; 및(e) simultaneously acquiring an image of light reflected from the surface of the metal object; And
    (f) 상기 획득된 영상을 신호처리하여 상기 금속물체의 표면 결함을 검출하는 단계를 포함하며,(f) signal-processing the obtained image to detect surface defects of the metal object;
    상기 제1 파장의 조명 및 상기 제2 파장의 조명은 동시에 조사되고, 상기 제1 각도, 상기 제2 각도, 상기 제3 각도, 또는 상기 제4 각도는 명시야 조명 또는 암시야 조명을 위한 각도인 금속 표면 결함 검출 방법.The illumination of the first wavelength and the illumination of the second wavelength are simultaneously irradiated and the first angle, the second angle, the third angle, or the fourth angle is an angle for brightfield illumination or darkfield illumination. Metal surface defect detection method.
PCT/KR2011/005282 2011-07-18 2011-07-19 Camera for detecting metal surface defects, device for detecting metal surface defects including the camera, and method for detecting metal surface defects WO2013012106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110070941A KR101078404B1 (en) 2011-07-18 2011-07-18 Camera for detecting defect of metallic surface, metallic surface defect detection device including the same, and method of detecting defect of metallic surface
KR10-2011-0070941 2011-07-18

Publications (1)

Publication Number Publication Date
WO2013012106A1 true WO2013012106A1 (en) 2013-01-24

Family

ID=45396943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005282 WO2013012106A1 (en) 2011-07-18 2011-07-19 Camera for detecting metal surface defects, device for detecting metal surface defects including the camera, and method for detecting metal surface defects

Country Status (2)

Country Link
KR (1) KR101078404B1 (en)
WO (1) WO2013012106A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107770417A (en) * 2016-08-18 2018-03-06 韩华泰科株式会社 The camera model of part placement equipment
WO2023166898A1 (en) * 2022-03-03 2023-09-07 Jfeスチール株式会社 Surface inspection method for metal material, surface inspection apparatus for metal material, and metal material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743758A (en) * 2014-01-15 2014-04-23 唐山英莱科技有限公司 Visual inspection system for high-reflective metal surface based on cross-polarization
KR101876628B1 (en) * 2016-09-08 2018-08-02 주식회사 맥사이언스 Method for Apparatus for Inspecting Lock-in Electroluminescence Image of Outdoor Solar Module
KR101791469B1 (en) 2016-10-14 2017-10-30 주식회사 윈텍오토메이션 Vision based Insert Defect Detection Method using Shape Symmetry and Image Similarity
IT201800005962A1 (en) * 2018-06-01 2019-12-01 OPTICAL SYSTEM FOR THE IDENTIFICATION OF DEFECTS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792104A (en) * 1993-09-27 1995-04-07 Mec:Kk Method for inspecting defective point of object
KR0125596B1 (en) * 1993-12-14 1998-07-01 안시환 Surface damage detecting method and apparatus
KR20010067345A (en) * 1999-10-26 2001-07-12 가나이 쓰토무 Nondestructive inspection method and an apparatus thereof
KR20100058012A (en) * 2008-11-24 2010-06-03 참앤씨(주) Optical system for detecting defect

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792104A (en) * 1993-09-27 1995-04-07 Mec:Kk Method for inspecting defective point of object
KR0125596B1 (en) * 1993-12-14 1998-07-01 안시환 Surface damage detecting method and apparatus
KR20010067345A (en) * 1999-10-26 2001-07-12 가나이 쓰토무 Nondestructive inspection method and an apparatus thereof
KR20100058012A (en) * 2008-11-24 2010-06-03 참앤씨(주) Optical system for detecting defect

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107770417A (en) * 2016-08-18 2018-03-06 韩华泰科株式会社 The camera model of part placement equipment
CN107770417B (en) * 2016-08-18 2020-12-18 韩华精密机械株式会社 Camera module of component mounter
WO2023166898A1 (en) * 2022-03-03 2023-09-07 Jfeスチール株式会社 Surface inspection method for metal material, surface inspection apparatus for metal material, and metal material

Also Published As

Publication number Publication date
KR101078404B1 (en) 2011-11-01

Similar Documents

Publication Publication Date Title
WO2013012106A1 (en) Camera for detecting metal surface defects, device for detecting metal surface defects including the camera, and method for detecting metal surface defects
US6346966B1 (en) Image acquisition system for machine vision applications
WO2015080480A1 (en) Wafer image inspection apparatus
WO2013048093A2 (en) Contactless component-inspecting apparatus and component-inspecting method
WO2011087337A2 (en) Substrate-inspecting device
WO2014163375A1 (en) Method for inspecting for foreign substance on substrate
KR101972517B1 (en) Dual line optics inspection system for surface inspection of flexible device
WO2001049043A1 (en) Method of simultaneously applying multiple illumination schemes for simultaneous image acquisition in an imaging system
WO2012023816A2 (en) Fluorescence microscope for multi-fluorescence image observation, fluorescence image observation method using the same, and multi-fluorescence image observation system
CN103679916A (en) Online imprinting detection method and system
WO2013176482A1 (en) Height measuring method for three dimensional shape measuring device
WO2019031667A1 (en) Device and method for measuring thickness and refractive index of multilayer thin film by using angle-resolved spectral reflectometry
US7869021B2 (en) Multiple surface inspection system and method
WO2017200226A1 (en) Device for measuring three-dimensional shape using multi-wavelength optical scanning interferometer
WO2017204560A1 (en) Method and apparatus of detecting particles on upper surface of glass, and method of irradiating incident light
WO2011083989A2 (en) Defect inspection device
WO2012020932A2 (en) Defect inspecting device and defect inspecting method using same
JP2008026060A (en) Flaw inspection device of insulating film covered belt-like body
WO2019022551A1 (en) Optical film defect detection device and optical film defect detection method
TW561240B (en) Illumination system used for apparatus for inspecting surface-mounted chip
WO2015167104A1 (en) Apparatus and method of detecting foreign material on upper surface of transparent substrate using polarized light
WO2009119983A2 (en) Fpd substrate and semiconductor wafer inspection system using duplicate images
WO2014192999A1 (en) Defect inspection system for inspecting object having irregular patterns
WO2013100223A1 (en) Method for creating the height information of a substrate inspection device
EP1978353B1 (en) Multiple surface inspection system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869576

Country of ref document: EP

Kind code of ref document: A1